
MEDUSA

Model of Early Diagenesis in the Upper
Sediment with Adaptable complexity

—
Technical Reference

Guy MUNHOVEN
Université de Liège, Belgium

http://www.astro.ulg.ac.be/~munhoven/

Version 1.0
© Guy Munhoven, 7th August 2020

http://www.astro.ulg.ac.be/~munhoven/

Contents

1 Discretisation of the Equations 2
1.1 Introduction . 2
1.2 Continuity Equations . 2

1.2.1 Solids: transport expression and additional equations 4
1.2.2 Solutes: transport expressions . 5
1.2.3 Boundary-conditions and interface equations 5
1.2.4 Differential Algebraic Equations for Solutes 7

1.3 Discretisation of the Continuity Equations . 7
1.3.1 Grid characteristics . 7
1.3.2 General finite volume discretisation . 9
1.3.3 Flux discretisations . 10
1.3.4 Boundary conditions . 12
1.3.5 Flux speciation at the free water interface (vertex W) 13

2 Numerical Methods 15
2.1 Numerical Solution of the Equation System . 15

2.1.1 Time Stepping and Boundary Conditions . 15
2.1.2 Solution strategy . 15

2.2 Primary and secondary variables . 17

3 Scaling of the equations 18
3.1 Introduction . 18
3.2 Application . 19

3.2.1 Basics . 19
3.2.2 Scaling based up the diffusion time scale . 20
3.2.3 Scaling based up the reaction time scale . 20

3.3 Equation scaling for laws of mass-action . 21

4 Grid Generation 22
4.1 Introduction . 22

4.1.1 Node-to-node grids . 23
4.1.2 Node-to-vertex grids . 23
4.1.3 Vertex-to-node grids . 23
4.1.4 Vertex-to-vertex grids . 24

4.2 Linear grids . 24
4.3 Quadratic-linear grids . 24
4.4 Power-linear grids . 24
4.5 Geometric progression grids . 25

4.5.1 Grid types . 25
4.5.2 Derived quantities . 27
4.5.3 Solving for r . 28

4.6 General series-based grids . 30

1

Chapter 1

Discretisation of the Equations

1.1 Introduction

The complete sediment column is subdivided into threeor four vertically stacked parts, called
realms, as illustrated on Fig. 1.1:

1. REACLAY, the top-most part extending downwards from the sediment top at the sediment-
water interface and where the chemical reactions are taken into consideration;

2. TRANLAY, the transition layer of changing thickness just underneath, acting as a temporary
storage to connect REACLAY to the underlying CORELAY;

3. CORELAY, a stack of sedimentary layers representing the deep sediment, i. e., the sediment
core;

4. additionally an optional Diffusive Boundary Layer (DBL—not to scale on Fig. 1.1) acting as
a diffusive barrier to the sediment-water exchange of solutes can be included on top of the
REACLAY realm.

REACLAY includes the bioturbated sedimentary mixed-layer, where most of the reactions rele-
vant for early diagenesis take place (organic matter remineralisation, carbonate dissolution etc.).

1.2 Continuity Equations

MEDUSA calls upon the standard diagenesis reaction (Berner, 1980; Boudreau, 1997):

∂Ĉi
∂t

+
∂ Ĵi
∂z
− Ŝi = 0, (1.1)

where

• t is time

• z is depth, positive downwards

• Ĉi is the concentration of constituent i per unit volume of total sediment (solid + porewater
phases), related to the phase-specific concentrations Cf

i (solutes) and Cs
i (solids) by

– Ĉi = ϕfCf
i for solutes, where ϕf is the porewater fraction of the total sediment volume,

linked to porosity, ϕ, by ϕf = ϕ

– Ĉi = ϕsCs
i for solids, where ϕs is the solid fraction, linked to porosity, ϕ, by ϕs =

(1− ϕ)

• Ĵi is the local transport term (advection, diffusion) for constituent i, i.e., the flux density of
constituent i per unit area of total sediment

2

z=zB

Sz=z

Solids

Solutes

Solutes

Solids

Solids

Diffusive Boundary Layer top

Solutes

z=zW

Bottom of bioturbation zone

Sediment−water interface

z=zZ

z
Bottom of modelled section

C
O

R
E

L
A

Y

reactions

advection

advection only

diffusion

reactions

diffusion

advection

reactions

bioturbation

advection

reactions

no reactions

preservation only

TRANLAY

R
E

A
C

L
A

Y
D

B
L

diffusion

interconversion reactions

Figure 1.1: Partitioning of the sediment column in MEDUSA: an optional diffusive boundary layer
(DBL) on top of the main part of the model sediment where diagenetic reactions and advective-
diffusive transport take place (REACLAY), the transition layer (TRANLAY) and the core repre-
sented by the stack of layers (CORELAY). The bottom of the bioturbation zone may coincide with
the bottom of REACLAY (see text for details).

3

• Ŝi is the net source-minus-sink balance for constituent i per unit volume of total sediment,
equal to

– Ŝi = R̂V
i for solids

– Ŝi = R̂V
i + r̂V

i + Q̂V
i for solutes

where

– R̂V
i = P̂V

i − D̂V
i , with P̂V

i ≥ 0 and D̂V
i ≥ 0 being the total production and destruc-

tion (or disappearance) rates for constituent i, respectively, per unit volume of total
sediment

– r̂V
i is the net fast interconversion reaction rate (per unit volume of total sediment), that

is going to be filtered out of the equations by an equilibrium consideration

– Q̂i represents non-local transport (irrigation) per unit volume of total sediment.

1.2.1 Solids: transport expression and additional equations

For solids, we have

Ĵi = −ϕsDbt ∂Cs
i

∂z
+

(
ϕsw− βDbt ∂ϕs

∂z

)
Cs

i (1.2)

where

• Dbt is the total biodiffusion coefficient (inter- plus intraphase)

• w is the solids’ advection rate

• β is the interphase fraction of the biodiffusive transport

We take into account the static volume conservation equation∑
i∈Is

ϑiCs
i = 1 (1.3)

where

• Is is the inventory of solid constituents

• ϑi is the specific volume of the solid i, each supposed to be constant, in which case it is
linked to the specific density of i, ρi, by ϑi = 1/ρi.

The total volume flux is thus ∑
i∈Is

ϑi Ĵi = ϕsw− βDbt ∂ϕs

∂z
.

In combination with the general equation (1.1) for solids, we can thus write the volume change
equation

∂ϕs

∂t
+

∂

∂z

(
ϕsw− βDbt ∂ϕs

∂z

)
=
∑
i∈Is

ϑiR̂i. (1.4)

For steady-state porosity, we can directly integrate this equation and find

ϕsw− βDbt ∂ϕs

∂z
=
∑
i∈Is

ϑi Î
top
i +

∫ z

zT

∑
i∈Is

ϑiR̂V
i (z
′) dz′. (1.5)

where Îtop
i is the deposition rate of solid i at the sediment-water interface. Equation (1.5) is used

to calculate the advection profile w.

4

1.2.2 Solutes: transport expressions

For solutes, the local transport includes, in general, advection and diffusion:

Ĵi = −ϕf
(

Dsw
i

θ2 + βDbt
)

∂Cf
i

∂z
+

(
ϕfu− βDbt ∂ϕf

∂z

)
Cf

i (1.6)

where

• Dsw
i is the free seawater diffusion coefficient for constituent i

• θ2 is tortuosity

• u is the porewater advection rate.

Here, we simplify the solute transport term neglecting porewater advection and the effet of inter-
phase bioturbation upon solutes:

Ĵi = −ϕf
(

Dsw
i

θ2

)
∂Cf

i
∂z

(1.7)

Bioirrigation provides a non-local transport mode for solutes. In MEDUSA, the source-sink
approach (Boudreau, 1984) is used to quantify the effect of bioirrigation:

Q̂i = αϕf(Coc
i − Cf

i) (1.8)

where

• α(z) is the, possibly depth-dependent, bioirrigation “constant”;

• Coc
i the concentration of solute i in the irrigation channels, set equal to the solute’s concen-

tration in seawater overlying the sediment.

Extension

By applying the solute transport expression to the porewater solvent, i.e., seawater, whose con-
centration in the porewater phase, Cf

sw, is sensibly constant, we deduce that

Ĵsw =

(
ϕfu− βDbt ∂ϕf

∂z

)
Cf

sw

When introduced into the general equation (1.1), we find which then leads to

∂ϕf

∂t
+

∂

∂z

(
ϕfu− βDbt ∂ϕf

∂z

)
= 0. (1.9)

By adding equations (1.4) and (1.9), and noting that ϕs + ϕf = 1, we get the generally valid
constraint, even for non steady-state conditions:

∂

∂z

(
ϕsw + ϕfu

)
=
∑
i∈Is

ϑiR̂i.

1.2.3 Boundary-conditions and interface equations

Boundary conditions at the top

Boundary conditions at the top of the sediment are

5

• prescribed concentration for solutes:

Cf
i (t, zW) = Coc

i (t) (1.10)

where W denotes the bottom of the free ocean above the sediment (located at top of the DBL
if a DBL is present, or at the sediment-water if no DBL is considered);

• prescribed flux (deposition rate) for solids at the sediment-water-interface:

Ĵi(t, zS) = Îtop
i (t) (1.11)

where S denotes the sediment water-interface (top of the actual sediment, also the bottom
of the DBL if a DBL is present).

Since W and S are different points when a DBL is present, the exact way boundary conditions for
solutes are taken into account depends on whether a DBL is considered or not.

If a DBL is considered an additional interface condition, derived from the flux continuity as-
sumption is required at the sediment-water-interface (S). The continuity of the water concentra-
tion at S and the water flux across S leads to(

ϕfu− βDbt ∂ϕf

∂z

)∣∣∣∣∣
z+S

= u|z−S

where ‘+’ denotes the sediment-side of the S interface and ‘−’ the DBL side (devoid of bioturba-
tion and solids, and thus with ϕ = 1). Similarly, the continuity of concentration and flux for any
solute i then translates in general to

− ϕf
(

Dsw
i

θ2 + βDbt
)

∂Cf
i

∂z

∣∣∣∣∣
z+S

= − Dsw
i

∂Cf
i

∂z

∣∣∣∣∣
z−S

i.e.

ϕf

(
1
θ2 +

βDbt

Dsw
i

)
∂Cf

i
∂z

∣∣∣∣∣
z+S

=
∂Cf

i
∂z

∣∣∣∣∣
z−S

Since we neglect the effect of interphase biodiffusion in the solute transport, we consider the
following simplified interface equation

ϕf

θ2
∂Cf

i
∂z

∣∣∣∣∣
z+S

=
∂Cf

i
∂z

∣∣∣∣∣
z−S

(1.12)

If no DBL is considered W and S are the same and the boundary condition (1.10) is applied at
S and the interface equation (1.12) is not applicable.

Interface equation at the bottom of the bioturbated zone

Flux continuity across the interface that delimits the bioturbated from the non bioturbated part of
the sediment (Z) requires that (

ϕsw
)∣∣

z+Z
=

(
ϕsw− βDbt ∂ϕs

∂z

)∣∣∣∣
z−Z

Accordingly (
ϕsDbt ∂Cs

i
∂z

)∣∣∣∣
z−Z

= 0 (1.13)

There is no special constraint that solutes have to fulfil at Z.

6

Bottom Boundary Conditions

Boundary conditions at the bottom of the modelled sediment (B) melt down to flux constraints, if
any:

• for solutes, we adopt a no-flux boundary condition at the bottom, which translates to

−ϕf
(

Dsw
i

θ2 + βDbt
)

∂Cf
i

∂z
+

(
ϕfu− βDbt ∂ϕf

∂z

)
Cf

i = 0.

This expression finally simplifies here to

∂Cf
i

∂z

∣∣∣∣∣
z−B

= 0 (1.14)

as we neglect porewater advection and interphase biodiffusion for solutes.

• for solids, there is no boundary condition required at the bottom if w|z+B ≥ 0; if w|z+B < 0
(chemical erosion is taking place) a boundary condition with a prescribed input flux, similar
to that at the sediment water interface, is required

If the bioturbated part of the modelled sediment section extends to the bottom (i.e., if B≡Z), the
Z interface equation for solids must be applied at B.

1.2.4 Differential Algebraic Equations for Solutes

The reaction terms r̂V
i related to the fast interconversion reactions between solutes are filtered out

of the equation system by making the assumption that these reactions are locally at equilibrium.
This is done by replacing the total system of solutes’ equations with suitably chosen linear combi-
nations of the initial equations so that the r̂V

i cancel out, and some other equations replaced by the
laws of mass-action for the equilibria under consideration: if n solute constituents are involved in
m < n equilibria (fast interconversion reactions), then the n partial differential equations for the n
solute concentrations are replaced by m equilibrium relationships and n−m linear combination
of these equations, chosen to be independent of each other.

1.3 Discretisation of the Continuity Equations

1.3.1 Grid characteristics

The numerical solution of the system of differential algebraic equations (DAEs) is based upon a
grid-based discretisation of the equations. We adopt a finite volume approach, where the model
domain is overlaid by a grid of nodes, from which a grid of vertices is derived, each vertex be-
ing located half-way between neighbouring nodes (so-called vertex-centred grids). This way, the
model domain is subdivided into cells (called finite volumes), each one delimited by two con-
secutive vertices, thus including one node where the representative concentrations for the cell is
anchored (and calculated from the DAE system). Both the DBL (if any) and the REACLAY parts
of the model sediment are covered by such vertex-centred grids (see Fig. 1.2): for the DBL, that
grid is denoted by

zW , . . . , zT−1

for the surface sediment part (REACLAY) by

zT , zT+1, . . . , zZ, . . . , zB.

The vertices are thus defined as follows.

7

z
T + ½

T
z

z
W+ ½

z
W

z
S

z
T − ½

=

REACLAY

DBL

Interior and bottom

Z
z

B
z

z
Z − 1

z
B − 1

z
 − 1j

z
j − ½

z
j + ½

z
j

z
j + 1

B − ½
z

Z + ½
z

Z + 1
z

Z − ½
z

+ 2T
z

+ 1+½T
z

T + 1
z

+ ½T
z

z
T

z
S

=

T + 1
z

T − 1
z

W+ 1
z

Top of sediment

parts of sediment

with DBLwithout DBL

Figure 1.2: Grid characteristics for the Diffusive Boundary Layer (if any) and the REACLAY parts
of the sediment.

8

• If a DBL is included,

zj+ 1
2
= 1

2 (zj + zj+1), j = W, . . . , T − 2 and j = T, . . . , B− 1

and zT− 1
2
= zS; additional vertices are located at zW (top of the DBL, on the node W) and zB

(bottom of the sediment, on the node B).

If the DBL is represented by a single layer, T = W + 1.

• If no DBL is included, then

zj+ 1
2
= 1

2 (zj + zj+1), j = T, . . . , B− 1

and additional vertices are located at zT ≡ zW = zS (top of the sediment, on the node T,
which is identical to W and S) and at zB (bottom of the sediment, on the node B).

The top-most and the bottom-most points of the modelled domain (referred to by T and B, resp.)
are both part of the grids’ nodes. The diffusive boundary layer is delimited by the zW and zS
vertices.

We further denote

• the width of the cell around node j by hj = zj+ 1
2
− zj− 1

2
, except for j = W, where we set

hW = 1
2 (zW + zW+1)− zW = 1

2 (zW+1− zW) and for j = B, where we set hB = zB− 1
2 (zB−1 +

zB) =
1
2 (zB − zB−1);

• the distances between nodes j and j + 1 by hj+ 1
2
= zj+1 − zj.

If no DBL is included, then W = T. In this case the node T is placed at the sediment-water-
interface. If a DBL is included, the T node is inside the model sediment, else it is located at the
top of the model sediment column (REACLAY part). Please refer to chapter 4 for more technical
details about the characteristics of the grids and their generation.

1.3.2 General finite volume discretisation

We use an implicit Euler discretisation for the time dimension (variable t, denumerated by su-
perscripts n). In a cell represented by the node j, and delimited by the vertices j− 1

2 and j + 1
2 ,

eqn. (1.1) is discretised as

Ĉn+1
j − Ĉn

j

tn+1 − tn +
Ĵn+1
j+ 1

2
− Ĵn+1

j− 1
2

hj
− Ŝn+1

j = 0. (1.15)

where Ĵn+1
j+ 1

2
, Ĵn+1

j− 1
2

and Ŝn+1
j approximate Ĵ(tn+1, zj+ 1

2
), Ĵ(tn+1, zj− 1

2
) and Ŝ(tn+1, zj), respectively.

This equation is used as is at every node j, W < j < B. It is slightly adapted at the W and at
the B nodes and it is ignored for solids at nodes above the S vertex if a DBL is included. At the
node W, the equation actually used writes

Ĉn+1
W − Ĉn

W
tn+1 − tn +

Ĵn+1
W+ 1

2
− Ĵn+1

W

hW
− Ŝn+1

W = 0. (1.16)

For solutes, the previous equation is only used to calculate Ĵn+1
W + hW r̂n+1

W as the top boundary
condition directly sets Ĉn+1

W (and Ĉn
W). Ĵn+1

W + hW r̂n+1
W is then corrected for the hW r̂n+1

W contribution
by transforming the complete set of solute flux expression using the same set of linear combina-
tions and equilibrium relationships as for the equation system, as described in section 1.2.4, and
solving the resulting system for the individual solute concentrations (see section 1.3.5 below for
details).

9

If no DBL is included in the model set-up, then W ≡ T = S and the above equation is also
used for solids, with Ĵn+1

W = Ĵn+1
S set by the solids’ boundary conditions; if a DBL is included then

T > W and S = T − 1
2 , and the general equation is used for the cell centred on the T node:

Ĉn+1
T − Ĉn

T
tn+1 − tn +

Ĵn+1
T+ 1

2
− Ĵn+1

S

hT
− Ŝn+1

T = 0. (1.17)

In this case Ĵn+1
S is again set from the boundary conditions for solids; for solutes it is derived from

the flux continuity equation at the vertex S (see below).
At the node B:

Ĉn+1
B − Ĉn

B
tn+1 − tn +

Ĵn+1
B − Ĵn+1

B− 1
2

hB
− Ŝn+1

B = 0. (1.18)

Here, Ĵn+1
B is set from the boundary conditions (see below).

1.3.3 Flux discretisations

For the purpose of the developments in this section, we formally write the flux Ĵ as

Ĵ = −d
∂c
∂z

+ ac

where

• c stands for the phase specific concentration of a constituent (Ci
α);

• the “diffusion” coefficient d collects all the factors (including any ϕα) that multiply the
derivative ∂Ci

α/∂z in eqns. (1.2) and (1.7) (or (1.6));

• the “advection rate” a collects all the factors (including any ϕα) that multiply the concentra-
tion Ci

α in eqns. (1.2) and (1.7) (or (1.6)).

Using a centred difference for the discretisation of the gradient in the diffusive part of the flux,
and a first-order upwind discretisation for the advective part (including the contribution from the
diffusive flux not depending on the gradient, that we get after application of the chain rule to the
derivatives of ϕαCi

α), we get

Ĵj+ 1
2
= −dj+ 1

2

cj+1 − cj

h
j+ 1

2

+ aj+ 1
2
(

1− κj+ 1
2

2
cj+1 +

1 + κj+ 1
2

2
cj),

where κj+ 1
2

is a parameter that controls the degree of upwinding (decentral weighting) at the

vertex j + 1
2 , such that 0 ≤ κj+ 1

2
≤ 1 if aj+ 1

2
≥ 0 and −1 ≤ κj+ 1

2
≤ 0 if aj+ 1

2
≤ 0. For a full

upwind formulation, κj+ 1
2
= 1 if aj+ 1

2
≥ 0 and κj+ 1

2
= −1 if aj+ 1

2
≤ 0. In this case the resulting

discretisation is first order and unconditionally positive. Intermediate values −1 ≤ κj+ 1
2
≤ 1

lead to more central-weighted discretisations of the advection term. This way the order can be
increased to two for κj+ 1

2
= 0. However, the resulting method is not unconditionally positive any

more.
Collecting the terms in cj+1 and cj in the previous equation leads to

Jj+ 1
2
= −(dj+ 1

2
+

h
j+ 1

2

2
κj+ 1

2
aj+ 1

2
)

cj+1 − cj

h
j+ 1

2

+ aj+ 1
2

cj+1 + cj

2
,

showing that upwinding can be seen as adopting centred approximations for both diffusive and
advective fluxes, with a diffusion coefficient increased by κj+ 1

2
aj+ 1

2
h

j+ 1
2
/2.

10

Similarly,

Jj− 1
2

= −dj− 1
2

cj − cj−1

h
j− 1

2

+ aj− 1
2
(

1− κj− 1
2

2
cj +

1 + κj− 1
2

2
cj−1)

= −(dj− 1
2
+

h
j− 1

2

2
κj− 1

2
aj− 1

2
)

cj − cj−1

h
j− 1

2

+ aj− 1
2

cj + cj−1

2
.

Roos et al. (2008, p. 36) present this in a slightly different way. Instead of formally increasing
the diffusion coefficient, they multiply it by a coefficient σ that is function of the ratio (ah/d), i.e.,
the cell Péclet number. The formulation adopted here can be reduced to that of Roos et al. (2008)
by setting,

σj+ 1
2
= 1 +

aj+ 1
2
hj+ 1

2

2dj+ 1
2

κj+ 1
2
. (1.19)

This is of course only feasible if d 6= 0.

We consider two different upwinding schemes, characterised by different appraches to set the
upwinding coefficient κ.

Full upwind With the full upwind method, we adopt κj+ 1
2
= −1 for aj+ 1

2
< 0 and κj+ 1

2
= 1 for

aj+ 1
2
> 0. This leads to a completely stable, albeit possibly diffusive, algorithm.

Exponential fitting Let us denote the cell Péclet number by µ = ah/d; at the vertex j + 1
2 , we

write it explicitly as µj+ 1
2
= aj+ 1

2
h

j+ 1
2
/dj+ 1

2
. We can then adopt the upwind factor

κj+ 1
2
=

exp(µj+ 1
2
) + 1

exp(µj+ 1
2
)− 1

− 2
µj+ 1

2

= coth(
µj+ 1

2

2
)− 2

µj+ 1
2

.

This scheme is actually the Il’in-Allen-Southwell scheme presented in Roos et al. (2008, p. 41). We
may invert eq. (1.19) to express κj+ 1

2
as a function of σj+ 1

2

σj+ 1
2
= 1 +

aj+ 1
2
hj+ 1

2

2dj+ 1
2

κj+ 1
2
= 1 +

µj+ 1
2

2
κj+ 1

2
⇒ κj+ 1

2
= (σj+ 1

2
− 1)

2
µj+ 1

2

For the Il’in-Allen-Southwell scheme,

σj+ 1
2
=

µj+ 1
2

2
coth(

µj+ 1
2

2
)

and hence,

κj+ 1
2
= coth(

µj+ 1
2

2
)− 2

µj+ 1
2

.

The formulation involving exponentials is notoriously unstable for evaluation in floating point
arithmetic, and diverges for small µj+ 1

2
(for µj+ 1

2
' 10−6, the result is already off by a factor of

100). The formulation involving coth is better, at least with regard to the order of magnitude of the
result. For precise evaluations, one has to use the Laurent series for coth, which, for θ = µj+ 1

2
/2,

leads to (Abramowitz and Stegun, 1965)

κj+ 1
2
=

1
3

θ − 1
45

θ3 +
2

945
θ5 − . . . +

22nB2n

(2n)!
θ2n−1 + . . . (1.20)

Series (1.20) converges for |θ| < π. Following (Abramowitz and Stegun, 1965, eqn. (4.5.67), p. 85)
we have

(−1)n−1 22n−1π2n

(2n)!
B2n =

∞∑
k=1

1
k2n = ζ(2n)

11

where ζ is the Riemann zeta function. The coefficients of the series are thus decreasing fast since
ζ(2n) decreases with n and

(−1)n−1 22nB2n

(2n)!
=

2ζ(2n)
π2n .

In addition, we have the following inequality (Abramowitz and Stegun, 1965, eqn. 23.1.15, p. 805)

2(2n)!
(2π)2n < (−1)n−1B2n <

2(2n)!
(2π)2n

(
1

1− 21−2n

)
.

Accordingly
2

π2n < (−1)n−1 22nB2n

(2n)!
<

2
π2n

(
1

1− 21−2n

)
.

For n = 4, 2/π2n is already an excellent approximation for the coefficients (error less than 1%),
that thus decrease almost by a factor of π2 ' 10 for consecutive values of n. To order 11, the series
writes

κj+ 1
2
=

1
3

θ − 1
45

θ3 +
2

945
θ5 − 1

4725
θ7 +

2
93555

θ9 − 1382
638512875

θ11

The calculation of κj+ 1
2

in MEDUSA uses the coth based formula for µ > 1
8 ,1 and a decreasing

number of terms as µ→ 0 (starting with 5 terms, i.e., order 9 at µ = 1
8).

1.3.4 Boundary conditions

Top boundary conditions

Regardless of whether a DBL is included or not,

• the top boundary condition for solutes is always set at the W node (which is also always a
vertex):

Cf
i,W = Ci,Oc(t) (1.21)

where Ci,Oc(t) is the bottom water concentration of the solute i;

• the top boundary condition for solids is always set at the S vertex (which is only a node if
no DBL is included):

Ĵn+1
i,S = Îtop

i (tn+1) (1.22)

If a DBL is included, an additional interface equation must be solved for solutes at the S ver-
tex, in order to connect the DBL and REACLAY grids at the sediment-water interface. The flux
continuity condition at the sediment-water interface2

ϕf

θ2
∂Cf

i
∂z

∣∣∣∣∣
z+S

=
∂Cf

i
∂z

∣∣∣∣∣
z−S

is discretised as
ϕf

θ2

∣∣∣∣∣
S

Cf
i,T − Cf

i,S

zT − zS
=

Cf
i,S − Cf

i,T−1

zS − zT−1
.

In order to calculate Cf
i,S which is not a concentration value on the grid, we rewrite this expression

as
ϕf

θ2

∣∣∣∣∣
S

zS − zT−1

zT − zS

(
Cf

i,T − Cf
i,S

)
= Cf

i,S − Cf
i,T + Cf

i,T − Cf
i,T−1

1More precisely, for EXPONENT(µ) < −2, where EXPONENT is a Fortran 90 intrinsic function.
2This equation remains, by the way, valid as is even in case porewater advection is not neglected. The continuity

condition for the advection rate u across zS makes the advective terms on both sides cancel each other, regardless of the
upwinding procedure adopted.

12

and (
ϕf

θ2

∣∣∣∣∣
S

zS − zT−1

zT − zS
+ 1

)(
Cf

i,T − Cf
i,S

)
= Cf

i,T − Cf
i,T−1.

Finally, we get

Cf
i,S = Cf

i,T −
Cf

i,T − Cf
i,T−1

ϕf

θ2

∣∣∣
S

zS−zT−1
zT−zS

+ 1
(1.23)

Notice that W = T− 1 if the DBL reduces to a single layer.

Bottom boundary conditions

The bottom boundary conditions directly reflect the physical condition they translate:

• for each solute, we adopt a no-flux boundary condition, i.e., we set

Ĵi,B = 0 (1.24)

for every solute i,

• for solids, no boundary condition is required if aB ≥ 0; if aB < 0, we use

Ĵi,B = aB · ci,Y (1.25)

where ci,Y is the concentration of the solid i in the transition layer (TRANLAY).

1.3.5 Flux speciation at the free water interface (vertex W)

The conservation equations for solutes at the W do not directly provide estimates for the indivual
solute fluxes Ĵi,W , but only for Ĵ′i,W = Ĵi,W − hW r̂i,W (we have dropped the n + 1 superscript for
improved readability). In order to correct these Ĵ′i,W for the unknown r̂i,W , we start by formally
writing the discrete form of the flux expression for a solute i at the interface located in zW as

Ĵi,W = −D̂i,W

Ci,W+ 1
2
− Ci,W− 1

2

h
+ ûW

(
1− κi

2
Ci,W+ 1

2
+

1 + κi
2

Ci,W− 1
2

)
or, equivalently

Ĵi,W = −
(

D̂i,W +
hûW

2
κi

) Ci,W+ 1
2
− Ci,W− 1

2

h
+ ûW

Ci,W+ 1
2
+ Ci,W− 1

2

2

where

• Ĵi,W is the total sediment flux of i;

• D̂i,W is the effective diffusion coefficient of i, including all the necessary corrections for tor-
tuosity, etc. if required;

• h is the difference between the “nodes” of two virtual cells centred in zW+ 1
2

and zW+ 1
2

and
the virtual point zW− 1

2
;

• ûW = ϕf
W uW , with uW is the porewater advection rate at zW ;

• κi is the upwinding parameter for i;

• Ci,W+ 1
2

is the representative concentration of i at zW+ 1
2
= 1

2 (zW + zW+1);

• Ci,W− 1
2

is the fictive concentration at the virtual point zW− 1
2
.

13

We chose
Ci,W+ 1

2
+ Ci,W− 1

2

2
= Ci,W

and define

C′i,W =
Ci,W+ 1

2
− Ci,W− 1

2

h
,

i.e., the gradient of the Ci(z) at zW . Accordingly, we rewrite the expression for Ĵi,W as

Ĵi,W = −
(

D̂i,W +
hûW

2
κi

)
C′i,W + ûWCi,W (1.26)

Contrary to the usual κi selection, we only use values between -1 and 0: for uW < 0, we use
the standard κi, which will range between −1 (full upwind, for strong advection) and 0 (central
for negligible advection); for uW ≥ 0, we use κi = 0 as the concentrations Ci is supposed to
be constant above the sediment-water interface and equal to Ci,W = Ci,Oc. We further chose
h = 2hW = zW+1 − zW , so that the two virtual cells have the same widths.

By combining these expressions for Ĵi,W with the set of Ĵ′i,W values, we get a system of equations
for the C′i,W (all the Ci,W are known from the prescribed solute boundary conditions). Similarly to
the generic equations for the solute concentrations, this system contains the unknown r̂i,W , which
we are going to filter out adopting the assumption that the corresponding chemical reactions are
at equilibrium. To do this, we apply a similar transformation of the equation system, by applying
exactly the same linear combinations, but, instead of introducing the equilibrium relationships,
we introduce their derivative with respect to z, where the derivatives with respect to the indi-
vidual concentrations are assimilated to the respective C′i,W . The resulting system of equations is
then solved for the C′i,W and the individual Ĵi,W values are finally derived from eq. (1.26).

This procedure ensures that the calculated fluxes are entirely consistent with the global equa-
tion system and are in agreement with the overall mass-balance documented by the system.

14

Chapter 2

Numerical Methods

2.1 Numerical Solution of the Equation System

The numerical schemes adopted in MEDUSA have been selected with the physical meaningfulness
of the results in mind. Accordingly, positiveness of the calculated concentration evolutions was
deemed indispensable. For the discretisation of the advective part of the local transport term in
the equations, one may chose between a first-order full upwind and a second order exponential
fitting scheme, known elsewhere as the Allen-Southwell-Il’in or the Scharfetter-Gummel scheme
(Hundsdorfer and Verwer, 2003). It is closely related to the scheme of Fiadeiro and Veronis (1977):
on regularly spaced grids both schemes lead to identical discrete forms of the equations. The
exponential fitting scheme is, however, better suitable for the flux-conservative finite volume ap-
proach adopted in MEDUSA, which uses irregularly spaced grids.

Unlike steady-state models, where solid advection rates are always oriented downwards rel-
ative to the sediment-water interface, MEDUSA has to be able to cope with solids’ advection rates
that may have any orientation and that may even change their orientation with time. Both up-
winding schemes automatically handle this complication.

2.1.1 Time Stepping and Boundary Conditions

Convergence of numerical DAE solvers is critically dependent on the consistency of the initial
conditions given with the algebraic constraints (equilibrium relationships) included in the model,
i. e., the initial conditions must fulfil the constraints. Problems related to possible inconsistencies
are avoided in MEDUSA by deriving the values of the equilibrium constants directly from the
boundary conditions instead of calculating them independently.

2.1.2 Solution strategy

The discretisation of the equation systems leads to a coupled non-linear system of equations that
is solved iteratively, using a combination of fixed-point and damped Newton-Raphson iterations.
Each iteration proceeds in two stages. First, a fixed-point rule is used to update the advection rate
profile w(z) (and, if required, the biodiffusion and bioirrigation coefficients Dbt, β and α). For the
solids’ advection profile, the depth-integrated solid phase volume conservation equation (1.5) is
used

ϕs(z)w(z)− β(z)Dbt(z)
∂ϕs

∂z
=
∑
i∈Is

ϑi Î
top
i +

∫ z

zT

∑
i∈Is

ϑiR̂i(z′) dz′,

where Îtop
i denotes the deposition rate of solid component i per unit surface of total sediment

per unit time, entering the surface sediment through the sediment-water interface at the top.
The required reaction rate terms are evaluated by using the most recent available concentration
profiles (or the initial state).1

1Please notice that eqn. (1.5) shows that it is not necessary to distinguish between intra- and interphase biodiffusion in
the current version of MEDUSA. The biodiffusive component of the transport term is dependent on the total biodiffusion

15

In a second stage, the concentration profiles are then updated with a damped Newton-Raphson
scheme. For this scheme, at iteration k, we first calculate the standard correction ∆Ck as the solu-
tion of the linear system

J(Ck)∆Ck = F(Ck),

where F denotes the equation system, J its Jacobian with respect to the concentrations of the model
components, which are assembled in the vector Ck. However, only that fraction ∆kl = ∆Ck/2l

(l = 0, . . . , LNewton) is applied that minimizes ||F(Ck + ∆kl)||. LNewton = 4 by default but his can
be changed. The algorithm uses the analytical Jacobian, except for the derivatives of w(z) with
respect to the concentrations of the different model components (eqn. 1.5), which are disregarded.
These latter are handled by the fixed point-scheme and similarly for Dbt and α(z).

The linear system to solve at each Newton-Raphson iteration has a block tridiagonal structure
and is solved with the Gauß algorithm as outlined in Engeln-Müllges and Uhlig (1996).

As a convergence criterion, we use a two-stage trigger:

1. first, we require that
||F(Ck + ∆kl)||2 < (10−6)2ntot

where ntot is the total number of components of F and || · || denotes the L2 norm; each
component of F may furthermore be scaled by its scale.

2. if the first criterion is met, we further strive to reach

max(|∆kl |/Scli,:) < 10−9

where Scli,: is the scale of component i, replicated for its respective evolution equation at
each node.

Once the first criterion is fulfilled, iterations are continued until the second one is fulfilled as well,
or until a set maximum number of iterations is reached (120 by default). An iteration sequence is
assumed to have successfully converged if the first criterion is met; the second one is considered
an asset. More details about the way scaling is taken into account in MEDUSA are provided in
chapter 3.

For the initialization of the iterative scheme, a sequence of approaches has been implemented:

1. the state of the previous time step or the initial state is used;

2. selected solute profiles are initially set homogeneously equal to the boundary values;

3. a continuation method where the partial specific volumes of all non-inert solids are gradu-
ally increased from zero to their actual values;

4. a continuation method where the top solid fluxes are gradually increased from zero to their
actual given values;

5. a continuation method where reaction rates are gradually increased from zero to their stan-
dard values;

6. a continuation method only used for steady-state calculations where gradually longer time
steps are used and

7. a continuation method only used for columns subject to strong chemical erosion, where the
amount of eroded material to return to REACLAY is gradually increased to the calculated
value.

These are tried out in turn until the convergence criterion is met (see next chapter). The order can
be freely chosen, but the order by which the methods are reported above has proven to be one of
the most efficient ones.

coefficient anyway. The total advective component obtained from eqn. (1.5) remains unchanged as β(z) is modified; only
the partitioning between of ϕs(z)w(z) and β(z)Dbt(z) ∂ϕs

∂z is affected, but does not have any influence on the concentration
profiles.

16

2.2 Primary and secondary variables

N.B.: This has been prepared to some extent in MEDUSA, but not been implemented.
Taking advantage of the difference between primary and secondary variables (and
their equations) may contribute to strongly reduce computing times for applications
that involve, e.g., isotopes, (i.e. secondary variables that do not impinge on volume
conservation, but act as passive tracers only).

Primary variables: the smallest subset of variables that influence the compaction (profile of w, etc.)
of the sediment; the distribution of primary variable properties may not be influenced by other
variable properties (e.g., secondary variables); Secondary variables: variables whose evolution
may depend on the primary ones, but that do not impinge on the w profile, on the distribution of
primary properties, etc.

This means that the system of equations that controls the distribution of properties p and s
may be written in the form

fp = 0 (2.1)
fs = 0 (2.2)

where p denotes the subset of primary variables, with fp the subset of equations that determine
their evolution, and s the subset of secondary variables. Following the definition of the primary
variables, fp is such that fp = fp(p), while fs = fs(p, s). Accordingly,

∂ fp

∂s
≡ 0 (2.3)

and Newton iterations required to solve system above thus write
∂ fp

∂p

∣∣∣∣
pj

0

∂ fs

∂p

∣∣∣∣
pj ,sj

∂ fs

∂s

∣∣∣∣
pj ,sj

(

pj+1 − pj
sj+1 − sj

)
=

(
− fp(pj)
− fs(pj, sj)

)
. (2.4)

We split them into two separate problems, that can be solved sequentially:(
∂ fp

∂p

∣∣∣∣
pj

)
(pj+1 − pj) = − fp(pj) (2.5)

and (
∂ fs

∂s

∣∣∣∣
pj ,sj

)
(sj+1 − sj) = − fs(pj, sj)−

(
∂ fs

∂p

∣∣∣∣
pj ,sj

)
(pj+1 − pj) (2.6)

17

Chapter 3

Scaling of the equations

In MEDUSA, we have not explicitly scaled the equations. The linear solver used in the Newton-
Raphson iterations, does some internal scaling. We do nevertheless take scaling into account
in the convergence criterion, if scales are provided. The rationale behind this is outlined in the
following section

3.1 Introduction

Following Boudreau (1986), the general diagenesis equation for a solid

∂Ĉ
∂t

+
∂

∂z

(
−DB(z)

∂Ĉ
∂z

+ wĈ

)
− R(Ĉ) = 0 (3.1)

can be transformed into an non-dimensional form by using scaling transformations, based upon
characteristic scales. For the length scale, the mixed-layer depth, L, is an obvious choice and for
concentrations, a typical value representative of the top of the sediment, where concentrations are
often largest, can be chosen. For time, several characteristic scales can e chosen. A first option is
the diffusive time scale, which, for a length L is θD = L2/DB0

ξ = z/L
τ = t/θD = tDB0/L2

Γ = Ĉ/Ĉ0

With R(Ĉ) = −λĈ, we get

∂Γ
∂τ

+
∂

∂ξ

(
− f (ξ)

∂Γ
∂ξ

+ Pe Γ
)
+ Da(I) Γ = 0 (3.2)

where

f (ξ) = DB(z)/DB0

Pe = wL/DB0

Da(I) = λL2/DB0

Alternatively, the advective time scale can be chosen instead of the diffusive one. For length a
scale L, the advective time scale is θw = L/w. Hence, the transformation

ξ = z/L
τ = t/θw = L/w
Γ = Ĉ/Ĉ0

The diagenesis equation then transforms to

∂Γ
∂τ

+
∂

∂ξ

(
− f (ξ)

Pe
∂Γ
∂ξ

+ Γ
)
+ Da(II) Γ = 0 (3.3)

18

where

f (ξ) = DB(z)/DB0

Pe = wL/DB0

Da(II) = λL/w

3.2 Application

3.2.1 Basics

We reconsider the general diagenesis equation

Eq(C) ≡ ∂Ĉ
∂t

+
∂

∂z

(
−Dter ∂Ĉ

∂z
− Dtra ϕx ∂C

∂z
+ wĈ

)
− R̂ = 0

where the diffusion term has been split to be able to consider both inter- and intraphase diffusive
processes.

Let us consider a general scaling transformation

ξ = z/L
τ = t/T
Γ = C/C0

The total sediment concentration Ĉ and the phase-specific concentration C for any given compo-
nent are related by Ĉ = ϕxC, where ϕx denotes the volume fraction of the phase ‘x’ (where we
adopt ϕf = ϕ, with the superscript ‘f’ standing for fluid and ϕs = 1− ϕ, with the superscript
‘s’ standing for the solid phase). We further more adopt scales ϕx

0 such that we may also use
Ĉ0 = ϕx

0C0. In addition, we adopt Φx = ϕx/ϕx
0 which allows us to define

Γ̂ = Ĉ/Ĉ0 = (ϕx/ϕx
0) (C/C0) = ΦxΓ.

The equation above may then be transformed as follows:

∂Ĉ
∂t

+
∂

∂z

(
−Dinter ∂Ĉ

∂z
− Dintra ϕx ∂C

∂z
+ wĈ

)
− R̂

=
dτ

dt
∂

∂τ
(Γ̂Ĉ0)

+
dξ

dz
∂

∂ξ

(
−Dinter dξ

dz
∂

∂ξ
(Γ̂Ĉ0)− Dintra ϕx dξ

dz
∂

∂ξ
(ΓC0) + wΓ̂Ĉ0

)
− R̂

=
Ĉ0

T
∂Γ̂
∂τ

+
1
L

∂

∂ξ

(
−Dinter Ĉ0

L
∂Γ̂
∂ξ
− DintraΦx ϕx

0
C0

L
∂Γ
∂ξ

+ wΓ̂Ĉ0

)
− R̂

=
Ĉ0

T
∂Γ̂
∂τ

+
Ĉ0

T
∂

∂ξ

(
−Dinter T

L2
∂Γ̂
∂ξ
− Dintra T

L2 Φx ∂Γ
∂ξ

+ w
T
L

Γ̂
)
− R̂

=
Ĉ0

T

(
∂Γ̂
∂τ

+
∂

∂ξ

(
−Dinter

L2/T
∂Γ̂
∂ξ
− Dintra

L2/T
Φx ∂Γ

∂ξ
+

w
L/T

Γ̂
)
− R̂

Ĉ0/T

)
Hence, if we further define

∆inter =
Dinter

L2/T
=

Dinter

D0

D0

L2/T
and ∆intra =

Dintra

L2/T
=

Dintra

D0

D0

L2/T

as well as

ω =
w

L/T
=

w
w0

w0

L/T
and P̂ =

R̂
Ĉ0/T

,

19

then

Eq(C) =
Ĉ0

T
Eq(Γ)

where

Eq(Γ) ≡ ∂Γ̂
∂τ

+
∂

∂ξ

(
−∆inter ∂Γ̂

∂ξ
− ∆intraΦx ∂Γ

∂ξ
+ ωΓ̂

)
− P̂ (3.4)

According to this scaling, we then have:

|Eq(Γ)| < ε ⇔ |Eq(Ĉ)| < ε
Ĉ0

T
.

If R̂ = −λĈ, then P̂ = −λT Γ̂.

3.2.2 Scaling based up the diffusion time scale

This transformation is analogous to the first one in the previous section, with

T = L2/D0

Hence, if we get

∆inter =
Dinter

D0
and ∆intra =

Dintra

D0
,

as well as

ω =
w

D0/L
=

w
w0

Lw0

D0
=

w
w0

Pe and P̂ =
R̂

Ĉ0D0/L2
,

then

Eq(C) =
Ĉ0D0

L2 Eq(Γ)

where Eq(Γ) follows the same expression as eqn. (3.4) above. According to this scaling, we then
have:

|Eq(Γ)| < ε ⇔ |Eq(Ĉ)| < ε
Ĉ0D0

L2 .

This is the scaling procedure currently adopted in MEDUSA.

3.2.3 Scaling based up the reaction time scale

For this scaling, we adopt T = 1/λ. This time, we further define

∆inter =
Dinter

λL2 =
Dinter

D0

D0

λL2 =
Dinter

D0

1
Da(I)

,

∆intra =
Dintra

λL2 =
Dintra

D0

D0

λL2 =
Dintra

D0

1
Da(I)

,

as well as

ω =
w
λL

=
w
w0

w0

λL
and P̂ =

R̂
λĈ0

,

then
Eq(C) = λĈ0Eq(Γ)

where Eq(Γ) is again the same as eqn. (3.4) above.
According to this scaling, we then have:

|Eq(Γ)| < ε ⇔ |Eq(Ĉ)| < ε
1

λĈ0

20

3.3 Equation scaling for laws of mass-action

Starting from a general form of the equilibrium equation

k
∏
i∈R

Ci −
∏
i∈P

Ci = 0

where R denotes the set of reagents (left-hand side of the equilibrium) and P the set of products
(right-hand side of the equilibrium).

These equations are scaled by a factor√
k
∏
i∈R

Ci,0 ×
√∏

i∈P
Ci,0

where Ci,0 denotes the scale of the reagent i.

21

Chapter 4

Grid Generation

4.1 Introduction

In order to solve the partial differential equations that describe early diagenetic processes in
MEDUSA, the domain of interest which we denote for simplicity by [0, L], is overlaid with a grid or
mesh of points denoted zi (i = 1, . . . , n), called nodes, such that 0 ≤ z1 < . . . < zi < . . . < zn ≤ L.
Each node is representative of a small sub-interval of [0, L], delimited by the mid-points between
neigbouring nodes. These mid-points are called vertices and represent thus the boundaries be-
tween the sub-intervals called finite volumes or cells. Concentrations and reaction terms are evalu-
ated at the nodes while the flux terms are evaluated at the vertices. Accordingly, in some instances
it is necessary to have a vertex located at 0 or L (e.g., if boundary conditions involve fluxes only).
In such cases, we call upon virtual grid points z0 < 0 or zn+1 > L outside the domain of interest
to define the required vertices, such that [0, L] always includes n nodes zi. In other instances it is
necessary or recommended to have nodes locates at 0 or L (e.g., if boundary conditions involve
prescibed concentrations). In this case there are only half cells at 0 or L. Such nodes are thus
virtual vertices (cell boundaries).

With a few exceptions, the strategy behind grid generation consists in choosing a function Q
to remap a regular grid covering the interval [0, 1] (ξi = i/N, i = 0, . . . , N) onto an irregular grid
qi = Q(ξi) (i = 0, . . . , N) covering the same interval [0,1]. Accordingly, we always have q0 = 0
and qN = 1. This qi (i = 0, . . . , N) grid is then scaled and shifted (moved by translation) to fulfil
constraints set by the specific problem requirements:

• the extent L of the interval [0, L];

• a vertex or a node is located at the starting point 0;

• a vertex or a node is located at the end point L;

• the number of nodes n to have on the grid.

The final grid zi (i = 1, . . . , n), is then derived by

zi = Sqi−m + ztd,

where

• m denotes an index offset (possibly 0) to shift the transformed qi grid if required;

• S is a scaling factor;

• ztd is the translation distance.

The finally generated grid only includes nodes. Vertices are, by definition, located mid-may be-
tween nodes, or at either end of the gridded domain.

In order to preserve second order truncation error that can be easily achieved on regular
meshes, it is sufficient to use a mapping Q : ξi → qi that is twice continuously differentiable
on [0, 1].

22

4.1.1 Node-to-node grids

For node-to-node grids, z1 = 0 and zn = L. Hence,

• q0 must be remapped onto z1, requiring that m = 1;

• qN must be remapped onto zn, requiring that N + m = n, i.e., N = n− 1

• z1 = 0 and z1 = Sq0 + ztd = ztd require that ztd = 0

• zn = L and zn = Sqn−1 + ztd = S require that S = L

4.1.2 Node-to-vertex grids

For node-to-vertex grids, z1 = 0. zn is inside the domain to be gridded and chosen so that with a
virtual next point zn+1, mapped from qN would provide a vertex between zn and zn+1 such that
1
2 (zn + zn+1) = L. Accordingly:

• q0 must be remapped onto z1, requiring that m = 1;

• qN must be remapped onto zn+1, requiring that N + m = n + 1, i.e., N = n;

• z1 = 0 and z1 = Sq0 + ztd = ztd require that ztd = 0;

• noting that

zn + zn+1 = Sqn−1 + Sqn + 2ztd

= SqN−1 + SqN

= SQ(ξN−1) + S
= S(Q(ξN−1) + 1)

the vertex condition 1
2 (zn + zn+1) = L finally leads to

S = L
2

Q(ξN−1) + 1
= L

2
Q(n−1

n) + 1
.

4.1.3 Vertex-to-node grids

For vertex-to-node grids, zn = L. z1 is inside the domain to be gridded and chosen so that with a
virtual preceding point z0, mapped from q0 would provide a vertex between z0 and z1 such that
1
2 (z0 + z1) = 0. Accordingly:

• q1 must be remapped onto z1, requiring that m = 0;

• qN must be remapped onto zn, requiring that N + m = n, i.e., N = n;

• zn = L and zn = SqN + ztd = S + ztd require that ztd = L− S;

• noting that

z0 + z1 = Sq0 + Sq1 + 2ztd

= Sq1 + 2(L− S)
= SQ(ξ1) + 2(L− S)
= S(Q(ξ1)− 2) + 2L

the vertex condition 1
2 (z0 + z1) = 0 finally then leads to

S = L
2

2−Q(ξ1)
= L

2
2−Q(1

n)
.

Hence,

ztd = L− S = L

(
1− 2

2−Q(1
n)

)
= −L

Q(1
n)

2−Q(1
n)

23

4.1.4 Vertex-to-vertex grids

For vertex-to-vertex grids grids, z1 is inside the domain to be gridded and chosen so that with
a virtual preceding point z0, mapped from q0 would provide a vertex between z0 and z1 such
that 1

2 (z0 + z1) = 0; zn is also inside the domain to be gridded and chosen so that with a virtual
next point zn+1, mapped from qN would provide a vertex between zn and zn+1 such that 1

2 (zn +
zn+1) = L. Accordingly:

• q1 must be remapped onto z1, requiring that m = 0;

• qN−1 must be remapped onto zn, requiring that N − 1 + m = n, i.e., N = n + 1;

• noting, as above, that
z0 + z1 = SQ(ξ1) + 2ztd

and that

zn + zn+1 = Sqn−1 + Sqn + 2ztd

= SqN−1 + SqN + 2ztd

= S(Q(ξN−1) + 1) + 2ztd

the vertex conditions 1
2 (z0 + z1) = 0 and 1

2 (zn + zn+1) = L require that S and ztd obey to a
linear system {

Q(ξ1)S + 2ztd = 0
(Q(ξN−1) + 1)S + 2ztd = 2L

i.e., {
Q(1

n+1)S + 2ztd = 0
(Q(n

n+1) + 1)S + 2ztd = 2L
Hence,

S = L
2

Q(n
n+1)−Q(1

n+1) + 1

ztd = −L
Q(1

n+1)

Q(n
n+1)−Q(1

n+1) + 1

4.2 Linear grids

For linear grids, the fundamental remapping function is simply

Q(ξi) = ξ.

4.3 Quadratic-linear grids

For quadratic-linear grids (Boudreau, 1997, eqn. 8.156, p. 333), the fundamental remapping func-
tion is

Q(ξi) =
(ξ2

i + ξ2
c)

1
2 − ξc

(1 + ξ2
c)

1
2 − ξc

.

Here, 0 ≤ ξc ≤ 1 is a parameter that sets the fraction of the domain where the spacing is quadratic
(ξ � ξc) and where it tends to become linear (ξ � ξc).

4.4 Power-linear grids

Power-linear grids are a generalization of the quadratic-linear grids from the previous section.
The fundamental remapping function is

Q(ξi) =
(ξ

p
i + ξ

p
c)

1
p − ξc

(1 + ξ
p
c)

1
p − ξc

.

24

4.5 Geometric progression grids

For geometric progression grids (used by Soetaert et al. (1996)) in general, there are several pa-
rameters of importance, besides the number of grid points, which we assume fixed a priori:

• the thickness of the first interval, δ;

• the geometric progression ratio, r;

• the extent of the interval to be gridded, L.

The three parameters are not independent of each other. However, the relationships are different
from one grid type to another.

To take advantage of the developments presented in the introduction, let us start to derive the
remapping ξi → qi. For any initial scale factor σ and progression ratio r, we have

q0 = 0
q1 = σ

q2 = q1 + σr = σ(1 + r)

q3 = q2 + σr2 = σ(1 + r + r2)

...
qi = σ(1 + r + r2 + . . . + ri−1)

...
qN = σ(1 + r + r2 + . . . + rN−1)

Notice that qi = σ(1 + r + r2 + . . . + ri−1) = σ(1− ri)/(1− r). Hence, if qN = 1 then σ = 1−r
1−rN ,

leading to the remapping function

Q(ξi) =
1− ri

1− rN =
ri − 1
rN − 1

=
rNξi − 1
rN − 1

4.5.1 Grid types

Node-to-node

Characteristics: m = 1, N = n− 1, S = L, ztd = 0. Hence,

zi = L ·Q(ξi−1) = L
ri−1 − 1
rn−1 − 1

, i = 1, . . . , n

Since
z2 = δ = L

r− 1
rn−1 − 1

we can rewrite this as

zi = δ
ri−1 − 1

r− 1
, i = 1, . . . , n

and we furthermore have

L = δ
rn−1 − 1

r− 1

Node-to-vertex

Characteristics: m = 1, N = n, S = L 2
Q(ξN−1)+1 , ztd = 0.

zi = L
2

Q(ξN−1) + 1
·Q(ξi−1) = L

2
rn−1−1

rn−1 + 1

ri−1 − 1
rn − 1

, i = 1, . . . , n

25

and again

z2 = δ = L
2

rn−1−1
rn−1 + 1

r− 1
rn − 1

= L
2(r− 1)

rn − 1 + rn−1 − 1
.

We can rewrite this as

zi = δ
ri−1 − 1

r− 1
, i = 1, . . . , n

and we furthermore have

L = δ
rn − 1 + rn−1 − 1

2(r− 1)

Vertex-to-node

Characteristics: m = 0, N = n, S = L 2
2−Q(1

n)
, ztd == −L Q(1

n)

2−Q(1
n)

.

zi = L
2

2−Q(1
n)
·Q(ξi)− L

Q(1
n)

2−Q(1
n)

= L
1

2−Q(1
n)
· (2Q(ξi)−Q(1

n))

= L
1

2− r−1
rn−1

· (2 ri − 1
rn − 1

− r− 1
rn − 1

)

= L
2ri − r− 1
2rn − r− 1

In this case,

δ = z1 − z0 = 2L
r− 1

2rn − r− 1
and we can rewrite the sequence as

zi =
δ

2
2ri − r− 1

r− 1

and we furthermore have
L = δ

2rn − r− 1
2(r− 1)

Vertex-to-vertex

Characteristics: m = 0, N = n + 1, S = 2L/(Q(ξN−1)−Q(ξ1) + 1), ztd = −LQ(ξ1)/(Q(ξN−1)−
Q(ξ1) + 1)

zi = L
2

Q(ξN−1)−Q(ξ1) + 1
·Q(ξi)− L

Q(ξ1)

Q(ξN−1)−Q(ξ1) + 1

= L
2Q(ξi)−Q(ξ1)

Q(ξN−1)−Q(ξ1) + 1

= L
2 ri−1

rn+1−1 −
r−1

rn+1−1
rn−1

rn+1−1 −
r−1

rn+1−1 + 1

= L
2ri − r− 1

rn+1 − r + rn − 1

= L
2ri − r− 1

(r + 1)(rn − 1)

In this case,

δ = z1 − z0 = 2L
r− 1

(r + 1)(rn − 1)

26

and we can rewrite the sequence as

zi =
δ

2
2ri − r− 1

r− 1

and we have

L = δ
(r + 1)(rn − 1)

2(r− 1)
.

Furthermore,

zn+1 + zn = L
2rn+1 − 2r + 2rn − 2

(r + 1)(rn − 1)
= 2L

(r + 1)(rn − 1)
(r + 1)(rn − 1)

= 2L

as expected.

4.5.2 Derived quantities

As mentioned above, the three parameters of interest, δ, r and L are interdependent. For each
of the four grid-types, we have shown that the three parameters are related by one relationship.
Accordingly, one of the three parameters can be derived from the two others. There are two cases
that are straightforward to handle:

• for given r and δ, L can be directly derived;

• for given r and L, δ can be directly derived;

The third case, where δ and L are given, is more complicated to handle as it involves a non-linear
equation to solve for r. The equation to solve depends on the grid type adopted.

Node-to-node

The equation to solve is

fnn(r) ≡
rn−1 − 1

r− 1
− L

δ
= 0

r = 1 appears to be a critical value: for r = 1, the equation function evaluates to

fnn(1) = (n− 1)− L
δ

Node-to-vertex

The equation to solve is

fnv(r) ≡
rn − 1 + rn−1 − 1

2(r− 1)
− L

δ
= 0

For r = 1, the function evaluates to

fnv(1) =
2n− 1

2
− L

δ

Vertex-to-node

The equation to solve is

fvn(r) ≡
2rn − r− 1

2(r− 1)
− L

δ
= 0.

For r = 1, the function evaluates to

fvn(1) =
2n− 1

2
− L

δ

27

Vertex-to-vertex

The equation to solve is

fvv(r) ≡
(r + 1)(rn − 1)

2(r− 1)
− L

δ
= 0.

For r = 1, the function evaluates to

fvv(1) = n− L
δ

4.5.3 Solving for r

Preliminaries

For r > 1, r2 = r · r > r, . . . , ri = r · ri−1 > r and thus

rp − 1
r− 1

= rp−1 + . . . + r + 1

> r + . . . + r + 1
> (p− 1)r + 1
> (p− 1)r

Accordingly, for r = a/(p− 1), where a > (p− 1),

rp − 1
r− 1

− a > (p− 1) · r− a = (p− 1) · a/(p− 1)− a = 0.

For r > 1, and n sufficiently large, we thus have for the different equation functions:

fnn(r) =
rn−1 − 1

r− 1
− L

δ
> (n− 2)r− L

δ

fnv(r) =
rn − 1 + rn−1 − 1

2(r− 1)
− L

δ
> (

n− 1
2

+
n− 2

2
)r− L

δ
=

2n− 3
2

r− L
δ

fvn(r) =
2rn − r− 1

2(r− 1)
− L

δ
=

rn − 1 + r(rn−1 − 1)
2(r− 1)

− L
δ
>

2n− 3
2

r− L
δ

fvv(r) =
(r + 1)(rn − 1)

2(r− 1)
− L

δ
>

rn − 1
r− 1

− L
δ
> (n− 1)r− L

δ

This inequalities can be used to derive bounds, so that a Newton method safe-guarded by a bi-
section method can be used.

Solution algorithm

Simple cases:

• n = 2

– fnn(r) = r−1
r−1 −

L
δ = 1− L

δ . No condition on r, but it is required that L = δ

– fnv(r) = r2+r−2
2(r−1) −

L
δ = 1

2 (r + 2)− L
δ and thus r = 2(L

δ − 1). Since r > 0, this is only
possible if L > δ.

– fvn(r) = 2r2−r−1
2(r−1) −

L
δ = 1

2 (r +
1
2)−

L
δ and thus r = 2 L

δ −
1
2 , requiring that L > 4δ.

– fvv(r) =
(r+1)(r2−1)

2(r−1) − L
δ = 1

2 (r + 1)2 − L
δ and thus r =

√
2 L

δ − 1 (the negative square
root leads to negative r), requiring that L > 2δ.

• n = 3

– fnn(r) = r2−1
r−1 −

L
δ = (r + 1)− L

δ and thus r = L
δ − 1, requiring that L > δ.

28

– fnv(r) = r3−1+r2−1
2(r−1) − L

δ = 1
2 (r

2 + 2r + 2)− L
δ . The equation to solve is then r2 + 2r +

2(1− L
δ). This equation has a real solution only if 4− 8 · (1− L

δ) ≥ 0, i.e., if 1− L
δ ≤

1
2 ,

i.e., if L ≥ 1
2 δ. In this case, r = −1 +

√
2 L

δ − 1. That root r is only positive if L > δ.

– fvn(r) = 2r3−r−1
2(r−1) −

L
δ = (r2 + r + 1

2)−
L
δ . The equation to solve is then r2 + r + (1

2 −
L
δ).

This equation has only a solution if 1− 4 · (1
2 −

L
δ) ≥ 0, i.e., if 1

2 −
L
δ ≤

1
4 , i.e., if L ≥ 1

4 δ.

In this case, r = − 1
2 + 1

2

√
4 L

δ − 1. That root r is only positive if L > 1
2 δ.

– fvv(r) = (r+1)(r3−1)
2(r−1) − L

δ = 1
2 (r + 1)(r2 + r + 1) − L

δ . The equation to solve is then

(r + 1)(r2 + r + 1)− 2 L
δ = 0. The first term is a monotonously increasing polynomial.

The equation has thus only one real solution; the other two must be complex conjugate.
The product of the three solutions is equal to−(1− 2 L

δ). The real solution can therefore
only be positive if L > 1

2 δ.

fvv(0) = 1
2 −

L
δ : always negative

fvv(1) = 3− L
δ : positive or zero if L

δ ≤ 3

fvv(
L
δ /2) > 0 if L

δ > 2

General case (n > 3)

• fnn(r) = rn−1−1
r−1 −

L
δ = GPn−1(r)− L

δ

fnn(0) = 1− L
δ : fnn(0) ≤ 0 if L

δ ≥ 1

fnn(1) = n− 1− L
δ : fnn(1) > 0⇔ L

δ < n− 1

fnn(
L
δ /(n− 2))) > 0 if L

δ > n− 2

• fnv(r) = rn−1+rn−1−1
2(r−1) − L

δ = 1
2 (GPn(r) + GPn−1(r))− L

δ = 1
2 ((r + 1)GPn−1(r) + 1)− L

δ

fnv(0) = 1− L
δ : fnv(0) ≤ 0 if L

δ ≥ 1

fnv(1) = n− 1
2 −

L
δ : fnv(1) > 0⇔ L

δ < n− 1
2

fn(
L
δ /(n− 3

2)) > 0 if L
δ > n− 3

2

• fvn(r) = 2rn−r−1
2(r−1) −

L
δ = 1

2 (GPn(r) + rGPn−1(r))− L
δ = rGPn−1(r) + 1

2 −
L
δ

fvn(0) = 1
2 −

L
δ : fnv(0) ≤ 0 if L

δ ≥
1
2

fvn(1) = n− 1
2 −

L
δ : fnv(1) > 0⇔ L

δ < n− 1
2

fvn(
L
δ /(n− 3

2)) > 0 if L
δ > n− 3

2

• fvv(r) =
(r+1)(rn−1)

2(r−1) − L
δ = 1

2 (r + 1)GPn(r)− L
δ

fvv(0) = 1
2 −

L
δ : fnv(0) ≤ 0 if L

δ ≥
1
2

fvv(1) = n− L
δ : fnv(1) > 0⇔ L

δ < n

fvv(
L
δ /(n− 1)) > 0 if L

δ > n− 1

So for each case, it is possible to derive lower and upper bounds for the root r of the equation:
r = 0 can always provides a lower bound and the third bound listed for each grid type above an
upper bound for the root of the equation; r = 1 may be used to override either of them, depending
on whether it is a lower (fxx(1) < 0) or an upper bound (fxx(1) > 0) of the root.

29

4.6 General series-based grids

For general series-based grids, we assume that we have a sequence δi > 0 (i = 1, . . . N) and that

qi =
1
∆

i∑
j=1

δi i = 1, . . . N

where

∆ =
N∑

j=1

δi

is a normalizing scale such that qN = 1. Furthermore, q0 = 0.

30

Bibliography

M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover, New York, NY, 1965.
9th printing.

R. A. Berner. Early Diagenesis. A Theoretical Approach. Princeton Series in Geochemistry. Princeton
University Press, Princeton, NJ, 1980.

B. P. Boudreau. Diagenetic Models and Their Implementation. Springer-Verlag, Berlin, 1997. doi:
10.1007/978-3-642-60421-8.

B. P. Boudreau. On the equivalence of non-local and radial-diffusion models for porewater irriga-
tion. J. Mar. Res., 42(3):731–735, 1984. doi: 10.1357/002224084788505924.

B. P. Boudreau. The mathematics of tracer mixing in sediments : I. Spatially-dependent, diffusive
mixing. Am. J. Sci., 286(3):161–198, 1986. doi: 10.2475/ajs.286.3.161.

G. Engeln-Müllges and F. Uhlig. Numerical Algorithms with Fortran. Springer-Verlag, Berlin, 1996.
ISBN 3-540-60529-0.

M. E. Fiadeiro and G. Veronis. On weighted-mean schemes for the finite difference approximation
to the advection-diffusion equation. Tellus, 29:512–522, 1977. doi: 10.1111/j.2153-3490.1977.
tb00763.x.

W. Hundsdorfer and J. Verwer. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction
Equations. Springer Series in Computational Mathematics. Springer, Berlin, 2003. ISBN 3-540-
03440-4. doi: 10.1007/978-3-662-09017-6.

H.-G. Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for Singularly Perturbed Differ-
ential Equations, volume 24 of Springer Series in Computational Mathematics. Springer, 2 edition,
2008. ISBN 978-3-540-34466-7. doi: 10.1007/978-3-540-34467-4.

K. Soetaert, P. M. J. Herman, and J. J. Middelburg. A model of early diagenetic processes from
the shelf to abyssal depths. Geochim. Cosmochim. Ac., 60(6):1019–1040, 1996. doi: 10.1016/
0016-7037(96)00013-0.

31

	Discretisation of the Equations
	Introduction
	Continuity Equations
	Solids: transport expression and additional equations
	Solutes: transport expressions
	Boundary-conditions and interface equations
	Differential Algebraic Equations for Solutes

	Discretisation of the Continuity Equations
	Grid characteristics
	General finite volume discretisation
	Flux discretisations
	Boundary conditions
	Flux speciation at the free water interface (vertex W)

	Numerical Methods
	Numerical Solution of the Equation System
	Time Stepping and Boundary Conditions
	Solution strategy

	Primary and secondary variables

	Scaling of the equations
	Introduction
	Application
	Basics
	Scaling based up the diffusion time scale
	Scaling based up the reaction time scale

	Equation scaling for laws of mass-action

	Grid Generation
	Introduction
	Node-to-node grids
	Node-to-vertex grids
	Vertex-to-node grids
	Vertex-to-vertex grids

	Linear grids
	Quadratic-linear grids
	Power-linear grids
	Geometric progression grids
	Grid types
	Derived quantities
	Solving for r

	General series-based grids

