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Abstract. Effective and accurate ocean and coastal wave predictions are necessary for engineering, safety, and recreational 

purposes. Refining predictive capabilities is increasingly critical to reduce the uncertainties faced with a changing global wave 

climatology. Simulating WAves in the Nearshore (SWAN) is a widely used spectral wave modelling tool employed by coastal 10 

engineers and scientists, including for operational wave forecasting purposes. Fore- and hindcasts can span hours to decades 

and a detailed understanding of the computational efficiencies is required to design optimized operational protocols and 

hindcast scenarios. To date, there exists limited knowledge on the relationship between the size of a SWAN computational 

domain and the optimal amount of parallel computational threads/ cores required to execute a simulation effectively. To test 

the scalability, a hindcast cluster of 28 computational threads/ cores (1 node) was used to determine the computation 15 

efficiencies of a SWAN model configuration for southern Africa. The model extent and resolution emulate the current 

operational wave forecasting configuration developed by the South African Weather Service (SAWS). We implemented and 

compared both OpenMP and the Message Passing Interface (MPI) distributing memory architectures. Three sequential 

simulations (corresponding to typical grid cell numbers) were compared to various permutations of parallel computations using 

the speed-up ratio, time saving ratio and efficiency tests. Generally, a computational node configuration of 6 threads/ cores 20 

produced the most effective computational set-up based on wave hindcasts of one-week duration. The use of more than 20 

threads/ cores resulted in a decrease in speed-up ratio for the smallest computation domain, owing to the increased sub-domain 

communication times for limited domain sizes. 
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1 Introduction 25 

The computational efficiency of Met-ocean (Metrological-Ocean) modelling has been the topic of ongoing deliberation for 

decades. The applications range from long-term atmospheric and ocean hindcast simulations to the fast responding simulations 

related to operational forecasting. Long-duration simulations are usually associated with climate change related research, with 

simulation periods of at least 30-years across multiple spatial and temporal resolutions needed to capture key oscillations 

(Babatunde et al., 2013). Such hindcasts are frequently used by coastal and offshore engineering consultancies for purposes 30 
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such as those related to infrastructure design (Kamphuis, 2020), or environmental impact assessments (Frihy, 2001; Liu et al., 

2013). 

Operational (or forecasting) agencies are usually concerned with achieving simulation speeds that would allow them to 

accurately forewarn their stakeholders of immediate, imminent and upcoming met-ocean hazards. The main stakeholders are 

usually other governmental agencies (e.g. disaster response or environmental affairs departments), commercial entities and the 35 

public. Both atmospheric and marine forecasts share similar numerical schemes that solve the governing equations and thus 

share a similar need in computational efficiency. Fast simulation times are also required for other forecasting fields such as 

hydrological dam-break models (e.g. Zhang, et al., (2014)). Significant advancement in operational forecasting can be made 

by examining the way in which the code interfaces with the computation nodes, and how results are stored during simulation. 

Numerous operational agencies (both private and public) makes use of Simulating Waves in the Nearshore (SWAN) to predict 40 

nearshore wave dynamics (refer to Genseberger & Donners, (2020) for details regarding the SWAN numerical code and 

solution schemes). These agencies include the South African Weather Service (e.g. Rautenbach, et al., (2020)), MetOcean 

Solutions (a division of the Metrological Office of New Zealand) (e.g. de Souza, et al., (2020)), the United Kingdom MetOffice 

(e.g. O’Neill et al., (2016)) and the Norwegian Metrological Service (e.g. Jeuring, et al., (2019). In general, these agencies 

have substantial computational facilities but nonetheless still face the challenge of optimizing the use of their computational 45 

clusters between various models (being executed simultaneously). These models may include atmospheric models (e.g. the 

Weather Research and Forecasting (WRF) model), Hydrodynamic models (e.g. Regional Ocean Modeling System (ROMS) 

and the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM)) and spectral waves models (e.g. Wave 

Watch III (WW3) and SWAN (Holthuijsen, 2007; The SWAN team, 2019b; The SWAN team, 2019)). Holthuijsen, (2007) 

presents a theoretical background to the spectral wave equations, wave measurement techniques and statistics as well as a 50 

concluding chapter the theoretical analysis to the SWAN numerical model. There must also be a balance between hindcast and 

forecast priorities and client needs. Some of these agencies use a regular grid (instead of irregular grids (e.g. Zhang, et al., 

(2016)), with nested domains in many of their operational and hindcast projects. Here, we focus only on the computational 

performance of a structured regular grid (typically implemented for spectral wave models).   

Kerr et al., (2013) performed an inter-model comparison of computational efficiencies by comparing SWAN, coupled with 55 

ADCIRC, and the NOAA official storm surge forecasting model, Sea, Lake, and Overland Surges from Hurricanes (SLOSH); 

however, did not investigate the optimal thread usage of a single model. Other examples of a coupled wave and storm surge 

model computational benchmarking experiments include Tanaka, et al, (2011)  and Dietrich et al., (2012) who used a 

unstructured meshes to simulate waves during Hurricanes Katrina, Rita, Gustav and Ike in the Gulf of Mexico. Results from 

these models were presented on a log-log scale and their experimental design tested computational thread numbers not easily 60 

obtainable by smaller agencies and companies. The latter rather require sequential versus paralleled computational efficiencies 

using smaller scale efficiency metrics. Genseberger & Donners, (2015), explored the scalability of SWAN using a case study 

focused on the Wadden Sea in the Netherlands. By investigating the efficiency of both the OpenMP (OMP) and MPI version 

of the then current SWAN, they found that the OpenMP was more efficient on a single node. They also proposed a hybrid 
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version of SWAN, to combine the strengths of both implementations of SWAN: using OpenMP to more optimally share 65 

memory and MPI to distribute memory over the computational nodes.  

 

Here we build on the case study of Genseberger & Donners using results produced in the present study for southern Africa, to 

answer the following research questions: 1) when using SWAN, is it always better to have as many threads/ cores as possible 

available to solve the problem at hand? 2) What is the speed-up relationship between number of threads/ cores and 70 

computational grid size? 3) At what point (number of threads/ cores) does the domain sub-communications start to make the 

whole computation less effective? 4) What is the scalability of a rectangular grid, SWAN set-up? 

Methodology and background 

Details of the model configuration can be found in Rautenbach, et al., (2020a) and Rautenbach, et al., (2020b). The 

computational domain (refer to Figure 1) and physics used here were the same as presented in those studies.  75 

 

Figure 1: SWAN model extent and associated bathymetry. The location of all the major coastal towns are also provided via acronyms 

as follows: Port Nolloth (PN), Saldanha Bay (SB), Cape Town (CT), Mossel Bay (MB), Port Elizabeth (PE), East London (EL), 

Durban (DN) and Richards Bay (RB). 

 80 

All computations were performed on Intel Xeon Gold E5-2670, 2.3GHz computational nodes. Twenty-eight threads/ cores 

each with 96 GB RAM were used with1 Gbyte/s inter-thread communication speed. Given that the present study was performed 

using a single computational node, inter-node communication speeds are not considered. Thus, given a computational node 

with similar processing speed, the present study should be reproducible. In general, these node specifications are reasonably 

standard and therefore the present study is an acceptable representation of the SWAN scalability parameters. 85 



4 

 

SWAN 40.91 was implemented with the Van der Westhuysen whitecapping formulation (van der Westhuysen, et al., 2007) 

and Collins bottom friction correlation (Collins, 1972) with a coefficient value of 0.015. Fully spectral wave boundary 

conditions were extracted from a global Wave Watch III model at 0.5 geographical degree resolution.  

 Here, the main aim was not the validation of the model but rather to quantify the relative computational scalabilities, as 

described at the end of the previous section. However, it should be noted that no nested domains were employed during the 90 

present study. Only the parent domain was used as a measure for scalability. The computational extent given in Rautenbach, 

Barnes, et al., (2020) (a) and Rautenbach, et al., (2020) (b) contains numerous non-wet grid cells that are not included in the 

computational expense of the current study. In Table 1, the size of the computational domain and resolution, together with the 

labelling convention are given.  For clarity, we define the resolutions as low, medium and high, denoted L, M and H, 

respectively, in the present study (noting that given the domain size, these resolutions would be classified as intermediate to 95 

high regional resolution for operational purposes). 

 

Table 1: SWAN grid resolution, grid cell numbers and reference labels. 

Label SWAN grid resolution Computational grid cell number 

L 0.1000 31 500 

M 0.0625 91 392 

H 0.0500 142 800 

 

The test for scalability ability of a model used here was the ability to respond to an increased number of computations with an 100 

increasing amount of resources. In the present study these resources are computational threads/ cores. An arbitrary week of 

computations were performed to assess model performance. Model spin-up was done via a single stationary computation. The 

rest of the computation was performed using a non-stationary computation using an hourly time-step, which implied wind-

wave generation within the model occurred on the timescale of the wind forcing resolution. The grid resolutions used in the 

present study corresponded to 0.1, 0.0625 and 0.05 geographical degrees. Local bathymetric features were typically resolved 105 

through downscaled, rotated, rectangular grids, following the methodology employed by Rautenbach, et al., (2020) (a). A 

nested resolution increase of more than 5-times is also not recommended (given that the regional model is nested in the global 

Wave Watch III output at 0.5 geographical degree resolution, (Rautenbach, et al., 2020) (a). Given these constraints, these 

resolutions represent realistic and typical SWAN model set-up, for both operational and hindcast scenarios. 

 110 

The three main metrics for estimating computational efficiency are: the Speed-up, Time saving and Efficiency ratios. A fourth 

parameter, and arguably the most important, is the Scalability and is estimated using the other three parameters as metrics. 

The Speed-up ratio is given as: 
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 𝑆𝑝 = 𝑇1 𝑇𝑝⁄  (1) 

where 𝑇1is the time in seconds it takes for a sequential computation on one thread and 𝑇𝑝is the time a simulation takes with p 

computational threads/ cores (Zhang et al., 2014) . 115 

The Time saving ratio is given by: 

 𝑇1𝑆𝑝 = (𝑇1 − 𝑇𝑝) 𝑇1⁄  (2) 

and the Efficiency ratio is defined as: 

 𝐸𝑝 = 𝑆𝑝 𝑝⁄ . (3) 

The Scalability of SWAN was tested based on the Speed-up ratios for the grid resolutions in Table 1.  

 

Zafari, Larsson, & Tillenius, (2019) recently presented some of the first results investigating the effect of different compilers 120 

on the scalability of a shallow water equation solver. Their experiments compared a model compiled with GNU Compiler 

Collection (gcc) 7.2.0 and linked with OpenMPI and Intel C++ compilers with Intel MPI for relatively small computational 

problems. Their numerical computation considered models with 600K, 300K and 150K grid cell sizes (what they called matrix 

size). These computational grid sizes were deemed “small”, but they still acknowledged the significant computational 

resources required to execute geographical models of this size due to the large number of time steps undertaken to solve these 125 

problems. 

 

From a practical point of view, regular SWAN grids will rarely be used in dimensions exceeding the resolutions presented in 

the previous section. The reason for this statement is twofold: 1) to downscale a spectral wave model from a global resolution 

to a regional resolution should not exceed a five-times refinement factor and 2) when reasonably high resolutions are required 130 

in the nearshore (to take complex bathymetric features into account), nested domain are preferred. The reasoning will be 

different for an unstructured grid approach (Dietrich et al., 2012) .  Given these limitations with the widely used structured 

SWAN grid approach, SWAN grids will almost exclusively be deemed as a low spatial computational demand model.  Small 

tasks create a sharp drop in performance via the Intel C++ compiler due to the “work stealing” algorithm, aimed at balancing 

out the computational load between threads/ cores (Zafari et al., 2019) . In this scenario, the threads/ cores compete against 135 

each other resulting in an unproductive simulation. In our experiments, each task performed via Intel was approximately 13-

times faster but the overall performance was 16-time slower than the equivalent gcc compiled version of the compiled shallow 

water model presented by Zafari et al. (2019) . 
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Results 

In Figure 2, the computational scalability of SWAN is given as a function of number of computational threads/ cores. Figure 140 

2 (a) shows the computational time in seconds and here the model resolutions grouped together with not much differentiation 

between them. These results also highlight the need for performance metrics, like described in the previous section. From 

Figure 2 (b) the MPI version of SWAN is more efficient for all the computational domain sizes. There is also a clear grouping 

between OMP and MPI. Figure 2 (c) presents the speed-up ratios and clearly indicates that the MPI version of SWAN 

outperforms the OMP version. The closer the result are to the 1:1 line, the better the scalability.  145 

 

 

(a)                                                                                                     (b) 

 

                                                 (c)                                                                                                 (d) 150 
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Figure 2: Model performance as a function of the number of computational threads/ cores. (a) Computing time in 

seconds, (b) Efficiency (Equation (3)), (c) Speed-up ratio (Equation (1)) and (d) the Time saving ratio (Equation (2)).   

 

Near linear speed up is observed for a small number of computational threads/ cores. This result agrees with those reported by 

Zafari et al., (2019). In Figure 2 (d) the results are expressed via the time saving ratio.  In this case, the curves start to asymptote 155 

with thread counts larger than approximately 6.  

Discussion  

The behaviour noted in the results is similar to the dam breaking computational results reported by S. Zhang et al., (2014). 

Genseberger & Donners, (2020) present the latest finding on the scalability and benchmarking of SWAN. However, their focus 

was quantifying the performance of their new hybrid version of SWAN. In their benchmarking experiments (for the Wadden 160 

Sea, in the Netherlands), they obtained different results to Figure 2 (a), with OMP generally producing faster wall-clock 

computational times. They also considered the physical distances between computational threads/ cores and found that this 

parameter has a negligible effect compared to differences between OMP and MPI, over an increasing number of threads/ cores. 

Their benchmarking also differed from the results presented here as they only provided results as a function of node number.  

Each one of their nodes consisted of 24 threads/ cores. In the present study, the benchmarking of a single node (28 threads/ 165 

cores) is evaluated compared with a serial computation on a single thread. For benchmarking, without performance metrics, 

they found that the wall clock times, for the iterations and not a full simulation, reached a minimum (for large computational 

domains) at 16 nodes (16 × 24 threads/ cores) for the MPI SWAN and 64 nodes (64 × 24 threads/ cores) for the hybrid SWAN. 

These results were based on using the Cartesius 2690 v3 (Genseberger and Donners, 2020). With the hybrid SWAN, the 

optimal wall-clock time turn point, for iterations, increased with increased number of computational cells. All of the reported 170 

turn points (optimal points) occurred at node counts well above 4 nodes (4 × 24 threads/ cores). The wall-clock performance 

estimation of Genseberger & Donners, (2015) did however indicate similar result to those presented in Figure 2 (a), with OMP 

running faster than MPI for small thread/ core counts. For larger thread/ core counts MPI performs better in the present study. 

This difference in performance is probably related to the particular hardware configuration (Genseberger and Donners, 2015). 

It must still be noted that with an increased number of nodes, and thus threads/ cores, the total computational time should 175 

continue to decrease up until the point where the internal domain decomposition, communication efficiencies, starts to 

outweigh the gaining of computational power. Based on results of Genseberger & Donners, (2020), we can estimate that, for 

our node configuration and region of interest, the communication inefficiencies will become dominant at approximately 16 

nodes (16 × 24 threads/ cores). One of the possible explanations for the non-perfect speed-up observed in Figure 2 (c) is related 

to the computational domain partition methods used, and the wet and dry (or active and inactive) points definitions in the 180 

model. In the present study the dry points were the bathymetry or topography values above Mean Sea Level (MSL). The 

employed partition method is currently stripwise because of the underlying parallel technique, namely the wavefront method 
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(Genseberger and Donners, 2015; Zijlema, 2005). The stripwise partition is thus potentially not the most effective method to 

optimize speed-up. In the present study this partition leads to an optimal point around 6 threads/ cores without losing too much 

parallel efficiency. In general, increasing the number of threads/ cores will still produce results faster, but in an increasingly 185 

inefficient manner. This trend is clear from Figure 2 (c) and (d) where the total computational time (speed-up ratio, time saving 

ratio) does not scale linearly with the increasing number of threads/ cores. The ideal scenario (linear scalability) would be if 

the computational results followed the 1:1 line in Figure 2 (c). In Figure 2 (d) the non-linear, flattening of the time saving ratio 

is also evident, although the ratio still slightly increases beyond 6 threads/ cores. This result implies the total computational 

time will marginally decrease with increasing number of threads/ cores. This marginal decrease in computational time could 190 

however still make significant differences in the total simulation times when extensive simulation periods are considered.  

Conclusion 

The present study investigated the scalability of SWAN, a widely used spectral wave model. Three typical wave model 

resolutions were used for these purposes. Both the OpenMP (OMP) and the Message Passing Interface (MPI) implementations 

of SWAN were tested. The scalability is presented via three performance metrics: the efficiency, speed-up ratio and the 195 

timesaving ratio. The MPI version of SWAN outperformed the OMP version based on all three metrics. The MPI version of 

SWAN performed best with the largest computational domain resolution, resulting in the highest speed-up ratios. The time 

saving ratio indicated a decrease after approximately six computational threads/ cores. This result suggests that six threads/ 

cores are the most effective configuration for executing SWAN. The largest increases in speed-up and efficiency was observed 

with small thread counts. According to Genseberger & Donners, (2020), computational times decrease up to ~16 nodes (16 × 200 

24 threads/ cores), indicating the wall-clock optimal computational time for their cases study. This result suggests that multiple 

nodes will be required to reach the optimal wall-clock computational time – even though this turn point might not be the most 

efficient computational configuration. Ultimately, the efficiencies recommended here can improve operational performance 

substantially, particularly when implemented over the range of modelling software needed to produce useful metocean 

forecasts. Future studies might consider investigating the scalability employing a gcc compiler.  205 

Code/Data availability 

The open source version of SWAN was run for the purposes of the present study. SWAN maybe be downloaded from here: 

http://swanmodel.sourceforge.net/. To ensure a compatible version of SWAN remains available, the current, latest version of 

SWAN is permanently archive here: https://hdl.handle.net/10289/14269. The bathymetry used for the present study may be 

downloaded here: https://www.gebco.net/ and the wind forcing may be found here: https://climatedataguide.ucar.edu/climate-210 

data/climate-forecast-system-reanalysis-cfsr. 

http://swanmodel.sourceforge.net/
https://hdl.handle.net/10289/14269
https://www.gebco.net/
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