
medusa
–

Guide to Coupling
(for SVN revision 346ff of medusa)

Guy Munhoven
Université de Liège, Belgium

http://www.astro.ulg.ac.be/˜munhoven

21st September 2017

Contents
1 General Overview 3

1.1 Naming conventions . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Your attention, please. . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Sea-floor grid types and interfacing . . . . . . . . . . . . . . . 3
1.4 Time-stepping in MEDUSA . . . . . . . . . . . . . . . . . . . 4

2 Coupling procedure: for the impatient 5
2.1 Build the MEDUSA code . . . . . . . . . . . . . . . . . . . . . 5
2.2 Host communication modules . . . . . . . . . . . . . . . . . . 5
2.3 Develop a MEDUSA setup module . . . . . . . . . . . . . . . 6
2.4 Extend the host model’s biogeochemical module . . . . . . . . 6
2.5 Extend the main program or develop a MEDUSA wrapper . . 7

3 Coupling procedure: step by step 10
3.1 Generate the code for MEDUSA . . . . . . . . . . . . . . . . . 11
3.2 Initial set-up: execution environment and file I/O . . . . . . . 11

3.2.1 Initializing the execution environment (MPI only) . . . 11
3.2.2 MEDUSA file I/O . . . . . . . . . . . . . . . . . . . . . 12

3.3 Setting up MEDUSA’s central and core systems . . . . . . . . 13
3.3.1 Setting up MOD SEAFLOOR CENTRAL . . . . . . . . . . . 14

1

http://www.astro.ulg.ac.be/~munhoven


3.3.2 Initializing MEDUSA’s parameter values . . . . . . . . 18
3.3.3 Setting up MOD SEDCORE . . . . . . . . . . . . . . . . . 18

3.4 Data exchange between the host and MEDUSA . . . . . . . . 19
3.5 Defining the initial state of MEDUSA . . . . . . . . . . . . . . 21

3.5.1 Initialisation by NAMELIST (basic) . . . . . . . . . . . 21
3.5.2 Initialisation from NETCDF files . . . . . . . . . . . . . 21
3.5.3 Practical recommendation . . . . . . . . . . . . . . . . 22

3.6 Time-stepping sequence . . . . . . . . . . . . . . . . . . . . . 23
3.6.1 Reset MOD HOST O2S arrays . . . . . . . . . . . . . . . . 23
3.6.2 Time-stepping the host biogeochemical module . . . . . 23
3.6.3 Time-stepping MEDUSA . . . . . . . . . . . . . . . . . 24

3.7 Terminating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.1 Closing the NETCDF result files . . . . . . . . . . . . . 25
3.7.2 Finalizing the core system . . . . . . . . . . . . . . . . 25
3.7.3 Finalizing the execution environment (MPI only) . . . 26

4 Special Themes 26
4.1 Restart simulation experiments . . . . . . . . . . . . . . . . . 26

2



1 General Overview

1.1 Naming conventions
In the following, the biogeochemical model that medusa is being coupled to
will be called the host model, denoted HOST or host in the code parts.

1.2 Your attention, please. . .
Some sections of text are marked by boxed notices:

• the boxed exclamation mark in the margin !points out requirements
that are mandatory;

• the boxed “MPI” in the margin MPImarks special requirements that must
be taken into consideration when developing a coupled model to be
used with an MPI parallel processing infrastructure;

• a boxed number in the margin 301marks a rare section describing modifi-
cations in medusa that require code updates in host models that are
coupled to a medusa version with an SVN revision number prior to
the indicated one.

1.3 Sea-floor grid types and interfacing
Internally, medusa uses a sequential numbering of the sediment columns,
whatever their distribution or ordering on the globe, if any. The commu-
nication between medusa and the host model therefore generally requires
information about the mapping of the host model grids (most often two-
dimensional) onto the linear medusa grid and vice-versa

medusa currently includes interfacing subprograms for three different
types of ocean grid-point distributions, to be selected by adequate pre-
processor directives. The actual geographical ordering of the grid points
does not matter here, but only the shape of the grid arrays as declared and
used in the ocean model.

1D one-dimensional ordering (default, no pre-processor directive required)

2D two-dimensional grid (use -DMEDUSA_BASE2D as a compiler option in the
Makefile to select this type);

2DT2D two-dimensional array of two-dimensional sub-grids (“tiles”) (use
-DMEDUSA_BASE2DT2D in the Makefile to select this type).

3



Under mpi MPI, one selects the type of grid that a single process will have to
process, irrespective of how the sub-grids (tile sets) are globally distributed
and organised.

1.4 Time-stepping in MEDUSA

medusa uses an fully implicit time-stepping procedure. As a consequence,
to perform a time step from ti to ti+1, it requires the following information
for each sediment column (i.e., seafloor grid-point)

• X(ti) – the model state at time ti (initial state);

• P (ti+1), S(ti+1), T (ti+1) – depth, salinity, and temperature at time ti+1;

• A(ti+1) – surface area at time ti+1 (optional);

• C f(ti+1) – the boundary conditions for the solutes at the sediment-water
interface at time ti+1;

• F s(ti+1) – the top solid fluxes (deposition fluxes) at the sediment-water
interface at time ti+1.

From these informations medusa then calculates

• X(ti+1) – the model state at time ti+1 (final state);

• F f(ti+1) – the top solute fluxes (remineralization fluxes) at the sediment-
water interface at time ti+1.

• Bs(ti+1) – the burial fluxes across the bottom of the sediment-water
interface at time ti+1.

The time-stepping scheme of the host model will generally be different
from that in medusa: most often explicit, shorter time steps, possibly with
variable lengths. In order to collect the forcing data that medusa requires
to carry out a time step from time ti to ti+1, one will thus have to run the
biogeochemical host model first from time ti to ti+1 and to prepare the data
required by medusa at time ti+1:

• P (ti+1), S(ti+1), T (ti+1) (and A(ti+1), if required) – either by averaging
over the interval ]ti, ti+1[, or by directly using the values at time ti+1;

• C f(ti+1) – either by averaging over the interval ]ti, ti+1[, or by directly
using the values at time ti+1;

4



• F s(ti+1) – for mass conservation reasons, only by averaging over the
interval ]ti, ti+1[.

It should be noted that the host model’s mass balance equations would ac-
tually require the remineralization fluxes F f(ti+1) (which are valid for the
interval ]ti, ti+1[) beforehand. However, these are not available at this stage.
Possible solutions to this “chicken and egg” problem are
asynchronous coupling: instead of F f(ti+1), the host model uses F f(ti)

derived at the previous step, or for the first step, sets it to zero or
uses some other estimation procedure (or reads it in from a results file
previously generated, as would be typically the case for restart runs);

iterative coupling: using an estimate F f
0 of the unknown F f(ti+1), the host

model makes a first trial integration from time ti to ti+1. From the
derived boundary conditions at time ti+1, medusa calculates a revised
F f

1 that the host model then uses to repeat the integration from time ti

to ti+1. The procedure is repeated until the results reach satisfactory
converge. F f(ti+1) is then set to the last F f

n calculated.
The examples provided below assume that asynchronous coupling has been
chosen.

2 Coupling procedure: for the impatient

2.1 Build the MEDUSA code
Dress the list of components that need to be included in medusa, together
with their physical and chemical characteristics and generate the codes for
medusa.

2.2 Host communication modules
Prepare appropriate versions of MOD_HOST_O2S and MOD_HOST_S2O, as out-
lined in the templates

mod_hostTT _o2s_template.F
mod_hostTT _s2o_template.F

in the directory src-med/gen/templates after the code generation is com-
plete. TT stands for either 1D, 2D or 2DT2D, as adequate for the application
being developed. Do not forget to rename the modules and their source
files by replacing any reference to “HOST” or “host” by an acronym or name
related to your application.

5



2.3 Develop a MEDUSA setup module
Prepare the subroutine SETUP_MEDUSA_FOR_HOST to perform the medusa
setup (i.e., prepare and format the information required for the adequate
version of SETUP_CENTRAL). For convenience, we recommend to have it con-
tained in a module that we will name MOD_HOST_MEDUSA_SETUP. Such a
module can be prepared by following the instructions given in the tem-
plates mod_hostTT _medusa_setup.F_template, which can be found in the
directory src-med/gen/templates after the code generation is complete (TT
stands again for either 1D, 2D or 2DT2D – please select the version appropriate
for your application).

2.4 Extend the host model’s biogeochemical module
Different modifications are required in the biogeochemical module of the host
model:

1. insert USE clauses to give access to the arrays in the two communication
modules

USE MOD_HOST_O2S
USE MOD_HOST_S2O

2. include code to calculate the averages required in MOD_HOST_O2S;

3. amend the conservation equations in the host model to include source
terms in the bottom grid-boxes for the return fluxes from the sediment
to the ocean, returned by the arrays in MOD_HOST_SO2 — !beware that
fluxes in medusa are positive downwards (into the sediment);

4. amend the mass balance equations to include source terms in surface
grid-boxes (most realistically along the coastlines) for the “riverine in-
put”, upon which the global sediment burial rate is going to adjust
– for the calibration stage, they can be set such that they globally
match the sediment burial rate of the sediment, i.e., the solid accumu-
lation rate at the bottom of the sedimentary mixed layer, given by the
seafloor_bfflx_* arrays in MOD_HOST_S2O, which must be converted
to the equivalent solute fluxes;

5. disable any remineralization closure that may be present for the sea-
floor solid fluxes

6



2.5 Extend the main program or develop a MEDUSA
wrapper

In the main program, or in a dedicated wrapper, please insert code for the
following tasks, in that order.

• Use clauses for the required modules

USE MOD_DEFINES_MEDUSA
USE MOD_EXECONTROL_MEDUSA
USE MOD_PROCESSCONTROL
USE MOD_EQUILIBCONTROL
USE MOD_SEDCORE
USE MOD_SEAFLOOR_INIT

USE MOD_FILES_MEDUSA
USE MOD_HOST_MEDUSA_SETUP
USE MOD_HOST_O2S
USE MOD_HOST_S2O

The first block refers to modules from libmedusa.a, the medusa li-
brary; the four modules from the second block have to be developed on
purpose for your application. Templates for all of them can be found
in src-med/templates or under src-med/gen/templates.

• Initialize the medusa execution environment. MPIThis is currently only
required if the model is being compiled for use under MPI. If the
coupled model is not compiled for MPI, proceed to the next step; for
multi-purpose use, the code can be encapsulated by #ifdef ALLOW_MPI
and #endif pre-processor directives.
One of two options must be chosen:

1. if MPI has not yet been initialized, one must use
CALL MEDEXE_MPI_INIT()

2. if MPI has already been initialized in the host program, the MPI
communicator that controls the operation of medusa must be
registered in medusa’s execution environment, using the optional
argument k_mpi_comm_host, which must hold the ID of the com-
municator (MPI_COMM_WORLD or the one reserved for medusa)

CALL MEDEXE_MPI_INIT(k_mpi_comm_host)

• Retrieve the list for the files to be read in and written out

7



CALL INIT_FILELIST_MEDUSA()

• Set up the medusa central system, by calling the setup subroutine
from the previously developed module MOD_HOST_MEDUSA_SETUP:

CALL SETUP_MEDUSA_FOR_HOST(..., n_columns)

The argument list of SETUP_MEDUSA_FOR_HOST depends on the actual
application, and on which information can be derived directly inside the
subroutine, and which information has to be transmitted by argument.
However, such a subroutine must always return the number of sediment
columns actually detected in the argument n_columns (INTEGER). This
information is required at a later stage.

• Initialize the equilibrium and rate law parameterizations

CALL InitEquilibParameters
CALL InitProcessParameters

• Set up and initialize the medusa core system

CALL SETUP_SEDCORE_SYSTEM(
& cfn_ncin_sedcore, cfn_ncout_sedcore)

Note that the two filename variables involved in the previous command
are declared in MOD_FILES_MEDUSA.

• Set up MOD_HOST_O2S and MOD_HOST_S2O, and initialize the arrays for
the sediment-to-ocean fluxes in MOD_HOST_S2O to zero:

CALL SETUP_MOD_HOST_O2S()
CALL SETUP_MOD_HOST_S2O()
CALL CLEAR_S2O_DATASET()

• Initialize the medusa central system:

IF (cfn_ncin_init /= "/dev/null") THEN
CALL InitSeafloorFromNetCDFFiles(cfn_ncin_init

& cfn_ncin_flx)
IF (cfn_ncin_flx /= "/dev/null") THEN

CALL SEDIMENT_TO_OCEAN(...)
ENDIF

ELSEIF (cfn_nmlin_init /= "/dev/null") THEN
CALL InitSeafloorFromNamelistFile(cfn_nmlin_init)

ELSE

8



! No valid initialization file found.
... ! Print out adequate error messages.
CALL ABORT_MEDUSA()

ENDIF

• Open the results files:

CALL OPEN_NCFILES_MEDUSA(atime)

where atime is a DOUBLE PRECISION argument that should hold the
initial time of the simulation experiment.

After these operations, medusa is ready to start its calculations.

For each sediment time step running, say, from ti to ti+1, a series of
operations must be carried out, one block before the host biogeochemical
module carries out that time step and one block thereafter. Please insert the
following code lines inside the time loop for the sediment steps in the main
program (or wrapper), in that order:

• Set the time and time-step length for medusa

atime = ... ! t_i [yr]
datime = ... ! t_{i+1} - t_i [yr]

• Reset the arrays in MOD_HOST_O2S so that the host biogeochemical
model can use them to accumulate the data that it must provide to
medusa:

CALL CLEAR_O2S_DATASET()

• Integrate the biogeochemical module of the host model over the time
interval ti to ti+1: the biogeochemical module prepares the data re-
quired for medusa to cover the same time step afterwards and stores
them in MOD_HOST_O2S.

• Transfer the contents of MOD_HOST_O2S into MOD_SEAFLOOR_CENTRAL

CALL OCEAN_TO_SEDIMENT(...)

• Call medusa’s solver SOLVSED_ONESTEP to perform the sediment time
step from time atime to atime + datime

9



CALL SOLVSED_ONESTEP(atime, datime, n_columns,
& iflag, n_trouble)

atime = atime + datime

Notice: the time variable atime must only be updated after the call to
SOLVSED_ONESTEP completes.

• Clean up and purge the medusa core system

CALL REACLAY_X_CORELAY(atime)

• If required, write out the sediment state to file

CALL WRITERES_NCFILES_MEDUSA(atime)

• Prepare the next time step: transcribe the flux values just calculated
by medusa from MOD_SEAFLOOR_CENTRAL to MOD_HOST_S2O, where the
host biogeochemical module can retrieve them.

CALL SEDIMENT_TO_OCEAN(...)

After the last time step completes (i.e., behind the time loop):

• Close and finalize the results files:

CALL CLOSE_RESFILES_MEDUSA

• Finalize the medusa execution environment. MPIThis is currently only
required under MPI:

CALL MEDEXE_MPI_FINALIZE()

3 Coupling procedure: step by step
The typical sequence of operations to carry out in the main program of an
ocean biogeochemistry model that is coupled to medusa is outlined in the
template host-codeblocks.F_template, which is located in the directory
src-med/templates. That file contains sample blocks of code to insert into
that main program or to use for the development a dedicated wrapper sub-
routine.

10



3.1 Generate the code for MEDUSA

Dress the list of components that need to be included in medusa, together
with their physical and chemical characteristics and generate the codes for
medusa.

3.2 Initial set-up: execution environment and file I/O
3.2.1 Initializing the execution environment (MPI only)

The execution environment is controlled by MOD_EXECONTROL_MEDUSA. For
medusa versions that are not compiled for use with MPI, there are no explicit
steps to carry out – the execution environment is completely set by static
parameters. You may proceed immediately to section 3.2.2 if you do not plan
to use medusa under MPI.

If medusa is going to be used under MPI MPI, it is necessary to initialize
its execution environment, otherwise, it will not work correctly. This ini-
tialization must be done by calling the subroutine MEDEXE_MPI_INIT from
MOD_EXECONTROL_MEDUSA. Two cases must be distinguished:

1. if MPI has not yet been initialized, one must use

CALL MEDEXE_MPI_INIT()

without any argument;

2. if MPI has already been initialized at an earlier stage in the main
program, the MPI communicator that controls medusa must be regis-
tered in MOD_EXECONTROL_MEDUSA and communicated via the optional
argument k_mpi_comm_host:

CALL MEDEXE_MPI_INIT(k_mpi_comm_host)

k_mpi_comm_host may be the default communicator MPI_COMM_WORLD
or some other special communicator dedicated to medusa, but not
MPI_COMM_NULL.

When MEDEXE_MPI_INIT is called without the optional k_mpi_comm_host,
medusa’s execution control environment also takes complete control of MPI:
MEDEXE_MPI_INIT calls MPI_INIT to launch the initialization of the MPI envi-
ronment and a later call of MEDEXE_MPI_FINALIZE will also call MPI_FINALIZE
to deactivate MPI. With the argument, MEDEXE_MPI_INIT assumes that the
MPI environment has already been initialized and the communicator is only

11



registered; a later call to MEDEXE_MPI_FINALIZE will not finalize the MPI
environment (i.e., it will not call MPI_FINALIZE), but only reset the MPI-
related information in MOD_EXECONTROL_MEDUSA.

3.2.2 MEDUSA file I/O

medusa I/O involves a series of files that can be used either to initialize the
state of the model or to store the evolution of both the sedimentary mixed-
layer (REACLAY domain) state, of the underlying transition buffer layer
(TRANLAY domain) and the deeper core layers (CORELAY domain).

Although the administration of these files can be implemented in an ad
hoc fashion, it is recommended to use the interface defined in the module
MOD_FILES_MEDUSA from mod_files_medusa.F_template (in the directory
src-med/templates). For the rest of this guide, it will be assumed that this
MOD_FILES_MEDUSA is used.

That template can be used “as is” or extended to more special needs
(please do not delete anything from that module, as other templates depend
on it). MOD_FILES_MEDUSA provides a public list of all the files that are
considered in medusa. The files in the list are organized in two namelists

• nml_cfg, which collects the files that are common to all versions and
configurations of medusa (plus a title to be included in all the netcdf
files) !; nml_cfg must not be modified.

• nml_extra, which collects the files are specific for a given application;
any additions or modifications required should be brought in here.

MOD_FILES_MEDUSA also provides the following subroutines to perform recur-
rent operations

• SUBROUTINE INIT_FILELIST_MEDUSA() to initialize the list from the
file given by the parameter cpfn_medusa_files in MOD_FILES_MEDUSA
(pre-set to "medusa_files.cfg" — can be changed) and to print out
a summary initial report of the files used (with their names) or not
used. A template for such a medusa_files.cfg file can be found in
medusa_files.cfg_template (in the directory src-med/templates).
Under MPI MPI, the file given by cpfn_medusa_files is only read in by
the master (root) process, which broadcasts the resulting list contents
to all other processes. Accordingly, only the master process requires
access to it.

• SUBROUTINE OPEN_NCFILES_MEDUSA(atime) to open the netcdf re-
sults files that have names different from "/dev/null" and write out
the initial state at time atime (DOUBLE PRECISION, INTENT(IN))

12



• SUBROUTINE WRITERES_NCFILES_MEDUSA(atime) to write out the rele-
vant records for time atime (DOUBLE PRECISION, INTENT(IN)) to the
open netcdf files (except for the SEDCORE file)

• SUBROUTINE CLOSE_NCFILES_MEDUSA() to close all the open netcdf
files, including the SEDCORE file.

Please notice that, under MPI MPI, I/O operations should only be performed
after MPI has been initialized. This is a generally valid recommendation for
MPI – I/O operations on files in an MPI program may lead to unpredictable
behaviour before MPI_INIT has been called. Accordingly, the subroutines
from MOD_FILES_MEDUSA should only be called after MPI is set up

A consistent list with the required file names can then be retrieved by

CALL INIT_FILELIST_MEDUSA() ! From mod_files_medusa.F

Whatever the chosen method !, the list of files to be used by medusa must be
initialized before the next setup stages, since the setup partially depends on
the combination of I/O files that are requested.

3.3 Setting up MEDUSA’s central and core systems
There are two key modules in medusa that need to be set up now that the
list of input and output files is known:

MOD SEAFLOOR CENTRAL hosts the central system. medusa’s numerical solver
SOLVSED_ONESTEP fetches the data that are required to perform one
time step for all the sediment cores considered (initial state of the sedi-
ment, boundary conditions, forcings, sediment grid-point distributions,
etc.) from MOD_SEAFLOOR_CENTRAL and also stores the state of the sed-
iment and the resulting fluxes upon completion of each time step there.
MOD_SEAFLOOR_CENTRAL also holds the remapping information for the
communication between the host model and medusa

MOD SEDCORE hosts the core system. Here a stack or synthetic core of buried
sediment layers is kept for each sediment column considered, so that
chemical erosion can be taken into account.

The variables that reflect the global configuration of medusa now need to
be initialized, and the storage arrays allocated and shaped before the rest of
the setup can be done.

13



3.3.1 Setting up MOD SEAFLOOR CENTRAL

The configuration of MOD_SEAFLOOR_CENTRAL can only !be done by calling the
SEAFLOOR_SETUP subroutine provided in MOD_SEAFLOOR_CENTRAL itself. The
argument list of SEAFLOOR_SETUP depends on the selected grid type.

Type 1D is the simplest case, since medusa uses itself internally a one-
dimensional ordering of the sediment columns. The argument list of the
subroutine SEAFLOOR_SETUP is accordingly simple and straightforward. The
order and names (for keyword-based calling) of the dummy arguments are
as follows:

SUBROUTINE SEAFLOOR_SETUP(
& n_columns_host, darea_gridelts_host,
& dcnpoh_c_host, dcnpoh_n_host, dcnpoh_p_host,
& dcnpoh_o_host, dcnpoh_h_host, dcnpoh_remin_o2_host)

INTEGER, INTENT(IN)
& :: n_columns_host
DOUBLE PRECISION, DIMENSION(:), INTENT(IN)

& :: darea_gridelts_host
DOUBLE PRECISION, DIMENSION(:, :), OPTIONAL, INTENT(IN)

& :: dcnpoh_c_host, dcnpoh_n_host, dcnpoh_p_host,
& dcnpoh_o_host, dcnpoh_h_host, dcnpoh_remin_o2_host

where

• n_columns_host sets the number of grid elements that medusa should
consider; all of the grid points are supposed to be sea-floor grid-elements;

• darea_gridelts_host is a 1D-array with n_columns_host elements
giving the surface areas [m2] of the grid-elements;

• dcnpoh_c_host, dcnpoh_n_host, dcnpoh_p_host,
dcnpoh_o_host, dcnpoh_h_host, dcnpoh_remin_o2_host
are 2D arrays giving the elemental molar C, N, P, O, H and O2 reminer-
alization ratios for organic matter (sometimes called Redfield ratios).
As declared above, all of these six are optional; more precisely, all of
them must be present in the call, or none of them: if none of them
is present in the call, the default ratios from MOD_MATERIALCHARAS are
used instead. The length of the first dimension of all of these 2D arrays
must be equal to the number of organic matter components included
in medusa; the length of the second dimension must

14



– either be equal to 1, in which case the values are used for all grid
elements,

– or equal to n_columns_host, in which case each grid element may
have its own combination.

Type 2D is more complex. The order, types, names and ranks of the
dummy arguments are as follows:

SUBROUTINE SEAFLOOR_SETUP(imask_ocean_host,
& dixref_gridelts_host, djyref_gridelts_host,
& darea_gridelts_host,
& dcnpoh_c_host, dcnpoh_n_host, dcnpoh_p_host,
& dcnpoh_o_host, dcnpoh_h_host, dcnpoh_remin_o2_host,
& n_columns)

INTEGER, DIMENSION(:,:), INTENT(IN)
& :: imask_ocean_host
DOUBLE PRECISION, DIMENSION(:,:), INTENT(IN)

& :: dixref_gridelts_host, djyref_gridelts_host
DOUBLE PRECISION, DIMENSION(:,:), INTENT(IN)

& :: darea_gridelts_host
DOUBLE PRECISION, DIMENSION(:, :,:), OPTIONAL, INTENT(IN)

& :: dcnpoh_c_host, dcnpoh_n_host, dcnpoh_p_host,
& dcnpoh_o_host, dcnpoh_h_host, dcnpoh_remin_o2_host

INTEGER, INTENT(OUT)
& :: n_columns

where

• imask_ocean_host is used as a mask to define the ocean grid-points:
elements of imask_ocean_host that are strictly positive are consid-
ered to be ocean points, elements of imask_ocean_host that are zero
or negative are filtered out. Different positive values can be used to
subdivide the ocean domain into sub-domains for further processing or
diagnostics.

• dixref_gridelts_host and djyref_gridelts_host must have the
same shape as imask_ocean_host and are used to specify some geo-
graphical coordinate information (e.g., x-y, longitude-latitude) for the
grid-elements; both arrays are only used for information purposes (in-
cluded, e.g., in the file produced by STORE_NC_AUX).

15



• darea_gridelts_host should give the surface areas [m2] of the grid
elements and must have the same shape as imask_ocean_host. These
are generally only used for diagnostic purposes and such as global mass
balances, but could possibly be required for the data transfer between
the host model and medusa. The operation of medusa itself does not
depend on this argument.

• dcnpoh_c_host, dcnpoh_n_host, dcnpoh_p_host,
dcnpoh_o_host, dcnpoh_h_host, dcnpoh_remin_o2_host
have the same signification as for the 1D type above. They must fulfil
the same conditions regarding the first dimension and the “all or none”
presence at call. Similar to the 1D case, the lengths of the last two
dimensions must either be equal to 1 for all of the six arrays, in which
case all of the grid elements use the same elemental ratios, or they
must be equal to the shape of imask_ocean_host, in which case the
organic matter reaching the sea-floor can have a different elemental
composition at each sea-floor grid element.

• n_columns provides, upon return from the call, the actual number of
sea-floor grid-elements deduced from imask_ocean_host.

The ocean grid points are ordered in a one-dimensional way for internal usage,
and correspondence tables are dimensioned (allocated) and initialized.

Type 2DT2D is analogous to type 2D. By order and by name, the ar-
guments are exactly the same as for type 2D; they differ, however, by their
shapes:

SUBROUTINE SEAFLOOR_SETUP(imask_ocean_host,
& dixref_gridelts_host, djyref_gridelts_host,
& darea_gridelts_host,
& dcnpoh_c_host, dcnpoh_n_host, dcnpoh_p_host,
& dcnpoh_o_host, dcnpoh_h_host, dcnpoh_remin_o2_host,
& n_columns)

INTEGER, DIMENSION(:,:, :,:), INTENT(IN)
& :: imask_ocean_host
DOUBLE PRECISION, DIMENSION(:,:, :,:), INTENT(IN)

& :: dixref_gridelts_host, djyref_gridelts_host
DOUBLE PRECISION, DIMENSION(:,:, :,:), INTENT(IN)

& :: darea_gridelts_host
DOUBLE PRECISION, DIMENSION(:, :,:, :,:),

16



& OPTIONAL, INTENT(IN)
& :: dcnpoh_c_host, dcnpoh_n_host, dcnpoh_p_host,
& dcnpoh_o_host, dcnpoh_h_host, dcnpoh_remin_o2_host

INTEGER, INTENT(OUT)
& :: n_columns

where

• imask_ocean_host is used as a mask to define the ocean grid-points
as for type 2D. With type 2DT2D it has, however, a rank of 4 and
the shape (/nix, njy, nsx, nsy /), where nix and njy define the
extension of each single 2D tile along the x and the y direction, respec-
tively, while nsx and nsy define how many tiles are bundled together
along the x and y directions, respectively.

• darea_gridelts_host,
dixref_gridelts_host, djyref_gridelts_host have the same signi-
fication and must fulfil the same constraints as their 2D counterparts;

• dcnpoh_c_host, dcnpoh_n_host, dcnpoh_p_host,
dcnpoh_o_host, dcnpoh_h_host, dcnpoh_remin_o2_host
have the same signification as their 2D counterparts above, and must
fulfil the same conditions regarding the first dimension as well as the
“all or none” optional characteristic. Similar to the 2D case, the six
arrays must all have the same shape. The lengths of the last four
dimensions must either all be equal to 1, in which case all of the grid
elements use the same elemental ratios, or they must match the shape
of imask_ocean_host, in which case the organic matter reaching the
sea-floor can have different elemental compositions at each sea-floor
grid element.

• n_columns provides again the actual number of sea-floor grid-elements
deduced from imask_ocean_host, upon return from the call.

The assembly and formatting of the data required by SEAFLOOR_SETUP
can be tedious and unnecessarily clutter up the main program or the wrapper
written for the purpose of coupling. It is therefore recommended to have a
separate subroutine perform this task. Upon completion of the medusa
code generation procedure, src-med/gen/templates contains templates in
the files mod_hostTT _medusa_host.F_template (where TT stands for 1D, 2D
or 2DT2D) for a module called MOD_HOST_MEDUSA_SETUP that contains such a
subroutine called SETUP_MEDUSA_FOR_HOST.

17



In the following, it is assumed that this module-subroutine based ap-
proach is adopted.

Under MPI MPI, the border of each process’ sub-grid may possibly contain one
or several lines and columns of overlap, so that each process has access to the
variable values of all of the neighbours of the grid-points that it processes,
even for those grid-points processed by other process, to be able to complete
the adopted discretization stencils. In medusa, all sea-floor grid-points are
isolated from each other. Such overlaps are not required, and may even
lead to confusion. They should therefore be marked as “non-ocean” points
in imask_ocean_host with the 2D and 2DT2D types (by negative or zero
values) and filtered out beforehand with the 1D type.

3.3.2 Initializing MEDUSA’s parameter values

After MOD_SEAFLOOR_CENTRAL has been set up, the equilibrium and rate law
parameters can be initialized:

CALL InitEquilibParameters ! From mod_equilibcontrol.F
CALL InitProcessParameters ! From mod_processcontrol.F

!These two subroutines are provided by stock medusa modules and it is
mandatory to use them.

3.3.3 Setting up MOD SEDCORE

Starting from rev. 301 301, the setup procedure of MOD_SEDCORE has completely
changed. The subroutines SEDFILE_NOFILE and SEDFIL_OPEN are not avail-
able any more. The new SETUP_SEDCORE_SYSTEM from MOD_SEDCORE now
completely controls the way the sedimentary layer buffer and files are con-
figured and initialized:

SUBROUTINE SETUP_SEDCORE_SYSTEM(
& cfn_ncin_sedcore, cfn_ncout_sedcore)

CHARACTER(LEN=*), INTENT(IN), OPTIONAL
& :: cfn_ncin_sedcore, cfn_ncout_sedcore

where

• cfn_ncin_sedcore can be used to specify the name of a netcdf file
for reading in a set of historical core layers (for restart, or buffer ini-
tialization);

18



• cfn_ncout_sedcore can be used to specify the name of the netcdf
file to store the historical layers;

• both arguments are optional; default values are "/dev/null".

Setting a file name explicitly to default or implicitly accepting the default
value means that the corresponding file must not be used.

The way MOD_SEDCORE will be using the memory layer stack (the stack
of sedimentary layers underneath the mixed layer) depends on the chosen
combination of and values of cfn_ncin_sedcore and cfn_ncout_sedcore:

• If cfn_ncout_sedcore is set to default, the model uses a purely inter-
nal core layer stack and its contents are lost upon completion of the
simulation experiment; if cfn_ncin_sedcore is also set to default, the
model simulation starts with an empty core layer stack, otherwise the
contents of cfn_ncin_sedcore) are used to initialize the core layer
stack.

• If cfn_ncout_sedcore is not set to default, the internal core layer stack
is used as a buffer and its contents are written to a new file whose name
is given by cfn_ncout_sedcore; any existing file with the same name
will be overwritten.
If at the same time cfn_ncin_sedcore is set to default, the model
simulation starts with an empty core layer stack and an empty output
file, else two options are offered:

1. if cfn_ncin_sedcore and cfn_ncout_sedcore point to different
files, cfn_ncin_sedcore is scanned and the characteristics of its
top layers are transcribed to the new file cfn_ncout_sedcore to
start the model simulation experiment;

2. if cfn_ncin_sedcore and cfn_ncout_sedcore point to the same
file, then the results of the forthcoming simulation experiment will
be appended to that file.

Please notice that a file whose name is given in cfn_ncin_sedcore must
already exist, otherwise the model aborts.

3.4 Data exchange between the host and MEDUSA

As outlined above, the execution of one medusa time step involves the prepa-
ration (e.g., averaging), transformation (e.g., unit changes) and exchange of
a number of data arrays with the host model. There are a number of ways

19



to implement the related work flow. The following one has proven to offer a
good compromise between ease of use and clarity:

• Develop a module MOD_HOST_MEDUSA_O2S that contains

– public arrays (following the 1D, 2D, or 2DT2D grid ranks and
shapes) where the host model can store the data required by
medusa as inputs;

– a subroutine, typically called OCEAN_TO_SEDIMENT to transfer the
data held in the arrays of the module to MOD_SEAFLOOR_CENTRAL,
taking care of any remapping and unit conversion if necessary;

• Develop a module MOD_HOST_MEDUSA_S2O that contains

– public arrays (following the 1D, 2D, or 2DT2D grid ranks and
shapes) where the host model can retrieve the sediment-to-ocean
fluxes that medusa provides as output;

– a subroutine, typically called SEDIMENT_TO_OCEAN, to transfer the
results from MOD_SEAFLOOR_CENTRAL to the arrays of the module,
taking care of any remapping and unit conversion if necessary.

N.B.: it is of course possible to merge both modules into a single one, which
one might call MOD_HOST_MEDUSA_OXS, e.g.

After the medusa code generation is complete, there are template files
mod_hostTT _o2s_template.F and mod_hostTT _s2o_template.F in the di-
rectory src-med/gen/templates, where TT stands for either 1D, 2D or 2DT2D,
as adequate for the application being developed. The template modules also
include additional subroutines to set up the module (to allocate the array
space, etc.), to reset the arrays to zero, etc.

Once the medusa central and core systems have been set up (previous
section), it is time to set up those communication modules. If the interface
outlined in the templates is adopted, the following code will carry out the
required operations

CALL SETUP_HOST_O2S() ! From MOD_HOST_O2S
CALL SETUP_HOST_S2O() ! From MOD_HOST_S2O
CALL CLEAR_S2O_DATASET() ! From MOD_HOST_S2O

The last command furthermore sets the arrays in MOD_HOST_S2O to zero,
so that the host biogeochemical model can run with meaningful sediment-
to-ocean flux values before medusa. At the initialization stage, the arrays
from MOD_HOST_S2O may be updated from a previously generated netcdf
file, which may be required for, e.g., restart runs (see section 3.5.2 below).

20



3.5 Defining the initial state of MEDUSA

The initial state of medusa can of course be completely controlled by hand,
using the interface routines SAVE_COLUMN from MOD_SEAFLOOR_CENTRAL. For
convenience, there is a module MOD_SEAFLOOR_INIT, which provides two stan-
dard procedures to initialize medusa: by namelist, and from netcdf files
generated in a previous simulation experiment.

3.5.1 Initialisation by NAMELIST (basic)

A basic but easy to use method for defining the initial state of medusa
is via a namelist file. A template for such a namelist file can be found in
medusa_seafloor_init.nml_template. All columns in the model are then
homogeneously initialized with the data provided in that namelist file. The
subroutine InitSeafloorFromNamelistFile from MOD_SEAFLOOR_INIT does
this:

SUBROUTINE InitSeafloorFromNamelistFile(cfn_seafloorinit)

CHARACTER(LEN=*), INTENT(IN) :: cfn_seafloorinit

3.5.2 Initialisation from NETCDF files

The namelist based initialisation does not offer sufficient flexibility. There-
fore, MOD_SEAFLOOR_INIT furthermore offers the possibility to initialise the
sediment state from a previously generated netdcf REACLAY file with the
subroutine InitSeafloorFromNetCDFFiles:

SUBROUTINE InitSeafloorFromNetCDFFiles(
& cfn_reaclay, cfn_flx, i_rec)

CHARACTER(LEN=*), INTENT(IN) :: cfn_reaclay
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: cfn_flx
INTEGER , INTENT(IN), OPTIONAL :: i_rec

where

• cfn_reaclay holds the name of the netcdf REACLAY file to read
from;

• cfn_flx optionally sets the name of the netcdf FLX file to initialize
the fluxes from: this may be required for coupled simulation experi-
ments that are restarted, and where the host model runs with the sed-
iment remineralization fluxes from time step [ti−1, ti] to carry out time

21



step [ti, ti+1]; if cfn_flx is not present in the call, or if it has the de-
fault value "/dev/null", this step is ignored. The flux values are read
into MOD_SEAFLOOR_CENTRAL from where they still need to be retrieved
to be made available to the host model (by the SEDIMENT_TO_OCEAN
subroutine from MOD_HOST_S2O if the recommended code organization
is followed) – see example code in section 3.5.3 below.

• i_rec optionally allows to select a particular record in the files (the
same in both files); by default, the last record in each file is read.

InitSeafloorFromNetCDFFiles must not be called with cfn_reaclay set
to "/dev/null" or some non existing file.

3.5.3 Practical recommendation

In practice, for the medusa applications developed so far, the convention has
been adopted that, if both the namelist file cfn_nmlin_init and the netcdf
file cfn_ncin_init have non default values, the netcdf file overrides the
namelist file. The INIT_FILELIST_MEDUSA() subroutine enforces this con-
vention strictly, by resetting cfn_nmlin_init to default ("/dev/null") if
cfn_ncin_init does not have the default value. The following piece of code
can then be used universally in the main program or the wrapper to initialize
medusa:

IF (cfn_ncin_init /= "/dev/null") THEN
CALL InitSeafloorFromNetCDFFiles(cfn_ncin_init

& cfn_ncin_flx)
IF (cfn_ncin_flx /= "/dev/null") THEN

CALL SEDIMENT_TO_OCEAN(...)
ENDIF

ELSEIF (cfn_nmlin_init /= "/dev/null") THEN
CALL InitSeafloorFromNamelistFile(cfn_nmlin_init)

ELSE
WRITE(jp_stderr,

& ’("Error: no valid initialisation file given:")’)
WRITE(jp_stderr,’(" - cfn_nmlin_init = """, A, """")’)

& TRIM(cfn_nmlin_init)
WRITE(jp_stderr,’(" - cfn_ncin_init = """, A, """")’)

& TRIM(cfn_ncin_init)
WRITE(jp_stderr,’("Aborting!")’)
CALL ABORT_MEDUSA()

ENDIF

22



3.6 Time-stepping sequence
For each sediment time step running, say, from ti to ti+1, a series of operations
must be carried out.

3.6.1 Reset MOD HOST O2S arrays

A the very beginning of a time step, the arrays in MOD_HOST_O2S that medusa
uses to fetch its boundary conditions should be cleared (re-set to zero), so
that the host biogeochemical module, which will have to perform the time-
step from ti to ti+1 first, can use them to accumulate the data that it must
provide to medusa:

CALL CLEAR_O2S_DATASET()

Afterwards, set the time and time-step length for medusa

atime = ... ! t_i [yr]
datime = ... ! t_{i+1} - t_i [yr]

3.6.2 Time-stepping the host biogeochemical module

Next, the biogeochemical module of the host model should be integrated over
the time interval ti to ti+1. While doing so, it should prepare the bound-
ary condition data required by medusa and store them in the arrays in
MOD_HOST_O2S:

• Temperature, salinity and depth for each grid point can either be aver-
aged over [ti, ti+1], or the values at time ti+1 can be used; similarly for
grid-element surface areas, if they are varying in time. When using the
recommended MOD_HOST_O2S module-based approach, these variables
should go into
seafloor_temp(...)
seafloor_sali(...)
seafloor_dept(...) and
seafloor_surf(...), respectively.

• Extra parameter vales that you prefer to control by the host model in-
stead of having them recalculated in medusa (e. g., saturation concen-
trations, . . . ) data should go into the respective seafloor_xxxx(...)
arrays that have been added to the actually used MOD_HOST_O2S in
comparison to the templates

23



• sea-floor concentrations of the solute components can again either be
averaged over [ti, ti+1], or their values at time ti+1 can be used; these
data should go into the seafloor_wconc_xxxx(...) arrays.
For consistency reasons, it is always recommended that the host model
does all the speciation calculations required (e.g., for the carbonate
system). This can, however, also be done in the OCEAN_TO_SEDIMENT
subroutine.

• Sea-floor fluxes of solids should, for mass conservation reasons, always
be averaged over [ti, ti+1]. With the MOD_HOST_O2S module-based ap-
proach, the averaged values of these these data should then go into the
seafloor_wfflx_xxxx(...) arrays.

The host biogeochemical module should only carry out the averaging and
leave the data on its own native grid. It should furthermore not apply any
unit conversions. These will be made by the OCEAN_TO_SEDIMENT subroutine
from MOD_HOST_O2S that will be called next. This way, each model only
needs to know about its own unit’s system.

3.6.3 Time-stepping MEDUSA

Once the host biogeochemical module has completed its time step from ti

to ti+1, we need to transfer the new contents of the arrays in MOD_HOST_O2S
into MOD_SEAFLOOR_CENTRAL, where medusa expects to find them:

CALL OCEAN_TO_SEDIMENT(...)

OCEAN_TO_SEDIMENT is in charge of any required remapping, re-sampling,
unit conversion or speciation calculation that the host model has not done,
and registers the boundary conditions into MOD_SEAFLOOR_CENTRAL.

Now medusa’s SOLVSED_ONESTEP can be found to perform the sediment
time step

CALL SOLVSED_ONESTEP(atime, datime, n_columns,
& iflag, n_trouble)

atime = atime + datime

Once SOLVSED_ONESTEP completes, the medusa core system must be
regularized (cleaned up and purged, if necessary):

CALL REACLAY_X_CORELAY(atime)

24



REACLAY_X_CORELAY brings the core layer buffer into a controlled state: it
checks the transition layer for overflow and creates new historical layers if
required, or for low-stand and returns the contents of previously buried sed-
iment layers into the transition layer. If the internal stack of layers has
reached a threshold level, the oldest layers are written to the SEDCORE
file (referred to above by cfn_ncout_sedcore), or deleted if no such file is
used. If the stack runs empty, the most recent layers written to the file are
transferred back onto the internal stack. REACLAY_X_CORELAY furthermore
keeps track of eroded layers (mixed back into the transition layer as result of
sufficiently strong chemical erosion).

If required, the sediment state can now also be written to file:

CALL WRITERES_NCFILES_MEDUSA(atime)

Finally, the next sediment time step has to be prepared. The flux values
just calculated by medusa are transferred from MOD_SEAFLOOR_CENTRAL to
MOD_HOST_S2O, where the host biogeochemical module can retrieve them:

CALL SEDIMENT_TO_OCEAN(...)

SEDIMENT_TO_OCEAN should carry out any aggregation or unit change, so that
the host biogeochemical module can retrieve the sediment-to-ocean fluxes on
its own native grid and expressed in its own native units.

3.7 Terminating
3.7.1 Closing the NETCDF result files

If MOD_FILES_MEDUSA has been adopted, this step is performed by

CALL CLOSE_NCFILES_MEDUSA()

3.7.2 Finalizing the core system

The sediment core layers have to be finalized: if a SEDCORE file is open,
the information about the core layers and eroded layers still remaining in the
internal buffer needs to be written to the SEDCORE file and the overhead
information in the file has to be completed; if no SEDCORE file is used, the
stacks are cleared. The general purpose command to perform these actions
is

CALL SEDFIL_FINALIZE()

25



3.7.3 Finalizing the execution environment (MPI only)

Similarly to the initialization of the execution environment, nothing has to
be done if medusa is not running under MPI.

MPIUnder MPI, a graceful termination of the main program requires a call
to MEDEXE_MPI_FINALIZE at the end of the main program. If the initial
MEDEXE_MPI_INIT call had to initialize MPI, MEDEXE_MPI_FINALIZE will now
also finalize the MPI environment (i.e., call MPI_FINALIZE), then erases the
MPI related information stored in MOD_EXECONTROL_MEDUSA and resets the
module; else MEDEXE_MPI_FINALIZE simply erases the MPI related informa-
tion stored in MOD_EXECONTROL_MEDUSA and resets the module.

4 Special Themes

4.1 Restart simulation experiments
If the code sequence and module organisation is adopted, it is straighforward
to run restart simulation experiments. A simulation experiment (say ‘01’)
that is to be restarted must produce the following files (as listed by their
keywords in the &nml_cfg namelist in medusa_files.cfg):

cfn_ncout_reaclay = ’medusa_reaclay_01.nc’
cfn_ncout_flx = ’medusa_flx_01.nc’
cfn_ncout_sedcore = ’medusa_sedcore_01.nc’

The continuation experiment (say ‘02’) which is meant to seamlessly extend
experiment ‘ ‘01’ then requires the following input files to be included in the
&nml_cfg namelist in medusa_files.cfg:

cfn_ncin_init = ’medusa_reaclay_01.nc’
cfn_ncin_flx = ’medusa_flx_01.nc’
cfn_ncin_sedcore = ’medusa_sedcore_01.nc’

Please notice that

• for continuation (restart) simulation experiments, the initial state must
be read in from the netcdf REACLAY file !produced by the preceed-
ing experiment (i.e., the file given by the cfn_ncout_reaclay in that
simulation) so that the initial state of the continuation experiment cor-
responds to the final state of its preceeding experiment;

• the input FLX file (specified by cfn_ncin_flx) is only required with
asynchroneous coupling (the most common case).

26



The names of the output files to be produced by experiment ‘02’ must be
different from their analogues produced by experiment ‘01’ (otherwise, these
latter will be overwritten), except for cfn_ncout_sedcore:

• if cfn_ncout_sedcore and cfn_ncin_sedcore point to the same file,
the core layer results of experiment ‘02’ are appended to that file, up-
dating the results from experiment ‘01’ if required;

• if cfn_ncout_sedcore and cfn_ncin_sedcore point to different files,
the data for the topmost layers from the file that cfn_ncin_sedcore
points to are first copied into the file specified by cfn_ncout_sedcore
and the results from experiment ‘02’ then appended to that file. The
cfn_ncin_sedcore file will not be modified but any existing copy of
the cfn_ncout_sedcore file will first be erased. The two files will have
overlapping contents.

27


	General Overview
	Naming conventions
	Your attention, please…
	Sea-floor grid types and interfacing
	Time-stepping in MEDUSA

	Coupling procedure: for the impatient
	Build the MEDUSA code
	Host communication modules
	Develop a MEDUSA setup module
	Extend the host model's biogeochemical module
	Extend the main program or develop a MEDUSA wrapper

	Coupling procedure: step by step
	Generate the code for MEDUSA
	Initial set-up: execution environment and file I/O
	Initializing the execution environment (MPI only)
	MEDUSA file I/O

	Setting up MEDUSA's central and core systems
	Setting up MOD_SEAFLOOR_CENTRAL
	Initializing MEDUSA's parameter values
	Setting up MOD_SEDCORE

	Data exchange between the host and MEDUSA
	Defining the initial state of MEDUSA
	Initialisation by NAMELIST (basic)
	Initialisation from NETCDF files
	Practical recommendation

	Time-stepping sequence
	Reset MOD_HOST_O2S arrays
	Time-stepping the host biogeochemical module
	Time-stepping MEDUSA

	Terminating
	Closing the NETCDF result files
	Finalizing the core system
	Finalizing the execution environment (MPI only)


	Special Themes
	Restart simulation experiments


