
1

Parallel computing efficiency of SWAN 40.91

Christo Rautenbach1, 2, 3, 4, Julia C. Mullarney4, Karin R. Bryan4

1 Institute for Coastal and Marine Research, Nelson Mandela University, South Africa

2 Department of Oceanography and Marine Research Institute, University of Cape Town, South Africa
3 Research and development, MetOcean (a division of the Metrological Service), Raglan, New Zealand 5
4 Environmental Research Institute, University of Waikato, Hamilton, New Zealand

Correspondence to: Christo Rautenbach (rautenbachchristo@gmail.com)

Abstract. Effective and accurate ocean and coastal wave predictions are necessary for engineering, safety, and recreational

purposes. Refining predictive capabilities is increasingly critical to reduce the uncertainties faced with a changing global wave

climatology. Simulating WAves in the Nearshore (SWAN) is a widely used spectral wave modelling tool employed by coastal 10

engineers and scientists, including for operational wave forecasting purposes. Fore- and hindcasts can span hours to decades

and a detailed understanding of the computational efficiencies is required to design optimized operational protocols and

hindcast scenarios. To date, there exists limited knowledge on the relationship between the size of a SWAN computational

domain and the optimal amount of parallel computational threads/ cores required to execute a simulation effectively. To test

the scalability, a hindcast cluster of 28 computational threads/ cores (1 node) was used to determine the computation 15

efficiencies of a SWAN model configuration for southern Africa. The model extent and resolution emulate the current

operational wave forecasting configuration developed by the South African Weather Service (SAWS). We implemented and

compared both OpenMP and the Message Passing Interface (MPI) distributing memory architectures. Three sequential

simulations (corresponding to typical grid cell numbers) were compared to various permutations of parallel computations using

the speed-up ratio, time saving ratio and efficiency tests. Generally, a computational node configuration of 6 threads/ cores 20

produced the most effective computational set-up based on wave hindcasts of one-week duration. The use of more than 20

threads/ cores resulted in a decrease in speed-up ratio for the smallest computation domain, owing to the increased sub-domain

communication times for limited domain sizes.

Keywords: SWAN, Parallel computing, Forecasting, Hindcasting, South Africa

1 Introduction 25

The computational efficiency of Met-ocean (Metrological-Ocean) modelling has been the topic of ongoing deliberation for

decades. The applications range from long-term atmospheric and ocean hindcast simulations to the fast responding simulations

related to operational forecasting. Long-duration simulations are usually associated with climate change related research, with

simulation periods of at least 30-years across multiple spatial and temporal resolutions needed to capture key oscillations

(Babatunde et al., 2013). Such hindcasts are frequently used by coastal and offshore engineering consultancies for purposes 30

2

such as those related to infrastructure design (Kamphuis, 2020), or environmental impact assessments (Frihy, 2001; Liu et al.,

2013).

Operational (or forecasting) agencies are usually concerned with achieving simulation speeds that would allow them to

accurately forewarn their stakeholders of immediate, imminent and upcoming met-ocean hazards. The main stakeholders are

usually other governmental agencies (e.g. disaster response or environmental affairs departments), commercial entities and the 35

public. Both atmospheric and marine forecasts share similar numerical schemes that solve the governing equations and thus

share a similar need in computational efficiency. Fast simulation times are also required for other forecasting fields such as

hydrological dam-break models (e.g. Zhang, et al., (2014)). Significant advancement in operational forecasting can be made

by examining the way in which the code interfaces with the computation nodes, and how results are stored during simulation.

Numerous operational agencies (both private and public) makes use of Simulating Waves in the Nearshore (SWAN) to predict 40

nearshore wave dynamics (refer to Genseberger & Donners, (2020) for details regarding the SWAN numerical code and

solution schemes). These agencies include the South African Weather Service (e.g. Rautenbach, et al., (2020)), MetOcean

Solutions (a division of the Metrological Office of New Zealand) (e.g. de Souza, et al., (2020)), the United Kingdom MetOffice

(e.g. O’Neill et al., (2016)) and the Norwegian Metrological Service (e.g. Jeuring, et al., (2019). In general, these agencies

have substantial computational facilities but nonetheless still face the challenge of optimizing the use of their computational 45

clusters between various models (being executed simultaneously). These models may include atmospheric models (e.g. the

Weather Research and Forecasting (WRF) model), Hydrodynamic models (e.g. Regional Ocean Modeling System (ROMS)

and the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM)) and spectral waves models (e.g. Wave

Watch III (WW3) and SWAN (Holthuijsen, 2007; The SWAN team, 2019b; The SWAN team, 2019)). Holthuijsen, (2007)

presents a theoretical background to the spectral wave equations, wave measurement techniques and statistics as well as a 50

concluding chapter the theoretical analysis to the SWAN numerical model. There must also be a balance between hindcast and

forecast priorities and client needs. Some of these agencies use a regular grid (instead of irregular grids (e.g. Zhang, et al.,

(2016)), with nested domains in many of their operational and hindcast projects. Here, we focus only on the computational

performance of a structured regular grid (typically implemented for spectral wave models).

Kerr et al., (2013) performed an inter-model comparison of computational efficiencies by comparing SWAN, coupled with 55

ADCIRC, and the NOAA official storm surge forecasting model, Sea, Lake, and Overland Surges from Hurricanes (SLOSH);

however, did not investigate the optimal thread usage of a single model. Other examples of a coupled wave and storm surge

model computational benchmarking experiments include Tanaka, et al, (2011) and Dietrich et al., (2012) who used a

unstructured meshes to simulate waves during Hurricanes Katrina, Rita, Gustav and Ike in the Gulf of Mexico. Results from

these models were presented on a log-log scale and their experimental design tested computational thread numbers not easily 60

obtainable by smaller agencies and companies. The latter rather require sequential versus paralleled computational efficiencies

using smaller scale efficiency metrics. Genseberger & Donners, (2015), explored the scalability of SWAN using a case study

focused on the Wadden Sea in the Netherlands. By investigating the efficiency of both the OpenMP (OMP) and MPI version

of the then current SWAN, they found that the OpenMP was more efficient on a single node. They also proposed a hybrid

3

version of SWAN, to combine the strengths of both implementations of SWAN: using OpenMP to more optimally share 65

memory and MPI to distribute memory over the computational nodes.

Here we build on the case study of Genseberger & Donners using results produced in the present study for southern Africa, to

answer the following research questions: 1) when using SWAN, is it always better to have as many threads/ cores as possible

available to solve the problem at hand? 2) What is the speed-up relationship between number of threads/ cores and 70

computational grid size? 3) At what point (number of threads/ cores) does the domain sub-communications start to make the

whole computation less effective? 4) What is the scalability of a rectangular grid, SWAN set-up?

Methodology and background

Details of the model configuration can be found in Rautenbach, et al., (2020a) and Rautenbach, et al., (2020b). The

computational domain (refer to Figure 1) and physics used here were the same as presented in those studies. 75

Figure 1: SWAN model extent and associated bathymetry. The location of all the major coastal towns are also provided via acronyms

as follows: Port Nolloth (PN), Saldanha Bay (SB), Cape Town (CT), Mossel Bay (MB), Port Elizabeth (PE), East London (EL),

Durban (DN) and Richards Bay (RB).

 80

All computations were performed on Intel Xeon Gold E5-2670, 2.3GHz computational nodes. Twenty-eight threads/ cores

each with 96 GB RAM were used with1 Gbyte/s inter-thread communication speed. Given that the present study was performed

using a single computational node, inter-node communication speeds are not considered. Thus, given a computational node

with similar processing speed, the present study should be reproducible. In general, these node specifications are reasonably

standard and therefore the present study is an acceptable representation of the SWAN scalability parameters. 85

4

SWAN 40.91 was implemented with the Van der Westhuysen whitecapping formulation (van der Westhuysen, et al., 2007)

and Collins bottom friction correlation (Collins, 1972) with a coefficient value of 0.015. Fully spectral wave boundary

conditions were extracted from a global Wave Watch III model at 0.5 geographical degree resolution.

 Here, the main aim was not the validation of the model but rather to quantify the relative computational scalabilities, as

described at the end of the previous section. However, it should be noted that no nested domains were employed during the 90

present study. Only the parent domain was used as a measure for scalability. The computational extent given in Rautenbach,

Barnes, et al., (2020) (a) and Rautenbach, et al., (2020) (b) contains numerous non-wet grid cells that are not included in the

computational expense of the current study. In Table 1, the size of the computational domain and resolution, together with the

labelling convention are given. For clarity, we define the resolutions as low, medium and high, denoted L, M and H,

respectively, in the present study (noting that given the domain size, these resolutions would be classified as intermediate to 95

high regional resolution for operational purposes).

Table 1: SWAN grid resolution, grid cell numbers and reference labels.

Label SWAN grid resolution Computational grid cell number

L 0.1000 31 500

M 0.0625 91 392

H 0.0500 142 800

The test for scalability ability of a model used here was the ability to respond to an increased number of computations with an 100

increasing amount of resources. In the present study these resources are computational threads/ cores. An arbitrary week of

computations were performed to assess model performance. Model spin-up was done via a single stationary computation. The

rest of the computation was performed using a non-stationary computation using an hourly time-step, which implied wind-

wave generation within the model occurred on the timescale of the wind forcing resolution. The grid resolutions used in the

present study corresponded to 0.1, 0.0625 and 0.05 geographical degrees. Local bathymetric features were typically resolved 105

through downscaled, rotated, rectangular grids, following the methodology employed by Rautenbach, et al., (2020) (a). A

nested resolution increase of more than 5-times is also not recommended (given that the regional model is nested in the global

Wave Watch III output at 0.5 geographical degree resolution, (Rautenbach, et al., 2020) (a). Given these constraints, these

resolutions represent realistic and typical SWAN model set-up, for both operational and hindcast scenarios.

 110

The three main metrics for estimating computational efficiency are: the Speed-up, Time saving and Efficiency ratios. A fourth

parameter, and arguably the most important, is the Scalability and is estimated using the other three parameters as metrics.

The Speed-up ratio is given as:

5

 𝑆𝑝 = 𝑇1 𝑇𝑝⁄ (1)

where 𝑇1is the time in seconds it takes for a sequential computation on one thread and 𝑇𝑝is the time a simulation takes with p

computational threads/ cores (Zhang et al., 2014) . 115

The Time saving ratio is given by:

 𝑇1𝑆𝑝 = (𝑇1 − 𝑇𝑝) 𝑇1⁄ (2)

and the Efficiency ratio is defined as:

 𝐸𝑝 = 𝑆𝑝 𝑝⁄ . (3)

The Scalability of SWAN was tested based on the Speed-up ratios for the grid resolutions in Table 1.

Zafari, Larsson, & Tillenius, (2019) recently presented some of the first results investigating the effect of different compilers 120

on the scalability of a shallow water equation solver. Their experiments compared a model compiled with GNU Compiler

Collection (gcc) 7.2.0 and linked with OpenMPI and Intel C++ compilers with Intel MPI for relatively small computational

problems. Their numerical computation considered models with 600K, 300K and 150K grid cell sizes (what they called matrix

size). These computational grid sizes were deemed “small”, but they still acknowledged the significant computational

resources required to execute geographical models of this size due to the large number of time steps undertaken to solve these 125

problems.

From a practical point of view, regular SWAN grids will rarely be used in dimensions exceeding the resolutions presented in

the previous section. The reason for this statement is twofold: 1) to downscale a spectral wave model from a global resolution

to a regional resolution should not exceed a five-times refinement factor and 2) when reasonably high resolutions are required 130

in the nearshore (to take complex bathymetric features into account), nested domain are preferred. The reasoning will be

different for an unstructured grid approach (Dietrich et al., 2012) . Given these limitations with the widely used structured

SWAN grid approach, SWAN grids will almost exclusively be deemed as a low spatial computational demand model. Small

tasks create a sharp drop in performance via the Intel C++ compiler due to the “work stealing” algorithm, aimed at balancing

out the computational load between threads/ cores (Zafari et al., 2019) . In this scenario, the threads/ cores compete against 135

each other resulting in an unproductive simulation. In our experiments, each task performed via Intel was approximately 13-

times faster but the overall performance was 16-time slower than the equivalent gcc compiled version of the compiled shallow

water model presented by Zafari et al. (2019) .

6

Results

In Figure 2, the computational scalability of SWAN is given as a function of number of computational threads/ cores. Figure 140

2 (a) shows the computational time in seconds and here the model resolutions grouped together with not much differentiation

between them. These results also highlight the need for performance metrics, like described in the previous section. From

Figure 2 (b) the MPI version of SWAN is more efficient for all the computational domain sizes. There is also a clear grouping

between OMP and MPI. Figure 2 (c) presents the speed-up ratios and clearly indicates that the MPI version of SWAN

outperforms the OMP version. The closer the result are to the 1:1 line, the better the scalability. 145

(a) (b)

 (c) (d) 150

7

Figure 2: Model performance as a function of the number of computational threads/ cores. (a) Computing time in

seconds, (b) Efficiency (Equation (3)), (c) Speed-up ratio (Equation (1)) and (d) the Time saving ratio (Equation (2)).

Near linear speed up is observed for a small number of computational threads/ cores. This result agrees with those reported by

Zafari et al., (2019). In Figure 2 (d) the results are expressed via the time saving ratio. In this case, the curves start to asymptote 155

with thread counts larger than approximately 6.

Discussion

The behaviour noted in the results is similar to the dam breaking computational results reported by S. Zhang et al., (2014).

Genseberger & Donners, (2020) present the latest finding on the scalability and benchmarking of SWAN. However, their focus

was quantifying the performance of their new hybrid version of SWAN. In their benchmarking experiments (for the Wadden 160

Sea, in the Netherlands), they obtained different results to Figure 2 (a), with OMP generally producing faster wall-clock

computational times. They also considered the physical distances between computational threads/ cores and found that this

parameter has a negligible effect compared to differences between OMP and MPI, over an increasing number of threads/ cores.

Their benchmarking also differed from the results presented here as they only provided results as a function of node number.

Each one of their nodes consisted of 24 threads/ cores. In the present study, the benchmarking of a single node (28 threads/ 165

cores) is evaluated compared with a serial computation on a single thread. For benchmarking, without performance metrics,

they found that the wall clock times, for the iterations and not a full simulation, reached a minimum (for large computational

domains) at 16 nodes (16 × 24 threads/ cores) for the MPI SWAN and 64 nodes (64 × 24 threads/ cores) for the hybrid SWAN.

These results were based on using the Cartesius 2690 v3 (Genseberger and Donners, 2020). With the hybrid SWAN, the

optimal wall-clock time turn point, for iterations, increased with increased number of computational cells. All of the reported 170

turn points (optimal points) occurred at node counts well above 4 nodes (4 × 24 threads/ cores). The wall-clock performance

estimation of Genseberger & Donners, (2015) did however indicate similar result to those presented in Figure 2 (a), with OMP

running faster than MPI for small thread/ core counts. For larger thread/ core counts MPI performs better in the present study.

This difference in performance is probably related to the particular hardware configuration (Genseberger and Donners, 2015).

It must still be noted that with an increased number of nodes, and thus threads/ cores, the total computational time should 175

continue to decrease up until the point where the internal domain decomposition, communication efficiencies, starts to

outweigh the gaining of computational power. Based on results of Genseberger & Donners, (2020), we can estimate that, for

our node configuration and region of interest, the communication inefficiencies will become dominant at approximately 16

nodes (16 × 24 threads/ cores). One of the possible explanations for the non-perfect speed-up observed in Figure 2 (c) is related

to the computational domain partition methods used, and the wet and dry (or active and inactive) points definitions in the 180

model. In the present study the dry points were the bathymetry or topography values above Mean Sea Level (MSL). The

employed partition method is currently stripwise because of the underlying parallel technique, namely the wavefront method

8

(Genseberger and Donners, 2015; Zijlema, 2005). The stripwise partition is thus potentially not the most effective method to

optimize speed-up. In the present study this partition leads to an optimal point around 6 threads/ cores without losing too much

parallel efficiency. In general, increasing the number of threads/ cores will still produce results faster, but in an increasingly 185

inefficient manner. This trend is clear from Figure 2 (c) and (d) where the total computational time (speed-up ratio, time saving

ratio) does not scale linearly with the increasing number of threads/ cores. The ideal scenario (linear scalability) would be if

the computational results followed the 1:1 line in Figure 2 (c). In Figure 2 (d) the non-linear, flattening of the time saving ratio

is also evident, although the ratio still slightly increases beyond 6 threads/ cores. This result implies the total computational

time will marginally decrease with increasing number of threads/ cores. This marginal decrease in computational time could 190

however still make significant differences in the total simulation times when extensive simulation periods are considered.

Conclusion

The present study investigated the scalability of SWAN, a widely used spectral wave model. Three typical wave model

resolutions were used for these purposes. Both the OpenMP (OMP) and the Message Passing Interface (MPI) implementations

of SWAN were tested. The scalability is presented via three performance metrics: the efficiency, speed-up ratio and the 195

timesaving ratio. The MPI version of SWAN outperformed the OMP version based on all three metrics. The MPI version of

SWAN performed best with the largest computational domain resolution, resulting in the highest speed-up ratios. The time

saving ratio indicated a decrease after approximately six computational threads/ cores. This result suggests that six threads/

cores are the most effective configuration for executing SWAN. The largest increases in speed-up and efficiency was observed

with small thread counts. According to Genseberger & Donners, (2020), computational times decrease up to ~16 nodes (16 × 200

24 threads/ cores), indicating the wall-clock optimal computational time for their cases study. This result suggests that multiple

nodes will be required to reach the optimal wall-clock computational time – even though this turn point might not be the most

efficient computational configuration. Ultimately, the efficiencies recommended here can improve operational performance

substantially, particularly when implemented over the range of modelling software needed to produce useful metocean

forecasts. Future studies might consider investigating the scalability employing a gcc compiler. 205

Code/Data availability

The open source version of SWAN was run for the purposes of the present study. SWAN maybe be downloaded from here:

http://swanmodel.sourceforge.net/. To ensure a compatible version of SWAN remains available, the current, latest version of

SWAN is permanently archive here: https://hdl.handle.net/10289/14269. The bathymetry used for the present study may be

downloaded here: https://www.gebco.net/ and the wind forcing may be found here: https://climatedataguide.ucar.edu/climate-210

data/climate-forecast-system-reanalysis-cfsr.

http://swanmodel.sourceforge.net/
https://hdl.handle.net/10289/14269
https://www.gebco.net/

9

Author contribution

Dr. C. Rautenbach conceptualised the study, executed the experiments and wrote the manuscript. He also secured the

publication funding. Dr. J. C. Mullarney and Professor K. R. Bryan reviewed the manuscript.

Competing interests 215

No conflict of interests.

Funding

This research was funded by the National Research Foundation of South Africa (Grant Numbers: 116359).

References

Babatunde, A., Pascale, B., Sin, C. C., William, C., Peter, C., Fatima, D., Seita, E., Veronika, E., Forest, C., Peter, G., Eric, 220

G., Christian, J., Vladimir, K., Chris, R. and Markku, R.: Evaluation of Climate Models. In: Climate Change 2013: The

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on

Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. . Xia, V.

Bex, and P. M. Midgley, Cambridge University Press, Cambridge, UK., 2013.

Collins, J. I.: Prediction of shallow-water spectra, J. Geophys. Res., 77(15), 2693–2707, doi:10.1029/JC077i015p02693, 1972. 225

Dietrich, J. C., Tanaka, S., Westerink, J. J., Dawson, C. N., Luettich, R. A., Zijlema, M., Holthuijsen, L. H., Smith, J. M.,

Westerink, L. G. and Westerink, H. J.: Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing

Hurricane Waves and Surge, J. Sci. Comput., 52(2), 468–497, doi:10.1007/s10915-011-9555-6, 2012.

Frihy, O. E.: The necessity of environmental impact assessment (EIA) in implementing coastal projects : lessons learned from

the Egyptian Mediterranean Coast, , 44, 489–516, 2001. 230

Genseberger, M. and Donners, J.: A Hybrid SWAN Version for Fast and Efficient Practical Wave Modelling, Procedia

Comput. Sci., 51(1), 1524–1533, doi:10.1016/j.procs.2015.05.342, 2015.

Genseberger, M. and Donners, J.: Hybrid SWAN for Fast and Efficient Practical Wave Modelling - Part 2, vol. 12139, edited

by V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and J. Teixeira, pp. 87–100,

Springer International Publishing, Cham., 2020. 235

Holthuijsen, L. H.: Waves in Oceanic and Coastal Waters, Cambridge University Press., 2007.

Jeuring, J., Knol-kauffman, M. and Sivle, A.: Toward valuable weather and sea-ice services for the marine Arctic : exploring

user – producer interfaces of the Norwegian Meteorological, Polar Geogr., 0(0), 1–21, doi:10.1080/1088937X.2019.1679270,

2019.

Kamphuis, J. W.: Introduction to coastal engineering and management - Advanced series on ocean engineering - Volume 48, 240

World scientific publishing Co. Pte. Ltd., Singapore., 2020.

Kerr, P. C., Donahue, A. S., Westerink, J. J., Luettich, R. A., Zheng, L. Y., Weisberg, R. H., Huang, Y., Wang, H. V., Teng,

Y., Forrest, D. R., Roland, A., Haase, A. T., Kramer, A. W., Taylor, A. A., Rhome, J. R., Feyen, J. C., Signell, R. P., Hanson,

J. L., Hope, M. E., Estes, R. M., Dominguez, R. A., Dunbar, R. P., Semeraro, L. N., Westerink, H. J., Kennedy, A. B., Smith,

10

J. M., Powell, M. D., Cardone, V. J. and Cox, A. T.: U.S. IOOS coastal and ocean modeling testbed: Inter-model evaluation 245

of tides, waves, and hurricane surge in the Gulf of Mexico, J. Geophys. Res. Ocean., 118(10), 5129–5172,

doi:10.1002/jgrc.20376, 2013.

Liu, T. K., Sheu, H. Y. and Tseng, C. N.: Environmental impact assessment of seawater desalination plant under the framework

of integrated coastal management, Desalination, 326, 10–18, doi:10.1016/j.desal.2013.07.003, 2013.

O’Neill, C., Saulter, A., Williams, J. and Horsburgh, K.: NEMO-surge: Application of atmospheric forcing and surge 250

evaluation. Technical report 619, , (December), 57 [online] Available from:

http://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/library/frtr_619_2016p.pdf, 2016.

Rautenbach, C., Daniels, T., de Vos, M. and Barnes, M. A.: A coupled wave, tide and storm surge operational forecasting

system for South Africa: validation and physical description, Nat. Hazards, doi:10.1007/s11069-020-04042-4, 2020a.

Rautenbach, C., Barnes, M. A., Wang, D. W. and Dykes, J.: Southern African wave model sensitivities and accuracies, J. Mar. 255

Sci. Eng., Under revi, 2020b.

de Souza, J. M. A. C., Couto, P., Soutelino, R. and Roughan, M.: Evaluation of four global ocean reanalysis products for New

Zealand waters–A guide for regional ocean modelling, New Zeal. J. Mar. Freshw. Res., 0(0), 1–24,

doi:10.1080/00288330.2020.1713179, 2020.

Tanaka, S., Bunya, S., Westerink, J. J., Dawson, C. and Luettich, R. A.: Scalability of an unstructured grid continuous Galerkin 260

based hurricane storm surge model, J. Sci. Comput., 46(3), 329–358, doi:10.1007/s10915-010-9402-1, 2011.

The SWAN team: IMPLEMENTATION MANUAL SWAN Cycle III version 41.31, [online] Available from:

http://swanmodel.sourceforge.net/online_doc/swanimp/swanimp.html, 2019a.

The SWAN team: USER MANUAL SWAN Cycle III version 41.3, , 129 [online] Available from:

http://www.fluidmechanics.tudelft.nl/swan/index.htmhttp://www.fluidmechanics.tud, 2019b. 265

The SWAN Team: USER MANUAL SWAN Cycle III version 40.51, Cycle, 2006.

van der Westhuysen, A. J., Zijlema, M. and Battjes, J. A.: Nonlinear saturation-based whitecapping dissipation in SWAN for

deep and shallow water, Coast. Eng., 54(2), 151–170, doi:10.1016/j.coastaleng.2006.08.006, 2007.

Zafari, A., Larsson, E. and Tillenius, M.: DuctTeip: An efficient programming model for distributed task-based parallel

computing, Parallel Comput., 90, 102582, doi:10.1016/j.parco.2019.102582, 2019. 270

Zhang, S., Xia, Z., Yuan, R. and Jiang, X.: Parallel computation of a dam-break flow model using OpenMP on a multi-core

computer, J. Hydrol., 512, 126–133, doi:10.1016/j.jhydrol.2014.02.035, 2014.

Zhang, Y. J., Ye, F., Stanev, E. V and Grashorn, S.: Seamless cross-scale modeling with SCHISM, Ocean Model., 102, 64–

81, doi:10.1016/j.ocemod.2016.05.002, 2016.

Zijlema, M.: Parallelization of a nearshore wind wave model for distributed memory architectures, in Parallel Computational 275

Fluid Dynamics 2004, pp. 207–214, Elsevier., 2005.

