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1 Introduction

1.1 Early diagenesis equations
medusa (Model of Early Diagenesis in the Upper Sediment with Adaptable
complexity) solves the one-dimensional Advection-Diffusion-Reaction equa-
tions of early diagenesis, with fast chemical reactions eliminated by adopting
the hypothesis of local chemical equilibrium

∂Ĉi

∂t
+ ∂Ĵi

∂z
− Ŝi = 0 (1)

where t is time and z depth below the sediment-water interface (positive
downwards), Ĉi denotes the concentration of i per unit volume of total sedi-
ment (solids plus porewater), Ĵi is the local transport (advection and diffu-
sion), per unit surface area of total sediment, and

Ŝi = R̂i + r̂i + Q̂i (2)

represents the net source-minus-sink balance for constituent i per unit vol-
ume of total sediment, R̂i being the net reaction rate, r̂i the net fast in-
terconversion rate, that is going to be filtered out of the equations by an
equilibrium consideration and Q̂i the non-local transport (considered only
for solutes). Solids are transported by advection throughout the sediment
column and subject to bioturbation in the surface mixed layer. Bioturbation
is represented as a diffusive process. Both inter- and intraphase biodiffusion
variants (Boudreau, 1986; Mulsow et al., 1998) are taken into account and
can be combined:

Ĵi = −Dinter
i

∂ϕsCs
i

∂z
− ϕsDintra

i

∂Cs
i

∂z
+ ϕswCs

i .

Biodiffusion coefficients are supposed to be the same for all solids within
a given sediment column: Dinter

i (z) ≡ Dinter(z) and Dintra
i (z) ≡ Dintra(z).

For convenience, we define Dbt(z) = Dinter(z) + Dintra(z) and Dinter(z) =
β(z)Dbt(z). Ĵi can then be rewritten as

Ĵi = −ϕsDbt∂C
s
i

∂z
+
(
ϕsw − βDbt∂ϕ

s

∂z

)
Cs

i . (3)

Solutes in surface sediments are transported by molecular and ionic diffu-
sion in porewaters, by interphase bioturbation, porewater advection and by
bioirrigation. In the absence of impressed flow, transport by porewater ad-
vection is, however, negligible compared to diffusion; biodiffusion coefficients
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are furthermore an order of magnitude lower than molecular and ionic diffu-
sion coefficients. The expression for the local transport term of a porewater
solute i adopted in medusa then reduces to

Ĵi = −ϕfD
sw
i

θ2
∂C f

i

∂z
, (4)

where Dsw
i is the free diffusion coefficient of the solute i in seawater, θ2 is

tortuosity, parametrized as function of porosity.
Bioirrigation provides a non-local transport mode for solutes. In medusa,

the source-sink approach (Boudreau, 1984) is used to quantify the effect of
bioirrigation:

Q̂i(z) = α(z)ϕf(z)(Coc
i − C f

i (z))
where α(z) is the bioirrigation constant, which may be depth-dependent, and
Coc

i is the concentration of solute i in the irrigation channels, set equal to
the solute’s concentration in seawater overlying the sediment.

The equation system is amended by taking into account two constraints.

1. One of the solids’ evolution equations is replaced by the static volume
conservation equation: ∑

i∈Y s
ϑiC

s
i = 1 (5)

where Y s denotes the inventory of solid components considered in the
model configuration and ϑi the partial specific volume of solid i, sup-
posed to be invariable.

2. For the solids’ advection profile, the depth-integrated solid phase vol-
ume conservation equation is used

ϕs(z)w(z)− β(z)Dbt(z)∂ϕ
s

∂z
=
∑
i∈Ys

ϑiÎ
top
i +

∫ z

zT

∑
i∈Is

ϑiR̂i(z′) dz′, (6)

where Îtop
i denotes the deposition rate of solid component i per unit

surface of total sediment per unit time, entering the surface sediment
through the sediment-water interface at the top.

The rapid interconversion reaction rates ri are filtered out of the equa-
tion system on the assumption that the corresponding chemical reactions are
in local thermodynamic equilibrium. Practically, subsets of equations are
replaced by carefully selected linear combinations of themselves, and others
replaced by the equilibrium relationships. The code generator takes care of
these transformations, on the basis of auxiliary information about solutes
that form systems and the stoichiometry of the chemical equilibria between
the members of these systems.
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1.2 System of units
The fundamental units adopted in medusa are as follows:

Mass –
solutes: moles
solids: kg

Lengths – m

Time – yr
one may chose between three different calendars, with 360, 365 and
365.25 days/yr, resp., where 1 day = 24 hours, 1 hour = 3600 s (see sec-
tion 4.3 below).

Temperature – ◦C

1.3 Sediment Column Partitioning and Vertical Dis-
cretisation

A complete sediment column in medusa is subdivided into three different
vertically stacked parts called realms (Fig. 1):

REACLAY — the top-most part extending downwards from the sediment
top at the sediment-water interface and where chemical reactions are
taken into consideration;

TRANLAY — the transition layer of changing thickness just underneath,
acting as a temporary storage to connect REACLAY to the underlying
TRANLAY;

CORELAY — a stack of sedimentary layers representing the deep sedi-
ment, i. e., the sediment core;

DBL [optional] — a Diffusive Boundary Layer acting as a diffusive barrier
to the sediment-water exchange of solutes can be included on top of
the REACLAY realm.

REACLAY encompasses the bioturbated sedimentary mixed-layer, where
most of the reactions relevant for early diagenesis take place (organic matter
remineralisation, carbonate dissolution etc.). The bottom of the bioturba-
tion zone may coincide with the bottom of REACLAY or be situated within
it.
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Figure 1: Partitioning of the sediment column in medusa: an optional dif-
fusive boundary layer (DBL) on top of the main part of the model sedi-
ment where diagenetic reactions and advective-diffusive transport take place
(REACLAY), the transition layer (TRANLAY) and the core represented by
the stack of layers (CORELAY). The bottom of the bioturbation zone may
coincide with the bottom of REACLAY (see text for details).
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The numerical solution is based upon a finite volume approach. The
adopted discretisation grid is vertex-centred: the boundaries between the
finite volume elements are located mid-way between the element grid-points.
Fig. 2 illustrates the main characteristics of the grid? For the local fluxes
(diffusive and advective), an upwind-weighted spatial discretisation is used
with two schemes to choose: full upwind or exponential fitting.

1.4 Time stepping
medusa may be used for transient or steady-state simulation experiments:

• for transient simulation experiments, time stepping is fully implicit
(implicit Euler);

• for steady-state simulation experiments, the time-step lengths must be
set to zero; the solver routines detect this special value and proceed to
the direct solution for steady state in this case.

1.5 Source code tree
The source code tree is organised as follows:
[trunk]/src-med − medusa framework and build directory, in-

cluding standard templates (in templates)
/src-med/gen − destination sub-directory for the generated

code parts and templates
/src-mcg − medusacocogen (medusa Configuration

and Code GENeration tool, including the rate-
law and law-of-mass-action library modules
(in lib), xml description file collections and
temporary work space for code generation (in
the subdirectories tmp and gen)

/apps − applications
/docs − documentation

2 MEDUSA Code Framework

2.1 solvsed onestep.F and solvsedFVFullUpwind.F: as-
sembling and solving the equations

The subroutine SOLVSED_ONESTEP (source file solvsed_onestep.F) carries
out one time-step for all of the columns registered in the central storage

7



z
T+1

z
T

z
+½T

z
+1+½T

z
T+2

h
+

T

h
+1T

h
+1+½T

h
+½T

(b)

jz − ½

jz + ½

z j

j −1z

z j +1

z j +2

j −2z

jh −½

jh +½

jh

(a)

B−2z

z −1B

zB−½

zB

−1−½Bz

Bh
−

Bh −½

(c)
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area (MOD_SEAFLOOR_CENTRAL – see below). For each column, it loads rele-
vant data into the workspace modules (MOD_GRIDPARAM, MOD_MILIEUCHARAS,
MOD_MATERIALCHARAS,. . . ) and updates information held in others (such as
MOD_TRANSPORT, . . . ). It then proceeds to determine the new column state at
the end of the time step depending on the boundary conditions. The equa-
tion system used to describe the evolution of the model sediment and its pore
waters is then assembled and solved by the subroutine ImplicitTimeStep
from solvsedFVFullUpwind.F. The solution method is iterative (damped
Newton scheme) and one critical stage is the initialization of that scheme.
SOLVSED_ONESTEP offers a sequence of strategies to carry out this initializa-
tion and calls ImplicitTimeStep in turn until a satisfactory solution to the
system is found. There are currently seven such strategies implemented:

BASIC — initialise the column concentrations (both solids and solutes) with
the state of the initial instant of the time-step;

SOLUT — initialize the column porewater concentrations homogeneously with
the boundary conditions and the solids’ concentrations as in the initial
instant of the time-step;

PSVOL — a continuation method, where the partial specific volumes of all the
solids except for the mandatory clay are increased from zero to their
actual value in 10 steps, and at each step, concentration profiles are
calculated by starting the iterations with the results from the previous
step;

RREAC — another continuation method, where the reaction rates are in-
creased from zero to their full rate in 30 steps, and at each step, concen-
tration profiles are calculated by starting the iterations with the results
from the previous step;

WFFLX — another continuation method, where the mass fraction of non-
lithogenic solids in the solid flux entering the sediment from above
is increased from zero to its actually requested fraction in 10 steps,
and at each step, concentration profiles are calculated by starting the
iterations with the results from the previous step;

TIMST — another continuation method, only used for steady-state calcula-
tions, where the time step is increased from 10 to 106 years in 20 steps
and then to ∞, and each step, concentration profiles are calculated by
starting the iterations with the results from the previous step;
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COLLA — yet another continuation method, only used in case the sediment
column is subject to chemical erosion: in this case the volume fraction
of non-lithogenic solids in the is replaced by its equivalent volume of
lithogenic (inert) material is gradually increased from pure clay to its
actual volume composition in 10 steps, and at each step, concentration
profiles are calculated by starting the iterations with the results from
the previous step.

For the three continuation methods, the very first iterative calculation of the
sediment state is initialized by the initial state of the time step being carried
out (as with BASIC).

2.2 MOD EXECONTROL MEDUSA: model execution control
The MOD_EXECONTROL_MEDUSA module is most relevant for MPI-enabled ap-
plications. For serial applications, only the ABORT_MEDUSA subroutine is used
from this module. That subroutine correctly closes all the log, debug and
error files before aborting, thus making sure that those file are complete.

With most compilers, the call to ABORT(), if supported, triggers the se-
quence of subroutine and function subprogram calls up to the abortion point
to be printed out. this information may be useful for understanding the
reasons for the program failure.

2.3 MOD BASICDATA MEDUSA: basic data and constants
MOD_BASICDATA_MEDUSA (source file src-med/mod_basicdata_medusa.F) in-
cludes a richly documented collection of basic physical data, such as elemental
molar weights, physical constants (gas constant, unit conversion constants,
. . . ), standard isotopic ratios (13C/12C (PDB), 11B/10B (NIST SRM 951),
. . . ) or radioactive decay constants. It also provides parameter constants for
common unit conversions (e.g., cm2/s in m2/yr).

2.4 MOD DEFINES MEDUSA: global parameter, selector and
flag values

MOD_DEFINES_MEDUSA (source file src-med/mod_defines_medusa.F) central-
izes the logical unit numbers used by the log, error and debug files in medusa.

2.5 MOD SEAFLOOR CENTRAL: multi-column management
MOD_SEAFLOOR_CENTRAL (source file src-med/mod_seafloor_central.F) is
the central data turntable and provides important parts of the Application
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Programming Interface (api) to the medusa framework system.
The current state of the complete sediment (all columns modelled) is

stored here. Dedicated subroutine and function subprograms are provided
here to transfer the data between this central storage area and the single-
column workspace where the solver takes them to solve the equations.

2.6 MOD SEDCORE: the sediment core system
The MOD_SEDCORE module (in src-med/mod_sedcore.F) manages and con-
trols the synthetic cores generated as solids get buried or chemically eroded,
i.e., cross the bottom boundary of the sediments reactive part.

2.7 MOD GRIDPARAM: grid related initialization
and workspace

The MOD_GRIDPARAM module (src-med/mod_gridparam.F) holds the infor-
mation about the model grid data. It also provides the workspace for the
grid-point distribution of a column during its processing. Finally, it contains
subroutines to initialize grid-point distributions.

The fundamental structure of the grid, i.e., the number of grid points in
the various parts of the sediment column is set there by a series of PARAMETER
constants:

ndn w2t — the number of grid nodes in the DBL, i. e., in the interval [zW , zS[
(notice zS excluded!) — may be zero;

ndn t2z — the number of grid nodes between the sediment-water interface
(or the sediment-DBL interface if a DBL is present) and the depth in
the REACLAY realm where bioturbation stops, i. e. in the [zS, zZ ]
interval;

ndn z2b — the number of grid nodes between the depth in REACLAY where
bioturbation stops and the bottom of REACLAY, i. e., in the ]zZ , zB]
interval (notice zZ excluded!) — may be zero.

Standard values are: ndn w2t = 0 (no DBL), ndn t2z = 21 and ndn z2b =
0 (completely bioturbated REACLAY).

The dimensional characteristics of the grid are the same for all sediment
columns in MOD_SEAFLOOR_CENTRAL: all the grids have the same number of
grid-points in the different realms (DBL, REACLAY) and parts (e.g., the
extent of the bioturbated layer, which is part of REACLAY).
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Default parameter values for the various distributions can be overrid-
den by using a configuration file medusa_grid_config.nml. Details about
how this can be done in practice are provided in the comments of the tem-
plate medusa_grid_config.nml_template in src-med/templates. Such a
file must always start with a main namelist called &nml_grid_options/, with
the following entries and default values:
&nml_grid_options
ctype_grid_variability = ’static_global’
ctype_gridpoint_distribution = ’quad_lin’
/

Entries for which default values are to be adopted may simply be left out
(as always with namelists). The namelist must always be present, even if the
default settings should be used and it might be left empty.

2.7.1 Grid variability

Although the number of grid points is fixed, the grid-point distribution (spac-
ing, extent, . . . ) may be different among columns and also change in time.
The variability of the grid-point distribution can be set to
static global — the same distribution is used for all columns and it does

not change in time [default];

static local — each column may use its own grid-point distribution, which
does not change in time;

dynamic — grid-point-distributions may be different from column to column
and change in time [not yet fully implemented].

This information is most relevant for the NetCDF files: for static_global
grids, only one grid-point distribution (one 1D array) is written that is valid
for all grids; for static_local grids, one array of grid-point distributions is
written (organized as a 2D array); for dynamic grids, the grid-point distri-
butions (2D arrays) are included with each time record.

The equations and Jacobians assembled in solvsedFVFullUpwind are
currently only consistent with static_global and static_local grid-point
distributions.

2.7.2 Grid-point distribution functions

There are currently six grid-point distribution functions implemented. In the
following, it is assumed that the grid points are indexed from iT – sediment-
water interface – through iZ – bottom of the bioturbated layer – to iB at the
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bottom of REACLAY). Their identifiers for usage in the configuration file
are as follows:
linear — linear distributions, separately in the bioturbated and in the non-

bioturbated parts of REACLAY:

zi = LB
i− iT
iZ − iT

, i ≤ iZ

zi = LB + (L− LB) i− iZ
iB − iZ

, i > iZ

Default values are: LB = L = 10 cm.

quad lin — quadratic top and linear bottom (Boudreau, 1997, eq. (8.156),
p. 333), separately in the bioturbated and in the non-bioturbated parts
of REACLAY [default ]:

zi = LB

√
( i−iT

iZ−iT
)2 + χ2

T − χT√
1 + χ2

T − χT

, i ≤ iZ

zi = LB + (L− LB)

√
( i−iZ

iB−iZ
)2 + χ2

B − χB√
1 + χ2

B − χB

, i > iZ

Default values are: LB = L = 10 cm and χT = χB = 0.5.

quad quad — quadratic top and quadratic bottom, over the complete REA-
CLAY, i.e., mirrored around L/2:

zi = L

√
( i−iT

iB−iT
)2 + χ2 − χ

√
1 + χ2 − χ

, i < iT + (iB − iT)/2

ziT+(iB−iT)/2 = L/2, if iB − iT even
zi = L− zi−iB+iT , i > iT + (iB − iT)/2

Default values are: LB = L = 10 cm and χ = 0.5.

geomprog open — grid points distributed such that the distances between
consecutive grid-points form a geometric progression, where the scale
factor δ and the ratio r are given:

ziT = 0
zi = zi−1 + δri−(iT+1), iT < i ≤ iB

Default values are: δ = 1 mm r = 1.06.
It is called open because the REACLAY thickness is given by the re-
sulting ziB which is a function of n, δ and r.
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geomprog closed — grid points distributed such that the distances between
consecutive grid-points form a geometric progression, where the scale
factor δ is given and the ratio r is calculated such that ziB = L:

ziT = 0
zi = zi−1 + δri−(iT+1), iT < i ≤ iB

By default, L = 10 cm and δ = 1 mm.
It is called closed because the REACLAY thickness L is prescribed.

custom — use a custom grid-point distribution scheme. This requires that

• a source file named gridef_custom.F containing two subroutines,
named GRIDEF_CUSTOM (to evaluate the custom distribution func-
tion) and SETUP_GRIDEF_CUSTOM (to initialize its parameters) is
copied or linked into src-med/gen/include after the code gener-
ation stage completes and before the library is built (i.e., between
make codegen and make libmedusa.a);

• the pre-processor switch -DGRID_CUSTOM is used to compile and
build libmedusa.a, so that gridef_custom.F is embedded into
MOD_GRIDPARAM.

A template that shows how to organize such a gridef_custom.F is pro-
vided in gridef_custom.F_template in src-med/templates. Please
notice that -DGRID_CUSTOM does not activate the custom distribution
function. It still needs to be activated with the configuration file.

If a DBL is included it is overlaid by a linear grid-point distribution prepended
to the REACLAY grid and indexed from iW – the top of the DBL – to iT−1.
the two grids are not connected at a node in this case, but at a vertex (cell
boundary).

2.8 MOD MILIEUCHARAS: milieu properties initialization
and workspace

MOD_MILIEUCHARAS (source file src-med/mod_milieucharas.F) holds data
and subprograms that describe the milieu characteristics of the sediment. It
provides the workspace for the following during the processing of a column:

• porosity profile (ϕ(zi), ∂ϕ/∂z|zi
)

• tortuosity parametrization (ϑ(zi)).
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It also contains subroutines to initialize or update these profiles.
Default parameter values related to the porosity profiles and tortuos-

ity relationships can be overridden by using an optional namelist config-
uration file medusa_milieu_config.nml that will be read in at run-time
from the work directory if present. The extensively commented template
medusa_milieu_config.nml_template in src-med/templates provides the
details about the possibilities offered by this file. Such a file must always start
with a main namelist called &nml_milieu_options/, with the following en-
tries and default values:
&nml_milieu_options
ctype_porosity_variability = ’static_global’
ctype_phi_profile = ’expdec’
ctype_tortuosity_rel = ’modweissberg’
/

Entries for which default values are to be adopted may simply be left out
(as always with namelists). The namelist must always be present, even if the
default settings should be used and it might be left empty.

2.8.1 Porosity profile variability

The variability of the porosity profile can be managed similarly to the grid-
point distribution:

static global — the same profile is used for all columns and it does not
change in time [default];

static local — each column may use its own porosity profile, which does
not change in time;

dynamic — porosity profiles may be different from column to column and
change in time.

Similarly to the grid variability, this information is again most used while
defining the variables for the NetCDF files and writing them.

The equations and Jacobians assembled in solvsedFVFullUpwind are
currently only consistent with static_global and static_local porosity
profiles.

2.8.2 Porosity profiles

There are currently three different porosity profiles available:
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const — a constant porosity profile

ϕ(z) = ϕ0

The default value is: ϕ0 = 0.9.

expdec — an exponentially decreasing porosity profile [default]

ϕ(z) = ϕ∞ + (ϕ0 − ϕ∞) exp(−z/ζϕ)

The default parameter values are: ϕ0 = 0.9, ϕ∞ = 0.7 and ζϕ = 4 cm.

custom — an custom profile. The pre-processor switch -DPHI_CUSTOM allows
an custom porosity profile to be included in the code, which can then
be activated by selecting it in the configuration file.

Each profile may offer additional adjustable parameters that can be adapted
with additional namelists in the configuration file. For the standard profiles
(i.e., non custom profiles), these are detailed in the template configuration
file and in the SETUP_TRANSPORT subroutine.

2.8.3 Tortuosity parametrizations

There are currently three tortuosity parametrizations available:

archie — Archie’s law
θ2(z) = ϕ(z)1−m

The default parameter value is: m = 2.14 (Boudreau, 1997).

burgerfrieke — Burger-Frieke relationship

θ2(z) = a(1− ϕ(z))

The default parameter value is: a = 3.14 (Boudreau, 1997).

modweissberg — modified Weissberg relationship [default]

θ2(z) = 1− b lnϕ(z)

The default parameter value is: b = 2.02 (Boudreau, 1997).

It is currently not possible to use custom tortuosity parametrizations.
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2.9 MOD TRANSPORT: transport parameter initialization,
processing and workspace

MOD_TRANSPORT (in src-med/mod_transport.F) is a “semi-finished” module,
that needs to be completed by composition-dependent parts (e.g., diffusion
coefficients for solutes, . . . ).

It holds the data relating to

• the biodiffusion profile: DB(zi), η(zi) and their derivatives with respect
to z)

• the bioirrigation profile: α(zi)

of the sediment column being currently processed. MOD_TRANSPORT further-
more contains subroutines to calculate the advection rate profiles (for solids,
for solutes), to evaluate the different flux terms (local and the non-local), and
utility subprograms for the application of the available upwinding schemes
(full upwind and exponential fitting).

It must be finished by a subroutine to evaluate the molecular and ionic
diffusion coefficients for the porewater solutes to be considered. This sub-
routine (MDIFFC) is generated by medusacocogen.

Default parameter values for the transport processes (biodiffusion and
bioirrigation coefficient profiles, upwinding) can be overridden by using an
optional namelist configuration file medusa_transport_config.nml that will
be read in at run-time from medusa’s working directory if present. The com-
ments in the template medusa_transport_config.nml_template which can
be found in src-med/templates provide the details about the possibilities
offered by this file. Such a file must always start with a main namelist called
&nml_transport_options/, with the following entries and default values:
&nml_transport_options
ctype_biodiffusion = ’const’
ctype_bioirrigation = ’none’
ctype_upwinding = ’full’
/

Entries for which default values are to be adopted may simply be omitted
(as always with namelists). The namelist must always be present, even if
the default settings should be used and it might be left empty. Please notice
that if an individual parameter of a profile must be changed, that profile must
be explicitly appear in the above namelist, even if it relates to the default.
Omitting an option above means that the complete defaults for that entry
are accepted.
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2.9.1 Biodiffusion coefficient profile

There are currently seven different biodiffusion coefficient profiles available:

const — constant, discontinuous across zZ [default]

Dbt(z) = Dbt
0

Default value: Dbt
0 = 0.15 cm2yr−1.

lin0z — linearly decreasing to 0 at zZ, continuous across zZ

Dbt(z) = Dbt
0

(
1− z

zZ

)

Default value: Dbt
0 = 0.15 cm2yr−1.

linxz — linearly decreasing down to zZ, discontinuous across zZ unless slope
is equal to 1

Dbt(z) = Dbt
0

(
1− z

zTσ

)
Default values: Dbt

0 = 0.15 cm2yr−1 and σ = 1.

quad0z — quadratically decreasing to 0 at zZ, continuous across ziZ

Dbt(z) = Dbt
0

(
1− z

zZ

)2

Default value: Dbt
0 = 0.15 cm2yr−1.

expdec — exponentially decreasing, discontinuous across zZ

Dbt(z) = Dbt
0 exp(−z/σ)

Default values: Dbt
0 = 0.15 cm2yr−1 and σ = 10 cm.

gaussn — gaussian decrease, discontinuous across zZ

Dbt(z) = Dbt
0 exp(−(z/σ)2)

Default values: Dbt
0 = 0.34 cm2yr−1 and σ = 5 cm.

custom — use a custom biodiffusion profile.This requires that
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• a source file named bdiffc_custom.F that contains two subrou-
tines, named BDIFFC_CUSTOM (to update the custom profile) and
SETUP_BDIFFC_CUSTOM (to initialize its parameters) is copied or
linked into src-med/gen/include after the code generation stage
completes and before the library is built (i.e., after make codegen,
but before make libmedusa.a);

• the pre-processor switch -DBIODIFFUSION_CUSTOM is used to com-
pile and build libmedusa.a, so that bdiffc_custom.F is inte-
grated into MOD_TRANSPORT.

A template that shows how such a bdiffc_custom.F must be set up is
provided in bdiffc_custom.F_template in src-med/templates. Sev-
eral usable examples (currently bdiffc_muds.F, bdiffc_omexdia.F
and bdiffc_dhabur.F) can be found in src-med/include/transport.
Similarly to -DGRID_CUSTOM, -DBIODIFFUSION_CUSTOM does not acti-
vate the custom profile function. It still needs to be activated with the
configuration file.

Details about options and about how to override default parameter values
for any of the available profiles can be found in the source code of the module
(mod_transport.F in src-med) and its included subroutine BDIFFC (source
code in bdiffc.F under src-med/include/transport).

2.9.2 Bioirrigation coefficient profile

The bioirrigation coefficient can currently be chosen to follow one of three
options:

none — bioirrigation is neglected [default]

α(z) = 0

expdec — exponentially decreasing

α(z) = α0 exp(−z/σ)

Default values are: α0 = 200 yr−1 and σ = 0.28 cm (van Cappellen
and Wang, 1996), or, alternatively (currently commented out), α0 =
240 yr−1 and σ = 4 cm (Katsev et al., 2007);

custom — use a custom profile,similarly to the biodiffusion coefficient pro-
file, to be provided here in a source file called birric_custom.F, with
the subroutines BIRRIC_CUSTOM and SETUP_BIRRIC_CUSTOM, in con-
junction with the -DBIOIRRIGATION_CUSTOM pre-processor switch.
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To be consistent with the biodiffusion coefficient and the concept of bioirri-
gation (irrigation through channels and tubes produced by infaunal activity),
the bioirrigation coefficient can only be non-zero for z ≤ zZ, and is equal to
zero for z > zZ.

Details about options and about how to override default parameter values
for any of the available profiles can be found in the source code of the module
mod_transport.F (in src-med) and its included subroutine BIRRIC (source
code in birric.F under src-med/include/transport).

2.9.3 Upwind scheme

Select the upwinding scheme: full upwind or exponential fitting (similar to
Fiadeiro-Veronis)

full — full upwind [default]

expfit — exponential fitting

There are currently no adaptable parameters for the two upwinding schemes.
It is also not possible to use custom schemes.

3 Completing the Picture: Further Steps To-
wards a Usable Application

The common framework presented above needs to be completed to transform
it into a concrete, useful and usable application. First of all, it must be
determined which solids, solutes and solute systems have to be considered in
the application; the chemical reaction network that describes the diagenetic
processes to take into account has to be defined and the chemical equilibria
within the solute systems need to be included. There are several additional
details that need to be taken care of: for the solutes under consideration,
diffusion coefficients are required to complete the transport terms in the
solutes’ equations; for solids, densities (from which partial specific volumes
are derived) need to be specified to evaluate the static volume conservation
equation; solubility products may be required for some solids, etc.

Once all the required information has been collected in standardized xml
component, chemical reactions and equilibrium description files, the medusa
configuration and code generation tool — medusacocogen – then gener-
ates the code for the missing modules and subroutines. The most important
of the generated source code files are
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• mod_indexparam.F with the index definitions for the components and
mod_materialcharas.F with the material characteristics (densities,
molar compositions and masses, . . . )

• mod_rreac.F with the subroutines to evaluate the process reaction
rates and their derivatives with respect to the components, and the de-
pendencies mod_processcontrol.F with subroutines to initialize and
update process parameters, mod_processdata.F to hold the parame-
ters and mod_processsubr.F to call the rate law library functions

• mod_store_ncfiles.F to write and mod_reac_ncfiles.F to read the
NetCDF results files, together with mod_netcdfparam.F for the com-
mon parameters

• mod_equilibcontrol.F with subroutines to initialize and update equi-
librium constants, mod_equilibdata.F to hold equilibrium related data
and mod_equilibsubr.F to evaluate the equilibrium relationships for
the requested equilibria

• mod_chemicalconsts.F with additional chemical constants and a sub-
routine to initialize and update them

• flux2dae.F to convert the partial differential equation system into a
differential algebraic equation system, where the fast interconversion
rate terms have been filtered out and the relevant equilibrium relation-
ship introduced.

In addition, a series of templates are generated with optional code include
files, host-model interface code blocks, setup routines, run-time configuration
files and regular input files. Please refer to the companion Reference Guide
to the Configuration and Code Generation Tool medusacocogen for details
about this part of the model development process.

4 Global compilation options
There are several options that can be selected at the compilation stage (in
the Makefile). Most of the available options are also listed in the Makefiles
of common applications.

4.1 Debugging
Debugging can be switched on with the pre-processor switch -DDEBUG at
compilation. Additional debugging switches can be selected in debug.h (in
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src-med), allowing to restrict debugging to selected subroutines only, or even
parts of subroutines. Default is not to generate debugging information.

4.2 Parallel execution with MPI

The Message-Passing Interface related parts of medusa can be activated
with the pre-processor switch -DALLOW_MPI during compilation. Default is
serial execution only.

4.3 Calendar type (days per year)
As mentioned above, the fundamental unit of time in medusa is the year.
As medusa is meant to be coupled to various biogeochemical models that
use different year lengths, medusa offers three different calendars: Three
different calendars are made available (default: -DCALENDAR_365DAYS):

• -DCALENDAR_360DAYS, where 1 yr = 360 d

• -DCALENDAR_365DAYS, where 1 yr = 365 d

• -DCALENDAR_365P25DAYS, where 1 yr = 365.25 d

In each case, we adopt 1 d = 24 h and 1 h = 3600 s. This information is
important for consistent mass balances in medusa and a host model to
which it is coupled.

The resulting adaptations for sub-year units (days, seconds, . . . ) are made
in the module MOD_BASICDATA_MEDUSA (mod_basicdata_medusa.F) and the
parameter values for the conversion of units (cm2s−1 → m2yr−1, s−1 → yr−1,
. . . ) adapted accordingly.

4.4 Interface options: 1D, 2D or 2Dx2D
The default interface is for a simple sequence of sea-floor grid points in the
host model, or equivalently a 1D-array of sediment columns (1D interface).
For host model grids organised along more than one dimension, two exten-
sions are offered that can be activated with pre-processor switches during
compilation:

• -DMEDUSA_BASE2D for a host model grid that is mapped onto a 2D map
(the most common situation)

• -DMEDUSA_BASE2DT2D for a host model grid that is mapped onto a 2D
array of 2D tiles (e.g., mitgcm).
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These two switches are mutually exclusive as they select different setup sub-
routines for MOD_SEAFLOOR_CENTRAL and also add specific api subroutines to
this module.

4.5 Porewater advection
Porewater advection is neglected in the equations by default. It can be taken
into account by using the pre-processor switch -DALLOW_SOLUTE_ADVECTION
during compilation..

4.6 “Volumeless” solids
Except for solids’ colours or production time concentrations, all solids have
a finite non zero density, and thus a finite non zero partial specific volume.
For compatibility reasons with other models, that commonly assume that
the solid phase has a constant density and that do not enforce the static
volume conservation equation, it is possible to override this behaviour. This
is done by setting the partial specific volumes of all solids to zero, except
for that of the main inert solid (typically clay). This latter then plays the
role of the bulk solid, and, de facto ignoring the integral term in eqn. (6).
This volumeless solids option can be activated by the pre-processor switch
-DSOLIDS_VOLUMELESS during compilation..

5 Fine Tuning
medusa offers a series of fine-tuning options, which do nevertheless usually
not require any close inspection:

• number and order of solution strategies in solvsed_onestep.F: for
time dependent simulation experiments, the order BASIC-SOLUT-PSVOL-
WFFLX-RREAC has proven most efficient; for direct steady-state calcula-
tions, an TIMST is considered in addition and as last.

• Newton parameters in solvsedFVFullUpwind.F: for complex reaction
networks, it may be useful to increase the maximum Newton damping
exponent to try out (set by the parameter jp_newton_test_max in the
subroutine ImplicitTimeStep in solvsedFVFullUpwind.F) and/or the
threshold value above which further exponents are only tried out as long
as the sum of the squares of the equation residuals is smaller than the
previous minimum found (parameter jp_newton_test_minmax);
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Table 1: Impact of Newton damping parameters on execution time.

nmax nNewt min nNewt minmax nNewt max CPU time nSOLUT nglobalmax
120 0 4 4 466 s 0 91
120 0 2 4 414 s 0 91
120 0 1 4 369 s 0 83
120 0 0 4 307 s 0 79
120 0 4 5 532 s 0 ??
120 0 3 5 473 s 0 ??
120 0 2 6 409 s 17 ??
240 0 2 6 411 s 0 227
120 1 4 4 1540 s 0 120
120 1 2 4 1424 s 0 120
120 -1 0 4 413 s 6 120+41
Obtained for the hbloch file application (unpublished), with 3476 columns,
21-point grids and the following composition: solutes – CO2, HCO−3 , CO3, O2,
H4SiO4; solids – clay, calcite, aragonite, opal and organic matter; equilibria:
carbonate; processes – calcite dissolution, aragonite dissolution, opal dissolution,
and oxic respiration of organic matter. Results for 10 time-steps of 500 yr each.

• with mpi: global or per-process netcdf files via
LOGICAL, PARAMETER :: lp_exeproc_singleproc_nc
in mod_execontrol_medusa.F

• the range of logical unit numbers controlled by MOD_LOGUNITS (source
file src-med/mod_logunits.F) can be changed to avoid conflicts be-
tween program units of the host program and of medusa (e.g., increase
the value of min_valid in MOD_LOGUNITS).

A Utilities
Several utility codes have been developed in the course of the medusa de-
velopment. There are two types of these:

• Fortran modules for general purpose tasks (they are independent on
the rest of medusa and can be used without pre-requirements);

• utility programs for post-processing medusa output, such as remap-
ping routines to convert between the “columns on a string” layout
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adopted for storing results in the netcdf files and a closer-to-real-
world X-Y or longitude-latitude mapping, vertical integration of solid
and solute concentrations, extractions of synthetic sediment cores, etc.

A.1 General purpose Fortran modules
A.1.1 Linear system solver

The module MOD_GAUSS (source file mod_gauss.F in src-med) provides a
general solver for linear systems callable as GM_DGESV. Its argument list is
entirely compatible with that of LA_DGESV from lapack95, which can thus
be used instead. Please notice though that unlike LA_DGESV, GM_DGESV calls
upon a factorization routine that uses a column pivot search with implicit
row scaling, as advocated by (Engeln-Müllges and Uhlig, 1996, p.73).

A.1.2 Logical file unit management

The module MOD_LOGUNITS (source file mod_logunits.F in src-med) pro-
vides a means to automatically detect non-attached logical unit numbers
for I/O operations. A free logical unit number can be searched for and re-
served with the function RESERVE_LOGUNIT(iunit); a file attached to the
logical unit number iunit can be closed and released with the function
FREE_LOGUNIT(iunit).

RESERVE_LOGUNIT only scans above a set minimum logical unit number,
set by min_valid in the module but is not limited above; FREE_LOGUNIT also
only processes with logical unit numbers in that same range.

A.1.3 Miscellaneous

A series of general purpose function and subroutine programs have been
developed for various purposes. They are collected in two modules:

1. uti/mod_uticommon.F90

• expand list – expand a list of integer values defined by a list
of ranges and individual values in a string (e.g., ’1-4,6,8-9’) to
an INTEGER array explicitly holding all the values included in the
ranges;

• condense list – convert an INTEGER array of values to a con-
densed list of ranges and individual values;

• delimit string tokens – determine the starting positions and
lengths of elements in a CHARACTER string delimited by a set of
separation characters;
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• testdir – inquiry function to determine whether a given path is
a directory

2. src-mcg/mod_utilities.F90

• upcase – convert a CHARACTER string to all upper case;
• lowcase – convert a CHARACTER string to all lower case;
• spc2underscore – convert space characters in a CHARACTER

string to underscore (_) characters;
• expand token, expand 2token, expand 3token – expand

given substrings (tokens) of a CHARACTER string by substituting
them with requested character strings (resp. one, two or three at
a time);

• l str eq dbl – inquiry function to test whether the contents of
a CHARACTER string are equal to a given DOUBLE PRECISION;

• index copies in array – detect duplicates in a given array of
CHARACTER strings and prepare an INTEGER index array of the same
size as the CHARACTER array and that provides for each element of
the CHARACTER array the position where it was first found in the
array;

• count copies in array – for an array of CHARACTER strings,
prepare an INTEGER array of the same size that provides the num-
ber of occurrences of the value of each element of the CHARACTER
array;

• delimit string tokens – determine the starting positions and
lengths of elements in a CHARACTER string delimited by a set of
separation characters;

• write condensed dble – write a condensed version (i.e., with
trailing zeroes in the mantissa removed) either to a file (if a log-
ical unit number – type INTEGER – is given as the first dummy
argument) or a CHARACTER string (if the first argument is of type
CHARACTER).

These utilities are completely independent of medusa and can be used else-
where.

A.2 Post-processing utilities
A collection of post-processing utilities is provided in the uti directory. Un-
like the code configuration and generation utility executable, which must stay
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in src-mcg, they can be moved to a central location, such as /usr/local/bin,
as they do not depend on content in the medusa source collection.

A.2.1 MEDINTEGRALEV

medintegralev integrates all vertical concentration profiles in a netcdf
results file produced by medusa (i.e., concentration arrays that include a lev
dimension) over the REACLAY realm. The source code of medintegralev
is in medintegralev.F90 and the executable can be built with
make medintegralev

The resulting netcdf file does not include the dimension lev any longer
and contains all the arrays of the input file (integrated along the vertical and
with the dimension lev removed) and copies of all the variables of the input
file that do not include lev among their dimensions. medintegralev can
be used in interactive and non-interactive modes. The non-interactive usage
requires the presence of a namelist file called medintegralev.nml. If such
a file is present in the working directory, its contents are used without fur-
ther questions; if not, the program switches to interactive processing. Upon
successful completion, the finally adopted inputs are stored to be used as
defaults for subsequent interactive executions, or as a template for control-
ling subsequent non-interactive executions. It is recommended to use it first
in interactive mode and switch to non-interactive mode in a second stage if
suitable.

A.2.2 MEDCOL2XY and MEDCOL2XY 2DT2D

medcol2xy remaps results obtained with medusa configured with a 2D
interface from the “columns on a string” organisation to an X-Y distribu-
tion (typically longitude-latitude); medcol2xy 2DT2D does the same for
results obtained with the 2DT2D interface version. The source codes are
provided in medcol2xy.F90 and medcol2xy_2DT2D.F90, resp. and the exe-
cutables can be built with
make medcol2xy
make medcol2xy_2DT2D

Both can be used in interactive and non-interactive modes. Non-interactive
usage requires the presence of a namelist file called medcol2xy.nml (resp.
medcol2xy_2DT2D.nml). If such a file is present in the working directory,
its contents are used without further questions; if not, the program switches
to interactive processing. Upon successful completion, the adopted inputs
are stored to be used as defaults for subsequent interactive executions, or
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as a template for controlling subsequent non-interactive executions. It is
recommended to simply use the adequate version first in interactive mode.

A.2.3 COLUMN EXTRACT2CSV

netcdf was chosen as the file format to store the results produced by
medusa because of the portability it offers between different platforms and
operating systems and because of the flexible possibilities it offers to include
metadata. netcdf files can be processed with a large diversity of data pro-
cessing software, but popular spreadsheet programs generally lack support
for it.1

We therefore developed column extract2csv which extracts results
for a selection of sediment columns from any netdcf results file produced
by medusa and stores these in csv format, suitable for processing in any
spreadsheet program. The source code is in column_extract2csv.F90 and
the executable can be built with
make column_extract2csv

column extract2csv can again be used in interactive and non-interactive
modes. The non-interactive usage requires the presence of a namelist file
called column_extract2csv.nml. If such a file is present in the working
directory, its contents are used without further questions; if not, the program
switches to interactive processing. Upon successful completion, the adopted
inputs are stored to be used as defaults for subsequent interactive executions,
or as a template for controlling subsequent non-interactive executions. It is
recommended to use it first in interactive mode and switch to non-interactive
mode in a second stage if suitable.

A.2.4 SEDCORE EXTRACT

The format of the sedcore netcdf file produced by medusa is rather
convoluted, as the information is stored as a bulk sequence of “events” (burial
or unurial of layers of a given characteristics) registered in time for the various
columns in the model setup.

sedcore extract extracts such events for a selection of sediment cores
and stores them in individual netcdf files (one per core). The source code
is in sedcore_extract.F90 and the executable can be built with

1Users of 32-bit versions of MS Excel should check out the excellent add-in
NetCDF4Excel. If only someone could port this fine piece of software to the now more
common 64-bit version of MS Excel or even to the open-source alternative OpenOf-
fice/LibreOffice. . .
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make sedcore_extract

sedcore extract can again be used in interactive and non-interactive
modes. The non-interactive usage requires the presence of a namelist file
called sedcore_extract.nml. If such a file is present in the working direc-
tory, its contents are used without further questions; if not, the program
switches to interactive processing. Upon successful completion, the adopted
inputs are stored to be used as defaults for subsequent interactive execu-
tions, or as a template for controlling subsequent non-interactive executions.
Please call sedcore extract first in interactive mode and switch to non-
interactive mode in a second stage if suitable.
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