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Abstract. The capability for ability to achieve high spatial resolutions is an important feature of accurate numerical models

dedicated to simulate numerical models to accurately represent the large spatial variability of urban air pollution. On the

one hand, the well established mesoscale chemistry transport models have their obvious short-comings attributed to their due

to the extensive use of parameterizations. On the other hand, obstacle resolving computational fluid dynamic models CFD,

while although accurate, still often demand too high computational costs are still often too computationally intensive to be5

applied on a regular basis regularly for entire cities. The major reason for the inflated numerical computational costs is the

required horizontal resolution to meaningfully apply the obstacle discretization, which is most often based on boundary-fitted

grids, like e.g. the marker-and-cell method. Here we present a large-eddy-simulation approach that uses diffusive obstacle

boundaries, which are derived from a simplified diffusive interface approach for moving obstacles. In this paper, we present

the new City-scale AIR dispersion model with DIffuse Obstacles (CAIRDIO v1.0), in which the diffuse interface method,10

simplified for non-moving obstacles, is incorporated into the governing equations for incompressible large-eddy simulations.

While Tthe diffusive interface approach is well established widely used in two-phase modeling, but to the author’s knowledge

this method has not been applied used in urban boundary layer simulations modeling so far. Our dispersion model is capable

of representing It allows to consistently represent buildings over a wide range of spatial resolutions, including grid spacings

equal or larger than typical building sizes. This opens up a very promising opportunity for application of accurate air quality15

simulations and forecasts on entire mid-sized city domains. This way, the gray-zone between obstacle-resolving microscale

simulations and mesoscale simulations can be addressed. Furthermore, our approach is capable of incorporating the influence

of the land orography by the additional optional use of terrain-following coordinates. Orographic effects can be included by

using terrain-following coordinates. We validated tThe dynamic core is compared against a set of numerical benchmarks and

a standard high-quality-assured wind-tunnel data set for dispersion-model evaluation. It is shown that the model successfully20

reproduces dispersion patterns within a complex city morphology across a wide range of spatial resolutions tested. As a result

of the diffuse obstacle approach, the accuracy test is also passed at a horizontal grid spacing of 40m. Although individual flow

features within individual street canyons are not resolved at the coarse grid spacing, the building effect on the dispersion of the

air pollution plume is preserved at a larger scale. Therefore, a very promising application of the CAIRDIO model lies in the

realization of computationally feasible yet accurate air quality simulations for entire cities.25
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1 Introduction

The state-of-the-art in urban air quality modeling now almost routinely incorporates encompasses the scales at which processes

governing the atmospheric dispersion inside the urban planetary boundary layer (PBL) are explicitly represented (Benavides

et al., 2019; Croitoru and Nastase, 2018; Kadaverugu et al., 2019). The reasons for this increase in physical detail are manifold.

On the one hand, even if though PBL mixing processes can be are often parameterized to a large extend, the parameteriza-30

tions itself themselves must rely on a sound physical basis, for which often detailed large-eddy simulations (LES) are can

be consulted (Noh and Raasch, 2003; Kanda et al., 2013). A dDirect benefits of more detailed numerical simulations is the

include an increased ability to provide produce more representative air-quality forecasts for individual locations (Carlino et al.,

2016) and the provision of high-resolution urban air-quality 4-dimensional data for research purposes, like, e.g., studying

source attribution (Fernández et al., 2019), and exposure risk assessment (Chang, 2016)., and eventually to provide more35

representative forecasts for individual locations (Carlino et al., 2016). Exposure-relevant pedestrian-level air pollution concen-

trations at pedestrian level are subjected to a considerable and also complex spatio-temporal variability, as they are not only

influenced by the relative location of pollution sources, but also very importantly by the urban morphology and the interacting

associated meteorological conditions (Birmili et al., 2013; Paas et al., 2016; Harrison, 2018). For an accurate simulation, it is

thus not only key to explicitly represent the urban canopy features, but also to consider the mesoscale prevailing mesoscale40

meteorological conditions surrounding cities. Depending on the level of physical detail, a trade-off in the use of high-resolution

numerical simulations is often remains their exclusive limited-area applicability in a limited area, which can be very restrictive.

As a result Hence, an active topic of research is dedicated to the increase in improve the numerical efficiency of high-resolution

modeling tools and their incorporation into a larger modeling framework (Baik et al., 2009; Jensen et al., 2017; Kurppa et al.,

2020).45

Commonly used multiscale approaches consist of nested domains and involve different types of models designed for a specific

scale range. To address the global and regional scales, the use of chemistry transport models (CTM) in combination with nu-

merical weather prediction (NWP) models is a well established practise. Examples of such model combinations those coupled

model systems include, C-IFS (Flemming et al., 2015), WRF-Chem (Grell et al., 2005), CMAQ (Appel et al., 2017), ICON-

ART (Rieger et al., 2015) and COSMO-MUSCAT (Wolke et al., 2004, 2012). In all of these models, subgrid-scale effects50

of temperature and moisture, as well as PBL dynamics are parameterized. The influence of the urban canopy on the PBL in

NWP models can be considered through sophisticated canopy parameterizations (Martilli et al., 2002; Schubert et al., 2012).

The improvements of these so-called urbanized NWP’s are substantially reflected in modeled pollutant concentrations (Kim

et al., 2015; Wang et al., 2019). Nevertheless, as the model domain contains does not allow for an no explicit representation of

buildings, the pollutants emitted at street level are diluted throughout over the entire grid cell, which can considerably deviate55

from real conditions, where a large part of the physical volume may be inaccessible impervious. As a result, pollutant con-

centrations modeled using NWP-based approaches are more representative to the urban back-ground (Korhonen et al., 2019).

Another practical resolution and hitherto accuracy limit to resolution and accuracy of NWP models results arises from the

use of parameterizations itself themselves. Using WRF, Haupt et al. (2019) observed that for horizontal grid spacings below
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the typical height of the PBL height, numerical results can become spurious. Based on their findings, they recommend not60

to apply NWPs on the sub-kilometer scale without careful replacement of the used parameterizations. In PBL meteorology,

the microscale seamlessly follows seamless at the lower limit of the mesoscale (super-kilometer range) (Stull, 1988; Rakai

and Gergely, 2013). However, adopting the modeling perspective, there is a clear segregation of the microscale from the and

mesoscale. While the latter is truncated constrained at the lower end of the resolution end through by the extensive use of pa-

rameterizations, the attempting to model urban PBL processes directly using with microscale approaches requires an adequate65

spatial resolution (few tens of meters) sufficiently fine grid spacings. The landscape of microscale models is diverse (Fallah-

Shorshani et al., 2017; Brown, 2014; Hanna et al., 2006) and it reflects the difficulty in trading off of finding a compromise

between computational resources and accuracy. Computational fluid dynamics models (CFD) can be seen as the microscale

pedants to The microscale pendants of NWPs. can be considered as the computational fluid dynamics (CFD) models, aAmong

them, LES approaches are the most accurate but expensive ones. LES models resolve the turbulent spectra up to the filter cut-off70

size (often equivalent to the the grid size) and rely on simplistic sub-scale parameterizations only (e.g. Maronga et al., 2019).

These two different approaches (extensive parameterization vs. explicit representation) are difficult to merge at the bridging

scale-range (few tens of meters to one kilometer), for which reason Haupt et al. (2019) introduced coined the key word "terra-

incognita" to refer to the problem. An exemplary study, where in which a LES model was applied for have been attempted at

horizontal resolutions up to above 100m, is given by Efstathiou et al. (2016). However, their simulations did not include an75

urban canopy, whose discretization would impose a much stringend resolution limit obviously require a much finer grid. In fact,

obstacle-resolving urban LES (ULES) studies are typically performed at spatial resolutions of less than 10 m to 20 m. Even at

such comparatively coarse resolutions, computational resources are still the limiting factor as they restrict ULES applications

to research purposes or to areas encompassing city parts only (Wolf et al., 2020). Further depending on the degree of physical

detail (e.g. costly radiative transfer calculations in a complex urban environment), ULES have not yet become feasible choices80

to simulate air-quality in cities on a regular basis, despite their obvious advantages concerning physical accuracy. In fact, to

fully resolve the energy-dominant eddies within street-canyons, a spatial resolution of 15-20 grid points over a typical obstacle

dimension size is needed (Xie and Castro, 2006). This translates in a grid spacing of about 1m for typically sized buildings.

The use of such fine grids for entire city domains is still prohibitively expensive in LES modeling. E.g., Wolf et al. 2020 used

a grid spacing of 10m in their cutting-edge research study to simulate air pollutant dispersion in Bergen, Norway with the85

LES-model PALM. While this spatial resolution, according to the argument above, does not ensure a LES model to be eddy

resolving in every part of the domain, the preference of a physically-based model over the more widely used parameterized

models for this grid size (e.g. plume or street-canyon models) can nevertheless be a legitimate choice. Resolved physics can

still be maintained outside the densely built urban canopy. Within the canopy, the dispersion pattern on a larger scale is mostly

shaped by the channeling and blocking effects of buildings, which can be represented also with coarser grids.90

In physical computing, it is well known that only a slight increase in the grid spacing results in a large computational saving

(e.g. models using explicit time integration are ideally integrated perform 16 times faster on the same domain using a grid with

doubled grid spacings in all 3 dimensions). The These computational savings could in turn could be invested spent in larger

physical domains for more holistic comprehensive yet accurate urban air-quality simulations. The additional domain extend
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would also provide an additional relaxation fetch for the mesoscale forcing in case complete cities are attempted to be modeled.95

As a result of an increased grid spacing, the level of detail of modeled wind fields clearly decreases. Nevertheless, the effect of

a lower spatial resolution on the accuracy of dispersion simulations can be expected to be less detrimental in practical modeling

examples, as it is affected also by other major uncertainties, like e.g. emission distribution.

The A key feature which that sets the technical limit to the model spatial resolution of ULES applications in urban boundary-

layer modeling is clearly the spatial discretization method used of for obstacles. A class of methods in which that allow for the100

obstacle geometryies is not tied bound to the grid are the immersed boundary methods, summarized by Mittal and Iaccarino

(2005). These are essentially Cartesian methods, but instead of relying on a commonly used marker-and-cell method (grid

cells are assigned either to the building interiors or to the atmosphere), they aim at representing rigid the boundary condi-

tions associated with a rigid boundary (e.g. Neumann boundary condition for pressure) on grid cell faces not coinciding with

the obstacle boundary. Among these methods, the so-called direct forcing uses the ghost-cell interpolation technique, where105

image points from adjacent interior ghost points are mirrored across the rigid boundary and interpolated using surrounding

fluid nodes. While this method greatly enhances the flexibility in the choice of the grid size, it still suffers from the empirical

nature in the selection of the interpolation nodes and the interpolation method itself. On the other hand, an equivalent boundary

forcing can be more rigorously deduced from a two-phase flow model (Drew, 1983) when by neglecting the restoring source

terms. Treating the second phase one of the phases as an indeformable solid, Kemm et al. (2020) derived a diffusive-diffuse110

interface (DI) model for compressible fluids. One of the main advantages of their approach is the algorithmic simplicity, as the

boundary-forcing term is analytically coupled to the DI, which is advected as a scalar.

In this work, we represent a new LES-based dispersion model as adopt the basic idea of DI and implement diffuse obstacle

boundaries (DOB) in our new City-scale AIR dispersion model with DIffuse Obstacles (CAIRDIO v1.0), which will be used

as a computationally feasible yet accurate downscaling tool for mesoscale meteorology and air pollution fields over urban115

areas. The development adopts the basic idea of DI, as it is simple and efficient to implement and provides a high DOB allow

buildings to be represented as diffuse features, and thus the flexibility in the choice of the spatial grid resolution can be greatly

increased. As the city-structure is assumed to be static, DI simplifies to static diffusive obstacle boundaries (DOB). DOB is a

simplified form of DI resulting from the static boundaries associated with buildings. By considering the conservation law in

a finite-volume framework, DOB is incorporated in the discrete differential operators, making the governing equations appear120

in their familiar form. DOB is incorporated in the discrete differential operators by considering the conservation laws in a

finite volume framework. The LES equations can are then be solved on a structured Cartesian grid with standard methods

on a Cartesian grid. To interpret our DOB approach from a physical point of view, it can be argued that the grid cells are

interspersed with a porous and semi-permeable medium., whose Their detailed structure is only of concern insofar as to which

degree it modifies it determines the mass and momentum budged at the grid level through two different types of interface fields.125

To the authors knowledge, this approach has not been used for air quality modeling so far, but very interestingly the concept

of permeability finds application in geological science (Haga, 2011). In contrast to geometry-aligned discretizations, which

preserve a high degree of accuracy near obstacle walls but require high resolutions, this approach suits more to the integral

aspect of building shapes and configurations at marginal resolutions. However, by increasing the grid resolution, the approach
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seamlessly transitions transforms seamless into a traditional obstacle resolving Cartesian approach, as the interface eventually130

becomes sharply defined and imposes Neumann-boundary conditions on the pressure.

The paper is organized as follows: Section 2 provides a detailed model description of the model CAIRDIO, including the spatial

discretization method. Section 3 is dedicated to the evaluation of the model using idealized test cases and a more complex and

realistic wind-tunnel dispersion experiment. Section 3 contains numerical tests to demonstrate the diffuse obstacle discretiza-

tion, the dynamic core and the parallel scaling capabilities. In Section 4, we present a model-evaluation study by simulating a135

realistic wind-tunnel dispersion experiment. Finally, in Section 4 5, the benefits and limitations of the approach are summarized

and concluded by an outlook for potential future applications.

2 Model description

2.1 Basic equations

The physical domain consists of an interspersed, stationary solid phase representing the buildings, and a mobile fluid phase.140

The governing equations for the mobile phase are deduced from a simplified two-phase model by neglecting restoring forces.

In a two-phase model, phase-fraction functions α1, α2 with 0≤ α1 ≤ 1 and α1 +α2 = 1 are used to formulate the set of

equations of both phases individually. The equation of motion of an incompressible phase is adopted from Drew (1983) (eEq.

41, 45 therein). By setting the interfacial force density and surface tension to zero, the simplified momentum equation of the

mobile phase (indicated with α1) is written as:145

∂t (α1ρu) =−∇ · (α1ρu⊗u)−α1∇(α1p) + pI∇α1 +∇ · (α1T) +α1ρb. (1)

Here, the 3D velocity vector is denoted by u, ρ is the density of air and pI is the interface pressure, which reflectsing

Newton’s third law of motion near a fixed wall. As in Kemm et al. (2020), pI it will be is assumed that it is to be in equilibrium

with the surrounding fluid pressure p. The stress tensor T is the stress tensor, which in LES averaging contains the contributions

from subscale and surface fluxes in LES averaging. In this model, the implicit approach is used for spatial filtering (Schumann,150

1975). Viscous stresses are neglected due to the high Reynolds numbers typically encountered in atmospheric flows. The sum

of external body forces b corresponds to the sum of external body forces, which also contains the gravitational force and

inertial forces resulting in a rotating frame of reference. The interface in our case is static, as buildings are assumed do not

to be affected by respond to the flow. This makes it possible to multiply the equation of motion with α−1
1 ρ−1, to obtain the

tendency equation in single-flow denotation. The reference density ρref is not allowed to change kept constant in time and is155

denoted with ρref for the reference state, which makes sense for an incompressible fluid. The full set of model equations reads:

∂tu=−α−1
1 ∇(α1u⊗u)− 1

ρref
α−1

1 α1∇p−α−1
1 ∇ · (α1T)−f ×u+ g

Θv −Θv

Θv

, (2)
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α−1
1 ∇ · (α1u) = 0, (3)

∂tΘ =−α−1
1 ∇ · (α1uΘ) +α−1

1 ∇ · (α1kh∇Θ) +α−1
1 SΘ, (4)

∂tQv =−α−1
1 ∇ · (α1uQv) +α−1

1 ∇ · (α1kh∇Qv) +α−1
1 SQv

, (5)160

Θv = Θ(1 + 0.61Qv) . (6)

In the momentum equation (eEq. 2), the body-force term was is replaced by the Coriolis term, containing with the Coriolis

parameter f for a mean geographic latitude, and with the buoyancy term using the Boussinesq approximation. g is the gravity-

acceleration vector in the local frame of reference, and Θv the virtual potential temperature defined by Eq. 6., and t The overbar

denotes for the horizontal mean state. Eq. 3 is the continuity equation derived by the same arguments in an analogous way as165

the momentum equation from the original equation formulation in Drew (1983). The transport equation for scalars, like the

potential temperature Θv and specific humidity Qv , contains source terms from parameterized surfaces fluxes. These have to

be multiplied with α−1
1 . The scalar field kh is the eddy-diffusion coefficient for heat., which arises from the spatial filtering.

Note that in our case, the combinations α−1
1 ∇ ·α1 and α−1

1 α1∇ can be identified as particular versions of the divergence and

gradient operator, which incorporate diffusive boundaries. It is also interesting to mention that Using a staggered grid, the170

stencil of α1 (face-centered) differs from α−1
1 (volume-centered) on a staggered grid, so that the terms do not cancel each other

out.

2.2 Computational grid and diffuse boundaries

The computation uses a structured hexaedral Arakawa-C grid, with the option for local grid stretching in all 3 dimensions. The

velocity components are being defined at the cell faces, whereas and scalar fields are at the cell centers.ed, classifying the grid175

structure as Arakawa-C type. Vertical coordinate transformation allows for a curve-linear grid in the physical space, which can

be used to follow to be adapted to a smoothly varying terrain function:

x̃= x, ỹ = y, z̃ = z−h(x,y)., (7)

Here, z is the mean-sea level height and h(x,y) the terrain-height function. The first grid level matches the terrain function,

and all eElevated levels are simply given by adding a horizontally constant vertical increment to the first level.180
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The pressure gradient in terrain-following coordinates is expands modified to:

∇p= ∇̃p− [∂xh(x,y) + ∂yh(x,y)]∂zp. (8)

The horizontal derivatives of h(x,y) are discretized with second-order differences and linearly interpolated on the respective

cell-faces, where needed.185

For t The divergence operator, is applied on the contra-variant velocity components, which are normal parallel to the cell-

faces normal are needed. The horizontal components under the vertical coordinate transformation are indifferent, and the

vertical contra-variant velocity In our simple case, only the vertical contravariant velocity component ω differs from the co-

variant non-transformed component. It is given by:190

ω = w− ∂xhu− ∂yhv. (9)

Using Eq. 9, the advective tendency of a scalar q can be is written as:

∂tq =−u∂xq− v∂yq− [w−u∂xh− v∂yh]∂zq. (10)

Similarly, the divergence-free criterion continuity equation follows in terrain-following coordinates follows from:

∂xu+ ∂yv+ ∂z(w− ∂xhu− ∂yhv) = 0. (11)195

Combining Eq. 11 and 8, the metric terms in the Laplace operator are obtained, which is later needed in for the pressure

equation:

4=4̃− ∂x (∂xh∂z)− ∂y (∂yh∂z)− ∂z (∂xh∂x) (12)

− ∂z (∂yh∂y) + ∂z
[
(∂xh)2∂z

]
+ ∂z

[
(∂yh)2∂z

]
.

As u, v, andw are maintained as the prognostic model variables and g is invariant under the given coordinate transformation,200

no metric terms arise in the buoyancy term. However, the horizontal averaging of Θv is carried out on z-isosurfaces. requires

a remapping of Θv from z̃ = const to z = const. Therefore, Θv is remapped to an auxiliary vertical grid and the calculated

tendency is remapped back to the computational grid.

205
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2.3 Diffuse obstacle boundaries

The spatial discretization uses a finite volume method, which allows a consistent treatment of the diffusive obstacle interface

boundaries. To consider tThe conservation of a scalar q under phase partitioning within two partitioned phases, the Gauss’

theorem is formulated for a single grid-cell volume ∆V and its total surface area ∂∆V : is formulated using the Gauss theorem:

∫
∆V

∂t [qmχm + qs(1−χm)] dV ′ =−
∫

∂(∆V )

[ηm ·umqm + (1−ηm) ·usqs] daA′. (13)210

Here, subscript m refers to the mobile phase and subscript s to the solid phase for the building-interior. A′ and V ′ are formal

integration variables. χm is the volume-fraction function of the mobile phase and ηm the area-fraction function, over which the

flux of the mobile phase is integrated. As already mentioned, the stationary solid phase is dropped, as it is ∂tχm = 0, ∂tqs = 0

and us = 0. This simplifies the conservation form and finally leads to the particular differential form of the transport equation

for the mobile phase:215

∂tqm =− 1

χm∆V

∫
∂(∆V )

ηm ·umqmdA=− 1

χm
∇ ·ηm(umqm) =:−∇m · (umqm). (14)

The subscript m was only briefly introduced here and will be dropped again, as only one phase, the mobile phase, is of

interest.

Using the Cartesian grid structure, the discrete flux-divergence can be put in a discrete results form from:220

∇ ·F =
1

χ∆V
[(ηx∆AxfF x)L− (ηx∆AxfF x)R (15)

+ (ηy∆AyfF y)L− (ηy∆AyfF y)R

+ (ηz∆AzfF z)
L− (ηz∆AzfF z)

R],

where ∆V and ∆Ax,y,z are the cuboid volumes and face areas, respectively. The superscripts R and L refer to the left and

right cell face for each dimension, respectively. Fx, Fy , and Fz are fluxes, whose concrete form is determined by the partial225

differential equation. Note that for fz , the contra-variant flux has to be used for Fz .

The pressure gradient components on the cell faces are discretized with second-order accuracy. For example, tThe gradient

components centred on the x-orientated and z-orientated cell faces, and z-orientated faces respectively, are:

∂xp=
2ηx∆Ax

(χ∆V )L + (χ∆V )R
(
pR− pL

)
− 1

∆x

(
hR−hL

)
Lz→x∂zp, (16)230
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∂zp=
2ηz∆Az

(χ∆V )L + (χ∆V )R
(
pR− pL

)
, (17)

where Lz→x is the linear interpolation operator from a z-face to an x-face, and ∆x is the cuboid size used for differencing

the terrain function.

For a grid-conforming surface, the area fractions ηx,y,z = 0, and it from which follows that the required Neumann-boundary

condition is satisfied follows. Furthermore, if In this case, a grid cell is completely surrounded by grid-conforming surfaces,235

and the pressure value inside is decoupled from any exterior neighboring grid cell values, which matches the reflecting its

physical meaninglessness of such a value. For partially open semi-permeable cell-faces, the boundary condition is imposed

only on a fraction of the cell face area only.

The scaling fields ηx,y,z and χ for the cell volumes and face areas intersected by buildings are derived from geometric240

building data sets. As an alternative to using terrain-following coordinates, it is possible to use diffuse boundaries for the

terrain, in which case, the sub-surface is also represented by an obstacle too a geometric shape. Per definition, the volume-

fraction field χ is expressed as the fraction of the building-free volume in each grid cell. For numerical reasons, however, χ

is limited to a value of about 0.01 small non-zero value. For well resolved buildings, the area-scaling fields ηx,y,z would be

are derived by calculating the intersections of the buildings with the grid-cell faces. For under-resolved buildings, however,245

this method is very sensitive to the grid alignment, fails to take the grid alignment into account. and in certain cases, buildings

are missed, A resulting effect may be the entire missing of buildings if they do not intersect with the a particular cell faces,

but nevertheless block the flow within a grid cell. Figure 1a) shows two possible scenarios, where grid cells are intersected

by a building, which obviously blocks the flow in one dimension entirely completely but does not intersect with the cell faces

oriented in the direction of the blockinged flow direction. In order to reliably capture such bottlenecks capture such occurrences250

more reliably, a modified method to calculate the area fractions is used. In this method, tThe grid-cell volume is partitioned in

slices, with the slicing planes being displaced along the dimension considered (e.g. the x−dimension for the yz−faces). The

minimum value over of the free-volume fractions of these all slices is computed to defines a so-called cell-area-scaling factor,

which is then assigned to the cell face being in closer proximity to the obstacle. For a more robust capture of non-parallel

building walls, the slicing can be repeated several times with a slight rotation of the plane normal. If, occasionally, some a cell255

faces are is assigned to both values from the adjacent left and right grid cell, respectively, the minimum of both values is taken.

For the resulting cell-faces left without assignment, the geometric intersection with buildings is calculated as suitable for in

the resolved case. Figure 1b) shows demonstrates on a practical example that the this method preserves the blocking effect of
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χ η ηx y(a) (b)

Figure 1. (a) Depiction of two different building sections (gray filled areas) inside a grid cell. The black lines mark the effectively blocked

area of the respective side. The line pattern symboliszes the slicing of the grid cell volume, which is here shown here only for the x-dimension.

(b) Scaling factors for a complete building, now depicted as fields calculated for 3 different grid resolutions. χ is the volume-scaling field,

and ηx, ηy are the horizontal components of the area-scaling field.

a triangular-shaped building, even at for spatial resolutions, which would be are too coarse to resolve the individual building

walls.260

2.4 Numerics

2.4.1 Advection scheme

The main task in the discretization of the advection term in a finite-volume framework is the reconstruction of the cell-averaged

fluxes on the faces to calculate the balance according to Eq. 15. It is noted, however, that even in the incompressible case, the265

flux-balance form differs from the required advective form, as there is a residual divergence originating from the approximate

solution of the pressure equation.

(∂tq)adv =−∇ · (uq) + q∇ ·u (18)

The reconstruction for a scalar reduces to several high-order 1-dimensional reconstructions of the cell-averaged value q

on the cell faces. The fluxes are then obtained by multiplication with the exact momentum components, and are of the same270

spatial accuracy as the reconstructed scalars. For the reconstruction itself, upwind-biased stencils are used, requiring two

reconstructions on each cell face for the two flow directions. Since the grid-spacing is not equidistant, the reconstruction

coefficients have to be calculated in advance of the simulation as follows: Requiring the reconstruction to be nth-order

accurate, n cell averaged values are needed. Assuming the wind is blowing from the left (positive direction), the set of
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values encompasses q(j− r+ s), s ∈ [0,n− 1], with n mod 2 = 1, r = (n− 1)/2 + 1 and j being the target cell-index for275

the flux-balance calculation. For the negative direction, it is r = (n− 1)/2. In total, n+ 1 different values are needed.

The reconstruction itself is performed using the spatial derivative of the Lagrange polynomial, which fits the primitive

function evaluated at the cell faces (see e.g. Shu, 1998):

P (x) =
∑n−1
s=0 q(j− r+ s)∆x(j− r+ s)

∑n
m=s+1

∑n
l=0,l 6=m

∏n
p=0,p 6=m,l(x−xj−r+p−1/2)∏n

l=0,l 6=m(xj−r+m−1/2−xj−r+l−1/2) (19)

The coefficients have to be evaluated at the cell faces j− 1/2 for the positive upwind direction, and j+ 1/2 for the negative280

one. The differences in parenthesis can be expressed in terms of the grid spacing. Instead of the geometric grid spacing,

the effective grid spacing ∆eff
x , which is derived from the scaling fields, is used as a pseudo grid. This ensures a decreased

weighting of interpolation nodes within volume-compromised cells and prevents the scheme from interpolating the degenerated

values inside closed cells.

285

∆eff
x = 2χ

ηLx +ηRx
∆x (20)

xj−1/2−xj−r+p−1/2 =: (21){∑r−p−1
l=0 ∆eff

x (j− r+ p+ l) r− q > 0
∑p−r−1
l=0 −∆eff

x (j+ l) p− r > 0,

and290

xj+1/2−xj−r+p−1/2 =: (22){∑r−p
l=0 ∆eff

x (j− r+ p+ l) r− p+ 1 > 0
∑p−r−1
l=1 −∆eff

x (j+ l) p− r− 1> 0.

While the formulas permit reconstructions of arbitrary order, a 5th-order reconstruction was found to give superior resolution

to a 3rd-order one, while still being computationally efficient. For any increase in the order, additional ghost layers need

to be communicated. Additionally, limiting of the reconstructions is applied using a total-variation diminishing method of295

Sweby (1984).

This will ensure monotonicity for scalar advection. The two limited reconstructions q+ and q− are finally combined to give

the numerical flux based on the propagation velocity u:

(uq) = 0.5[u(q+ + q−)− ||u||(q+− q−)] (23)

The advective tendency for a scalar q is obtained by adding the remnant velocity-divergence term from the approximate300

pressure solution to the flux-divergence term of the conservation law (Eq. 15):

(∂tq)adv =−∇ · (uq) + q∇ ·u. (24)
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The flux components are linear and given by the product of the reconstructed values q̃ at cell faces and the exactly given

momentum components. We use an upwind-biased stencil of 5th order, which results in two reconstructions q̃+ and q̃− on each

cell face. For an x-oriented face, the reconstructions are merged to the numerical flux by considering the wind direction:305

(uq)x = 0.5
[
ux(q̃+ + q̃−)− ||ux||(q̃+− q̃−)

]
(25)

For non-uniform grid spacings, the coefficients of the reconstruction polynomials are pre-computed from the spatial deriva-

tive of the Lagrange polynomial which interpolates the primitive function at cell faces (see e.g. Shu, 1998). We use the pseudo-

grid spacing calculated by ∆eff
x = 2∆xχ/(η

L
x +ηRx ) instead of the computational grid spacing in order to automatically adjust

the effective stencil width near obstacle boundaries. The behaviour of the pseudo-grid-based reconstruction of maximum 5th310

order is demonstrated in Fig. 2 for a positive flow direction (left to right). Within shown the circular obstacle, the pseudo-grid

spacing tends toward infinity, which effectively excludes such decoupled cells from interpolation. The resulting smaller stencils

can be down-wind biased. An effective measure to prevent numerical instabilities is the application of a flux limiter (e.g. from

Sweby 1984) near obstacle boundaries. To avoid non-physical results of positive scalars, a limiter has to be applied anyway.

In the case of momentum advection, we use the absolute difference |ηx(j− 1)− ηx(j)| as a weighting function to merge the315

limited and unlimited reconstructions for obstacle-specific limiting. Note that this expression is upwind-biased (assuming a

positive wind direction). In the free boundary layer, the difference is zero and no limiting is applied.

For momentum transport, tThe routine for scalar cell-centered advection is re- repeatedly used to advect a left-faced ul

and right-faced value ur for each momentum component (Hicken et al., 2005; Jähn et al., 2015), resulting in a total of 6320

routine calls advection steps. In contrast to scalar advection, monotonicity is generally not desired, as it has a detrimental

impact on energy conservation and will interact with the subgrid model. To prevent wiggles near building walls and to increase

numerical stability, only local limiting is applied at obstacle boundaries. For a reconstruction face at index position j located

near a diffusive boundary, a local weight can be taken as α+
x = |(ηx(j− 1)− ηx(j)| for the positive upwind direction, and

α−x = |(ηx(j+ 1)− ηx(j)| for the negative direction. If u+
Lim is the limited reconstruction of u+, using the aforementioned325

weight α+
x , the following merging results in a weighted limiting of the velocity component perpendicular to an adjacent

building wall:

u+
Limobs = (1−α+

x )u+ +α+
x u

+
Lim (26)

The scheme, if necessary, degrades only to first-order accuracy at obstacle boundaries, while in the free boundary layer, no

additional numerical dissipation is introduced.330

The final momentum tendencies are obtained by interpolation of two centered tendencies on the face:

∂advt u=

(
χ∆V ∂advt ul

)R
+
(
χ∆V ∂advt ur

)L
(χ∆V )R + (χ∆V )L

(27)
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Note that it is combined the right-faced advective tendency from the left grid cell and the left-faced tendency from the

right grid cell (superscripts L and R, respectively). Spatial accuracy of momentum advection is limited to the order of this

interpolation procedure, which is of second order here.335

(a) (b)

Figure 2. (a) Plot of the pseudo-grid spacing ∆eff
x computed for a solid cylinder with diameter of 10m using a uniformly constant grid

spacing of 1m. Decoupled cells inside the cylinder are characterized by ∆eff
x > 2 in this plot. (b) Using same ∆eff

x of (a), the reconstruction

coefficients are computed for a 5-point upwind-biased stencil. The absolute values of the reconstruction coefficients are re-normed to one

and depicted in shades of grey at individual reconstruction sites, which are marked by a vertical red bar. Stencil points are rendered invisible

for values below 10−4, as such have a negligible influence on the reconstructed value.

2.5 Model integration, pressure correction method, and lateral boundary conditions

2.5.1 Model integration

In the incompressible-flow equations, the pressure gradient term is not directly coupled to a prognostic pressure equation.

The projection method of Chorin (1968) is used to split the solution procedure in two steps. The first step integrates all the340

momentum tendencies, except the stated pressure gradient term, explicitly in time to obtain a predicted velocity ũ:

ũ= ut0 + (∂tu)ex|t0∆t. (28)

The final velocity estimate after one integration step ut1 has to fullfill the continuity equation:

∇ ·ut1 = 0. (29)
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The not yet known required corrective tendency is has to be associated with the neglected pressure gradient ∂tũ=− 1
ρref
∇p|t1 ,345

which is formally integrated with an Euler-backward step to obtain the final velocity at t1 = t0 +∆t :. Applying the divergence

operator on both sides gives:

∇ ·ut1 =∇ · ũ− ∆t
ρref
4p|t1 . (30)

Since, as mentioned, the left side has to be zero, one obtains the well-known Poisson equation for pressure, which is to be

solved algebraically:350

ut1 = ũ− ∆t

ρref
∇|pt1 . (31)

By applying the divergence operator on both sides and requiring that ∇ ·ut1 = 0, the well-known Poisson equation for

pressure is obtained:

ρref
∆t
∇ · ũ=4p|t1 . (32)

After algebraic solution of this equation, tThe final state is can now be composed of the fractional tendencies:355

ut1 = ut0 + ∆t

[
(∂tu)ex|t0 −

1

ρref
∇p|t1

]
. (33)

Equation 33 is also an example of a only first-order accurate in time Euler method. Higher-order multistage Runge-Kutta

(RK) methods have the advantages of increased temporal accuracy and larger time stepping. The numerical stability of the

integration in most practical examples is constrained by the advective and pressure-gradient tendency. Therefore, all the

remaining terms are considered as the minor tendencies, and are evaluated only at every first stage. Different RK methods were360

tried in our model framework. It was found that the 2nd-order midpoint rule (MP-RK2) and the strong-stability preserving

3rd-order scheme (SSP-RK3) performed reasonably well. Using Taylor expansion, Karam et al. (2019) showed that RK2 and

RK3 schemes can preserve their order of accuracy in spite of using just one pressure solve at the final stage. For all the

intermediate projection steps, 1st- and 2nd-order accurate pressure estimates are interpolated from values at previous time steps.

In practical examples, the computational savings were partially sacrificed by a decreased stability of the schemes, requiring365

smaller time steps. We found that MP-RK2 maintains stability up to a Courant number of C = 0.3, and the SSP-RK3 scheme

up to C = 0.7 with one final pressure solve. Based on this, SSP-RK3 will be used for all of the applications in this paper and

in future. For higher accuracy, it is instead used a 3rd-order strong-stability preserving Runge-Kutta scheme (SSP-RK3) for

the advective and pressure-gradient tendencies, which also allows to use larger time steps. The pressure to correct the first two

intermediate states is extrapolated from values given at previous time steps, and only for the final stage, the pressure solver is370

applied (Karam et al., 2019). We found that this combination supports stable integration up to a Courant number of C = 0.7.
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2.5.2 Pressure solution

The discretization of the Laplace operator P in the Poisson equation (Eq. 32) is obtained by the product of the discrete diver-

gence matrix D and gradient matrix G defined by the discrete forms in sparse matrix form. D is defined by the flux-balance in

Eq. 15. Combining the operators to the pressure equation, the following sparse linear system is obtained:375

Pp=
1

∆t
Dũ=: b, (34)

where ũ, p and b are the one-dimensional expanded arrays of the corresponding structured fields. Eq. 34 is solved with a

geometric multigrid method in parallel using domain-decomposition in two dimensions. The multigrid algorithm consists of

applying a smoothing method of choice which is accelerated by coarse-grid corrections. Therefore, a hierarchy of coarse grids

is employed (Brandt and Livne, 2011). 3-dD coarsening of the grid is carried out by agglomeration of 8 grid cells to form a380

coarse grid cell of the next-level grid. For odd uneven grid sizes, a plane of grid-cells with respective orientation is left un-

coarsened. This particular multigrid used in combination with finite volume discretizations is often referred to as cell-centered

multigrid in literature (Mohr and Wienands, 2004).

Particular challenges to the multigrid algorithm include grid stretching and, in our case, non-smoothly varying coefficients

associated with the diffusive boundaries, both resulting in coefficient anisotropy. An odd grid size results in coefficient385

anisotropy of the coarse grid operators. Furthermore, Neumann boundary conditions result in a reduced smoothing efficiency

near boundaries. In such cases, plane smoothers are much more adequate often much more robust than their point-wise pen-

dants (Llorente and Melson, 2000). Nevertheless, most of the difficulties were could be overcome by applying less elaborated

methods in the current model.

Based on smoothing analysis, Larsson et al. (2005) give a condition for the optimal location of an uncoarsened plane in the case390

of odd grid sizes. For an odd grid size in any direction, the Galerkin coarse-grid approximation (GCA) can result in a better

approximation of the coarse-grid operator in this case, while discretization coarse-grid approximation can be more efficient

for even-sized grid dimensions. Our algorithm employs a combination of both methods on different grid levels. is much more

robust than re-discretization of the Poisson equation. In GCA, the coarse-grid operator is formed algebraically by applying

interpolation operators from the left (restriction) and right (prolongation) on the original matrix. The original stencil size of 7395

points (without using terrain-following coordinates) is only preserved for piece-wise constant interpolation for both restriction

and prolongation. In this case, it is necessary to multiply with a factor of 1/2 to compensate for the poor approximation quality

(Braess, 1995). Trilinear prolongation would give an adequate approximation quality for constant-coefficient operators, but

it failed in our case of highly discontinuous media. As a compromise, the trilinear interpolation operator can be modified

to approximate piece-wise constant interpolation near diffusive boundaries. As a drawback of trilinear interpolation, the400

coarse-grid stencil encompasses 27 points which increases numerical costs of coarse-grid corrections.

The smoothing method employed on each grid has to be efficient for moderate coefficient anisotropies. Yavneh (1996) found

that for smoothing, successive over-relaxation (SOR) is generally superior to Gauss Seidel smoothing (even for isotropic coef-

ficients), and he also derived approximately optimal over-relaxation factors for SOR with red-black ordering applied in multi-
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grid for the solution of anisotropic elliptic equations. An advantage of the red-black ordering is the complete vectorization and405

parallelization of the algorithm, while a disadvantage is the not optimal cache efficiency, as the computation grid is accessed

twice in each iteration (Di et al., 2009). A more cache efficient SOR method provides the standard lexicographic ordering,

which however suffers from a degradation toward the less efficient Jacobi relaxation at subdomain boundaries in the parallel

implementation.

In our implementation, also sparse-approximate inverse (SPAI) matrices (Tang and Wan, 2000; Bröker and Grote, 2001; Sed-410

lacek, 2012) are available as Ssuitable alternatives for anisotropic problems to SOR are sparse-approximate inverse (SPAI)

matrices as smoothers (Tang and Wan, 2000; Tang and Wan, 2001; Tang and Wan, 2012). Depending on the approximation

quality of SPAI, which can be controlled by the sparsity pattern and consequently the number of allowed non-zeros, the

efficacy of the smoother can be flexibly enhanced in order to tackle the difficult Poisson problem with varying coefficients.

Since the Poisson matrix is not time dependent, it pays off to invest computational resources in a good approximation, as it is415

only necessary once at the beginning of the simulation. These smoothers can inherently consider coefficient anisotropy through

the algebraic method by which they are derived. Moreover, a variable number of non-zeros in the matrix allows a flexible con-

trol of the approximation quality and smoothing efficacy.
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Figure 3. Example of a horizontal multigrid domain decomposition, involving 6 grid levels. Depicted are the area-scaling factors of yz-faces

for the city of Leipzig at different resolutions of (a) 80m, (b) 160m, (c) 320m, (d) 640m, (e) 1280m, and (f) 2560m. The scaling factors

are needed in the discretization of the Poisson equation. On the coarsest grid, a single processor is left for the computation.
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2.5.3 Lateral boundary conditions420

Before each pressure correction step, global lateral boundary conditions for the next time step are already updated for of the

intermediate velocity field ũ are updated. This approach naturally leads to a homogeneous-zero Neumann boundary condition

for the pressure, which is shown in the following. We require that the updated velocity field satisfies The update has to ensure

global mass conservation:

∮
∂V

ρref
∆t

ũ ·ndaA′ = 0. (35)425

This expression implies a homogeneous-zero Neumann boundary condition for pressure at all lateral boundaries, as the

already updated boundary values should not be changed by the projection:

Using Eq. 35 as the source term of the pressure equation (Eq. 32) and applying Stokes theorem, one arrives at a Neumann

condition for the pressure:

∮
∂V

ρref
∆t ũ ·nda=

∫
V
ρref
∆t ∇ · ũdV =

∫
V
∇ ·∇pdV =

∮
∂V
∇p ·nda= 0 (36)430

Here n is the unit normal vector on the boundary surface. Since the tendencies of the already updated boundary values are

zero, no projection is applied, which corresponds to the homogeneous-zero condition:

0 = ρref
∂ũ

∂t
·n=∇p ·n. (37)

Note that by already updating the boundary condition for ũ, the pressure boundary condition was homogenized by attributing

the in-homogeneity to the source term∇ · ũ. An important remark to Eq. 37 is concerning the special case, when terrain-following435

coordinates are used. By requiring ∂tω = 0 for the contra-variant vertical velocity, the pressure boundary condition for the top-

and bottom-domain boundaries is given by:

0 = ∂zp− ∂xh∂xp− ∂yh∂yp (38)

In this most general case, the projection still allows variations in the velocity, and it requires the solution of an additional

linear equation (or an additional grid plane in the pressure equation). In order to keep the boundary velocity vector fixed and440

to prevent numerical expenses, it is used the trivial condition at the top and bottom boundaries:Here, n is the unit normal

vector on the boundary surface. A more general case arises with the use of terrain-following coordinates. By requiring not only

∂tω = 0, but additionally ∂tw = 0 at the bottom and top of the computation domain, the following boundary condition follows

at these boundaries:
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∂zp= 0 (39)445

∂xp=

0 ∂xh 6= 0

not specified else

∂yp=

0 ∂yh 6= 0

not specified else
(40)

In the discrete gradient operator, homogeneous Neumann boundary conditions are implemented by setting all coefficients

associated with the node to zero where the condition applies.

450

The not yet specified boundary condition for the velocity field has to be compatible with a dynamic mesoscale forcing

and also with the integrability condition ofsatisfy Eq. 35. The workflow is therefore to first dynamicallyFirstly, inflow and

outflow regions, are dynamically determined in order to impose separate appropriate boundary conditions., and then add a

correction flux to the outflow regions to balance the total inflow-region flux. The oOutflow regions are determinedcharacterized

by convective transport out of the domain. Therefore, a simple normalized convective transport speed C⊥ = ∆t
∆xu ·n is com-455

puted. C⊥ > 0, where C⊥ is a normalized convective transport speed out of the domain. C⊥ is evaluated at interior grid

points and time step t. For simplicity, it is taken C⊥ = ∆t
∆xu ·n, howeverNote that more elaborate formulations for C⊥ ex-

ist. The transport velocityC⊥ is further bounded to 0≤ C⊥ ≤ 1[0,1] for numerical reasons. It is then C⊥ > 0 for outflow

regions. This ensures numerical stability of the prognostic radiation equation applied to outflow ghost cells. As proposed

by Miller and Thorpe (1981), first order upwinding is used:For such regions, the radiation boundary condition by Miller and460

Thorpe (1981) is imposed:

ut+1
l+1 = utl+1−C⊥

(
utl+1−utl

)
. (41)

The order of the spatial indexing l is in normal direction to the boundary and not to confuse with the standard interior index-

ing. The index l+ 1 corresponds to the first ghost cell. At the remaining inflow boundaries, Dirichlet conditions are specified.

Figure 4 shows that the outflow boundary condition with the proposed convective transport speed is well suited to our465

incompressible model even for highly unsteady flows, like the depicted vortex street in the wake of a cylinder. Individual

vortices are not visibly reflected at the boundary, and also in the temporal mean, based on Fig. 4b, the influence of the boundary

is not discernible.
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Instead of the flexible inflow-outflow condition, a Rayleigh damping layer can be used as another prognostic tendency near470

the domain top:

∂dmpt q =−R(z)

τ
(q− q0). (42)

Eq. 42 can be applied to gradually relax any prognostic variable toward a prescribed horizontal mean state at the top bound-

ary. R is a ramp function with values between [0,1], τ the damping time scale and q0 the prescribed boundary value.

475

The final step is to impose global mass conservation, for which a correction flux ṁd is integrated for each dimension d

separately:

∫
Ad

DIR
ρreful+1 ·nda+

∫
Ad

RAD
ρreful+1 ·nda=−ṁd, d ∈ {x,y,z}, (43)

where ADIR is the surface area on which a Dirichlet condition is imposed, and ARAD the remaining surface area with

the radiation condition imposed. It is further
∑
dA

d
DIR +AdRAD = ∂V the total domain-bounding area. The correction fluxes480

are converted to a corresponding correction speed udṁ, which is added to the boundary-perpendicular velocity component on

ARAD. The mass flux is distributed over the radiation-condition area by using for example C⊥ in a weighting function:

udṁ = ṁd sign(a)
ρref

C⊥∫
Ad

RAD
C⊥da

(44)

Attention must be paid to the sign of the correction velocity, as Eq. 44 is multiplied by a negative sign for right-hand

sided boundaries. When using terrain-following coordinates, it is the contra-variant vertical flux perpendicular to the bounding485

surface and used in Eq. 43. The correction speed is simply added to the covariant component w.

Final mass conservation is enforced by making sure that the total inflow-mass flow is exactly balanced by the total outflow-

mass flow. This is accomplished by computing an averaged correction velocity from the mass-flow difference. In the case, each

spatial dimension is considered independently from each other, this results in 3 different correction velocities. The correction490

velocities are finally added to the boundary-perpendicular velocity component at the outflow regions.

Figure 4 shows that the outflow boundary condition with the proposed convective transport speed is well suited to our

incompressible model even for highly unsteady flows, like the depicted vortex street in the wake of a cylinder. Individual

vortices are not visibly reflected at the boundary, and also in the temporal mean, based on Fig. 4b), the influence of the495

boundary is not noticeable.The flexible boundary condition can principally be applied to any other scalar quantity, although,

specifying Dirichlet conditions for advected scalars was found to be well suited.
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Figure 4. LES of 3D flow past a cylinder. The horizontal grid spacing is uniformly 0.5m. The cylinder has a diameter of 40m. The

approaching flow is laminar with u= 1m s−1. Flexible Dirichlet-radiation conditions are imposed on all horizontal domain-boundaries,

while periodic boundary conditions are used in z-direction. The contour plot depicts the pressure and the streamlines the horizontal velocity

field. (a) shows a frame at the instance during a sharply defined vortex is about to cross the right boundary, (b) shows the temporal mean over

a representative simulation period.

2.6 Physical processes

2.6.1 Subgrid model

For numerical simplicity and efficiency, a static Smagorinsky subgrid model is used (Deardorff, 1970). Since the atmospheric500

model is operated in the limit of infinite Reynolds numbers, the principal purpose of the subgrid model is to stabilize the

numerical simulation through an additional amount of energy dissipation at the shortest wavelengthsdissipate enough energy at

the shortest wavelengths to obtain a physically realistic energy cascade. In our case, the subgrid model also has to compensate

for the under-resolved vertical mixing of tracers within the urban boundary layer. Generally speaking, the magnitude of the

subgrid fluxes shall be only a small fraction of those of the resolved fluxes, so that any potential non-physical assumptions in505

the subgrid model have little influence on the resolved fields. This is a prerequisite for large eddy simulations, and is one of the

main reasons, why the static Smagorinsky model, despite its obvious short comings, is still a popular choice.
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The Smagorinsky model relates the subgrid turbulent fluxes to the resolved rates of strain sx,y: In the Smagorinsky model,

the rates of strain sx,y are approximated by the velocity gradients:510

sx,y =
1

2
(∂yu+ ∂xv) . (45)

The subscripts x, y refer to the spatial components. The turbulent fluxes are derived in analogy to the viscous fluxes by assuming

an eddy viscosity εk:

u′xu
′
y = 2εx,ysx,y (46)

The terms in Eq. 45 and Eq. 46 are cell averaged values, and overbars are neglected for convenience. The often additionally515

mentioned anisotropic residual-stress tensor is ignored in the given incompressible case. In the most simple case, εx,y is the

eddy viscosity, which for numerical efficiency, is also diagnosed from the rates of strain instead of solving an additional

prognostic equation for the turbulent kinetic energy. εx,y is denoted in tensor form, as an anisotropic mixing length lx,y is used

to reflect grid anisotropy:

εx,y = l2x,y|S|f = (cs∆x,y)
2 |S|fs (47)520

|S| is the Frobenius norm of the stressstrain-rate tensor. cs is the Smagorinsky constant, which is fixed in a static model. Tests

with a boundary layer simulation revealed that the range 0.1< cs < 0.15 gives good results in combination with the 5th-order

upwind scheme.discretization values of 0.1< cs < 0.15 give good results. Finally, theGrid anisotropy enters via ∆x,y which

is related to the grid spacing and further modified by half the mean distances to walls hx and hy , respectively:

∆x,y = min
(√

∆x∆y,1.8hx,1.8hy

)
. (48)525

hx is half of the mean distance between walls orientated in the x-direction.

The function fs introduces the influence of the stratification on the eddy viscosity. It is assumed:

fs =


0 Ri≥ 0.25
√

1− 16Ri Ri < 0

(1− 4Ri)
4

else,

(49)

with the Richardson number Ri:530

Ri=
g∂zΘv

Θv|S|2
. (50)
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For scalar diffusion, the eddy viscosity is divided by the turbulent Prandtl number, which is assumed to be Pr = 2/3 here.

If not mentioned otherwise, the appearing spatial derivatives are discretized with second-order differences. To obtain the

strain rate components and the eddy viscosity on different stencil points (cell faces areas and cell centers), linear interpolation535

is used. The subscalegrid tendency is approximatedformed by the divergence of the diffusive fluxes. Shifted grids are introduced

tTo account for the definition of the velocity components on the cell faces, shifted grids are introduced. For example, diffusion

of the u-component requires a grid shifted by ∆x/2, for which the scaling fields are also obtained by linear interpolation.

The diffusive fluxes are given by:

fF x,y = 2εx,ysx,y. (51)540

For diffusion of the u-component, the fluxes in the 3 spatial directions are fF x,x, fF x,y and fF x,z . Those of the other

components are obtained by permuting the subscripts. For a scalar quantity q, the required fluxes are fF x,x, fF y,y and fF z,z ,

wherein with the rates of strain are being replaced by the gradient components.

2.6.2 Surface fluxes

Surface fluxes for momentum, heat and moisture are parameterized, using Monin-Obhukov similariry theory (Louis, 1979).545

An expression for tThe vertical transfer coefficient Cz is givencan be obtained by transforming the logarithmic-wind law:

Cz =
k2

log2 (z/z0)
(52)

k = 0.4 is the Von Kármán constant, z0 the surface roughness length, and z the height difference from the modeled surface

to the grid level where the parameterization is evaluated. In order to alleviate the often encountered problem with the log-layer

mismatch (Yang et al., 2017), it is advantageous to take the second or third grid level above respective surface, since close to550

the surface turbulence is not adequately resolved.

The momentum sinks from horizontal surfaces are:

∂u′w′

∂z
=− Az

∆V
fmCzu

√
u2 + v2 (53)

and555

∂v′w′

∂z
=− Az

∆V
fmCzv

√
u2 + v2. (54)
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Analogously, the source terms for heat and moisture from horizontal surfaces are:

∂Θ′w′

∂z
=− Az

∆V
fhCz (Θ−Θs)

√
u2 + v2 (55)

and

∂Q′vw
′

∂z
=− Az

∆V
fhCz (Qv −Qsv)

√
u2 + v2. (56)560

Θs is the surface potential temperature, and Qsv the surface specific humidity. Az is the total exposed horizontal surface

within the grid cell, and ∆V the effective cell volume. fm and fh are stability functions, and z0 the surface roughness length.

fm is based on the Bulk Richardson number, which is the fraction of buoyant to shear energy production and calculated as:We

adopt the expressions given in Doms et al. (2013) to calculate fm and fh for land surfaces.

RiB = g(Θ−Θs)z
Θs(u2+v2) (57)565

In stable conditions, RiB > 0, and the stability functions are empirically determined by Doms (2011) for land surfaces:

fm = 1
1+10RiB(1+5RiB)−0.5 (58)

fh = 1
1+15RiB(1+5RiB)0.5

(59)

Conversely, in unstable conditions RiB < 0, and

fm = 1 + 10|RiB|

1+75Cz

[(
z
z0

)0.33
−1

] 1.5√
|RiB| (60)570

fh = 1 + 15|RiB|

1+75Cz

[(
z
z0

)0.33
−1

] 1.5√
|RiB| (61)

Sources and sinks from vertical building walls are treated similarly, with the exception thatbut the stability function is set to

unity in this case. For x-orientated surfaces, z is replaced by half of the average distance between surfaces in the equation for

the transfer coefficient. Analogously, Az is replaced by Ax for the total projected surface area with x-orientation. The surface

fields Θs and Qsv can be considered as are part of the external forcing and have to be provided either by the hosting mesoscale575

model or field-interpolated measurements.
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2.6.3 Turbulence recycling scheme

Wu (2017) gives an overview of various turbulence generation methods to provide turbulent inflow conditions. Among the

different methods, a turbulence recycling scheme was implementedis used in theour model, as it is computationally efficient and

can be applied to a wide range of different domains and flow types. One peculiarity of the used scheme is that the recycling plane580

can be placed at an arbitrary distance to the inflow boundary within the computation domain, and all 4 horizontal boundaries

are considered as potential inflow boundaries, unless periodic boundary conditions are specified. The only requirement is

that the plane distance is at least several integral length scales to prevent a spurious periodicity of the recycled turbulent

features. In some cases, it may even practical to place the recycling planes near the respective opposite boundaries, if the

inflow conditions shall be those from an urban boundary layer. In this case, no extra development fetch is needed.In our585

implementation, turbulence can be extracted within a maximum of 4 vertical planes, each one properly displaced parallel to a

particular inflow boundary. The resulting domain fetch for turbulence recycling has to extend several integral length scales in

order to prevent a spurious periodic pattern of the recycled turbulent features.

At each model time step, a horizontal filter is applied on the velocity components within the recycling plane. In the case

of coupling with a mesoscale model, By setting the characteristic filter width wr is set to just below the spatial resolution of590

the host model in order to spare to the integral length scale, the mesoscale variations are spared, which is important in case

of spatially and temporally varying boundary conditions. Vertical filtering is not feasible due to the strong vertical wind shear

within the boundary layer. The filtered velocity component is subtracted to obtain the small-scale fluctuation component:

u(z,y)′ = u(z,y)−< u(z,y)>wr
. (62)

Equation 62 assumes a boundary perpendicular to the flow in x-direction. Next, tThe turbulent intensity is re-scaled to the595

target value, after which the fluctuation field can be added to the inflow boundary field uin of the large scale flow uls.

uin(z,y) = uls(z,y) +min

[
amax,

||u′tar||2(z)

||u′||2(z)

]
u′(z,y) (63)

amax is used to limit the artificial amplification of turbulence shortly after model initialization.

The filtering operation, as well as the calculation of the turbulent intensities require communications in the parallel imple-600

mentation. In order to keep a maximum degree of parallelism in the model, decentralized filtering is used, instead of the much

simpler method of transferring all the data to a root node. For optimal parallel scaling, filtering is performed on each subdomain

containing a part of the recycling plane instead of the much simpler method of filtering all the data with a single processor. A

box-shaped filter is used to minimize the amount of communication in the parallel filtering. Before filtering, additional ghost

cells are exchanged, whose communication effort can be substantial for large filter widths. In this regard it is advantageous605

and adequate to use an efficient box filter. A final communication is potentially may be necessary to transfer the data recycled
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turbulence to the inflow boundary, if the recycling plane is located on another subdomain. Overall, dDespite the communica-

tion-intense filtering overload, the computational costs of the recycling scheme were found to be only 1% to 2% of total costs

on average.

610

2.7 Programming language

The presented model CAIRDIO v1.0 is written in Python, a programming language which facilitates a straightforward im-

plementation of numerical methods, code compactness, and code readability. Python packages like NumPy, SciPy, and mpi4py

make the programming language also suitable for high-performance computing. Our model implementation can particularly

benefit from NumPy, as all time critical numerical routines (e.g. all the routines for the computation of explicit tendencies)615

support vectorized computations. This is an inherent property of the diffuse interface approach, as all grid cells, except for

the ghost cells at sub-domain boundaries, are computation cells and treated in the same manner. All tendencies are formulated

in flux-divergence form, and as a result, obstacle boundaries have not to be specified particularly. For the multigrid pressure

solver, SciPy provides efficient data structures, methods, and functions for sparse-matrix algebra. Parallel computation is real-

ized through a 2D-domain decomposition, with each processing node running its own full-fledged simulation. Message passing620

interface (MPI) is used to successively exchange data between subdomains.

3 Numerical tests

A series of simulations of different complexity is carried out in order to assess the model accuracy and demonstrate the

capabilities of the numerical core. The first model experiment is an advection test taken from Calhoun and LeVeque (2000).625

A tracer is advected within a rotating annulus. Due to to the large number of intersected grid cells in manyfold ways, this

test can be considered as challenging for the empirically determined order of convergence. In the second test, which is

also reported in Calhoun and LeVeque (2000), a wave of a test tracer is advected through an irregular obstacle field. The

stationary wind field is a numerically-approximated potential-flow solution obtained with a single projection step. A sensitivity

study is performed to determine the grid-spacing sensitivity of the advection routine in combination with the projection630

method. The third basic example to evaluate the dynamic core is the rising bubble simulation of Wicker and Skamarock (1998).

While the benchmark simulation is compressible, it will be determined how well the anelastic approximation in this model

compares to it. The actual evaluation part is completed with the simulation of the wind-tunnel experiment "Michelstadt"

(Berbekar et al., 2013). It provides a high-quality standard dataset for LES-type dispersion model evaluation. As a last example,

which is orientated towards a more practical application, the models capability is demonstrated to simulate meteorology and635

air-pollution dispersion under non-neutral stratification over non-uniform terrain.

Some numerical tests are conducted in order to examine grid-sensitivity of the diffuse obstacle interface, the dynamic core

and parallel efficiency of the model. To test the diffusive obstacle interface, a similar advection test as reported in Calhoun and

LeVeque (2000) is performed. In order to show that the dynamic core can reproduce the expected evolution of an idealized
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setup, the rising-bubble experiment of Wicker and Skamarock (1998) is conducted once again. It also provides a benchmark640

to compare the anelastic approximation with a fully compressible model used in the original study. Finally, a third test is

conducted to demonstrate the strong scalability on a high-performance computing platform.

3.1 Annulus advection test

In the advection test described in Calhoun and LeVeque (2000), a circumferential flow field inside an annulus with the inner

radius R1 = 0.75 and outer radius R2 = 1.25 is defined by the following potential-flow function:645

Ψ =


−π5 r

2 R1 < r < R2

−π5R
2
1 r ≤R1

−π5R
2
2 r ≥R2.

(64)

r =
√
x2 + y2, and (x,y) are the coordinates of the grid-corner points. By differencing Ψ, the velocity components on the

grid edges are obtained:

u= Ψ(i+1,j)−Ψ(i,j)
ηx∆y

v =−Ψ(i,j+1)−Ψ(i,j)
ηy∆x (65)650

Analogous to the 3-D case, ηx∆y and ηy∆x are the effective lengths of the cell edges normal in x-direction and y-direction,

respectively. It can be easily shown that the resulting velocity field satisfies∇ ·u= 0. The initial concentration of the advected

tracer is given by

c0 = 1
2{
[
5(φ− π

3 )
]

+
[
5( 2π

3 −φ)
]
}. (66)

φ is the azimuth defined in a mathematically positive sense. One revolution of the tracer takes 5 s of simulation time, after655

which the analytical solution is identical to the initial state.

The case is simulated with increasing grid sizes of 50× 50, 100× 100, 200× 200, 400× 400 and 800× 800, respectively.

The integration step size is halved at each doubling of the resolution, starting at dt= 0.016s.

Figure 5a depicts the relevant hemisphere of the annulus with the solution after one revolution using the 800× 800 grid.660

Figures 5b-f show the deviations from the exact solution on the different grids. Not unexpectedly, the largest error magnitudes

occur towards the edges of the annulus, but generally diminish with increasing grid size. The respective error norms are

shown in Table 1. L∞ is the maximum error magnitude, which convergences with an average rate of R∞ = 0.8. In contrast,

Calhoun and LeVeque (2000) did not observe convergence in the L∞ norm for the Péclet numer Pe=∞ case. In the L1 norm

(mean absolute differences), the schemes accuracy is closer to second order with an average convergence rate R1 = 1.73. The665
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convergence rate is not significantly affected by the order of accuracy of the reconstructions, which is 5th by default. This

suggests that the flux limiting has a profound impact on the results of this test case.

50x50

100x100 200x200

400x400 800x800

800x800(a) (b)

(c) (d)

(e) (f )

Figure 5. Test tracer distribution in arbitrary units. (a): Solution after one revolution for a 800× 800 grid. (b-f): Difference plots of difference

between numerical and exact solution of the experimental convergence study for grid sizes 50× 50, 100× 100, 200× 200, 400× 400, and

800× 800.

50× 50 100× 100 200× 200 400× 400 800× 800

L1 3.194× 10−3 9.169× 10−4 3.079× 10−4 8.873× 10−5 2.607× 10−5

L∞ 0.3473 0.1502 0.1092 5.880× 10−2 3.800× 10−2

R1 – 1.801 1.574 1.795 1.767

R∞ – 1.209 0.574 0.779 0.630

Table 1. Error norms L1 and L∞ and resulting rates of convergence R1 and R∞ for the different model grids in Fig. 5

3.2 Advection through an obstacle field

In tThis 2-D test, initially consists of an approximation of a potential flow solution for an irregular obstacle field. the compu-

tation domain contains randomly positioned circular obstacles of varying size. In a first step, an approximate potential flow670

solution is computed. Therefore, one step of the explained pressure projection method is applied on the initial wind field de-
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fined by u= 1 and v = 0. The resulting potential flow field is used to advect a test-tracer front, which is solely characterized

by the left inflow boundary condition:

c=

1 t≤ 40s

0 t > 40s
(67)

For the transversal-flow direction, periodic boundary conditions are used.675

The reference simulation is carried out on a domain with 200× 100 grid cells and a uniform grid spacing of 1m. The

obstacles are circular with radii rangeing from 5m to 10m. The simulation is repeated on coarser grids with dimension sizes of

100×50, 50×25, and 25×13, respectively. Figure 6 shows the simulation results at t= 150s. The obstacles are well resolved

on the grid with 1m spacing, but become more and more diffuse with decreasing grid resolution towards 8m for the coarsest680

grid. The initially planar test-tracer wave is delayed and deformed by the obstacles. The qualitative impression is that the shape

of the wave is not reallyvery sensitive to the grid resolution. Even in the most diffuse case, the position and shape of the wave

matches that of the higher resolved simulations well. The wave dispersion can be quantified by considering the washout curves

shown in Fig. 7, which are the spatially averaged concentrations at the outflow boundary versus time. For the case with the

finest grid, the concentrations at the outflow boundary start to rise after t= 145s and peak at about t= 185s. At t= 250s,685

most of the wave is advected out of the domain. Remarkably, as already found by (Calhoun and LeVeque, 2000), the washout

curve is not sensitive to the grid resolution up to 4m, which is at the transition when obstacles start to become diffuse. For the

case with the coarsest resolution of 8m, the peak is slightly broader, peak concentrations are lower, and the peak occurs earlier

by about 5s. At this grid resolution, the numerical diffusion of the advection scheme becomes important, as the resolution

capability is around 6 grid points, which is barely enough to resolve the wave.690

(a) (b)

(c) (d)

Figure 6. Results of the advection test with obstacles. Map plots of the concentration field of a test tracer after a simulation time of 150 s.

The obstacles are drawn by contours of the volume-scaling field χ. Shown are the results of the flow simulations for the grids (a) 200× 100

cells, (b) 100× 50 cells, (c) 50× 25 cells, and 25× 13 cells , respectively.
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Figure 7. Washout curves of the test tracer for the different grid resolutions in Fig. 6. The values are computed by integrating over the

modeled outflow at the downwind (right) domain border.

3.3 Rising thermal

In the rising thermal simulation described in Wicker and Skamarock (1998), the Euler equations without diffusion are solved on

a 2-D domain with a height of 10 km and a width of 20 km. The grid spacing is uniformly 125 m. Within the otherwise constant

The initially constant virtual potential temperature field of Θv = 300K, is perturbed by a circular thermal perturbation is

placed:695

∆Θv =

2cos2
(
πr
2L

)
r ≤ L

0 r > L,

r =
√
x2 + (z− 2km)2, (68)

L= 2km.

The initial vertical velocity is set to w = 0m s−1 and the horizontal velocity to u= 20m s−1. Periodic lateral boundary

conditions are used and a rigid boundary is placed at the domain top. Due to buoyant forces, the thermal starts rising while it is700

constantly advected to the right and eventually re-enters the domain at the left boundary. Finally, at the After a simulation time

of t= 1000s, the thermal is again situated in the center of the domain.

Figure 9a shows the evolution of the thermal based on contours of Θv at the time steps t= 0s, t= 350s, t= 650s and

t= 1000s. Two distinct, and symmetric rotors develop, and a. At the simulation time of t= 1000s, the overall appearance of705

the thermal matches well that of the original simulation by Wicker and Skamarock (1998) as can bee seen from the comparison
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with the original plot in Fig. 8. In our simulation, however, the thermal is more compact as it is confined between x=±2300m

and the peak height is at about 8100m. In the original simulation, it is confined between about x=±2600m and below 8500m.

Whether this slight discrepancy stems from the Boussinesq approximation or the different numerical schemes used can not be

finally clarified. By scale analysis, the magnitude of the buoyant acceleration is about one or two orders less than that of the710

inertial acceleration in the given example. So, the Boussinesq approximation should indeed apply well in this example. The

used 5th-order upwind scheme is much less diffusive than the 3rd-order scheme used by Wicker and Skamarock (1998). On the

other hand, the flux limiting introduces more an adequate amount of diffusion at near sharp gradients to prevent oscillations and

to ensures a positive solution (θv ≥ 300K). This can explain our smoother contour lines inside the rotor. A slight asymmetry

from the lateral advection can be noticed, which is most evident in the contours of vertical wind speed in Figure 9b. This715

asymmetry can be slightly more reduced by decreasing the integration step size (not shown). The combination of the advection

scheme with the 3rd-order SSP-RK3 time scheme gives stable results up to a Courant number of C = 0.7. Positivity of the

solution is preserved up to C = 0.5.

(a) (b)

Figure 8. Original plot of Wicker and Skamarock (1998) (Figures 5c-d therein) ©American Meteorological Society. Used with permission.

It shows the rising thermal problem computed using a third-order upwind scheme and a second-order Runge-Kutta scheme (Figures 5c-d

therein): Shown are the potential temperature (a) and vertical velocity (b) after 1000 s of integration time.

3.4 Strong scalability test720

We tested parallel scalability of the model for a domain spanning 350× 350 grid cells in the horizontal dimensions and

82 grid cells in the vertical, thus consisting of approximately 10 million cells in total. For realistic demands on the pressure

solver, a grid of diffuse buildings was placed at the bottom of the domain and vertical grid stretching was applied. The high-

performance computing platform we used for the scaling test is organized into nodes, each one equipped with two 12-core Intel

Xeon E5-2680 v3 CPUs, making in total 24 cores per node available. The strong scalability test is carried out for a variable725

number of cores ranging from one to 400. 400 cores correspond to a minimum average horizontal sub-domain size of 17.5

grid cells. Fig. 10 demonstrates the scaling efficiency of the model, as well as of the individual tasks for pressure projection

30



t = 0s

t = 350s

t = 650s

t = 1000s

x [m]

(a) (b)

t = 1000s

x [m]

Figure 9. Rising thermal simulation with lateral advection: (a) Contours of virtual potential temperature at different time steps. The initial

and intermediate states are drawn with dashed lines, the final state at t= 1000s with solid lines. The contours with θv = 300K are omitted.

(b) Contours of vertical wind speed at t= 1000s. Dashed lines are used for negative values.

and advection computation of 3 momentum components and two scalars, which together are responsible for the bulk of the

computation time. As a reference, the dashed lines show ideal scaling starting from a reference of one single core. Comparing

the experimentally obtained curves with the idealized curves, firstly, a peculiar drop in scaling efficiency between 4 and 9730

cores can be noticed. However, this drop cannot be explained by the parallelization design and it was also not observed using

a different platform with less cores (not shown). The arithmetic-intense advection computation shows, apart from the already

noted drop between 4 and 9 cores, excellent scaling, which becomes even super-linear above 100 cores due to cache effects.

Not surprisingly, the pressure solver, which requires two communications for each smoothing iteration, does not scale so well.

While cache effects can balance the increasing communication overhead up to 200 cores, above this number, scaling is no735

longer satisfactory. Due to the lower costs of the pressure solution in comparison with the advection computation, the model

shows a very good scaling up to 400 cores for this test case. Note, however, that the best decomposition to benefit from cache

effects shifts toward a lower number of cores when the vertical dimension size is decreased. In theory, the implementation of

the smoothing procedure supports overlapped communication and computation, as the matrix-vector product of the halo layer

is computed independently from the inner matrix-vector product. In this test, we could not observe any true overlap, which740

would require further investigation. Addressing this feature in future can help to additionally improve scalability of the pressure

solver.

4 Michelstadt wind-tunnel experiment Model evaluation with wind-tunnel experiment and grid size sensitivity tests
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Figure 10. Strong scalability of CAIRDIO v1.0 tested for a domain with 350×350×82 grid cells using 1 to 400 cores on a high-performance

computing platform. Dashed lines show ideal scaling.

The wind tunnel experiment "Michelstadt", which was carried out in the wind tunnel WOTAN (Lee et al., 2009) of the745

University of Hamburg, Germany, is used to evaluate the model accuracy and reliability against a physically based dataset of

dispersion simulations within an urban canopy. The benefits of using Advantages of wind tunnel-data over field observations

for numerical model evaluation are the accurately controlled and determined approaching-flow conditions, and the high density

of wind and concentration measurements in both space and time the high spatial and temporal resolution of measurements,

and the , which results in a high statistical significance of the data compared to field data(Schatzmann et al., 2017). Assuming750

the validity of the scale invariance, wind-tunnel experiments provide a reliable basis of comparison under idealized conditions

(e.g. neutral stratification, absent surface fluxes, temporally constant and horizontally homogeneous approach-flow statistics).

The fictitious city district "Michelstadt" is the name of a fictitious model city district, designed at an assumed based on

a typical Central European downtown area with spacious polygonal courtyards surrounded by residential building units at a

scale of 1:225 (see Fig. 11a). The district spans an area of roughly 1350m × 850m at the full scale. The simplified geometry755

is based on a typical Central European downtown area, with spacious polygonal courtyards surrounded by residential building

units. The orientation and length of street-canyon sections are highly variable, and isolated squares are present. All Building

roofs are approximated by a flat horizontal surfaces (flat-roof model), and their full-scale heights range from 15m to 25m at

the full scale. See Fig. 11a for an overview of the building layout.

760

The approaching wind field is flow can be characterized by a neutrally stratified and horizontally homogeneous urban

boundary-layer flow with neutral stratification. The with a parametric surface-roughness length is comparatively large with of
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approximately 1.4m., implying the seamless incorporation of the test section into a more extensive urban area. Turbulence of

the approaching flow is initiated by an arrangement of vertical spikes, and the passage of the flow over an extended pattern of

surface-roughness elements establishes turbulent kinetic equilibrium in the wind-tunnel experiment. In order to characterize765

the statistical properties of the approaching flow more accurately, experiments were carried out where the entire wind-tunnel

floor was covered with roughness elements. The actual eExperiments with the model city were carried out using two different

wind directions of the approach-flow directions of (0 ◦, and 180 ),., where the reverse 180 ◦direction can be used to verify

the robustness of model results after parameter tuning with the reference case 0 ◦. This provides the opportunity to test the

robustness of model results after model-parameter tuning using the wind-tunnel results from the default 0 ◦direction. The ex-770

perimental datasets consist of time-resolved flow and dispersion measurements, from which also the stationary temporally

averaged statistics were calculated. A dense array of sensors covers provided horizontal wind measurements within planes at

heights of 2m, 9m, 18m, 27m, and 30m over a restricted area.

For the dispersion modeling, neutral-buoyant gas was released at different locations on the floor (see Fig. 11 for the locations

of the release points). Release points S2 and S4 were used for the approach-flow direction of 0 ◦, S6, S7 and S8 for the reverse775

direction. S5 was used for both wind directions. Depending on the tested scenario (fast response vs. average air pollution),

the releases were in puffs or continuous. The concentrations, converted to dimensionless units of ppmv, were measured using

flame-ionization detectors all placed Tracer-gas detectors to measure concentrations were all positioned at a full-scale height

of 7.5m and at different horizontal positions depending on the source. Further information on the experiment and the datasets

are provided in Baumann-Stanzer et al. (2015).780

The numerical simulations are performed at the full scale using a series of grids with horizontal resolutions of 5m, 10m, 20m,

40m, and 80m. The 5m resolution is used as for the reference., and tThe coarser domains are used to test the grid-sensitivity

of the dispersion simulation to the spatial resolution. The vertical grid spacing near the surface ranges from 2m for the finest

grid to 7m for the coarsest ones., and It is increasingly stretched beyond 30m above surface. The effective domain height is

approximately 600m, which corresponds to the scaled wind-tunnel height. Above this height, the wind components are damp-785

ened to the horizontally and temporally average state.

A first precursor simulation is run with periodic boundary conditions to obtain laminar and turbulent inflow profiles for the full

vertical domain extend. These are used to drive the actual experimental simulations containing the buildings and test-tracer re-

lease points. In this precursor simulation, which uses a shorter domain with a total length of about only roughly 1km, buildings

are not present and the entire rigid bottom-domain boundary is covered with roughness elements., with t The geometries and790

arrangement of elements are adapted from the experiment. In order to model the effect of the lateral wind-tunnel confinement,

rigid walls are placed at the flow-perpendicular boundaries. The modeled statistics of the established neutrally-stratified bound-

ary layer flow are re-scaled to the reference wind speed of 6m s−1 at 50 m height. The obtained horizontally averaged vertical

profiles are vertically interpolated for the coarse-grid simulations. In the experimental simulations containing the model city,

turbulent approach-flow conditions with the correct target intensities are generated using the turbulence-recycling scheme. The795

recycling plane is placed well downstream of the model city and after a short pattern of roughness elements near the outflow

boundary (Fig. 11a). This allows the application of a much shorter additional domain fetch for turbulence recycling,generations.
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(a) (b)

Figure 11. (a) Depiction of the model domain for the numerical simulation of the wind tunnel experiment "Michelstadt". Rigid boundaries,

including the buildings, the side walls and the roughness elements are drawn using grey color. The yellow circles mark the tracer-gas release

points. The red dotted line is at the position of the turbulence recycling plane. The area within the red bounding box contains the horizontal

wind measurements arranged in horizontal planes. (b) Comparison of measured (black arrows) and modeled (red arrows) time-averaged

horizontal wind vectors at 2m height.

as the total recycling fetch can be much larger using the upstream domain. This particular positioning of the recycling plane

can be justified is also well supported by the similar parametric roughness length of the elements and the model city. Apart

from thatAlso, the extracted fluctuation intensities are always re-scaled to the values of the target wind field, which further800

reduces the impact of obstacles further upstream.

4.1 Inflow profile

Figure 12 shows the modeled and re-scaled horizontally averaged statistics of the boundary-layer flow using generated by

the precursor periodic domain simulation. The experimentally obtained profiles are included for comparison. In the modeled

mean horizontal wind speed, the roughness layer extends up to 20m above ground height, and above which it is proceeded by805

the logarithmic Prandtl layer. The slope of the modeled wind profile in the semi-logarithmic depiction matches the observed

profile well. The modeled turbulent intensities are generally too low underestimated by up to 20 % when compared to with

the observationsed ones. Partly this can be attributed to the neglected subgrid and numerical diffusion. This difference is most

likely due to artificial dissipation in the model. Apart from that, tThe peak values at about 400m height are probably residual

reflections from at the domain top, which are not fully completely captured prevented by the dampening. The measurements810

below a height of 20m are more difficult to compare, since they are located within the roughness layer, and their values and

thus are strongly depend on influenced by the relative location to the nearby roughness elements.
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(a) (b) (c) (d)

Figure 12. Modeled (dotted lines) and measured (full lines) mean and turbulent statistics of the approach flow in the "Michelstadt" wind

tunnel experiment. Depicted are (a) the temporal mean velocity component u and (b-d) the grid-scale turbulent intensities u′, v′, and w′,

respectively.

4.2 Horizontal wind evaluation

The modeled horizontal wind is evaluated on the reference grid with 5m horizontal resolution. Figure 11b) gives a first qual-

itative impression of the agreement, as i. It shows the time-averaged horizontal wind vectors both for the model and the mea-815

surements within the plane of 2m height. Overall, the model is capable of reproducing the measured flow pattern. However,

the modeled wind direction does not always match the corresponding measured vector well, which is most notably near some

intersections. The scatter plots for wind speed (Fig. 13) and wind direction (Fig. 14) give a more quantitative and conclusive

picture. The accuracy of modeled wind speed is high, when taking the normalized mean standard error (NMSE) as a proxy,

whose . Its value is consistently below 0.1. The fractional bias (FB) shows only a very slight underestimation of wind speeds820

(0.02 - 0.07). This is not very surprising, since as the model resolution of 5m is not high enough to fully completely resolve

the small-scale re-circulations zones within the urban canopy (Xie and Castro, 2006). Thus, the modeled wind speed within

circulation zones tends to be lower as a result of more extensive spatial averaging.

4.3 Dispersion simulation evaluation

The dispersion of point-source emissions is evaluated in the continuously emitting mode. The resulting time-averaged modeled825

concentrations are interpolated to the detector sidtes and paired with corresponding measurements. As proxy for the quality of

model results in comparison to the measurements, the normalized mean standard error (NMSE), the fractional bias (FB) and ad-

ditionally the fraction of within factor 2 (FAC2) are calculated. Based on the guidelines presented in Baumann-Stanzer et al. (2015)

Hanna and Chang (2012), acceptance criteria for a valid simulation are NMSE< 6, |FB|< 0.67 and FAC2> 0.3.

The simulations with the approach flow direction of 0 ◦are used to optimize the model configuration with respect to these test830

criteria, while the reverse flow direction is used to validate the robustness of model results using the same parameter config-

uration. One important model tuning parameter for example is the Smagorinky constant, which was set to cs = 0.15 for all
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(a) (b)

(c) (d)

Figure 13. Scatter plot of modeled vs. measured horizontal wind speed within planes at different heights. For a quantitative comparison,

NMSE and FB are calculated.

(a) (b)

(c) (d)

Figure 14. Scatter plot of modeled vs. measured horizontal wind direction within planes at different heights.

simulations. However, for the simulations with 40m and 80m resolution, the vertical mixing length was had to be increased to

20m within the urban canopy to balance compensate for the underrepresented building-induced poorly defined eddies impor-
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tant for vertical mixing at such coarse resolutions.835

Among the tested sources, S2 is the only one emitting into an quite open area, whereas all other sources are placed within

street canyons or courtyards. Thus, S2 is probably the least difficult to simulate. Figure 15 gives an impression of the simulated

time-averaged plumes resulting from S2 at the height of detectors sites. Figure 15a) shows the reference simulation with the

highest grid resolution. The overall qualitative agreement with measurements seems very good, except for a street canyon in

roughly -45 ◦direction and in close proximity to the source, wherein . Therein, the modeled concentrations are too low. Not840

surprisingly Expectedly, increasing the grid spacing results in a deterioration of the qualitative agreement with measurements

and with the reference simulation. For example, increasingly less tracer gas is advected inside the flow-parallel street canyon,

where most of the detectors reside. Instead of, the plumes become are increasingly smeared over a wider area. This is especially

evident at for the 20m grid spacing, whereas at for the even coarser resolutions of 40m, the agreement with measurements

improves again. Notably, Tthis behaviour is only observed for this particular source. The grid resolution of 80m clearly shows845

the least accurate results. While the dispersion pattern still resembles those of the better resolved simulations and shows the

imprint of buildings, concentrations are too high in the down-wind swath. At this resolution, dynamics induced by buildings

and important for vertical mixing cannot be properly represented anymore. a more elaborated mixing parameterization could

still give improved results over the simple Smagorinsky model.

(a) (b)

(c)
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Figure 15. Map plots of modeled concentration fields in ppmv at 7.5m height for source S2 and different grid resolutions. The black circles

mark the location of measurements for this particular source, and the fill color indicates the measured concentration according to the color

bar of the map plots.

37



Δh=5m Δz=2m Δh=10m Δz=4m Δh=20m Δz=7m

Δh=40m Δz=7m Δh=80m Δz=7m

wind tunnel    [ppmv] wind tunnel    [ppmv] wind tunnel    [ppmv]

wind tunnel    [ppmv] wind tunnel    [ppmv]

(a) (b) (c)

(d) (e)

Figure 16. Scatter plots of measured vs. modeled concentrations for source S2 and different grid resolutions. The dotted lines confine the

region within a factor of two of measurements.

For the quantitative evaluation of the presented simulations, the paired data is presented as modeled and measured values are850

compared in scatter plots in Fig. 16, and the aforementioned statistical acceptance parameters are derived. For the reference

case, most of the model data is tightly distributed near the bisecting line. In fact, the model accuracy is very good (NMSE =

0.10), with only a slight positive bias toward too low values (FB = 0.12) and only few outliers present (FAC2 = 0.84). The

decrease in model accuracy with increasing grid spacing is evident in the scatter plots, as modeled values tend to be too low

for high concentrations measured and visce versa , respectively. This results in a steady increase in NMSE = 0.25 for the 10m855

grid spacing and NMSE = 1.35 for the 20m grid spacing. Since FB is more sensitive to deviations at the upper end of the

logarithmic scale, the smearing also results in an increasingly positive bias (FB = 0.17 and FB = 0.65). The trend is, however,

reversed at the even coarser resolution of 40m, resulting in an improvement of model results for this particular source. Finally,

the 80m case shows a large negative bias (FB =−0.57) and a value of FAC2 = 0.32 at the verge of acceptance. Table A1

summarizes the statistical parameters for all other cases simulated. Based on itFrom the sensitivity results in Tab. A1, it can860

be concluded that while moving to ever coarser grid resolutions the quality of model results generally declines with decreased
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Figure 17. Scatter plots of measured vs. modeled concentrations combined for all sources and different grid resolutions. The dotted lines

confine the region within a factor of two of measurements.

grid resolution (mostly evident in NMSE value), but not to an extend to compromise model reliability at 40m resolution,

where buildings are represented diffusely. Only one source located within a courtyard proofed to be more problematic at with

40m grid spacing, as the resulting plume was not well contained within. We attributed this which is due to the difficulty in

modeling representing diagonally orientated building walls as impermeable as they are at such coarse resolutions. Using the865

80m grid, the model still performs acceptable for some of the sources. Figure 17 shows scatter plots of the data pairs modeled

and observed data collected from all simulated cases with a given resolution, whose . The according statistical results are again

summarized in Table. A2. It is showns how that the reliability of model results is not very sensitive to the grid spacing down

to 40m resolution. For example, FAC2 decreases from a value of 0.8 at 5m to 0.61 at 40m grid spacing. Conversely, NMSE

increases from 0.54 to 2.75, which is still well within the acceptable range. The average fractional bias is below FB = 0.2 for870

all simulations, except for the 80m case, where it is much larger (FB =−0.35). In this regard, the increased vertical mixing

length showed to be an effective tuning option in combination with the 40m resolution to keep the bias comparatively low
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(FB =−0.17). It has to be kept in mind that this test uses isolated point sources. When applied to a more realistic scenario

with traffic emissions, modeled for example by emission lines, it can be hypothesized that scattering of the data would be of

less concern, since because the pollution is more widely distributed horizontally. Therefore, ultimately, the most important875

reliability measure in our view is the FB value, as it is a proxy whether the model will under- or over-estimates air pollution.

In this regard, the 80m resolution is the least accurate, and it is currently not aspired without the use of a more sophisticated

mixing parameterization. Finally, when comparing all model results with only those from the 180◦-approach flow tests only

using the same parameter configuration, it was found that this these latter test cases with the model parameters adopted from

the 0◦-approach flow runs proofed to be could be modeled not significantly less reliable accurately. This is largely attributed880

to the simplicity of the model, as it requires little free parameter tuning.

4.4 Urban area within idealized basin

In this simulation, additional model features are combined for a more realistic test case, compared to the previous ones. For

simplicity, this test is quasi 2-D. The third dimension is needed only for a realistic 3-D turbulent mixing, as turbulent mixing

behaves fundamentally different using two dimensions only.885

The domain spans 2880m in the lateral direction (x-dimension), 640m in the streamwise direction (y-dimension) and 840m

in the vertical one (z-dimension). The horizontal grid spacing is 20 m and grid stretching is applied in the vertical dimension.

The grid spacing for the lower most levels is 7m, and is increased beyond with approaching 50m for the upper most levels. An

urban area represented by rectangular buildings is placed at the bottom of an idealized basin whose cross-section is modelled

by the following analytic expression for the terrain-height function:890

h(x) =−∆hexp
(
− |x|

3

L3

)
(69)

L= 1km

∆h= 200m

The terrain-height function is constant in the streamwise direction, and also the building pattern is repeated in this direction.

For all rigid boundaries, including the diffusely discretized buildings, a surface roughness length of z0 = 0.1m is assumed. The895

initially neutral stratification of the atmosphere (Θv = 280K) is forced towards stable or unstable conditions by prescribing a

constant surface temperature, which, in relation to the initial state of the atmosphere, is cooler or warmer by 5K. For the

heating case, also vertical building walls and roofs have an increased surface temperature, whereas for the cooling case,

their temperature is kept at Θv = 280K. The wind field is initialized with an uniformly constant horizontal wind speed of

v = 1m s−1 blowing through the valley. Periodic lateral boundary conditions are used for the y-dimension, and radiation900

boundary conditions for the x-dimension. A Rayleigh damping layer relaxes the state variables u, v, w and Θv at the domain

top. An area source of a test tracer, which emits at a rate of 1u s−1, is placed at the ground near and between the buildings,

mimicking traffic emissions. The boundary conditions for the test tracer are homogeneous-zero Dirichlet on all sides, preventing

a re-entrance of the plume on the upstream domain boundary. For the cooling-case the model was integrated for 18 h after which
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an inversion layer was well established. For the heating case, after an integration time of 6 h, no further development of the905

flow and dispersion pattern occurred.

Figure 18 shows maps of Θv and the tracer concentration fields for both the convective and stable case at the instantaneous times

of 6 h and 18 h, respectively. The fields are averaged along the y-dimension to depict the basin cross section. In the convective

case, 4 pronounced rotors are symmetrically aligned across the basin, with three main near-surface convergence zones: One

located directly over the city, and the remaining two on the basin edges. Heat transfer is locally enhanced either by higher910

surface wind speeds over the basin slopes or through the additional surface area of the buildings within the city. As a result, a

pronounced heat island can be observed over the city, which is responsible for the lifting of the air pollution plume originated

from the city inside the strong updraught. The air pollution eventually mixes throughout the height range of the simulated

boundary layer. Near-surface air pollution in the city remains comparatively low and concentration gradients are weak. In the

stable case, only a shallow boundary layer develops. However, the basin is filled with cooler air and a pronounced inversion915

layer is present. Below the inversion layer, an erratic shallow circulation pattern with weak horizontal winds is present. Also

noticeable are weak katabatic winds blowing down-slope towards the city, where the coldest air gathers. The inversion layer

keeps air pollution trapped, and therefore the concentrations increase with advancing simulation time. This phenomenon of

increased air pollution inside city basins is commonly observed during winterly high-pressure periods. While the air pollution

within the basin is distributed evenly horizontally it decreases with height, the highest concentration being present at street920

level in the city.

In this example, it is demonstrated that the effects of a wavy surface orography interact in a complex way with the thermal

effects resulting from surface-heat transfer. This is especially true for the convective case, where both the urban heat island

effect and the lee effect of the slope have a large influence on the location of the zones of convergence. In any case, the

incorporation of terrain effects from the surroundings is crucial for other more accurate dispersion simulation, which highlights925

the importance of a holistic simulation approach. From a numerical point of view, the use of a curve-linear grid is advantageous

over a standard Cartesian approach, as the vertical grid stretching can be applied just in the same way as for a flat domain. This

results in a much lower number of grid boxes for the same near-surface resolution.

5 Summary

In this paper, a the new large-eddy simulation-based modeling approach model CAIRDIO for urban application urban disper-930

sion simulations was presented. In this paper, a new large-eddy based dispersion modeling approach for urban application was

presented. The model uses diffusive obstacle boundaries in the framework of a finite volume discretization to represent building

walls at a wide range of spatial resolutions. Diffusive obstacle boundaries allow for a consistent implementation of buildings

in the model code, as they are essentially described by a scalar field for the volume-scaling factors and a vector field for the

area-scaling factors. Using these fields to discretize the differential operators, boundary conditions are incorporated naturally935

automatically and the governing equations are solved for the entire computation grid without requiring to discern the need

to distinguish different types of grid cells. This permits allows for a straightforward and vectorized implementation of spatial
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Figure 18. Model results of the idealized urban dispersion simulation averaged along the y-axis at 6 h simulation time (convective case) and

18 h simulation time (stable case). The panels (a) and (c) show the virtual potential temperature for a warmer and a cooler surface, which

results in an unstable and stable stratification, respectively. Panels (b) and (d) show the implications on air pollution dispersion. To better

display the cross-stream circulation pattern in the stable case, only the lower part of the domain is shown and the wind vectors are magnified

10-fold compared to those of the convective case.

operations. The inherent option for under-resolved diffusive buildings enables the model to be applied at marginal grid reso-

lutions inaccessible for conventional Cartesian-grid models. The computational savings can be invested in larger domains to

model whole cityies areas and its their surroundings. The large-scale influence of orographic terrain influence can be efficiently940

adequately represented by curve-linear grids. To benefit from modern hardware architecture, the model is parallelized using

a 2D-domain decomposition method, which is sufficient for the expected large grid-aspect ratios of typical boundary-layer

applications. The numerical schemes used presented are approved and efficient choices. Linear upwind schemes of selectable

order of accuracy with optional limiting are used for advection, a static Smagorinsky model for subgrid turbulence modeling,

and multi-stage higher-order time methods for model integration. The coupling with the mesoscale meteorology can be ob-945

tained through different forcing methods using data from a mesoscale host model. A 2-D advection test with a known analytic
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solution revealed that the spatial accuracy of the scheme is in the expected range of the design. The sensitivity study with the A

simple numerical test, consisting of a test-tracer being advectedion by a potential-flow through an obstacle field, demonstrated

the robustness of the obstacle discretization up to grid spacings where the resolution capability of the numerical schemes start

to interfere. The model results of the rising thermal experiment to test the dynamic core are plausible and similar to those950

presented in the original studies. The advantages of the model design were demonstrated, in particular the diffusive obstacle

treatment. When compared to Finally, we evaluated the model with data of from the "Michelstadt" wind tunnel experiment.,

In this study, the model simulated reproduced reliably the complex wind fields and embedded tracer dispersion. As a result

For the latter application, this was also true even for using spatial resolutions beyond 20m, at which buildings can only be

represented as increasingly diffuse features., tThe sensitivity study researching grid-spacing of the dispersion test showed955

promising results for a future study with more realistic emission distributions and real mid-sizes cities. In near future, also

the coupling with mesoscale meteorology will be addressed. From previous and accompanying air-quality studies, simulations

with the regional CTM COSMO-MUSCAT are available for different German cities, including Berlin and Leipzig, for which

also comprehensive measurement data are available for model evaluation. In this framework, a promising application could be

a more comprehensive and holistic model evaluation with field data, as additionally to airy monitoring, mobile measurements960

may become are available for the city of Leipzig in addition to operational air monitoring. Potential model improvements worth

addressing to be addressed in the future are the parameterization of air pollution sinks and the implementation of a simple urban

atmospheric chemistry. Alternatively, it would be interesting to include diffusive obstacle boundaries in the aerosol-chemistry

code MUSCAT, and to investigate whether there is a benefit in for the application on urban air pollution modeling.

Code and data availability. The source code of CAIRDIO model version 1.0, utilities for pre- and postprocessing, as well as evaluation data965

are accessible in release under the license GPL v3 and later at https://doi.org/10.5281/zenodo.4159497 (Weger et al., 2020).
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Appendix A

source

(∆h)

mean wt

[ppmv]

mean model

[ppmv]

NMSE FB FAC2

0◦ approach flow

S2 (5 m) 16.2 ±22.5 14.5 ±18.5 0.10 0.12 0.84

S2 (10 m) 16.2 ±22.5 13.7 ±17.3 0.25 0.17 0.74

S2 (20 m) 16.2 ±22.5 8.3 ±9.4 1.35 0.65 0.50

S2 (40 m) 16.2 ±22.5 17.8 ±23.8 0.30 -0.09 0.82

S2 (80 m) 16.2 ±22.5 29.1 ±32.0 0.96 -0.57 0.32

S4 (5 m) 4.0 ±3.6 4.5 ±4.0 0.18 -0.14 0.71

S4 (10 m) 4.0 ±3.6 4.4 ±3.6 0.07 -0.11 1.00

S4 (20 m) 4.0 ±3.6 5.2 ±4.7 0.50 -0.26 0.43

S4 (40 m) 4.0 ±3.6 6.3 ±5.8 0.60 -0.46 0.57

S4 (80 m) 4.0 ±3.6 18.9 ±12.1 1.46 -1.30 0.0

S5 (5 m) 25.7 ±40.8 27.1 ±72.8 2.58 -0.05 0.48

S5 (10 m) 25.7 ±40.8 30.1 ±43.0 1.02 -0.16 0.52

S5 (20 m) 25.7 ±40.8 38.5 ±57.9 2.11 -0.40 0.67

S5 (40 m) 25.7 ±40.8 41.1 ±63.8 1.52 -0.48 0.62

S5 (80 m) 25.7 ±40.8 55.6 ±56.2 2.30 -0.73 0.24

180◦ approach flow

S5∗ (5 m) 42.4 ±131.9 49.4 ±154.7 0.49 -0.15 0.76

S5∗ (10 m) 42.4 ±131.9 69.8 ±227.2 3.19 -0.49 0.71

S5∗ (20 m) 42.4 ±131.9 45.9 ±118.8 0.18 -0.08 0.68

S5∗ (40 m) 42.4 ±131.9 43.8 ±87.2 2.41 -0.03 0.65

S5∗ (80 m) 42.4 ±131.9 48.3 ±55.9 7.10 -0.13 0.50

S6∗ (5 m) 54.1 ±126.8 57.5 ±127.7 0.21 -0.06 0.78

S6∗ (10 m) 54.1 ±126.8 58.5 ±155.2 0.47 -0.08 0.89

S6∗ (20 m) 54.1 ±126.8 59.0 ±136.6 1.32 -0.09 0.78

S6∗ (40 m) 54.1 ±126.8 53.3 ±94.1 2.91 0.01 0.76

S6∗ (80 m) 54.1 ±126.8 41.5 ±33.6 6.19 0.26 0.54

S7∗ (5 m) 37.8 ±63.9 37.0 ±70.8 0.39 0.02 0.86

S7∗ (10 m) 37.8 ±63.9 44.1 ±72.3 0.58 -0.16 0.79

S7∗ (20 m) 37.8 ±63.9 53.8 ±89.9 1.76 -0.35 0.63

S7∗ (40 m) 37.8 ±63.9 43.3 ±60.0 2.20 -0.14 0.55

S7∗ (80 m) 37.8 ±63.9 49.9 ±33.8 1.66 -0.28 0.33

S8∗ (5 m) 11.4 ±7.8 9.6 ±7.1 0.05 0.18 0.88

S8∗ (10 m) 11.4 ±7.8 13.5 ±14.1 1.06 -0.16 0.55

S8∗ (20 m) 11.4 ±7.8 10.6 ±11.2 1.19 0.08 0.42

S8∗ (40 m) 11.4 ±7.8 31.3 ±40.8 4.06 -0.93 0.30

S8∗ (80 m) 11.4 ±7.8 58.4 ±40.3 1.74 -1.35 0.03

Table A1. Statistical results of all dispersion simulations performed in the "Michelstadt" wind tunnel simulation study. The cases super-

scripted with a star were carried out using the reverse approach-flow direction of 180 ◦. Missed acceptance criteria are highlighted in bold

font.
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source

(∆h)

mean wt

[ppmv]

mean model

[ppmv]

NMSE FB FAC2

All (5 m) 32.2 ±80.4 33.0 ±89.5 0.54 -0.02 0.80

All (10 m) 32.2 ±80.4 38.9 ±113.1 1.57 -0.19 0.74

All (20 m) 32.2 ±80.4 38.5 ±89.5 1.72 -0.18 0.61

All (40 m) 32.2 ±80.4 38.3 ±65.4 2.75 -0.17 0.61

All (80 m) 32.2 ±80.4 46.1 ±41.1 3.89 -0.35 0.33

All∗ (5 m) 37.2 ±91.2 38.5 ±100.2 0.40 -0.03 0.83

All∗ (10 m) 37.2 ±91.2 46.2 ±129.5 1.48 -0.22 0.75

All∗ (20 m) 37.2 ±91.2 45.8 ±100.7 1.50 -0.21 0.63

All∗ (40 m) 37.2 ±91.2 43.2 ±71.2 2.72 -0.15 0.56

All∗ (80 m) 37.2 ±91.2 49.4 ±40.1 3.97 -0.28 0.35

Table A2. Statistical results derived from the combined data of all simulated sources at the given spatial resolution. The cases superscripted

with a star are the combined results of the 180 ◦approach-flow cases only.
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