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Abstract. Using the Large Ensemble Testbed, a collection of 100 members from four independent Earth system models, we

test three general-purpose Machine Learning (ML) approaches to understand their strengths and weaknesses in statistically

reconstructing full-coverage surface ocean pCO2 from sparse in situ data. To apply the Testbed, we sample the full-field model

pCO2 as real-world pCO2 collected from 1982-2016 for each ensemble member. We then use ML approaches to reconstruct

the full-field and compare with the original model full-field pCO2 to assess reconstruction skill. We use feed forward neural5

network (NN), XGBoost (XGB), and random forest (RF) approaches to perform the reconstructions. Our baseline is the NN,

since this approach has previously been shown to be a successful method for pCO2 reconstruction. The XGB and RF allow

us to test tree-based approaches. We perform comparisons to a test set, which consists of 20% of the real-world sampled

data that are withheld from training. Statistical comparisons with this test set are equivalent to that which could be derived

using real-world data. Unique to the Testbed is that it allows for comparison to all the "unseen" points to which the ML10

algorithms extrapolate. When compared to the test set, XGB and RF both perform better than NN based on a suite of regression

metrics. However, when compared to the unseen data, degradation of performance is large with XGB and even larger with

RF. Degradation is comparatively small with NN, indicating a greater ability to generalize. Despite its larger degradation, in

the final comparison to unseen data, XGB slightly outperforms NN and greatly outperforms RF, with lowest mean bias and

more consistent performance across Testbed members. All three approaches perform best in the open ocean and for seasonal15

variability, but performance drops off at longer time scales and in regions of low sampling, such as the Southern Ocean

and coastal zones. For decadal variability, all methods overestimate the amplitude of variability and have moderate skill in

reconstruction of phase. For this timescale, the greater ability of the NN to generalize allows it to slightly outperform XGB.

Taking into account all comparisons, we find XGB to be best able to reconstruct surface ocean pCO2 from the limited available

data.20

1

https://doi.org/10.5194/gmd-2020-311
Preprint. Discussion started: 22 October 2020
c© Author(s) 2020. CC BY 4.0 License.



1 Introduction

The ocean is integral in mitigating climate change, as it acts as a sink for 39% of industrial-era fossil fuel carbon (Friedlingstein

et al., 2019). Though independent methods agree that the global mean uptake of anthropogenic carbon by the ocean was 2.0-2.6

PgC/yr for the past several decades (Friedlingstein et al., 2019; Gruber et al., 2019), there remains much to learn about spatial25

and temporal variations across the ocean due to biological and physical processes.

A significant challenge is estimating the net contemporary air-sea CO2 exchange from sparse pCO2 observations. Currently,

pCO2 observations are primarily sourced from volunteer observing ships traversing the ocean, and these data are limited in time

and space, covering only about 2% of all 1◦x1◦ gridpoints for the last several decades (Bakker et al., 2016; Sabine et al., 2013).

Various approaches have been applied to extrapolate these sparse data to global coverage (Rodenbeck et al., 2015), based on30

satellite observations and climatological fields of driver variables, such as sea surface temperature, salinity, mixed layer depth,

and chlorophyll. These variables are linked to both the physical and chemical processes that drive carbon uptake. As pCO2

observation-based products have been refined, they have converged and now provide an independent estimate of interannual

to decadal variability in the global ocean carbon sink (McKinley et al., 2020; Friedlingstein et al., 2019; Gregor et al., 2019).

Despite convergence of these methods on the global scale, we wish to better assess the fidelity of the reconstructions and deter-35

mine the paths forward for further improvements. This is challenging particularly because of the limited spatial and temporal

availability of independent data to which to compare (Landschützer et al., 2016; Gregor et al., 2019), where independent data

refers to data not used in training of the machine learning (ML) algorithms.

The self organizing map feed forward neural network (SOM-FFN) is one of the approaches that performed well in the first

intercomparison on interpolation approaches (Rodenbeck et al., 2015). This ML approach has subsequently become a well-40

received method for interpolating the pCO2 field (Landschützer et al., 2013, 2014, 2015, 2016, 2019). SOM-FFN first splits the

data into large regions and then fits a neural network given observed pCO2 and driver data. Full-field driver data is then used

to create an estimate of pCO2 at each location for each month. Gloege et al. (2020) show, using the Large Ensemble Testbed

(LET), that the SOM-FFN accurately reconstructs the seasonal cycle of CO2 flux with little bias. Gloege et al. (2020) also

indicate that decadal variability is likely overestimated in the SOM-FFN, particularly in the Southern Ocean.45

Gregor et al. (2019) used an ensemble of 6 supervised ML methods to create a product that performs marginally better

than SOM-FFN and other observation-based pCO2 products on independent datasets. The ensemble of Gregor et al. (2019)

includes three commonly used ML methods: feed-forward neural networks (NN), extremely randomised trees (ERT), and

gradient boosting machine (GBM). Here, we evaluate the performance of unique implementations of these three ML methods

for the task of pCO2 extrapolation from sparse SOCAT data using the Large Ensemble Testbed (LET) (Gloege et al., 2020).50

The LET consists of 100 members across four independent initial-condition ensemble models. Each individual member

is a realistic representation of the real ocean climate system within which pCO2 is known across the entire ocean at every

point in time. This allows us to ask the question, "given pCO2 data as sampled in the real-world, with what accuracy can we

reconstruct pCO2 at every point across the global ocean?" We can determine which of our three methods provides the best
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reconstruction across a range of metrics. The 100 independent members in the LET provide a large state space with which we55

can test reconstruction performance across an extensive range of plausible ocean climate states.

Furthermore, we use the LET to understand the strengths and weaknesses of these three machine learning approaches in

reconstructing the mean pCO2 field to estimate the variability on seasonal, sub-decadal, and decadal time scales. Along with

identifying which of our specific implementations of these ML algorithms performs best, we identify the likely errors driven

by the underlying formulation of these approaches and features of the data itself that would impact other implementations.60

We test NN, XGBoost (XGB) and random forest (RF) regression. Our XGB and RF are similar to the GBM and ERT of

Gregor et al. (2019), respectively. The three approaches we test have different properties, advantages, and drawbacks. General

descriptions are provided below; for an in depth description the reader is referred to Hastie et al. (2009).

1. Feed forward neural network (NN): The NN acts as the baseline because it is expected to perform in a similar manner

to the SOM-FFN. A NN sequentially applies many linear and non-linear transformations to the input data to create a65

high-dimensional representation of the data. This process can be thought of as constructing regions in the feature space.

The representation is then converted to an estimate of pCO2. Benefits of the NN are that it can successfully apply highly

complex and non-linear functions to minimally pre-processed data to build a robust reconstruction. A key step in building

a NN is determining its architecture. Key choices are the number of layers and number of nodes in each layer, which

are the primary drivers of how many parameters need to be estimated. The size of the network can be tuned for the70

type of data modeling task, and larger networks could require massive amounts of data to train properly. While this

method is very powerful, it comes with several challenges. The first is minimal interpretability; that is, we will not know

why it is making certain predictions. Second, neural networks can be unstable. As one example, two NNs with identical

architectures but two different random initializations can have drastically different performance. To compensate for the

initialization problem, a standard approach is to train the network multiple times and select the best performer. Another75

common instability arises from the fact that perturbing a set of inputs slightly can produce quite different outputs. In other

words, two data points with similar driver variable values could have considerably different pCO2 estimates. Lastly, an

important consideration for NN is that its computational load is substantially higher than those of the tree-based methods.

2. eXtreme Gradient Boost (XGB): The XGB model is a tree-based ensemble model, and it is one implementation of a

GBM. In recent years, it has become very popular in industry due to strong performance across a range of tasks as well80

as relatively low computational requirements (Chen and Guestrin, 2016). This approach constructs a series of shallow

decision trees, each of which individually has very poor performance. However, each successive tree is constructed to

adjust for the errors of the previous trees. This is accomplished by fitting new trees on the residuals (taking the difference

between actual and estimate) from the previous trees. To construct each tree, the data is sampled with replacement and

then binary decisions are applied. These binary decisions break down the feature space into regions using linear decision85

boundaries, with a single prediction applied in each region. Finally, the prediction for a point is a sum across hundreds or

thousands of trees, producing a strong model by aggregating many weak estimators. The resulting predictions are highly

complex and non-linearly related to input variables. To provide a concrete example, consider the case of two features
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that could be related to pCO2: latitude and longitude. A decision tree would segment the world into contiguous distinct

regions based on which latitudes and longitudes are of similar pCO2. Due to such a physical relationship, one of the90

benefits of the XGB is intelligibility. It can easily be determined which features are driving a prediction. However, this

benefit of the XGB approach also drives its biggest drawback. Because it applies one estimate of pCO2 in each region, it

can have trouble extrapolating to new areas for which it has not "seen" data.

3. Random forest (RF): The RF (Breiman, 2001) is an older tree-based approach in which N decision trees are indepen-

dently built by bootstrapping the data. There is no reference to the error of the previous trees, although the trees will95

be correlated. The final RF prediction is an average across the predictions from all N trees and is able to capture com-

plex non-linear decision boundaries. Though its popularity for commercial applications has been eclipsed by XGB, it

remains a standard component of the ML toolkit. We include it as a point of comparison to the other approaches and as

an alternative to XGB.

It is important to state the key assumptions made across all these approaches. The first assumption is to treat each data100

point independently. Instead of using ML algorithms that take into account the spatial and temporal aspects of the data, these

approaches treat each data point separately, regardless of if they are adjacent in space or time. We use time and location as

additional features in our ML algorithms. The second assumption, supported by previous studies, is that we can estimate ocean

pCO2 statistically by association with physical and biological variables. Our third assumption is that the real-world sampled

data cover sufficient state space of the whole ocean such that extrapolation is possible. In actuality, we have a correlated and105

biased sample of data because of the real-world data collection process in which observations are concentrated along major

shipping routes. A commercial ship traversing the ocean collects data points along a trajectory between major shipping ports,

leading to along-track correlations (Jones et al., 2012). Data are more dense in the Northern Hemisphere, while Southern

Hemisphere data are very sparse (Bakker et al., 2016). Given these concerns, a benefit of the LET is that we can compare the

ML model output to the ground truth to see how well it reconstructs, despite these assumptions that are not entirely valid in the110

real world.

2 Methods

2.1 Data inputs

The 100-member Large Ensemble Testbed (LET) consists of 25 randomly selected members for 1982 - 2016 from each of four

independent initial-condition ensemble of Earth system models:115

– CanESM2: Second Generation Canadian Earth-System Model (RCP8.5) (Fyfe et al., 2017)

– CESM-LENS: Community Earth System Model – Large Ensemble (RCP8.5) (Kay et al., 2015)

– GFDL-ESM2M: Geophysical Fluid Dynamics Laboratory Earth-System Model (RCP8.5) (Rodgers et al., 2015)
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– MPI-GE: Max Planck Institute for Meteorology Grand Ensemble (RCP8.5) (Maher et al., 2019)

Each individual Earth system model attempts to represent the actual Earth system. By using many members from multiple120

Large Ensembles, we can test the capabilities of the reconstruction methods across different model structures and states of

internal variability. In other words, we test the reconstructions across a large set of plausible ocean states. Each ensemble

member uses the same external forcing of historical atmospheric CO2 before 2005 and Representative Concentration Pathway

8.5 (RCP8.5) afterwards. Internal variation in the ensemble members is caused by perturbing the initial state of the Earth

system at the point where that ensemble member is started. This causes each ensemble member to follow a unique trajectory125

of the ocean-atmosphere state over time. Each Testbed member consists of monthly averaged sea surface temperature (SST),

sea surface salinity (SSS), Chlorophyl-a (Chl-a), mixed layer depth (MLD), CO2 forcing (xCO2), and pCO2 each with a spatial

resolution of 1◦x1◦. Furthermore, each member of the LET assumes perfect coverage over space and time. That is, each pCO2

estimate for a location is the true average for that location over that time period. This is compared to SOCAT data, which is

monthly, meaning that pCO2 at a location could be from a single observation from that month. See Gloege et al. (2020) for130

additional details on the LET.

2.2 Data preparation

From each LET member, we extract monthly output for each of the six features listed above to be used in the ML models. Our

analysis domain is restricted to the open ocean, defined here as having a depth greater than 100m.

In order to mimic real world observations, pCO2 for each testbed member is sampled in space and time to match the135

SOCATv5 data product (Bakker et al., 2016; Sabine et al., 2013). As would be the case for the real world where actual SOCAT

data would be the only pCO2 data, the task for the ML approaches is to learn a representation of the system based on these

limited observations and to then apply this representation to full-field driver data in order to upscale to the global ocean. The

key advantage of the LET is that the true values for pCO2 are known, and thus we can compare the reconstruction result to this

"unseen" data.140

The SOCAT sampled data is randomly split into 3 parts for each LET member: train (60%), validate (20%), and test (20%).

Each member has a different random split so that we can understand how the approaches generalize from a wide array of

training data points. The training set is used to fit each ML algorithm, the validation set is used to select tunable parameters

and avoid over-fitting, and the test set is used for performance evaluation. Using the LET allows the non-SOCAT sampled

data to be leveraged for a final evaluation as well. We consider the unseen data to determine reconstruction ability, while the145

SOCAT-sampled test group allows us to understand what we would have seen with only real-world data.

To eliminate outliers that could unduly influence the reconstruction, we eliminate all pCO2 values above 816µatm, the

absolute maximum value in SOCATv5. We exclude these points as they are not representative of the real ocean; this exclusion

primarily impacts the CanEMS2 model (∼11.3K data points per member, or <0.1% of the data).
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2.3 Machine learning approaches150

We use three machine learning approaches to reconstruct surface ocean pCO2 (the target variable) using features derived from

SST, SSS, Chl-a, MLD, xCO2, latitude, longitude, and time. The key characteristics and our development process are described

here, with further details provided in Appendix A. For all approaches, we train the algorithms using mean squared error (L2

loss). The algorithms are implemented using Python library packages, as described below.

2.3.1 Feed-forward neural network (NN)155

The NN is implemented using Keras with tensorflow 2.0 backend (Chollet et al., 2015). The main parameters considered

for the NN are number of hidden layers and number of units per layer, which determine the size of the network. Additional

parameters considered are learning rate, activation function, batch size, epochs, loss function regularization, and dropout. These

parameters must be set by the user; they cannot be learned from the data. Learning rate controls the size of parameter updates

at each step, and can be optimized during training. The activation function determines the non-linear transformation applied in160

the training process. Batch size represents how many data points are used at a time to update parameters and is bounded by

available memory. The number of epochs determines how long the algorithm is trained; running for too many epochs can lead

to overfitting. Loss function regularization and dropout both attempt to prevent overfitting. Regularization is used to force the

NN to have smaller parameter values, and is commonly used in many ML algorithms. Dropout randomly deactivates part of

the network during each training update to force the NN to learn multiple pathways for predicting the output.165

Initially, we tested NN parameters on several members from each model and evaluated performance on the validation set to

preserve the test set. Parameters such as learning rate and activation did not affect performance, so we used standard values for

these. For learning rate, we used the Adam optimizer with 0.01 rate; for activation, we used the rectified linear unit (ReLU)

function. In terms of regularization, dropout did not improve performance, but small L2 parameter regularization was used.

Regularization led to a better fit and helped produce more consistent results. For the size of the network, once it was large170

enough (approximately two layers with 500 units in each), there was no noticeable difference in performance. We did not use

a network with many layers, as used in deep learning, for this task. Deep learning is more applicable when there is enormous

amounts of raw data and the depth of layers is required to extract intermediate representations of the data. In this case, we have

more limited data with a clear set of feature variables.

For the NN, large variation in output occurred in different runs operating with the same architecture. The only difference in175

these cases was the random initialization. Because of this instability, we chose a single architecture and ran it five times for

each LET ensemble member. From these five, the top two in terms of root mean squared error (RMSE) are evaluated and of

these two, the one with the lower bias is identified as the best run. This best run is selected as the final NN output for that

ensemble member.
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2.3.2 Extreme gradient boosting (XGB)180

The XGB approach (Chen and Guestrin, 2016) is implemented using the Scikit-Learn wrapper for XGBoost. The primary

hyperparameters tuned were the maximum depth of each tree and the number of estimators, or trees, in the series. Maximum

depth controls the complexity of each individual tree, while the choice of number of estimators balances a good fit without

overfitting. We used cross validation over a grid of values to select these parameters. In preliminary tests on several members

from each model, the same optimal parameters were selected during the grid search. Because of this, instead of evaluating this185

grid for each member, we selected one member for each model and performed the grid search on this member. The optimal

parameters were then applied to the other members for the model. Ultimately, the same parameters were selected in the grid

search for all four models.

2.3.3 Random forest (RF)

The RF (Breiman, 2001) is implemented using the Scikit-Learn API. This approach followed a similar method as XGB. We190

tuned maximum depth and number of estimators hyperparameters using the same grid search method. One model selected

different hyperparameter settings in the grid search than the other three.

2.4 Evaluation of reconstructions

We evaluate the ML approaches in three parts. First, we look at set of goodness-of-fit metrics to understand performance on

both the test and "unseen" data. Second, we use the full field input data to create complete pCO2 reconstructions in space and195

time, and with this we can fianlly evaluate each approach’s capability with respect to estimating all points.

After developing a general understanding of the fidelity of the ML approaches, we consider the degree to which the spatial

and temporal patterns of pCO2 can be reconstructed, following the approach of Gloege et al. (2020). We consider the spatial

pattern of long-term mean bias. We decompose the pCO2 from each ensemble member and the corresponding reconstruction

at every point for multiple time scales to assess the fidelity of the the phasing and amplitude of the reconstruction.200

The temporal decomposition consists of breaking down the time series at each grid point into seasonal, sub-decadal, and

decadal components. We perform this decomposition on the original modeled pCO2 for each ensemble member and compare

it to the ML model reconstruction for the same member using standard statistical metrics (Section 2.5).

Temporal decomposition is performed as follows. A linear-trend at each 1◦x1◦ is removed at each grid cell to account for

the pseudo-linear increase in atmospheric CO2 over 1982-2016. Second, a repeating annual seasonal cycle is calculated from205

the detrended time series. After subtracting the detrended and de-seasoned compoent at each location, the decadal signal is

determined by applying a locally weighted regression (loess) smoother with a 10-year window. Finally, the residual signal is

termed the sub-decadal component.
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2.5 Statistical metrics

Reconstruction skill for both test and unseen data are evaluated on a series of summary metrics. These include root mean square210

error (RMSE), bias, mean absolute error, and maximum error.

RMSE is a measure of how well the predictions fit the data, with low values indicating a better fit. This penalizes larger errors

much more severely in proportion to the squared error. For data points yi and predictions ŷi corresponding to i= 1, . . . ,N , this

is calculated as
√

1
N

∑N
i=1(yi− ŷi)2.

Bias is calculated as the average error of the reconstruction 1
N

∑N
i=1(yi−ŷi). Bias is a measure of the systematic discrepancy215

between the reconstruction and model over the long term. It is important to note that values near zero may be misleading as

positive and negative discrepancies can cancel each other out.

Mean absolute error (MAE) is 1
N

∑N
i=1|yi− ŷi|. This metric provides an estimate of the average magnitude of the error,

regardless of direction. While it does not show the systematic discrepancy, it shows how far off a prediction will be on average.

Max error identifies the largest absolute error value among the predictions, maxNi=1|yi− ŷi|. While the previous metrics220

focused on average performance, this gives a sense of worst case performance.

We evaluate these for each individual ensemble member and then average across all ensemble members. The variance across

the 100 members is also presented to determine the degree of consistency across the 100 members. To consider the spatial

patterns of reconstruction skill, the same metrics are calculated at each geographical grid point, and then averaged across

members to understand the spatial performance.225

For the temporal deconstruction, we focus on correlation and percent error of the standard deviation. These metrics are

used to assess the degree to which the different ML approaches are able to reconstruct the temporal phasing and amplitude of

variability in the original ensemble.

Pearson correlation coefficient, r is the covariance between the reconstruction and the model divided by the product of

their standard deviations, r = cov(R,M)
σRσM

. Correlation quantifies the synchrony between the reconstruction and model truth on230

various temporal scales. Values are bounded between−1≤ r ≤ 1, which quantifies the degree to which reconstruction captures

the phasing observed in the model. Values near 1 and -1 indicate that the reconstruction and model are perfectly in or out of

phase, respectively. Intermediate values indicate a phase shift between the two signals, with values closer to zero indicating a

larger phase shift.

Percent error (% error = σR−σM

σM
∗ 100) in the standard deviation quantifies the degree to which the reconstruction cor-235

rectly captures the amplitude of CO2 flux variability as observed in the ensemble member. This metric indicates whether the

reconstruction overestimates (% error> 0), underestimates (% error< 0), or perfectly captures (% error = 0) the amplitude of

variation in the original ensemble member.
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Table 1. RMSE, standard deviation of RMSE (σRMSE), bias, MAE, max error, correlation, and amplitude % error for test and unseen data

(µatm) averaged across members of LET. Bold represents the top performer(s) for that metric.

Test data Unseen data

RMSE σR Bias MAE Max error r % error RMSE σR Bias MAE Max error r % error

NN 8.47 1.03 0.10 5.82 158 0.98 2.48 14.64 2.48 0.00 9.07 481 0.93 5.02

XGB 5.66 0.91 0.00 3.69 132 0.99 1.13 14.07 1.95 0.13 8.57 487 0.93 4.19

RF 5.79 1.10 0.03 3.13 175 0.94 2.87 16.48 2.16 0.91 10.31 497 0.91 10.69

3 Results

3.1 Overall reconstruction performance240

Table 1 shows performance on a suite of statistical metrics across all 100 members for each ML approach on both the test

and "unseen" data. Figure 1 provides a visualization of the distribution across the 100 members for RMSE and the amount of

degradation in performance from test to unseen data. All members have low average bias on the test set (NN: 0.10, XGB: 0.00,

RF: 0.03µatm) and on the unseen set (NN: 0.00, XGB: 0.13, RF: 0.88µatm). On MAE, RF edges out XGB slightly on the test

set (NN: 5.82, XGB: 3.69, RF: 3.13µatm), but XGB and NN both perform better on the unseen set (NN: 9.07, XGB: 8.57, RF:245

10.31µatm) (Table 1).

The XGB produced the lowest error on the test data, with an average RMSE of 5.66µatm, but its performance suffered a

large degradation, 148%, on extrapolation to the unseen data (RMSE = 14.07 µatm) (Figure 1). The RF performed similarly on

the test data (RMSE =5.79 µatm); however, the RMSE degraded by 183% on the unseen data (RMSE = 16.48 µatm). Though

NN had the highest test RMSE (8.47µatm) its performance on extrapolation to unseen data is comparable to the XGB (RMSE250

= 14.57 µatm), only degrading by 73%. In summary, XGB most closely fits the test data, but degrades substantially when

extrapolated to unseen points. In contrast, while NN is less capable of fitting the test data, its performance degradation is much

lower when extrapolated to unseen data (Figure 1).

While the XGB has the lowest average maximum error across members on the test data, all approaches have a similar

maximum error on the unseen data. For this metric, degradation from test to unseen data in the NN model is 203%, 266% in255

the XGB model, and 183% in the RF model. RF has the least relative degradation because it has the worst performance on the

test data to begin with.

3.2 Mean spatial performance

Though the global mean bias is near zero for all three approaches (Table 1), there are regions of positive and negative bias

across the globe in each (Figure 2). The patterns of bias are quite similar across the methods, but the severity differs. XGB260

has fairly low average bias in the open ocean, RF has the largest biases, and NN has moderate biases. Open ocean biases are

overall lower in the Northern Hemisphere.
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Figure 1. Left: boxplot of RMSE for 100 members of the LET. RMSE between reconstruction and original LET ensemble member by ML

approach for (dark) test data and (light) unseen data: (blue) NN, (green) XGB, (red) RF. Right: RMSE degradation from test to unseen data

sets by ML approach: (blue) NN, (green) XGB, (red) RF.

Across the 100 members for each approach, the spread of the bias indicates how consistently the ML method is able to

accurately reconstruct pCO2 (Table 1). Figure 3 illustrates that by showing the variance of the bias at each point across the 100

members. The locations where mean bias is small (Figure 2) are also where variance is low. This indicates that the ability of265

the reconstruction to provide a low-bias result is robust across the ensemble members at these locations.

Regions of high bias are consistent across the ML methods (Figure 2). Coastal regions are generally poorly reconstructed,

since the reconstructions are based on primarily open ocean data. The southeast Pacific is a region of notable bias and variance

for all three methods, and the Southern Ocean has more bias and variance of bias (Figure 3) than the Northern extratropics.

3.3 Temporal decomposition270

At each point, the reconstruction is divided into three temporal components: seasonal, sub-decadal, and decadal. For the de-

constructions, we evaluate performance using correlation (Figure 4) and percent error of the amplitude (Figure 5).

On the seasonal timescale, all of the approaches capture the phasing well with > 0.9 correlation across most of the ocean

(Figure 4, top row). The globally averaged correlation is > 0.9 for all methods (Table A1). Phasing performance drops off for

the decadal time scale, with some portions of the western Pacific and Northern Ocean above 0.8 correlation and large swaths275

between 0.6− 0.8 (Figure 4, bottom row). NN is slightly better than XGB at capturing decadal phasing in large open ocean

regions in both the Northern and Southern Hemisphere, and thus for the global average, correlation is higher for NN on the

decadal timescale (rNN = 0.71, rXGB = 0.64; Table A1). For the sub-decadal timescale, phasing is only very well captured

(> 0.8) in the western equatorial Pacific, and in the subtropics there are swaths of moderate phasing skill (0.6−0.8) (Figure 4,

middle row).280
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NN

XGB

RF

Figure 2. Average bias between reconstruction and original LET ensemble member by ML approach: (top) NN, (middle) XGB, (bottom)

RF. Arrows indicate that values beyond limits are capped for visualization. Table A1 provides global and regional average results.

For seasonal amplitude (Figure 5, top row), NN and XGB generally provide high fidelity reconstructions, but RF systemati-

cally underestimates seasonal amplitudes. All approaches have a tendency to overestimate the decadal amplitude except in the

western equatorial Pacific (Figure 5, bottom row). Figure 6 provides a comparison of the reconstructed global mean decadal

amplitude to the actual amplitude. NN is closest to the true amplitude overall, and does particularly well when amplitudes are

smaller. NN tends to underestimate decadal amplitudes when actual amplitudes are large. RF significantly overestimates the285

amplitude of decadal variability in almost all ensemble members. For members with smaller decadal variability, XGB tends
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NN

XGB

RF

Figure 3. Standard deviation of bias across the LET members by ML approach: (top) NN, (middle) XGB, (bottom) RF. Arrows indicate that

values beyond limits are capped for visualization.

to overestimate amplitude, but underestimates for members with large decadal amplitude. Globally averaged, NN has a 13%

overestimate, while XBG overestimates by 28%, and RF by 60% (Table A1).

For the sub-decadal timescale, NN underestimates amplitude almost everywhere (global average -10%, Table A1). XGB and

RF tend to overestimate sub-decadal amplitude in the subtropics, but underestimate it elsewhere (Figure 5, middle row).290

3.4 Sampling vs. Mean spatial performances

As shown above, there are certain areas where all three ML approaches struggle to varying degrees. Considering bias versus

the availability of test data (Figure 7), it can be seen how data availability drives prediction performance. Each point represents
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NN XGB RF

Seasonal

Sub-
decadal

Decadal

Figure 4. Average correlation at seasonal, sub-decadal, and decadal timescales across the LET by ML approach: (left) NN, (middle) XGB,

(right) RF; (top) seasonal, (middle) sub-decadal, (bottom) decadal. Table A1 provides global and regional average results.

NN XGB RF

Seasonal

Sub-
decadal

Decadal

Figure 5. Mean % error of the amplitude at seasonal, sub-decadal, and decadal time scales per location across the LET by ML approach:

(left) NN, (middle) XGB, (right) RF; (top) seasonal, (middle) sub-decadal, (bottom) decadal. Arrows indicate that values beyond limits are

capped for visualization. Table A1 provides global and regional average results.
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Figure 6. Reconstructed global average decadal amplitude vs. actual amplitude for each member across the ML approaches: (blue) NN,

(green) XGB, (red) RF. Points above the black line overestimate the decadal amplitude, while those below underestimate it.

Figure 7. Average bias per location across the LET versus number of months of data available at test data locations. Each data point represents

the mean bias at a geographical coordinate across the 100 members. Thin lines are at 10 µatm to facilitate comparison. Points with bias less

than −50µatm (<0.3% of data) are excluded to improve presentation.

the time-average bias at a given location, averaged across the 100 members of the LET. When only sparse data are available for

a given location, predictions can be poor in all methods. However, as more months of data become available, there is a sharp295

decrease in mean bias. XGB reduces bias more quickly than the other two approaches. In other words, XGB performs best

when only moderate amounts of data are available, as shown also with Table 1 and Figure 1.

4 Discussion

Overall, XGB best reconstructs the pCO2 field. It has low bias on the test set, and the lowest RMSE on both the test and unseen

data sets. It is also most consistent across the 100 members in terms of RMSE, i.e. it has a low standard deviation of RMSE300
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across the members (Table 1) and a low standard deviation of bias (Figure 3). NN provides comparably average performance;

however, this comes with higher variance in its performance (Table 1, Figure 3). Though RF does almost as well as XGB on

the test data, it generalizes poorly. Gregor et al. (2019) also found that the random forest method performs poorly in pCO2

reconstruction.

It is important to note that the NN model does not consistently perform well, and steps must be taken in implementation to305

limit the spread of its performance. For this implementation, for each of the 100 ensemble members, we trained this algorithm

five times and selected the best run, as in Denvil-Sommer et al. (2019). This reduces the resulting variance, but the fidelity of

the NN result still has substantial spread (Table 1, Figure 1). The inherent instability of the NN approach is thus a concern

for any real-world application. We find variation across NN runs for all sizes of networks considered. Running the model as

many times as possible can help to address this problem, but this iterative approach does add substantially to the already high310

computational cost of developing a NN algorithm.

Between the tree-based models, the superior performance of XGB on the unseen data compared to RF is attributable to the

XGB algorithm focusing on previous errors when constructing the series of trees. RF trees are correlated, meaning that there

is less ability to drive down the error of the fit. The greater fidelity of XGB here is consistent with its rapid adoption for many

commercial applications in recent years (Chen and Guestrin, 2016).315

A significant benefit of the LET is the ability to simulate the model training process with real-world sampled data and

then to directly examine performance on unseen data. The degradation in the various statistical metrics can provide useful

quantification of the suspected degradation that occurs with these ML methods when they are applied to real-world data.

Depending on the approach, the RMSE from test to unseen data can increase by 75%-185% (Figure 1). Recent related research

(Landschützer et al., 2013; Gregor et al., 2019) studying the degradation between SOCAT test data and independent pCO2320

data from the Lamont-Doherty Earth Observatory (LDEO) database (Takahashi et al., 2009) found similar levels of RMSE

degradation with SOM-FFN (115%) and the ensemble CSIR-ML6 (56%). These results indicate that the comparison to the

independent LDEO data is an accurate indicator of the aggregate level of degradation with extrapolation.

In our tests, the NN suffered the least degradation in performance from test to unseen data, indicating that it captures the

pCO2 effectively without overfitting too much on the training data. Still, it is important to note that the greater degradation in325

XGB as opposed to NN does not mean NN performs better overall. For our implementation, XGB performance is high enough

on the test data that even a larger drop off puts it in a better position on the unseen data than its competitors. Gregor et al.

(2019) also found that the NN had the smallest difference in RMSE performance when compared to indpenedent data, while

the ERT (similar to our RF) suffered the most degradation.

SOCAT pCO2 data are collected along ship tracks and have substantial spatial along-track correlation (Jones et al., 2012),330

so the data are not entirely random and thus their value to ML method training is compromised. Gregor et al. (2019) ran

an experiment comparing random sampling vs. sampling by year to separate training and test data. This approach reduces

correlations between the training and test data because it segregates entire ship tracks to either the training or the test set. When

data are randomly sorted, then training and test data will be from the same ship tracks and thus have greater correlation. Gregor
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et al. (2019) find increased RMSE against the test set for this approach, and conclude that this is a more robust estimate of the335

true error. They recommend this sampling method in order to prevent overfitting.

As discussed by Gregor et al. (2019) and Gloege et al. (2020), there are many regions of the global ocean pCO2 state space

that are inadequately sampled. Gregor et al. (2019) propose that the convergence across recent implementation of ML methods

and other approaches to pCO2 extrapolation indicates that the available real-world sampling is essentially a “wall" that prevents

further improvement of pCO2 reconstruction skill. That is, reconstruction approaches may not be able to improve significantly340

from the current best-in-class because of prohibitive data sparsity.

To test the value of additional data using the LET, Gloege et al. (2020) add a modest amount of additional sampling in the

Southern Ocean to SOM-FFN. They show that this could substantially improve the ability of this neural network to reconstruct

decadal timescale variability, both in the Southern Ocean and also across the global ocean. As seen here in Figure 7, the

number of months of data at a given location is a significant driver of performance for our ML methods. XGB performance345

with moderately sparse data is the most impressive. As soon as the XGB model has a small amount of data at a location, the

range of bias is much reduced compared to the other ML methods. This indicates that additional sampling in low coverage

regions combined with optimized ML algorithms could lead to improved pCO2 reconstructions going forward. It would be

valuable to repeat the test of Gloege et al. (2020) with the XGB model to determine how much a modest increase in Southern

Ocean sampling could improve Southern Ocean and global performance.350

While on average the XGB and NN models reconstruct pCO2 with low bias and RMSE in the open ocean, there are clearly

regions where these methods and the RF do not work well. Of note are eastern boundary upwelling regions and the Southern

Ocean. The very limited sampling for these regions is consistent with the state space for pCO2 being inadequately represented

in the data available for algorithm training. For similar reasons, algorithms built specifically for the coastal regions also ap-

pear to be needed (Roobaert et al., 2019; Laruelle et al., 2017). Specialized approaches could focus on localized patterns or355

incorporating additional information into the training process to achieve a better representation of these areas.

Another consideration is the timescale of interest. We find very good performance seasonally, but deteriorating performance

on the sub-decadal and decadal timescales. Seasonal variations are large in most locations, and are also the best-sampled given

our dataset from 1982-2016. Thus, these are the easiest signals for all three ML approaches to identify. However, the NN shows

stronger performance in the decadal time series — the one place where it outshines XGB.360

Why does the NN perform best for the phasing and amplitude of pCO2 variability on decadal timescales? In Figure 1,

we show that despite not fitting the test data as well, NN performs best in generalization to unseen data. XGB and RF have

more trouble extrapolating. Relative to seasonal variation, the decadal timescale is very poorly sampled, with the entire dataset

extending only 35 years. It is likely that the fundamental structures of these models causes this difference. The NN creates

a non-linear mapping of input to output, without creating distinct regions in the feature space. Conversely, the tree-based365

models do create distinct regions, effectively chopping up the training data into distinct bins. Given the limited sampling of the

geophysical state space relevant to pCO2 variations on decadal timescales, the tree based methods perform more poorly in this

extrapolation. The ability of NN to generalize beyond the training set, as indicated by Figure 1, appears to be the reason for its

ability to better construct decadal timescale variations.
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Though NN generalizes better, we find that XGB performs so well against training data that its overall performance is370

slightly better than NN (Table 1 and Figure 1). This is likely due to how this algorithm constructs its estimators. The initial

trees in the series are very weak, but they still capture the rough pCO2 trends across the globe. As more trees are added, the

algorithm focuses on reducing errors, particularly in locations that are well sampled. This leads to an excellent fit in areas with

sufficient sampling while still capturing the average trends elsewhere. It is also worth noting that XGB is more computationally

efficient than the NN, a considerable benefit for use with datasets of this size.375

Gregor et al. (2019) propose the use of an ensemble of ML methods for reconstruction of surface ocean pCO2, and included

NN and XGB methods in their final ensemble. Our results suggest that in their CSIR-ML6 ensemble, XGB helps to strengthen

overall performance while the NN enhances the ability to generalize to features and timescales that are poorly represented in

the training data.

5 Conclusions380

We apply the Large Ensemble Testbed (LET) to test the performance of three machine learning (ML) approaches in extrapolat-

ing sparse (∼ 2% coverage) surface ocean pCO2 observations to global coverage. Using 25 members from each of four Earth

System Models, we assess the performance of three common ML approaches: Feed forward neural network (NN), eXtreme

Gradient Boost (XGB), and Random Forest (RF).

Analyzing the performance of the models on test and unseen data, we find that XGB produces the best pCO2 reconstruction385

overall, with low variance across all ensemble members and strong performance on the unseen dataset. The NN can also

provide a high-quality reconstruction, but its performance is highly variable. The high variance is partially mitigated with an

iterative training and selection approach. Certain geographic areas are poorly reconstructed by all three approaches, particularly

coastal areas, eastern boundary upwelling zones and the Southern Ocean. For timescales, we find seasonality to be well-

reconstructed by all approaches, but that sub-decadal and decadal timescales can be robustly captured in only a few regions.390

Decadal variability is of particular interest to the ocean carbon cycle community (Landschützer et al., 2015; Gruber et al.,

2019), and we find that NN performs slightly better for the decadal timescale than does XGB (Figure 4). The creation of a

non-linear mapping, without creating distinct regions in the feature space, appears to lead the NN to better extrapolate to the

poorly-sampled decadal timescale.

Data sparsity remains the dominant challenge for accurate reconstruction of the global pCO2 field, and thus the global ocean395

CO2 flux, from observations. Using the LET, Gloege et al. (2020) show that adding a small number of additional samples in the

Southern Ocean would substantially improve SOM-FFN performance. Our findings indicate that targeted additional sampling

to fill in the state space that relates pCO2 to its driver variables and XGB algorithms would be a promising path forward to

higher fidelity pCO2 reconstructions.

The LET provides an excellent testing ground for future work on pCO2 reconstructions. Developing a deeper understanding400

of the regions of pCO2 and driver variable state space that are not yet adequately sampled could help to target new observation

programs. Future work could explore additional ML methods or tunings, and a more exhaustive inquiry into the variability of
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results across the 100 ensembles could improve knowledge of method strengths and weaknesses. Comparison of these results

to the same approaches applied after clustering the ocean into basin-scale regions, as implemented previously (Landschützer

et al., 2013, 2014; Gregor et al., 2019), would improve understanding of the impacts of clustering on performance.405

More broadly, when exploring ML approaches for spatial extrapolation of geophysical datasets, tests using synthetic data

from an Earth system model can provide valuable insight. Independent data sets are typically too sparse and too precious to set

aside for a comprehensive evaluation. For our application to surface ocean pCO2, findings with respect to skill are consistent

with previous assessments using independent data (Landschützer et al., 2013; Gregor et al., 2019). The LET compliments these

assessments by providing a more holistic evaluation of performance across timescales and for the full global domain.410

Code and data availability. The 100 member large ensemble testbed is publicly available at https://figshare.com/collections/Large_ensemble_

pCO2_testbed/4568555, and is managed by L.G. pCO2 reconstructions are publicly available at https://doi.org/10.6084/m9.figshare.c.5122601.

v1. Data analysis scripts are contained in GitHub repository https://github.com/jstamell/ML_for_ocean_pCO2_interpolation. SOCATv5 is

available at https://www.socat.info/index.php/previous-versions/. ERA-interm 6 hourly output is available at https://apps.ecmwf.int/datasets/.

Any other inquiries should be addressed to J.S.415

Appendix A: Methods - additional detail

A1 Data processing

Additional detail on the features used is available here:

– Latitude/longitude: Primary transformation applies a sine function to latitude. Additional transformations combine

sine/cosine transformations for both coordinates. (Denvil-Sommer et al., 2019)420

– Date: Sine and cosine functions are applied with an annual period to create repeating cycles for time.

– Sea surface salinity (SSS): Calculate an additional anomaly feature which subtracts the annual mean from each point.

– Sea surface temperature (SST): De-trend SST over time by calculating a linear trend at each data point. Calculate an

additional anomaly feature which subtracts the annual mean from each point.

– Chlorophyll-a (Chl): Apply a log transformation. Calculate an additional anomaly feature which subtracts the annual425

mean from each point.

– Mixed layer depth (MLD): Calculate a climatology at each point, which looks at the average monthly value for each

lat/lon point over the dataset. Apply a log transformation to this climatology.

– CO2 forcing: No transformation

– pCO2: No transformation430
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Figure A1. Training vs. test set RMSE for all members in the LET for each ML approach. Colors represent which ensemble model the

member is from.

A2 ML model training

For each ensemble member, model points corresponding to SOCATv5 (Bakker et al., 2016) open ocean sampling are randomly

split into three parts: 60% training, 20% validation, 20% test. This allows us to simulate how we would train a ML model

with real world data. All other points, or “unseen" data, are used to understand how the ML method extrapolates. We expect

deterioration in performance as compared to the SOCATv5-sampled data set due to correlations in the data along ship tracks435

(Jones et al., 2012). Previous work has provided ample evidence that the full state space for pCO2 in the open ocean across the

last several decades is not sufficiently sampled (Gregor et al., 2019; Gloege et al., 2020).

An alternative to random sampling of the dataset would be to randomly sample ship tracts or years. This could better adjust

for the correlation in the data and close the error estimation gap from test to unseen data. Future work with the LET should

explore this approach.440

Figure A1 compares the training and test RMSE data for each approach. The training RMSE for the NN is very similar to

the test data, indicating that the NN is learning the patterns in the data efficiently without overfitting the training data. The tree

based models achieve a lower training RMSE than test RMSE. This is unsurprising because they are constructed to learn the

average values of the training data in the regions of the state space that they create. In fact, XGB is designed to eventually

achieve a training RMSE of 0 if run for long enough. Though training data RMSE is lower than test RMSE, this does not mean445

we are overfitting and sacrificing test set performance. Instead, test set performance is actually lower for both XGB and RF,

as also shown in Table 1 and Figure 1. Our use of cross validation against a validation set when the number of estimators are

selected helps to guard against overfitting.

When training the ML models, we use L2 loss (mean squared error) to fit the models. In the tree-based models, the validation

set is used for one member from each of the four Earth System Models in the LET to tune hyper-parameters (e.g. number of450

estimators). Then, all members for that LET model are trained using these hyper-parameters. The idea behind this is that
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optimal setting for these models could vary between LET models, but are not likely to vary as much within the models. In

general, the hyperparameter settings for RF and XGB did not affect performance greatly.

For NN, the architecture (e.g. number of hidden layers, number of hidden units) did not drive a large variation in performance.

However, for a given architecture, different random initialization does cause high variance in performance. Regularization helps455

to reduce this variance somewhat. To further reduce variance, for each LET member, we run 5 neural networks with the same

settings and use the validation set to select the best one, applying criteria as described in the main text. Applying dropout

between the layers did not reduce the variation.

We use the Keras/tensorflow backend python implementation for the NN. For this model, we use a 2 hidden layer network

with 500 units each and the RELU activation function. We use the Adam optimizer with a 0.01 learning rate and light L2460

regularization.

We use the XGBoost python implementation for the XGB model. We use default settings except for number of estimators

and max tree depth. For these, we consider a grid of [2000, 3000, 4000] estimators by [4, 5, 6] depth. From this grid, the 4000

estimator and 6 depth model was selected in cross-validation for all four Large Ensembles.

We use the scikit-learn python implementation for the RF model. We use default settings except for number of estimators and465

max tree depth. For these, we consider a grid of [50, 100, 200] estimators by [30, 40] depth From this grid, the 200 estimator

and 40 depth model was selected in cross-validation for all three of the Earth System Models. For CanESM2, we use 30 depth.

A3 Regionally and globally averaged metrics

In Table A1, we present regional and global averages of long-term bias (Figure A3) and for correlations (Figure 4) and percent

amplitude error for each timescale (Figure 5).470

A4 Ensemble variation

While this paper focuses on the differences between ML approaches, there is also variation across the ensemble models. Figure

A2 provides an overview of the RMSE for each approach, broken down by model, for the test and "unseen" data sets. For

each model, the overall conclusions discussed in the paper are the same, the most significant finding being that across all three

ML approaches, XGB has the highest overall performance. NN is also very competitive. Notably, however, the ML algorithms475

consistently yield larger errors in reconstructing the CanESM2 and MPI model fields, compared to the other two models.

Indeed, there are underlying features of these two models that materialize high error in the reconstructions. The MPI model

has larger variance of climate variables as compared to the others, and the CanESM2 model generally has high pCO2 values in

some locations, even after filtering out extreme values (pCO2 values > 816µatm). Interestingly, reconstruction performance, as

reflected by RMSE, degraded least in the MPI model, followed by CanESM2 for all ML approaches.480

Figure A3 shows the average bias for each approach, broken down by each ensemble model. As we would expect from

Figure A2, the ML approaches perform better on the GFDL and MPI models. Looking across the approaches for each model

reinforces that the XGB performs the best at capturing the pCO2 field with low bias, particularly in the open ocean. While the

magnitude of the bias is different across the ensembles, the locations where they struggle are similar.
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Table A1. Mean bias for the full reconstruction, split into three latitude regions. Average correlation and % error of the amplitude for

seasonal, sub-decadal, and decadal timescales, split into three latitude regions.

Latitude

Metric Data Approach >35◦N 35◦S - 35◦N <35◦S Global

Mean bias Full reconstruction NN -0.67 -0.42 0.44 -0.13

XG -1.06 0.06 0.38 0.04

RF 0.59 0.53 1.10 0.75

Correlation Seasonal NN 0.96 0.91 0.89 0.91

XG 0.97 0.92 0.91 0.92

RF 0.95 0.90 0.88 0.90

Sub-decadal NN 0.64 0.58 0.50 0.56

XG 0.61 0.55 0.50 0.54

RF 0.52 0.45 0.44 0.46

Decadal NN 0.68 0.73 0.70 0.71

XG 0.66 0.67 0.60 0.64

RF 0.59 0.62 0.59 0.61

% error of amplitude Seasonal NN -2.3% 2.4% 12.1% 5.4%

XG -4.5% -3.5% 0.9% -2.0%

RF -12.7% -13.4% -12.9% -13.1%

Sub-decadal NN -17.9 -10.9% -7.0% -10.3%

XG -6.8% 2.7% 3.3% 1.7%

RF -3.1% 6.6% 7.3% 5.6%

Decadal NN 2.1% 11.3% 18.1% 12.6%

XG 17.2% 26.6% 34.1% 28.2%

RF 56.9% 55.4% 67.2% 59.9%

The differences across these models highlight some of the challenges for reconstruction methods. By nature, all ML algo-485

rithms will struggle to produce a successful reconstruction when there is high uncertainty in the data, which is clearly exhibited

by the poor performance of each approach in areas such as coastal regions, segments of the Southern Ocean, and other areas

of particular data sparsity and high variability. To accommodate for these outliers while attempting to retain data integrity, we

utilized minimal data cleaning (i.e. only removing extreme outliers). One potential future exploration with the LET would be

to assess more fully the impact of data validation procedures on algorithm performance.490
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Figure A2. Test and unseen set RMSE averaged across members for each ensemble model in the LET for each ML approach.

NN XGB RF

CanESM2

CESM

GFDL

MPI

Figure A3. Average bias between reconstruction and original LET ensemble member by ML approach and ensemble model: (left) NN,

(middle) XGB, (right) RF; (top) CanESM2, (second from top) CESM, (second from bottom) GFDL, (bottom) MPI. Arrows indicate that

values beyond limits are capped for visualization.
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