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Abstract. Aerosol forecasts by the European Center for Medium Range Weather Forecasts (ECMWF)

Integrated Forecasting System IFS-AER for years 2016-2019 (cycle 41r1 - 46r1) are compared to

vertical profiles of particle backscatter from the Deutscher Wetterdienst (DWD) ceilometer network.

The system has been developed in the Copernicus Atmosphere Monitoring Service (CAMS) and its

precursors. The focus of this article is to evaluate the realism of the vertical aerosol distribution5

from 0.4 to 8 km above ground, coded in the shape, bias and temporal variation of the profiles. The

common physical quantity, the attenuated backscatter β∗(z) , is directly measured and calculated

from the model mass mixing ratios of the different particle types using the model’s inherent aerosol

microphysical properties.

Pearson correlation coefficients of daily average simulated and observed vertical profiles between10

r=0.6-0.8 in summer and 0.7-0.95 in winter indicate that most of the vertical structure is captured. It

is governed by larger β∗(z) in the mixing-layer and comparably well captured with the successive

model versions. The aerosol load tends to be high-biased near the surface, be underestimated in the

mixing layer and realistic at small background values in the undisturbed free troposphere. A seasonal

cycle of the bias below 1 km height indicates that aerosol sources and/or lifetimes are overestimated15

in summer and pollution episodes not fully resolved in winter. Long-range transport of Saharan dust

or fire smoke is captured and timely, only the dispersion to smaller scales is not resolved in detail.

Over Germany β∗(z) from Saharan dust and sea salt are considerably overestimated. Differences

between model and ceilometer profiles are investigated using observed in-situ mass concentrations

of organic matter OM, black carbon, SO4, NO3, NH4 and proxys for mineral dust and sea-salt near20

the surface. Accordingly, SO4 and OM sources as well as gas-to-particle partitioning of the NO3-
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NH4-system are too strong. The top of the mixing layer on average appears too smooth and few

100 m too low in the model. Finally, a discussion is included of the considerable uncertainties in

the observations, the conversion from modeled to observed physical quantities, and from necessary

adaptions of varying resolutions and definitions.25

1 Introduction

Aerosol particles play a key role in atmospheric processes and their manifold sources and trans-

formations reflect in a wide range of abundance as well as chemical and physical properties. Thus

the understanding of particles’ net effects on air quality, weather, climate and chemical budgets still

comprise significant uncertainties (Linares et al., 2009; WMO, 2013; Baklanov et al., 2014). Par-30

ticles affect climate and weather directly by light scattering and absorption (Hansen et al., 1997;

Ramanathan et al., 2007; WMO, 2013), indirectly by altering formation and droplet size of clouds

(Lohmann et al., 2007) and via their impact on saturation and vertical exchange (Ackerman et al.,

2000). Owing to land-use changes and increasing emissions of anthropogenic gases and particles

during the last century, aerosols constitute and trigger severe pollution episodes and health hazards35

Galanter et al. (2000); Andreae and Merlet (2001); Pèrez et al. (2012). In the lower troposphere

particle emissions and heterogeneous chemical processes degrade health-related air-quality (Gilge

et al., 2010; Karanasiou et al., 2012), but at the same time particles mediate gas-to-particle conver-

sion, scavenging and final removal of trace gases from the atmosphere (Birmili et al., 2003; Kolb

and et al, 2010).40

Natural particle sources, too, dependent on season, weather and region may cause widespread

socio-economical and epidemiological impacts. Europe for example is reached by Saharan dust of-

tentimes per year (Ansmann and et al, 2003; Collaud-Coen et al., 2004; Papayannis et al., 2008; Pey

et al., 2013; Flentje et al., 2015) where, decreasing towards the north, it contributes between 5%-30%45

to the total dry particle mass (Putaud et al., 2010). It triggers cloud formation (Sassen et al., 2003;

Lohmann et al., 2007; Tegen and Schepanski, 2009), summer smog (Ordonez et al., 2010; Wang,

2010) and has been associated to dispersion of bacteria like meningitis (Griffin, 2007; Karanasiou

et al., 2012). Volcanic eruptions may induce long-term changes of radiation transfer (Jäger, 2005),

disturb flight traffic (Flentje et al., 2010a; Schumann et al., 2011), habitability of adjacent regions50

and alter the chemical balance up to the stratosphere. Domestic heating and open fires linked to

agriculture (∼85% globally, Andreae and Merlet (2001)), drought or boreal burns (Damoah et al.,

2004; Hyer et al., 2007; Stohl et al., 2002) produce small-sized carbonaceous particles which can be

widely distributed and may penetrate deep into lungs and plant stomata (Kaiser et al., 2012)Ṫheir

fractal surfaces favor adsorption of harmful combustion by-products that may cause respiratory, al-55

lergic, cardiovascular and cancerous diseases (Mölter et al., 2014).
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Air-quality regulations like the European Directive 2008/50/EG for PM10/PM2.5 have therefore

been enforced and are currently revised to tackle issues related to carbonaceous fine (PM1) and ul-

trafine (<0.1µm ) particles (Linares et al., 2009). Design and control of these legislations require60

modeling efforts to define their scope, identify critical parameters and monitor the abundance of

aerosols and their role in weather, climate and air-quality (Stier et al., 2005; Morcrette et al., 2009;

Grell et al., 2011; Wang et al., 2011; Zhang et al., 2012; Baklanov et al., 2014). Still the impacts on

regional weather by mineral dust (Pèrez et al., 2006), sea-salt (precursors) (O’Dowd et al., 1997) and

forest-fire particles (Andreae and Merlet, 2001; Stohl et al., 2002; Andreae and Rosenfeld, 2008))65

are a challenge for atmospheric models due to uncertainties of optical properties arising from as-

sumptions on their physical and chemical composition (Curci et al., 2015).

To this end the Integrated Forecasting System (IFS) for regional and global scales has been devel-

oped in the series of PROMOTE, GEMS, MACC I-III EU-projects for the Copernicus Atmosphere70

Monitoring Service (CAMS - https://atmosphere.copernicus.eu/charts/cams/) at the European Cen-

ter for Medium Range Weather Forecast (ECMWF) (Morcrette et al., 2009; Flemming et al., 2017;

Rémy et al., 2019). Significant progress has been made with emission inventories (Granier and et

al, 2011; EDGAR, 2013; Gidden et al., 2019), implemented source functions (Dentener et al., 2006;

Morcrette et al., 2009, 2011; Spracklen et al., 2011) and the data assimilation (Benedetti et al., 2009;75

Kaiser et al., 2012; Bocquet et al., 2015). Important processes like water uptake/release by hygro-

scopic fractions (Weingartner et al., 2002; Swietlicki et al., 2008; Hong et al., 2014; Chan et al.,

2018) have been included, while the extension to water cloud formation e.g. during dust events is

still missing, though it regularly causes noticeable mispredictions.

It is therefore essential to evaluate and improve the CAMS model system with aid of indepen-80

dent observations, which is the mandate of (amongst others) the CAMS-84 validation team (Eskes

et al., 2015). So far model evaluation concentrates on aerosol optical depth AOD (Holben and et al,

2001; Basart et al., 2012; Cesnulyte et al., 2014), however limited to daytime (except few moon-

radiometers) and without resolving the vertical distribution. Regional models mostly think and verify

in terms of particulate matter mass concentration PM10 or PM2.5, mostly without resolving compo-85

sition and sizes of particles (Stidworthy et al., 2018; Akritidis et al., 2018). Often, assessments of

detailed particle properties suffer from sparse or delayed observations, which however are already

used to verify CAMS reanalyses (Flemming et al., 2017; Inness et al., 2019) which use nearly the

same aerosol module. Only recently, evaluation of vertical aerosol profiles started, using research

lidars and ceilometers (Benedetti et al., 2009; Wiegner and Geiß, 2012; Wiegner et al., 2014; Chan90

et al., 2018), whereby the former are operated spatially sparse and temporally intermittent, the latter

have no independent capability to identify and quantify particles and both do at best capture part of

the surface layer. Yet, extended networks like the European Aerosol Research Lidar Network (EAR-
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LINET), the German (CEILONET) and the European (E-Profile) ceilometer networks (cf. Global

Aerosol Lidar Network GALION, WMO-GAW Report No. 178) are now in place and used. As a95

by-product the height of the mixing layer ML can be inferred from the profiles (Münkel et al., 2007;

Haeffelin et al., 2012), which is used by aerosol and chemistry transport models to constrain the

vertical exchange and to scale the dispersion of reactive gases and aerosols (Monks et al., 2009) as

well as greenhouse gas concentration budgets (Gerbig et al., 2008).

100

The general approach in this article builds on the work of Chan et al. (2018), but allows to in-

vestigate additional model details beyond those discussed in there and complements Flemming et al.

(2017); Rémy et al. (2019). We primarily use attenuated backscatter β∗(z) profiles from the German

ceilometer network to evaluate CAMS global aerosol model forecasts. After brief overviews of the

CAMS model and potential and limitations of the ceilometer data, we introduce the auxiliary data105

aiding the interpretation as well as the concept and metrics to categorize the results in Section 2.

The results Section 3 presents complementary ways to order the model-observation differences oc-

curring w.r.t. altitude, time and model configuration. Based on this we identify reasons for model

deficiencies, possible improvements and parallels to previous evaluations in Section 4. Key findings

are summarized and an outlook provided to upcoming activities in Section 5.110

2 Data sets and methodology

2.1 The CAMS aerosol model

The Integrated Forecasting System aerosol module IFS-AER is described in Benedetti et al. (2009);

Morcrette et al. (2009); Rémy et al. (2019). Further information as well as analyses, forecasts, eval-115

uation results and other products can be found on the web page https://atmosphere.copernicus.eu/.

This article refers to the operational runs with assimilation (ASM) from 01/2016 (cycle 41r1) to

12/2019 (cycle 46r1) and corresponding unconstrained control runs (CTR) as listed in Table 1 and

in Table 3 in Rémy et al. (2019). The data were re-sampled from the reduced Gaussian grid at

T255 spectral resolution to 1.0◦ x 1.0◦before 06/2016 and from T511 to 0.5◦ x 0.5◦thereafter.120

Conceptually, regional models build on the global forecasts and refine scales to few km but yet pro-

vide only aggregated aerosol quantities PM2.5 or PM10 rather than speciated or direct backscatter

output nor the information necessary for conversion. The global aerosol model uses 14 prognos-

tic variables: (3 size bins each of dust and sea-salt, hydrophilic/hydrophobic black carbon BC,

organic matter OM, sulphate SO4, and as of 9 July 2019 (cycle 46r1) also two size bins of ni-125

trate NO3 and ammonium NH4. MODIS AOD and since cycle 45r1 also the Polar-Multi-Angle

Product (Popp, 2016) are assimilated, optionally by 4D-Var (Benedetti et al., 2009) or the 3-D

fields from the previous forecast. Owing to an adverse effect on headline scores during tests with
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Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) backscatter-profiles (1D-Var), yet

no aerosol profiles are assimilated (Benedetti et al., 2009). As described in detail by Granier130

and et al (2011); EDGAR (2013); Rémy et al. (2019) and documented on the ECMWF website

(https://confluence.ecmwf.int/display/COPSRV/CAMS+Global/) aerosol sources in IFS-AER con-

tinuously develop with emission inventories EDGAR, MACCity(+SOA), CAMS GLOB ANT/BIO

vx.x (anthropogenic/biogenic), stem from scaled fire emissions of the Global Fire Assimilation Sys-

tem GFAS (Kaiser et al., 2012) or are for dust, sea-salt and biogenic particles calculated from the135

meteorological fields and surface conditions. Volcanic emissions can be activated on demand. Hor-

izontal and vertical transport is based on the dynamics of the ECMWF model, complemented by

vertical diffusion/convection, sedimentation and dry/wet deposition by large-scale and convective

precipitation. Most significant upgrades are the increase of horizontal resolution from T255 to T511

after 06/2016, the switch to MACCity+SOA coupling OM to CO emission (Spracklen et al., 2011)140

as of 02/2017, the increase of vertical resolution from 60 to 137 levels and addition of NO3 and

NH4 as of cycle46r1 in 07/2019, cf. Table 3 in Rémy et al. (2019).

Table 1. Specification of relevant CAMS model runs. For changes by successive cycles c.f. https://atmosphere.

copernicus.eu/node/326/ and specifically for cycle 46r1 https://atmosphere.copernicus.eu/node/472/ as de-

scribed in Table 3 in Rémy et al. (2019). ASM is like CTR, but additionally uses 4D-Var assimilation.

Period IFS-Cycle Horiz Resolution Levels Important Upgrades

01/16-05/16 41r1 T255 - 1.0◦x 1.0◦ 60

06/26-01/17 41r1 T511 - 0.5◦x 0.5◦ 60 horiz. resol.

02/17-09/17 43r1 T511 - 0.5◦x 0.5◦ 60 MACCity+SOA, couple OM to CO

10/17-05/18 43r3 T511 - 0.5◦x 0.5◦ 60 SO4 sources, dry depos.

06/18-06/19 45r1 T511 - 0.5◦x 0.5◦ 60 sea salt sources, dry depos.

07/19-12/19 46r1 T511 - 0.5◦x 0.5◦ 137 vert. resol., NO3 and NH4

Based on the 00 UT analysis, 3-hourly profiles at time steps +3, +6, +9,...,+24 are extracted

from 5-day forecast runs, making noticeable adaptations by the analysis/assimilation possible at 03

UT each. Ceilometer and model profiles as well as MLH are based on altitude above ground and145

model geopotential height, respectively. The vertical displacement between the low-resolved model

orography and real terrain height is only relevant for steep stations sticking out far above the model

surface level, while over flat terrain this is below 100 m. In order to translate the model state of the

atmosphere into virtual measurements, which can be directly compared to real observations, a so

called ’forward operator’ is applied to the IFS-AER output. Here, the forward operator converts the150

mass mixing ratios mp,i of 14 particle types to attenuated backscatter β∗(z) according to Eq. (A6).

This is chosen as common physical quantity rather than backscatter coefficients β(z) because it is the
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primary measured variable from ceilometers without assumptions involved, and the model contains

all information to calculate it:

β∗(z) =β(z) exp

{
−2

∫ z

0

σ(z′)dz′
}

(1)155

Here β(z) and σ(z) are the backscatter and extinction coefficients, respectively. The further proce-

dure as described in detail by Chan et al. (2018) and look-up-tables with conversion coefficients are

in the Appendices A and C, respectively.

2.2 Ceilometer network

The German Meteorological Agency (DWD) operates a network of about 160 Lufft-CHM15k ceilome-160

ters (∼60 in Jan 2016, Figure 1) which provide operational profiles of the background- and range-

corrected raw signal P(z)z2 (Flentje et al., 2010a,b), available as quicklooks at http://www.dwd.de/

ceilomap/ and the European pendant E-Profile https://ceilometer.e-profile.eu/. CHM15k use a diode-

pumped Nd:YAG solid state laser emitting at 1064 nm and range up to max. 15 km above ground.

Typically, incomplete overlap in the near-field and low signal-to-noise ratio SNR in the far-field limit165

the inferable profile range to 0.3 - 8 km altitude Heese et al. (2010). The ceilometers of the network

are operationally calibrated using the TOPROF/E-PROFILE Rayleigh calibration routine provided

by MeteoSwiss. The Rayleigh method (Barrett and Ben-Dov, 1967) is applicable under clear sky

and stable aerosol conditions, whereby only nighttime data averaged over 1-3 hours are used to avoid

disturbance by background light. Rayleigh scattering profiles are calculated from National Center170

for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR)

reanalysis data. Though the low sensitivity of the IR wavelength to small particles <0.1µm limits

Rayleigh calibration capability, it offers large contrast (SNR) against molecular scattering to track

larger particles. System stability and output power monitoring allows to track the lidar constant CL

and transfer the calibrations to daytime profiles (Böckman et al., 2004; Heese et al., 2010; Wiegner175

and Geiß, 2012; Wiegner et al., 2014). Only stations with a sufficient density of successful calibra-

tions are considered. Attenuated backscatter β∗(z) as a function of altitude z is then calculated from

the background corrected ceilometer signal power P(z) with the calibration constant CL

β∗(z) =
Pz2

CL
(2)

The CL values are first cleaned for outliers (<>1.5 x 25th-75th percentile of 30-day average),180

smoothed with a 30-day running mean and finally interpolated to hourly values to be used in Eq. 2.

The typical precision of an individual calibration is 15–20 %, while the actual error is smaller due to

the temporal smoothing. The accuracy of the retrieved backscatter linearly depends on the accuracy

of CL. The monthly variation of CL is usually less than 5% and the annual variation is 10–15 %. Fi-

nally, cloud-free attenuated backscatter profiles are averaged within ± 1 h around the corresponding185

model times. Profiles with precipitation, low clouds or instrument operation flags are excluded from
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the evaluation as far as possible but still cause occasional artifacts. The most prominent feature in the

backscatter profiles usually is the planetary boundary layer, here identified with the aerosol mixing

layer ML. Up to three aerosol layer-top heights MLH, calculated by a wavelet algorithm (Teschke

and Pönitz, 2010), are reported by the instruments (cf. next section). Often the uppermost may be190

identified with the MLH, however ambiguities in the MLH definition and the different algorithms

for its determination remain large (Haeffelin et al., 2012).

Fig. 1. Lufft CHM15k ceilometer network of the Deutscher Wetterdienst (DWD) in 2020, color coded by the

number of available calibrations per month. Pink dots denote stations without calibrated data. Near real time

quicklooks and metadata information are available via the website http://www.dwd.de/ceilomap/.

2.3 Comparison of mixing layer height MLH

The evaluated model mixing layer height (MLH) stems from the ECMWF IFS operational forecast,

archived at steps 3,6,9,...,24 h based on daily 00 UT analysis. The model determines the MLH at the195

critical value of the bulk Richardson numberRi= 0.25, which characterizes the degree of turbulence

(Richardson et al., 2013). The vertical stability is estimated using the difference between each level

and the lowest level. Several issues with this approach are described by e.g. Engeln and Teixeira
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(2013), related to the Richardson number being based on ratios of both dynamic and thermodynamic

vertical gradients rather than of temperature and/or humidity as such, the use of dry variables in200

cloudy situations, and the fact that the Richardson number as a measure of local turbulence is often

unable to properly characterize the turbulent properties of convective boundary layers. Turbulent

kinetic energy, which could better be used, however, is rarely used in global models and as such is

not available (Engeln and Teixeira, 2013).

The reference MLH observations are based on two approaches: visual inspection of daily 2-D time-205

height sections of β∗(z) and the aerosol layer output from the CHM15k firmware. The former is

quite reliable but elaborate and requires an experienced analyst of 2-D backscatter sections. The

latter is automated and unbiased but suffers from severe inaccuracies and ambiguities and is mostly

unrealistic in cases with multiple-layers, low clouds/fog, small aerosol gradients, precipitation and

long-range transport of e.g. dust, smoke etc. In principle, MLH detection is a pattern recognition210

problem assuming that the vertical distribution of aerosol can be used as a tracer for boundaries.

This, however, is not always the case. The absolute value of the backscatter is typically not needed

since the relevant information seems to be coded in the gradient (but possibly of different orders)

of the backscatter profile (Teschke and Pönitz, 2010) and its temporal development. The CHM15k

firmware calculates up to 3 layers with quality flags from the range corrected signal (P(z)z2) by215

means of a wavelet transform algorithm (Teschke and Pönitz, 2010). Which of these corresponds to

the MLH, however, remains a decision according to specificity, temporal continuity and distinctness.

In this respect, Haeffelin et al. (2012) find in their analysis of limitations and capabilities of existing

mixing height retrieval techniques, ”‘...no evidence that the first derivative, wavelet transform, and

two-dimensional derivative techniques result in different skills to detect one or multiple significant220

aerosol gradients.”’. While MLH reported by CHM15k definitely lack reliability even when robust

metrics like maximum daily mixing layer heights MMLH are chosen, visual inspection of individual

cases illustrates why algorithms fail with ubiquitous complex scenes and simultaneously provides

reasonable estimates of MMLH. The uncertainty of visually inferred MLH is about ± 100 m and

no MLH <400 m a.g. can be detected due to artifacts from the overlap correction. Given all these225

limitations, the discussion of MLH is included in this article as it is the most prominent feature in

the vertical profile, but it is not intended as a rigorous evaluation.

2.4 In-situ measurements of particle composition and -sizes

To interpret the model-observation differences, in-situ particle composition measurements are con-

sulted from the German Global Atmosphere Watch (GAW) global station Hohenpeißenberg HPB230

(47.8◦N, 11.0◦E, 990 m a.s.l.), (Flentje et al., 2015). The Hohenpeißenberg is a pre-Alpine hill,

sticking out 300 m above the surrounding forest/grassland and represents rural central European

conditions. Particle composition observations stem from Aerosol Chemical Speciation Monitor Q-

ACSM (Aerodyne Res. Inc.,Billerica, MA, USA; Ng et al. (2011)) and quartz/teflon-filter probes
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analysed for water-soluble ions with a DIONEX ICS 1000 (Henning et al., 2002) as detailed in Flen-235

tje et al. (2015). Both measurement’s uncertainties are negligible for global model evaluation. Only

the model vertical level of correspondence is not unambiguously to determine for mountain stations

sticking out from the model orography. The profile evaluation circumvents this by excluding sta-

tions in steep terrain and through the negligible effect of the orography at higher altitudes. As a

compromise for HPB (zobs = 995 m a.s.l., zgeopot−model = 665 m) to capture both, surface effects240

and ambient conditions at elevated sampling level, we choose L54-60 and L127-137 for the 60L and

the 137L model version, respectively, see e.g. Wagner et al. (2015). The range of concentrations

within these altitudes indicates the uncertainty.

2.5 Concept of evaluation

Given the complexity of spatio-temporal variations of 14 interacting aerosol types in the IFS-AER245

model, it is important to reduce the evaluation to a meaningful subset of metrics and scores and

adapt it to the information content of the observation data. This study focuses to the vertical aerosol

distribution and the altitude-dependence of the model-observation differences (bias) from about 0.3

to 6 km above ground. Below 0.3 km, the incomplete overlap cannot be corrected with sufficient

accuracy. Above 6 km ceilometer data suffer increasingly from low SNR and cloud artifacts. To250

avoid perturbation of our results by truncated profiles extending vertically over less than 0.6 km

or containing clouds and possibly falling precipitation streaks, such profiles are excluded (cf. Sec-

tion 4.2). In the vertical we distinguish the surface layer SL where the sources of most particles are,

the mixing-layer ML, and the free troposphere FT, where long-range transport takes place. Model

biases may indicate specific deficiencies in the model, but may also stem from uncertainties in the255

observation data, from the forward operator, or arise from necessary adaptions of the datasets (c.f.

Section 4.2).

While there are several options to discuss the agreement of forecast and observed backscatter pro-

files, we use the following metrics and scores: The correlation of model-vs-observation profiles

evaluates their shape, i.e. efficiency and timeliness of vertical/horizontal transport, injection heights,260

representation of the mixing layer and stratification. This is jointly summarized in Taylor diagrams

(Taylor, 2001) with the standard deviation coding the variance/amplitude of the profiles. The bias

(as Mm−1sr−1) or modified normalized mean bias MNMB (as %) as a function of time and alti-

tude evaluates the sources/sinks (-strength) and physical and chemical transformations, separately

for runs with assimilation (ASM) and control runs (CTR):265

MNMBasm,ctr(z,t) = 100∗ 2

N
∗
N∑
i=0

Masm,ctr(z,ti)−O(z,ti)

Masm,ctr(z,ti)+O(z,ti)

where Masm,ctr(z,ti) and O(z,ti) denote modeled and observed values at altitude z and times ti,

respectively. Either moving averages over selected altitude ranges (bias time series) or (e.g monthly)

averages resampled at the model levels (bias profiles) are calculated.
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The MNMB is used for comparability within CAMS, because it is better suited to verify aerosol270

and chemical species concentrations compared to verifying standard meteorological fields. Spatial

or temporal variations can be much greater and the model biases are frequently much larger in mag-

nitude. Most importantly, typical concentrations vary quite widely between different aerosol types,

regions and heights, and a given bias or error value can have a quite different significance. It is useful,

therefore, to consider bias and error metrics that are normalised with respect to observed concentra-275

tions and hence can provide a consistent scale regardless of pollutant type, altitude or region (see

e.g. Elguindi et al., 2010, or Savage et al., 2013). Moreover, the MNMB is robust to outliers and

converges to the normal bias for biases approaching zero, while taking into account larger uncer-

tainties in the observations and the representativeness issue when comparing coarse-resolved global

models versus site-specific station observations.280

Taylor polar plots combine two statistical measures for pairs of profiles, averaged over any optional

period of time (here daily means or medians) and over different stations: the correlation of coin-

cident pairs of modeled and observed vertical profiles plotted along the azimuth, and the standard

deviation of model profiles normalised to the observation on the x-axis (Taylor, 2001). This means

that correlation is calculated over altitude ranges rather than periods of time. The ideal agreement or285

the reference point (observation) is thus located at polar coordinate [1,1]. Noteworthy, the distance

from the reference in Taylor polar plots corresponds to the root-mean-square error RMSE, thus Tay-

lor plots powerfully display performance changes between model versions in a strongly aggregated

way.

By considering mean and median values, the skills with and without (peaks of) events are distin-290

guished, the latter representing more background conditions and less the inter-annual variability of

(mostly dust) events. Negative and positive biases are denoted as ’low-bias’ or ’high-bias’, respec-

tively, their absolute amount classified as large or small. The relative data coverage of 3-hourly

profiles from all stations remaining for evaluation is 93%, 92%, 89%, 83%, 71%, 46%, 16% at 0.4

km, 1 km, 2 km, 3 km, 4 km, 5 km, and 6 km above ground, respectively.295

3 Results

3.1 Bias and MNMB

Figure 2 shows the temporal evolution of bias (upper panels) and modified normalized mean bias

MNMB (lower panels), each for runs with assimilation (ASM - red/orange) and corresponding con-

trol runs (CTR - green/blue) around vertical model levels spaced by 1 km (0.4, 1, 2,...6 km above300

ground), each averaged over ± 1 model level. The data averaged over 21 German ceilometer sta-

tions becomes statistically sparse at higher levels≥6 km. A different perspective, transformed to the

whole vertical profiles of monthly mean and median bias of β∗(z) is shown in Figure 3 color coded

by months each for 2016 to 2019. Actual β∗(z) profiles are shown for comparison in Figures A13

10



to A16. The following results refer to Figures 2 and 3.305

Fig. 2. 7-day running mean bias of β∗(z) from ASM (1st panel) and CTR (2nd panel) combined from 21

German stations in 2016-2019. Same for modified normalized mean bias (MNMB) in 3rd and 4th panel. Colors

refer to different altitudes above ground. Vertical black lines indicate major model updates as in Table 1.
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Bias of β∗(z) shows a clearly different behavior near the surface, in the ML and the FT, with

upward tendencies toward the surface, low bulges in the ML reaching up to≈0.5-1 km in winter and

to ≈1-2 km in summer, and enhanced variation related to irregular long-range transport, mostly of

dust, in the FT as shown in Figure 3. Estimated error bars overlayed to the CTR profiles indicate the310

significance of the biases. The low-bias dips above 6 km are artifacts caused by cloud boundaries

not captured by the quality control. Owing to events, the mean bias is on average larger and scatters

more than the median, particularly in the FT which holds little aerosol in undisturbed situations. In

several months Saharan dust events cause a large high-bias in the upper ML and the FT. A positive

impact of the assimilation reflects in smaller and less variable bias in ASM than in CTR as shown in315

Figure 2, where 7-day running means remove the tremendous variability on daily time scales. Bias

and MNMB tend to be lower in CTR (blueish) than in ASM (reddish), particularly at lower heights.

ASM bias/MNMB show less longer-term variation with model changes and seasons and less vertical

spread. (Note that only ASM is used with cycle 41r1 before June 2016.) MNMB is less sensitive to

absolute β∗(z) and thus clearer shows phases of vertical association and dissociation, and an overall320

downward trend 2016-2018 of CTR MNMB turning into an increase in 2019. For ASM this vari-

ation is only evident in the FT. With cycle 46r1 bias and MNMB in ASM and CTR are vertically

closer associated.

Over the four years monthly bias profiles have become more variable, the means more than me-325

dians and CTR more than ASM (Figure 3). This may reflect changes to model source strengths

(cf. Table 1), larger errors during more frequent events and a balancing impact of the assimilation,

respectively. This scatter is particularly observed in the ML where model β∗(z) are on average

lower than observed till 07/2019 and higher thereafter. Particularly CTR shows lower β∗(z) bias

and MNMB around summers at low heights (MNMB around -100%), while ASM remains flatter330

thanks to the assimilation (Figure 2). SL biases stick out high (up to 0.3 Mm−1sr−1) with cycle

41r1 T255 in spring 2016 and with cycle 46r1 after 07/2019 (up to 0.4 Mm−1sr−1). In-between they

were smaller or negative as shown in Figure 2 and Table 2. A bias increase with cycle 46r1 at 0.4/1

km a.g. corresponds to overestimated NO3, NH4 and OM in the model as discussed with respect to

GAW surface data in Section 3.3.335
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Fig. 3. Monthly mean (left pair) and median (right pair) profiles of bias ASM/ceilo (left) and CTR/ceilo (right),

combined from 21 German stations in 2016-2019. At higher altitudes the profiles are partly contaminated by

remaining cloud artifacts.

Though seasonal regularities are disturbed by five irregular model updates in the 2016-2019 pe-

riod, bias/MNMB in ASM show opposing seasonal cycles in the lower (0.4 km a.g.) and the upper (2

km a.g.) ML with amplitudes of 0.2 Mm−1sr−1/40% (summer maximum) and 0.1 Mm−1sr−1/70%

(summer minimum), respectively (Figure 4). Figure 2 shows this particularly before cycle 43r3 in340

Oct 2017. The seasonal amplitude is small at the intermediate level 1 km a.g. The summer minimum
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is evident up to 3 km (MNMB even to 4 km a.g.), while it is variable due to Saharan dust events at

5 and 6 km a.g. A weekly cycle is neither significant in the bias nor MNMB, indicating a negligible

influence of short-term anthropogenic emissions which are not captured by the inventories’ temporal

resolution (1 month).345

Fig. 4. Annual variation of bias and MNMB of β∗(z) for ASM and CTR (dashed) combined from 21 German

stations in 2016-2019.

Periods with opposing high-bias in SL/ML and low-bias in FT indicate vertical displacement of

aerosol within the profile. While expected within individual profiles, it often also lasts for longer

periods as shown by Figure 2, e.g. in Apr-Jun 2016 and repeatedly until cycle 45r1 in mid 2018,

whereupon it largely disappears. Longer periods are evident as oscillations even in the monthly mean350

profiles in Figure 3. The effect is more distinct for ASM and may be attributed to adaptions by the

assimilation of AOD which adds no direct height information. Horizontal/temporal shifts between

model and observation result in low-bias/high-bias variations with time and mostly cancel out within

a day. The corresponding fractional skill score is discussed in Section 3.4.2. Outstanding high-biased

monthly profiles (Figures 3 and 2) or high-bias peaks are mostly related to Saharan dust events,355

e.g. in Apr & Jun 2016, Jun, Jul & Oct 2017, Jan & Apr 2018 and Jun/Jul & Oct-Dec 2019 (cf.
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Section 3.4.1). However, occasionally, SD particles induce cloud formation (e.g. 16/17 Oct 2017)

which largely increases the β∗(z) signal in spite of constant dust aerosol load (cf. Appendix B).

Until this exceeds the β∗(z) threshold above which ceilometer data are removed as clouds, such

events produce a low-bias. Low-biases also occur in the ML (1-2 km lines in Figure 2) during smog360

periods, e.g. when transports of highly polluted air from eastern Europe towards Germany (Jan

2017, Feb/Mar 2018) are not captured by the model (low-bias of -0.3 Mm−1sr−1 in Feb/Mar 2018,

cf. Section 3.3). At higher altitudes ≥5 km, remaining cloud artifacts within sparse data coverage

(low SNR) cause sharp low-bias dips in Figure 2.

Table 2. Bias [Mm−1sr−1] and MNMB [%] of β∗(z) for ASM and CTR runs at 0.4, 1 and 4 km altitude above

ground averages within the different model configurations of Table 1.

41r1 (T255) 41r1 (T511) 43r1 43r3 45r1 46r1

ASM bias

0.4 km 0.04 -0.04 -0.07 -0.04 -0.11 0.2

1 km -0.01 -0.08 -0.11 -0.01 -0.12 0.02

4 km 0.03 0.03 0.03 0.02 0.0 0.06

CTR bias

0.4 km - -0.16 -0.21 -0.07 -0.21 0.09

1 km - -0.17 -0.22 -0.03 -0.23 -0.06

4 km - 0.01 -0.02 -0.01 -0-03 0.07

ASM MNMB

0.4 km 5 -10 -20 -8 -23 34

1 km -6 -15 -30 -4 -33 1

4 km 86 82 67 65 29 99

CTR MNMB

0.4 km - -47 -68 -20 -54 16

1 km - -57 -82 -18 -78 -20

4 km - 34 -2 -6 -67 63

3.2 Profile shape - Correlation365

The Pearson correlation coefficient r of model-observation β∗(z) profile pairs specifically quantifies

the covariance of vertical variability, i.e. the shape of the profiles, independent of the bias. The ML

and eventual particle plumes in the FT govern this correlation. Again, elimination of clouds and

the overlap range is essential. Apart large event-driven situational variability, the profile correlation

exhibits no long-term tendency but a clear seasonal cycle with better agreement in winter and less in370

summer as shown in Figure 5. Overlayed in Figure 5 are vertical lines indicating seasonally irregular

model upgrades and mean values over the IFS cycle periods from Table 1. The mean correlations
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within the IFS configuration periods don’t vary significantly (cf. Table 2), and their differences

reflect the seasonal cycle rather than indicating changes of the model performance. Individual (3-

hly) profile pairs or longer temporal averages have been considered, whereby the former penalizes375

already small time-shifts or displacements (and yields lower r). Diurnal or longer averages reduce

influences from early/lagged transport as well as the dominant diurnal cycle of the ML and are more

sensitive to irregular events. On a monthly basis also median profiles are considered to evaluate

specifically the model background profile (Appendix D Figures A13- A16).

Fig. 5. Pearsons correlation coefficients (r - upper panel), standard deviation normalized towards ceilometer

observations (mid-panel), and integrated bias of daily average β∗(z) profiles of IFS-AER versus ceilometers

for 2016-2019. Red crosses denote ASM, blue crosses the control run. The 3-day moving average line and

median values over the periods with constant model configurations are added.

Generally, increasing correlation is found between IFS-AER fields and individual station pro-380

files, with longer averaging times: while only 50-60% of the observed 3-hourly vertical variability

is explained by IFS-AER (r3hly =0.5 - 0.6), the explained fraction increases to 70-80% for diurnal
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average profiles (r1dly =0.7 - 0.8) as shown in Figure 5. Thus spatio-temporal aggregation defines

the information to be revealed. Aerosol changes are very often not timely and/or (vertically) dis-

placed on a few-hourly time scale, but longer (or more extended) events and developments are quite385

reliably captured by IFS-AER. This is particularly true for Saharan dust transport where nearly all

events are reproduced but the large concentrations (large β∗(z) ) combined with small scale inho-

mogeneity give rise to larger uncertainties as well (cf. Section 3.4.1). The mid panel of Figure 5

shows the variance and provides numbers of daily average vertical profiles normalized to that of

the observations as normalized standard deviation NSD. The time series and Table 3 reveals marked390

differences between the IFS cycles, given for ASM/CTR, separately: profile variance approaches

the observations (NSD=0.97/0.93) during cycle 41r1 before June 2016 and NSD=0.95/0.96 dur-

ing cycle46r1. Only about half the observed variance is simulated during cycles 41r1 after July

2016 (NSD=0.52/0.50), 43r1 (NSD=0.46/0.45), and 45r1 (NSD=0.51/0.52). Intermediate values

(NSD=0.67/0.78) are found during cycle43r3. A similar measure like NSD (analog to AOD bias) is395

the vertically integrated β∗(z) bias. It is dominated by the ML and/or events as in Figure 2 but has

the limitation that every single profile has weather dependent vertical extension. No clear ruptures

as for NSD appear at the model upgrade times for the integrated β∗(z) diurnal profile bias in the 3rd

panel of Figure 5. It is not clear whether this can be interpreted in terms of model upgrades where

several adaptions of sources took place. For example sea salt as a large contributor to high β∗(z)400

bias in the ML (Chan et al., 2018) was reduced inland after 06/2018 by re-distributing mass from

fine to coarse particles (Rémy et al., 2019). As of 07/2019 NO3 and NH4 were added and probably

too much as discussed in Section 3.3. On the other hand, the substantial increase of OM load in

02/2017, clearly evident at the surface (Section 3.3) seemly did not affect the profile integral.

405

A more condensed way than Figure 5 to descriptively visualize performance changes between

model versions are Taylor polar plots as displayed in Figure 6 and explained in Section 2.5. Here,

the average performance during the six IFS-AER configurations in Table 1 are summarized in terms

of correlation, normalized standard deviation and the plotting-distance towards the reference, i.e. the

root mean square error (Taylor, 2001). Accordingly, the model system has not systematically evolved410

towards improved representation of the profile shape, though mean values around r1dly = 0.7 are

already quite good. However, after some changes, finally the overall variance of the profile became

nearly realistic on average after the implementation of NO3 and NH4 and adaptions to SO4, or-

ganics and dust in cycle 46r1 in July 2019. The differences between ASM and CTR are small. It

should be noted, that individual covariances of modeled and observed profiles vary quite strongly415

with time and location/station, meaning that many situations cannot be closely captured and even the

observations may partly not be representative due to undetected artifacts (clouds, overlap correction,

misalignment etc, not removed by the quality control).
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Fig. 6. Taylor plot combining Pearsons correlation coefficients (azimuth) and standard deviation normalized

towards ceilometer observations (radius) from daily average β∗(z) -profiles of IFS-AER versus ceilometers for

2016-2019. Left: median of all data, right: mean over 221 Saharan dust days as defined in Section 3.4.1. Red

dots denote ASM, blue dot the corresponding control runs. Note the different x/y-axes.

3.3 Particle composition and -size at surface level420

To better understand the differences between modeled and observed backscatter β∗(z) profiles,

near-surface mass concentrations MC of the prognostic aerosols in IFS-AER, namely PM10, sulfate

SO4, nitrate NO3, ammonium NH4, black carbon BC, organics OM as well as qualitative proxys for

’sea-salt’ SS and ’mineral dust’ MD are compared to surface in-situ observations. All particle con-

centrations are modeled and measured (in-situ) in dry state without hygroscopic water uptake. PM10425

is calculated from the model mass mixing ratios mmr according to the formula used in IFS-AER

(Rémy et al., 2019): PM10 = ρ([SS1]/4.3+[SS2]/4.3+[MD1]+[MD2]+0.4[MD3]+[OM ]+

[BC]+[SO4]+[NO31]+[NO32]+[NH4]), whereby [Xi] denotes the mmr of the i-th size bin of

the size-resolved species and ρ is the density of air. The ’dust’ variable is not directly measured, but

approximated by MD = PM10− [OM ]− [BC]− [NO3]− [NH4]− [SO4]− [Cl] and inferred on430

event basis to discuss contingency of events in Section 3.4.1. Mineral dust sizes at Hohenpeißenberg

(HPB) are mostly smaller than 10 µm and its composition is largely disjunct from the other IFS-AER

particle types. Chlorine Cl is used as a proxy for NaCl in sea salt, stoichiometrically corrected for the

sodium Na portion (mNa/mCl ≈ 22/35) and for ≈7% of additional minor components SO4, Mg,

Ca etc. A rigorous evaluation of composition-resolved MC is beyond the scope of this article, but a435

sanity check with data from the GAW global station HPB provides insight into the representation of

individual aerosol types.
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Table 3. Concentrations [µg/m3] of IFS-AER prognostic aerosols by ASM and CTR versus GAW in-situ

measurements at Hohenpeißenberg station, averaged over constant model configuration periods as defined in

table 1.

41r1-T255 41r1-T511 43r1 43r3 45r1 46r1

ASM PM10 11.61 6.91 9.40 11.30 10.71 13.76

CTR PM10 10.43 5.55 6.37 10.06 6.92 11.36

GAW PM10 7.74 8.33 7.90 8.20 8.37 5.81

ASM om 1.01 1.50 4.08 5.93 6.06 4.74

CTR om 0.94 0.90 2.18 4.17 3.46 2.87

GAW om 2.52 2.63 2.71 2.63 3.10 1.79

ASM bc 0.54 0.61 0.56 0.33 0.30 0.18

CTR bc 0.50 0.49 0.20 0.36 0.15 0.11

GAW bc 0.35 0.47 0.35 0.46 0.39 0.30

ASM SO4 5.60 3.02 1.80 1.03 1.97 1.04

CTR SO4 4.60 1.46 0.70 0.78 0.78 0.40

GAW SO4 0.81 0.72 0.82 0.86 1.00 0.51

ASM NO3 - - - - 3.21 3.95

CTR NO3 - - - - 3.63 3.85

GAW NO3 0.70 1.22 0.95 1.67 1.53 0.81

ASM NH4 - - - - 0.72 0.88

CTR NH4 - - - - 0.80 0.87

GAW NH4 0.47 0.62 0.60 0.92 0.89 0.45

ASM ss 2.38 1.35 2.14 2.52 1.22 1.24

CTR ss 2.25 1.32 2.16 2.60 1.13 1.20

GAW ss 0.17 0.13 0.14 0.19 0.14 0.13

ASM du 4.34 1.41 2.42 2.82 2.44 6.04

CTR du 4.31 2.48 2.90 3.90 2.71 6.84

GAW du 1.94 2.78 2.28 1.58 2.69 1.79
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Fig. 7. Comparison of mass concentrations averaged over IFS-levels L54-L60/L127-L137 for L60/L137 model

version and measured by ACSM and filter probes at GAW station Hohenpeißenberg for 2016 - 2019. From

top/left to bottom/right: PM10, OM, BC, SO4, NO3, and NH4, chlorine, sea-salt- and dust-proxies as described

in the text. Vertical black lines indicate major model updates as in Table 1. Note the different y-ranges!

As shown in Figure 7, the dry surface mass concentration PM10 for ASM (10.3 µg/m3) and CTR

(7.9 µg/m3) roughly corresponds to HPB data (7.9 µg/m3). The assimilation seems to bias surface440

concentrations a bit high. Species are detailed in Table 3. PM10 approaches HPB data after the

increase of OM with cycle 43r1 (02/2017), though this was partly compensated by a parallel de-

crease of SO4, it is however overestimated as of cycle 46r1 after July 2019 due to introduction of

NO3 and NH4, which are simulated roughly 3 µg/m3(∼ 300%) and 0.3 µg/m3(∼ 60%) too high at

HPB, respectively. Further changes with cycle 43r3 (10/2017) synchronize the phase but exaggerate445

the amplitude of the SO4 annual cycle which together with the dominating high-biased contribution

from OM causes most of the PM10 overestimation near the surface in summers since 2018. After

sulfate was reduced in cycle43r3 and beyond (Rémy et al., 2019), SO4 in CTR agrees remarkably

well with HPB while summer concentrations are by 2-4 µg/m3 too high in ASM. BC which con-

tributes only about 5% in mass has evolved quite realistically with a slightly more decreasing trend450

in 2016-2019 than observed. Probably, emission inventories overestimate the decreasing trend over

Europe where the decline has leveled off in the last decade.

Total suspended sea-salt is equally overestimated in ASM and CTR with mean MC around 1.8
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µg/m3, while the estimated abundance at the far inland HPB site is only 0.02-0.3 µg/m3with how-

ever large error bars of ± 0.3 µg/m3due to the hard-to-sample coarse mode (5-20 µm ) which455

contributes about 0.3 µg/m3 to the SS concentration in the model. The seasonal variation by roughly

an order of magnitude seems realistic. The large uncertainties and increases of bias in the PBL as-

sociated with SS has already been discussed in Chan et al. (2018). To this, the above mentioned

approximation of SS via Cl has negligible impact. The observed-dust proxy contributes only 4-6%

to the annual average mass at HPB (Flentje et al., 2015). The seasonality is reproduced, but mean460

summer contributions around 10 µg/m3 would require much more events than observed and simu-

lated, which confirms that dust concentrations are overestimated not only near the surface but also

in the higher ML and the FT as noted in Section 3.1. The assimilation correction to dust MC of

few µg/m3is too small. These results are not affected by mass-to-backscatter conversion nor humid-

ity and, due to averaging over the lowest 300 m a.g., are not sensitive to the model level selected465

to represent surface concentrations at HPB. The regional representativeness is limited to rural cen-

tral Europe (Putaud et al., 2010) where comparatively small concentrations prevail as discussed in

Section 4.

3.4 Long-range transport

The DWD ceilometer network follows the 3-D dispersion of optically efficient particles like dust or470

smoke and is therefore particularly suitable to verify the timeliness of long-range aerosol transport

in IFS-AER in a qualitative way. Against this, automated rendering of 2-D time-height sections

from the ensemble of stations to evolving 3-D fields is a challenge beyond the scope of this article,

and advanced metrics like fractions skill score (Roberts, 2008) have still to be adapted. Simpler

options are to compare time-height slices at fixed locations (stations), analyse representative cases or475

evaluate the representation of events qualitatively. In aged air masses far from the sources, chemical

transformations slow down and transport of particle layers/plumes becomes more passive. This

reflects in wide consistency of aerosol fields in the IFS model with large-scale dynamical structures

in the middle and upper troposphere (e.g. Flentje et al. (2005)).

3.4.1 Mineral dust480

The previous sections showed that Saharan dust loads over Germany are over-estimated at the sur-

face and throughout the profile. The realistic seasonality (Figure 7) and the reasonable correlation

(Figure 5) however suggest that time and also vertical position of SD plumes are mostly captured in

IFS-AER, as long as the scales are sufficiently large. It can further be shown that IFS-AER forecasts

have a high score in capturing or reliably excluding significant Saharan dust days SDD, which are485

inferred from the observations by visual inspection of 2-D network composite plots and backward

trajectories and from the model by choosing a reasonable threshold for maximum dust AOD within

a box of 1◦ x 1◦around selected ceilometer stations. Defining days with max AOD550nm,dust> 0.03
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and max AOD550nm,dust < 0.001 as SDD respective None-SDD in the model and within the in-

herent uncertainties of type identification, these threshold yield ’excess’ and ’miss’ rates near zero,490

221 ’hit’-days and 271 zeroes. Hits and zeroes are SDD respective clear days identified in both

data sets, ’excess’ SDD are simulated but not observed and ’misses’ denote observed SDD that are

not reproduced by IFS-AER. Owing to the uncertain identification of faint aerosol layers based on

ceilometers and trajectories, the majority (2/3) of days in-between these thresholds remain unclas-

sified. This is however no severe limitation to this analysis, which is meant to confirm qualitatively495

the high reliability of the forecasts w.r.t. decided SDD and non-SDD.

As several improvements were made to emission, size-distribution and (wet) deposition of dust

(Rémy et al., 2019), a Taylor diagram for the subset of SDD with modeled maximum AOD550nm,dust>

0.03 in Figure 6 shows the development of dust simulation by IFS-AER during the 2016-2019 pe-

riod. On SDD the correlation of profiles (shapes) is lower (r =0.4-0.6 instead of r =0.6-0.8) while500

standard deviation (coding the amplitude of β∗(z) ) is higher. The first indicates spatio-temporal

or vertical shifts of layers/plumes, the latter reflects overestimation of dust concentrations but is not

directly scaled to the SD bias due to the large influence of the ML on the profile. These findings

confirm the analysis by Rémy et al. (2019) who state good capability to reproduce dust events as

detected by AERONET station data (Holben and et al, 2001). According to the different trajectories,505

the long-range transport pathway (via Atlantic, Mediterranean,...) does not effect the accuracy of

timing/positioning of plumes, while the scale reduction during regional stirring and dispersion is the

main reason degrading the representation of the vertical profile shape.

3.4.2 Fractions skill score

The penalizing of slightly vertically displaced aerosol layers yielding a low or even anti-correlation510

in Section 3.2 hints to the fact that a useful assessment of the positioning (in space and time) of an

aerosol plume requires not only reference to point locations but also to their vicinity. Such a skill

score shall distinguish nearly correct positioned features from deviations by a bigger margin. An ap-

proach to quantify the degree of overlap of simulated and observed aerosol structures is the fractions

skill score (FSS; Roberts (2008); Skok and Roberts (2016)). The perceived accuracy increases with515

larger scales, longer averaging, elimination of outliers etc. Thus reasonable scales must be analysed

to balance the processes of interest and the useful level of detail to be notified. For example small

(sub-grid) scale structures appear randomly displaced or missed because the information content of

the model fields does not match the resolution of the observations, which the other way round, are

not representative for the model grid box. For profile correlation, the usefulness-threshold of scales520

is for IFS-AER presently of the order of 1/2 day and 100 km. An approach towards FSS would be to

draw polygons either outlining the boundary of an individual SD plume observed at a given time at

different ceilometer stations or, alternatively, refer to the overlap of plumes in time-height sections

at individual stations. Another metric to quantify the model performance for coherent plumes in a
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quasi-stationary flow is the relative deviation of arrival/departure times of plumes/layers at station525

positions in model and observation as visualized in Figure 8 for the SD plume on 16 Oct 2017. Com-

posite bullets with color coded arrival times observed in 2-D β∗(z) ceilometer sections (outer ring)

and corresponding model fields (inner bullet) illustrate the slightly delayed arrival (0-1 hour) of the

model plume in western Germany, it’s catch-up in the middle and again lagged arrival (0-2 hours) in

the eastern part. The uncertainty of determination is about 1 hour. This plume was neither observed530

nor simulated in the very south of Germany.

Fig. 8. Arrival time of individual SD plume on 16 Oct 2017, color-coded by the hour of day, as measured by

ceilometer (outer ring) and IFS-AER (inner bullet). Missing data is white: the selected plume did not reach the

southernmost part of Germany or arrival could not be identified due to low clouds.
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4 Discussion and conclusions

Thorough evaluations of IFS-AER operational forecasts are regularly published in near-real-time

or in retrospective validation reports on the CAMS website (http://macc-raq-op.meteo.fr/, https:

//atmosphere.copernicus.eu/eqa-reports-global-services/, last access: Jan 2021), as presented by Es-535

kes et al. (2015). In these, the realism of the vertical profile has not yet received much attention,

although it may be relevant for aircraft guidance around volcanic ash layers, in cases of visibility re-

duction during Saharan dust events, for the cloud formation potential, weather and radiation transfer

or the dispersion of severe pollution events. Our focus on the vertical aerosol distribution com-

plements evaluations based on AOD columns (Rémy et al., 2019; Gueymard and Yang, 2020) and540

surface in-situ measurements (e.g. https://atmosphere.copernicus.eu/index.php/regional-services/,

last access: Jan 2021). It extends our study by Chan et al. (2018) CH18 from the surface layer up to

the mid-troposphere. Yet, our results are shown to be consistent with previous verifications. The ver-

tical profile of β∗(z) bias allows a more detailed understanding of the height dependence of sources

and sinks, vertical transport and re-distribution of particles as well as temporal shifts in the model545

as FT biases are governed by long-range transport rather than by surface drag and convection in the

mixing layer. Verifications of IFS-AER re-analyses reported by Flemming et al. (2017); Inness et al.

(2019); Wagner et al. (2021) are in many respects representative for the operational forecasts.

Compared to our first study by CH18, covering the period 09/2015-08/2016, we use the 4 years550

period 2016-2019 with an overlap of 8 months, use data from 21 instead of 12 ceilometer stations

and all evaluable altitudes. As no clear dependence of performance on the distance to model grid

points was found in CH18, and the spatial resolution was increased from T255/L60 (≈1◦x 1◦) to

T511/L60 (≈0.5◦x 0.5◦) during cycle41r1 in July 2016, we drop the constraint to stations within

20 km around model grid points. Again β∗(z) is used as this is the primary measured quantity of555

ceilometers that can be rigorously calculated from the IFS-AER output. The small high-bias with

large standard deviation of 1.5 times the model average found by CH18 for near-surface-integrated

(0.2-1 km altitude) β∗(z) is confirmed by our analysis at the lowest selected levels at 0.4 and 1 km

a.g., as listed in Table 2. The larger overestimation of β∗(z) associated with higher sea salt relative

contributions is in CH18 partly (∼ 10% of total β∗(z) ) attributed to the utilized hygroscopic growth560

scheme OPAC (Hess et al., 1998), and is not elaborated further in this study. Sea salt over continental

Europe remains considerably overestimated (c.f Section 3.3) in all seasons as changes to the sea salt

emission scheme, e.g. coming in with cycle45r1 (06/2018), still primarily aim to reduce the global

low-bias of sea salt abundance dominated by oceans. Concurrent substantial increases of sea-salt

particle sizes and sinks (wet deposition) likely reduce sea salt mass concentrations further inland,565

apparent as step at HPB in Figure 7, but are either not efficient enough or still not the governing pro-

cesses. As in Chan et al. (2018), underestimated near-surface β∗(z) are partly linked to unresolved

local or regional scale (e.g. Jan/Feb 2017) emission events that reach up to 2-3 km a.g. (Figure 2).
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Being stronger and more frequent in winter (Figure 4) they contain much ammonium and nitrate (as

NH4NO3) in the ML, which had not been included in the model by that time (Section 3.3). Increase570

of OM emissions in Feb 2017 (≈30-60% of aerosol mass in the rural central European ML) and ad-

dition of nitrate and ammonium in July 2019 (≈10-30% of aerosol mass as NH4NO3 or NH4(SO4)2)

clearly tuned the model towards observed concentrations/β∗(z) and notably reduced the correction

by the assimilation (Figures 2 and 5). Similarly low MNMB in PM10 was found for this event by

Rémy et al. (2019).575

Vertically displaced aerosol layers (often SD) causing low-bias/high-bias oscillations (Figures 3

and 2) cancel out in vertically integrated backscatter (Figure 5) and AOD (not shown), but degrade

the profile correlation and are mostly not reduced by the assimilation. As described by Benedetti

et al. (2009) the IFS-AER 4D-Var assimilation scheme based on AOD columns could add vertical580

aerosol information by adaptions to the vertical temperature-, humidity- or wind profile, but the

effect e.g by optimizing wind shears seems not specific enough to improve the simulated aerosol

profile in ASM relative to CTR. Generally, performance changes of IFS-AER with height are linked

to specific processes.

585

Surface layer: Regional sources typically have the largest effect to the lowest part of the profile.

In the near-surface layer, the observed high-bias of NO3 mass concentrations results from too effi-

cient gas-to-particle partitioning, i.e. fine-mode NO3 production from HNO3-neutralisation by NH3,

followed by temperature dependent dissociation to NO3 and NH4 . Secondly, remaining HNO3 may

heterogeneously produce coarse NO3 on SS or dust particles (Rémy et al., 2019), but this process is590

of minor relevance in central Europe where fine-mode nitrate has roughly 5 times larger mass con-

centration than coarse-mode nitrate. NH4 is simulated at comparable concentrations as observed at

HPB while NO3 is about four times as high. For fine-mode NO3 the most efficient sink near the sur-

face, probably underestimated, is dry deposition (Zhang et al., 2012), while sedimentation of small

particles should be slow and is disabled in the model. Below-cloud wet deposition (washout) should595

affect the whole profile rather than only the surface where the high-bias tendency toward the ground

is found (Section 3.2). The increase of resolution from 1◦to 0.5◦in 06/2016 excluded Munich from

the HPB grid box, which may contribute to the marked decrease of PM10 and SO4 around this time

as in Figure 7. Since then it should be representative of HPB including only small surrounding towns

and rural area. A particular value of the assessment w.r.t. mass lies in its independence from hy-600

groscopic growth with humidity and any mass-to-optical conversions, which have particularly large

impact on SO4 and OM (Hong et al., 2014). The general bias increase towards the surface evident in

Figure 3 may be caused by too slow vertical transport of surface emissions along with overestimated

sources. SO4 is overestimated in ASM in summer while typical central European surface concentra-

tions in winter are met (Figure 7). Together with dust this causes most of the bias’ seasonal cycle in605
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Figure 4. The reason for the worsening mass input at surface level by the assimilation is not clear.

OM is few µg/m3 too high during all seasons since 02/2017. BC shows a step down with cycle 43r1

in 02/2017 and (except Jan/Feb 2017) a further downward tendency till 2019 at realistic concentra-

tions in ASM. Emission inventories thus seem to capture the decrease of anthropogenic emissions

during the last decade but as for SO4 the assimilation seems to add too much mass and may disturb610

the realistic partitioning between anthropogenic and biogenic OM. Overall average MNMB in the

SL range from -23% - 34% for ASM and from -68% - 16% for CTR.

Mixing layer: Against overestimation of mass concentrations and β∗(z) near the surface, the aerosol

load in the ML tends to be low-biased. Main reasons may be sources or delayed vertical transport

from the surface. Further, the forward operator, including mass-to-volume conversion, presently615

uses particle densities of the pure materials, not taking into account possible porosity of dry atmo-

spheric particles enclosing air due to coagulation and variable internal mixing (Winkler et al., 1981).

If the model assumed larger bulk densities than particles actually have, the equivalent volumes were

calculated too small and optical properties would be underestimated, because they depend strongly

on the particle size. The density of accumulation mode particles, composed of hydrophilic and hy-620

drophobic materials could be overestimated by up to a factor 1.5, which transfers to a factor 1.3 in

the optically relevant surface area. Secondly, the ML top is too smooth which means the capping

transport barrier at the ML top seems less effective in the model, diluting higher ML concentrations

with cleaner FT air. This aerosol mass would be missing in the ML, yielding a too low amplitude

(coded in the standard deviation) of the model compared to observations (reference) in the Taylor625

plots, too. Geometrically, however, the ML height on average seems reasonable (cf. Section 4.1).

The monthly mean bsc profiles suggest that aerosol mass, added to the column by the assimilation,

results in overall higher aerosol load than in the control runs till 07/2019, but the assimilation does

not sharpen the transition from the PBL to lower values in the free troposphere (FT). Though it must

be noted,that averaging may considerably smooth the ML top by mere variation of PBL heights.630

Average MNMB in the ML are mostly negative between 1% to -33% for ASM and -18% to -82%

for CTR.

Free troposphere: The FT background might be slightly high-biased owing to the weak transport

barrier, to mass attribution by the assimilation or irrgegular transport of Saharan dust, which (as

in CH18) is found to be over-estimated over Germany by typically a factor 2 or more all the time.635

CH18 calculated, that accounting for non-spherical particles, using conversion coefficients based on

T-Matrix calculations rather than Mie-Theory, would reduce β∗(z) by 15-45%. This reduction arises

from the modification of the phase function by non-sphericity, coded in the lidar ratio LR, not the

specific extinction, and thus does not transfer to AOD. In order to reduce the dust high bias in the

model, the dust source size distribution after cycle 43r1 was modified to distribute less mass into640

the fine (8 to 5%) and more mass into the super-coarse bin (61 to 83%) which has a shorter lifetime

due to faster sedimentation (Rémy et al., 2019). An according dust reduction can however not be
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seen over Germany in the mass concentrations of the dust-proxy in Figure 7, which is independent

from uncertainties in the the mass-to-β∗(z) conversion. Monthly median bias in the FT is mostly

not significant and < 0.1 Mm−1sr−1; average MNMB range from 29% - 99% for ASM and from645

-67% - 63% for CTR. That the observed inflation of the β∗(z) signal on 17 Oct 2017 (Section B)

marks the onset of water cloud formation, seems plausible. The temporary factor 10 increase of

β∗(z) (∼ 1 x 10−6 → ∼ 1.2 x 10−5, Figure A12) roughly corresponds to a significant visual range

reduction by an order of magnitude (to ∼1 km assuming a lidar ratio near 30 sr). On the other hand

a mature water cloud would block the lidar beam and any signal from above (Figure A11, ∼04-07650

UT), which seems to be the case at some stations further north (not shown). Alternatively the passage

of a shallow plume with ten times higher concentration would have to be diagnosed which would

be rather untypical. Unfortunately satellite imagery provides only blurred pictures due to optically

dense smoke layers above. In all, the unambiguous identification of particle induced cloud formation

is a challenge in the observations as well as it is for a model to simulate hygroscopic growth near655

saturation.

An extended smoke layer that arrived on early 17 Oct 2017 few km above the dust plume in a strong

south-westerly flow around 8-10 km altitude from Portugal is clearly evident in TERRA/MODIS re-

flectance imagery (https://worldview.earthdata.nasa.gov/), in the northern German ceilometers and

in organic matter fields of IFS-AER. With small vertical wind shear the simulated smoke curtain660

tilted downward by ∼ 2◦ lat/lon from NW (8-10 km) to SE (<2 km) and was passively advected

north-eastward across north Germany. Its passage over the ceilometer stations is reproduced in de-

tail by IFS-AER (not shown), only that the observations show a 1 km thin streamer reaching down

to 3.5 km, where it is too thick and reaches too far down in the model (2 km), likely due to the reso-

lution. This comparison confirms the behavior found for previous fire cases that IFS-AER forecasts665

are capable to reproduce many details of smoke plumes qualitatively, but that the simulated shape

and position become uncertain when smaller scales develop (Kaiser et al., 2012). It also confirms

that injection heights and long-range transport in the model are quite realistic. The fact that β∗(z)

of the smoke plume is considerably underestimated may be due to the model resolution, but also to

emission-strengths and -heights that are inferred from fire radiative power measurements and con-670

verted into convective updraft.

4.1 Mixing layer height

The mixing layer height MLH characterizes the ML in many respects, as it is closely related to

important variables like water vapor, cloud cover, heat fluxes and vertical transport as well as con-675

taminant dispersion (Engeln and Teixeira, 2013; Li et al., 2020). It is, however, challenging to infer

operationally (Haeffelin et al., 2012). The physical correspondence between observed aerosol gradi-

ents and turbulence (Ri > 0.25) excludes conditions with vertical shear (generating vertical aerosol
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gradients), fog, clouds, precipitation or aerosol plumes. This leaves only 5-10% of all days left -

SD alone excludes more than 220 of 1461 days. After such filtering, the correlation of automat-680

ically reported and manually derived maximum daily MLH (MMLH) for the mid-German region

around Alfeld (52.0◦ N, 9.8◦ E) is medium to low (r = 0.31), including few outliers. On the long

term model-diagnosed MMLH height from ECMWF’s NWP model and visually derived MMLH are

however strongly correlated (r = 0.66) as shown in Figure 9.

685

Fig. 9. Maximum daily mixing layer height a.g. (MMLH) observed by the German ceilometers and extracted

from the ECMWF NWP model for the period 01/2016 - 12/2019. Different colors refer to model MMLH at

different stations (Colors shift from green to red because the number of stations increases over the years). The

dots and the solid black line pick out the MMLH inferred around Alfeld (9.9 ◦E, 52.0 ◦N), manually from the

daily ceilometer time-height plots and from the model fields, respectively.

In presence of large variability, the model generally underestimates the MMLH by -200 m to -600

m in 2016 and 2017, by 0 to -300 m with cycle 43r3 after Oct 2017 and is biased low between -200

m and -500 m during cycle 46r1 after July 2019. In Figure 10 a composite contour-bullet plot of IFS

MLH with superimposed station values from 20 Mar 2019 illustrates the behavior of MMLH for a

calm day with undisturbed ML development over large parts of Germany. Here IFS-AER is capable690

to reproduce the NW-to-SE increase of the MMLH related to the transit from low to higher pressure.

Few stations sticking out with specifically high or low MMLH probably exhibit local influences like

heat-island effects over large cities (e.g. ’lei’ = Leipzig) where the residual layer remained high and

convective over the night. Or over isolated mountains (e.g. Brocken/Torfhaus - the deep blue dot

near 51◦ N, 10.5◦ E) the ML top may not follow the steep terrain and local MLH above ground695
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will be too low. It turns out that rigid checks of station characteristics, data quality and outliers are

necessary before operational MLH data from ceilometers (or lidars) may be used to constrain and

evaluate models.

Fig. 10. Map of maximum daily MLH as simulated by IFS-AER (filled contours) with MMLH at German

ceilometer network stations for 20 Mar 2019, overlayed as correspondingly color-coded bullets.

4.2 Uncertainties and limitations700

The overall uncertainty of our results is mainly limited by the conversion of model mass mixing

ratios to β∗(z) , the uncertainty of the ceilometer observations, and the re-sampling over differ-

ent horizontal and vertical resolutions. The former includes estimates of particle shape, densities,

mixing- and hygroscopic state as well as meteorological conversions as described in Chan et al.
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(2018) and updated in Section 2.1. The uncertainties inherent in the observations are discussed in705

Section 2.2. Of these, clearly the lower and upper altitude ranges of the profiles are affected by the in-

complete overlap of laser-beam and receiver field-of-view and low signal-to-noise ratio SNR as well

as contamination by clouds, respectively. At the lowest considered altitude 400 m a.g. the signal

is typically at ∼10-20% of it’s full-overlap value, which can reasonably be corrected by a sin2-like

step function. The crucial degradation of the SNR is by clouds, precipitation and the r−2-decrease710

with distance. Within the evaluated range from 0.4 - 6 km, however, the combined uncertainty due

to these contributions mostly is small compared to the model-observation biases in question. Owing

to the typical half-daily time scale of transport precision (c.f. Section 3.2) also the distance from

the model grid points seems negligible. Many of the results, however, are sensitive to the applied

scales, and some examples have been discussed where the increased horizontal (06/2018) and verti-715

cal (07/2019) resolution lead to better matches between observed and forecast structures. It has to

be kept in mind that the relatively coarser global fields of the CAMS system are intended to serve as

boundary conditions for nested regional models which refine the aerosol distributions down to scales

of few km.

As there was no β∗(z) output available from IFS-AER before cycle45r1 (10/2017), we use for con-720

sistency over the whole period the same lidar forward operator to calculate β∗(z) from the model

mass mixing ratios as described in Chan et al. (2018). Minor modifications were necessary to in-

tegrate the higher resolution and additional species (NO3, NH4) as of 07/2019. It uses their pre-

calculated look-up table, slightly adapted to IFS-AER values and modified to additionally handle

NO3 and NH4(cf. Tables A1, to A3). Since 10/2017 lidar output is available from the IFS archive.725

Results from both emulators compare well for dust, but for other components like sea salt somewhat

different β∗(z) profiles are calculated. Possible reasons may be the handling of hygroscopic growth

near saturation, the disregard of (however small) absorption by trace gases at 1064 nm and a differ-

ent effective resolution of the model fields resulting from both lidar emulators. A direct comparison

of the β∗(z) (from ground) product retrieved from the IFS and that calculated from the model mass730

mixing ratios according to (Chan et al., 2018) reveals that the IFS β∗(z) product is provided with

a different effective resolution then the mmr fields used here. The gradients thus appearing at the

boundaries of aerosol structures cause deviating results depending on the specific time and location

of the comparison. For longer averages as mostly discussed in this article, these differences largely

cancel out.735

5 Summary

The assessment of IFS-AER vertical aerosol distributions with calibrated ceilometer profiles over

Germany (central Europe) generally confirms the realistic reproduction of the vertical aerosol vari-
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ability in terms of attenuated backscatter β∗(z) . The shape of the profile, dominated by the mixing740

layer ML and occasionally by long-range transport particles is largely captured, as indicated by high

co-variance of daily average profiles with Pearson’s r ≈ 0.6−0.95, however no clear impact of the

assimilation is found. In summer the agreement of profile shapes is worse due to vertical shifts or

untimely long-range transport to which r is quite sensible. A systematic high/low-bias regularity

is found in the lower part of the profile, meaning high-bias (overestimation) near the ground ver-745

sus low-bias in the mixing layer. It is attributed to over-estimated sources at the surface, likely in

combination with too slow vertical transport and probably a too weak transport barrier at the top of

the ML, where the large aerosol gradient is not fully captured. The low aerosol background in the

free troposphere FT is usually reproduced. Also captured are plumes and layers from long-range

transport of Saharan dust and fire smoke, although β∗(z) of dust is overestimated over Germany by750

a factor 2 or more, and small scale structures evolving during the dispersion of these layers can not

be resolved at the present model resolution.

Comparison to dry-state aerosol in-situ observations suggest that SO4 and OM sources as well as

gas-to-particle partitioning of the NO3-NH4-system are too strong, while black carbon load and

trend is realistic near the surface. With respect to the discussed metrics, no consistent development755

is evident due to the five model upgrades during the evaluated period. The vertically integrated

β∗(z) , which codes similar information like AOD, consistently with these previous findings shows

a bias near zero for 43r1 (till 05/2016) and 46r1 (after 07/19) and slightly negative in-between. The

modified normalized mean bias MNMB which is less dependent on absolute values reveals lower

values in the more relevant (for air-quality) surface- and mixing layer and a general increase toward760

higher levels. Over the whole period, the bias of β∗(z) exhibits seasonal cycles at the lower levels

due to overestimation of SO4 and OM sources/lifetimes in summer and under-representation of se-

vere pollution episodes in winter.

Finally, we demonstrated that ceilometer networks offer several options to check the realism of mix-

ing layer heights in atmospheric numerical models. Though we confined to manual analysis of a765

representative region, we could provide confidence that the annual cycle and the maximum daily

height of the ML can be reproduced within few 100 m vertically by the IFS-AER model.

In future, the regional extension of this assessment to larger parts of Europe and the combination of

ceilometer networks’ spatio-temporal coverage with the higher accuracy and particle identification

capability of sun-photometers (AERONET) and multi-wavelength-depolarisation (Raman-) lidars770

will significantly reduce the uncertainties remaining in this study. Complementing CAMS activities,

also for evaluation of the particle composition using European in-situ network data have already

started. A robust discussion of boundary layer heights will benefit more from further improvements

to the algorithms than from improved profile data quality.

775
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Appendix A Attenuated backscatter from model mass mixing ratios - forward operator

A forward operator is applied to translate the model state of the atmosphere into virtual measure-

ments, which can be directly compared to real observations. To this end, model mass mixing ratios

mmr are converted to attenuated backscatter β∗(z) according to Eq. (A6)by first calculating mass1090

concentrations cp,i from mmr by multiplication with the air density %air as shown in Eq. (A1).

cp,i(z) = %air(z) mp,i(z) for i = 1,2,...,14 (A1)

Then the particle extinction coefficient σp,i and the particle backscatter coefficient βp,i of each

particle type i have been pre-calculated using appropriate particle size distributions dN(r)/dr and

humidity dependent particle refractive indices n as applied in IFS-AER (Chan et al., 2018). For1095

consistency with the current implementation of the aerosols in the IFS model, Mie scattering the-

ory has been applied for all particles. Model mass concentrations are then converted to extinction

coefficients by means of the specific (mass) extinction coefficient σ∗e,i (unit: m2/g)

σ∗e,i =
σp,i
cp,i

(A2)

Eq. (A2) is applied separately to each size and humidity bin of the humidity dependent and size1100

segregated particle types. For convenience the lidar ratio Sp,i is commonly used to calculate particle

backscatter coefficients from extinction coefficients.

Sp,i(z) =
σp,i(z)

βp,i(z)
(A3)

With this definition, the extinction and backscatter coefficients of each particle type are determined

from Eqs. (A4, A5).1105

σp,i = cp,i σ
∗
e,i (A4)

βp,i = cp,i

(
σ∗e,i
Sp,i

)
(A5)

The contribution from air molecules is calculated according to Rayleigh theory using the following

approximation for the molecular extinction coefficient σm (in km−1):

σm(z,λ) = 8.022 ·10−4%air(z)λ
−4.081110

with the air density given in kg/m3 and the wavelength λ in µm. The profile of %air is taken

from the IFS. The molecular lidar ratio Sm is known to be Sm = σm/βm = 8π/3. To increase

computational efficiency the pre-calculated values of σ∗e,i, Sp,i(z) as well as %air are stored in a

look-up archive as displayed in Tables A1, A2, A3. In order to calculate the total β∗(z) according

to Eq. (A6) the contributions from all particle types are summed up to yield the (total) backscatter1115

coefficient:

β=βm+

14∑
i=1

βp,i
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Finally, the attenuation is applied to β(z) to calculate β∗(z):

β∗(z) =β(z) exp

{
−2

∫ z

0

σ(z′)dz′
}

(A6)

Appendix B Cloud formation due to SD1120

Though Saharan dust transport is realistic in IFS-AER on spatio-temporal scales >100 km and >

1/2 day, the dust load is mostly overestimated. Occasionally however, β∗(z) of dust plumes is

apparently underestimated because dust particles rapidly grow by water uptake and observed β∗(z)

changes though the dust mass concentration itself remains constant. Though the ability of (coated)

mineral dust to foster cloud formation is well known, its simulation still is a challenge (Sassen1125

et al., 2003; Ansmann et al., 2005; Bangert et al., 2012). For example on 16 and 17 Oct 2017 a

Sahara dust plume swayed eastward over north-western Germany, shown in detail for Aachen in

Figure A11. On both days similar dust loads, converted to similar β∗(z) , are simulated by the

model, but on 16 Oct observed β∗(z) were as usual less than half of those modeled, while on 17 Oct

hygroscopic growth or incipient cloud formation temporarily multiplied the optical signal tenfold1130

(β∗(z) max = 1.2 · 10−5Mm−1sr−1) while the dust mass concentration according to the β∗(z)

signal few hours later and its development at neighboring stations did not change (Figure A12). As

hygroscopic growth is included in the IFS-AER model but cloud formation by condensation nuclei is

not, this process may significantly distort average biases of β∗(z) during SDE as well as precipitation

and radiation transfer (indirect aerosol effect) in the model. It further illustrates how errors may be1135

introduced by conversions of the primary model parameters (mass mixing ratio) to observed β∗(z)

. On 17 Oct 2017 also biomass burning aerosol released by forest fires in the north of Portugal

was observed over north Germany as a shallow layer descending from initially 8-10 km (∼3 UTC

at Putbus) to 4-5 km altitude around noon. Observed β∗(z) range from 0.1-1 · 10−5Mm−1sr−1.

At the time of incipient cloud formation this layer still was clearly separated from the Saharan dust1140

layer below and thus could not influence this process.

Fig. A11. Time-height sections of β∗(z) at the ceilometer station near Aachen from 16 and 17 Oct 2017.
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Fig. A12. Profiles of β∗(z) from the ceilometer near Aachen on 16 (15, 21 UTC) and 17 (3, 9, 15, 21 UTC) Oct

2017 from IFS-AER and ceilometer. The black dashed line is calculated with the DWD forward operator (FO),

the green line using the ECMWF FO, retrieved as ’attenuated backscatter from ground’ from the MARS archive.

Onset of cloud formation occurs in the SD air mass on early 17 Oct. Colored profiles show the contributions of

individual aerosol types.
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Appendix C Look-up-tables for forward operator

The aerosol optical and micro-physical properties used for converting model mass mixing ratios

mmr to attenuated backscatter β∗(z) (the ’forward operator’ or ’lidar emulator’) are listed in the

following tables. Values refer to 1064 nm used by CHM15k ceilometers.1145
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Table A1. Microphysical properties of aerosols assumed for conversion of model mass mixing ratios to β∗(z)

at 1064 nm.
Aerosol Rel Humidity Density Grow Factor Spec. Ext. Cross Lidar Ratio Single Scattering

Type % (%p, g/cm3) Section σ∗
e (m2/g) Sp (sr) Albedo (ω0)

Sea Salt(0.03-0.5) 0 2.160 1.00 0.127 21.72 0.998902

Sea Salt(0.03-0.5) 10 1.821 1.12 0.127 21.72 0.998959

Sea Salt(0.03-0.5) 20 1.603 1.24 0.127 21.72 0.998983

Sea Salt(0.03-0.5) 30 1.455 1.37 0.127 21.72 0.99899

Sea Salt(0.03-0.5) 40 1.352 1.49 0.810 56.33 0.998968

Sea Salt(0.03-0.5) 50 1.278 1.61 1.146 56.94 0.999596

Sea Salt(0.03-0.5) 60 1.232 1.71 1.542 58.65 0.999659

Sea Salt(0.03-0.5) 70 1.196 1.81 2.140 65.49 0.999717

Sea Salt(0.03-0.5) 80 1.147 1.99 3.234 75.81 0.999779

Sea Salt(0.03-0.5) 85 1.111 2.19 3.878 76.0978 0.999807

Sea Salt(0.03-0.5) 90 1.086 2.38 4.862 73.3724 0.999846

Sea Salt(0.03-0.5) 95 1.047 2.91 9.632 78.4961 0.99989

Sea Salt(0.5-5) 0 2.160 1.00 0.145 10.1023 0.992657

Sea Salt(0.5-5) 10 1.821 1.12 0.145 10.1023 0.991804

Sea Salt(0.5-5) 20 1.603 1.24 0.145 10.1023 0.990984

Sea Salt(0.5-5) 30 1.455 1.37 0.145 10.1023 0.990086

Sea Salt(0.5-5) 40 1.352 1.49 0.302 13.7809 0.989224

Sea Salt(0.5-5) 50 1.278 1.61 0.354 14.3385 0.995823

Sea Salt(0.5-5) 60 1.232 1.71 0.407 14.748 0.996317

Sea Salt(0.5-5) 70 1.196 1.81 0.470 14.7443 0.996842

Sea Salt(0.5-5) 80 1.147 1.99 0.570 14.6123 0.997375

Sea Salt(0.5-5) 85 1.111 2.19 0.651 15.1343 0.997644

Sea Salt(0.5-5) 90 1.086 2.38 0.792 18.6968 0.998097

Sea Salt(0.5-5) 95 1.047 2.91 1.140 15.678 0.998713

Sea Salt(5-20) 0 2.160 1.00 0.041 18.2163 0.978392

Sea Salt(5-20) 10 1.821 1.12 0.041 18.2163 0.976231

Sea Salt(5-20) 20 1.603 1.24 0.041 18.2163 0.973844

Sea Salt(5-20) 30 1.455 1.37 0.041 18.2163 0.971703

Sea Salt(5-20) 40 1.352 1.49 0.082 14.3399 0.969431

Sea Salt(5-20) 50 1.278 1.61 0.095 14.3044 0.987793

Sea Salt(5-20) 60 1.232 1.71 0.108 14.4325 0.989233

Sea Salt(5-20) 70 1.196 1.81 0.127 14.8442 0.990821

Sea Salt(5-20) 80 1.147 1.99 0.153 15.3336 0.992415

Sea Salt(5-20) 85 1.111 2.19 0.175 17.2092 0.993225

Sea Salt(5-20) 90 1.086 2.38 0.214 9.5161 0.994551

Sea Salt(5-20) 95 1.047 2.91 0.316 8.2696 0.996283

Dust(0.03-0.55) 0 2.610 1.00 1.496 78.5535 0.996971

Dust(0.55-0.9) 0 2.610 1.00 1.611 48.6388 0.996741

Dust(0.9-20) 0 2.610 1.00 0.445 13.3959 0.987986
a Sea salt aerosols are represented in the model by three size bins with bin limits set to 0.03-0.5µm (bin 1), 0.5-5µm (bin 2) and 5-20µm

(bin 3). b Dust aerosols are represented in the model by three size bins with bin limits set to 0.03-0.55µm (bin 1), 0.55-0.90µm (bin 2)

and 0.90-20.00µm (bin 3). c A bimodal log-normal size distribution is assumed for sea salt aerosols, with r0=0.1002µm and 1.002µm and

σg=1.9 and 2.0. A monomodal size distribution is assumed for dust. The number concentrations N1 and N2 of the first and second mode are

70 and 3 cm−1, respectively. Note that density of hydrophilic aerosol changes with hygroscopic growth of particle.
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Table A2. Microphysical properties of aerosols assumed for conversion of model mass mixing ratios to β∗(z)

at 1064 nm.
Aerosol Rel Humidity Density Grow Factor Spec. Ext. Cross Lidar Ratio Single Scattering

Type % (%p, g/cm3) Section σ∗
e (m2/g) Sp (sr) Albedo (ω0)

Organic Matter (hydrophobic) 0 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 10 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 20 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 30 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 40 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 50 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 60 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 70 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 80 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 85 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 90 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophobic) 95 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophilic) 0 1.769 1.00 0.768 34.15 1

Organic Matter (hydrophilic) 10 1.607 1.08 0.768 34.15 1

Organic Matter (hydrophilic) 20 1.488 1.16 0.768 34.15 1

Organic Matter (hydrophilic) 30 1.397 1.25 0.768 34.15 1

Organic Matter (hydrophilic) 40 1.328 1.33 1.112 39.78 1

Organic Matter (hydrophilic) 50 1.274 1.41 1.289 41.33 1

Organic Matter (hydrophilic) 60 1.233 1.49 1.531 43.22 1

Organic Matter (hydrophilic) 70 1.199 1.57 1.891 45.71 1

Organic Matter (hydrophilic) 80 1.157 1.70 2.542 49.47 1

Organic Matter (hydrophilic) 85 1.128 1.82 3.158 52.398 1

Organic Matter (hydrophilic) 90 1.105 1.94 4.329 56.95 1

Organic Matter (hydrophilic) 95 1.065 2.27 8.267 66.875 1

Black Carbon (hydrophobic) 0 1.000 1.00 3.898 168.265 0.0837982

Black Carbon (hydrophilic) 0 1.000 1.00 3.898 168.265 0.0837982

Sulfate 0 1.769 1.00 1.060 34.14 1

Sulfate 10 1.769 1.08 1.060 34.14 1

Sulfate 20 1.769 1.16 1.060 34.14 1

Sulfate 30 1.769 1.25 1.060 34.14 1

Sulfate 40 1.430 1.33 1.540 39.75 1

Sulfate 50 1.390 1.41 1.783 41.29 1

Sulfate 60 1.349 1.49 2.117 43.18 1

Sulfate 70 1.302 1.57 2.615 45.658 1

Sulfate 80 1.245 1.70 3.516 49.394 1

Sulfate 85 1.210 1.82 4.368 52.311 1

Sulfate 90 1.165 1.94 5.988 56.839 1

Sulfate 95 1.101 2.27 11.436 66.8957 1
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Table A3. Microphysical properties of aerosols assumed for conversion of model mass mixing ratios to β∗(z)

at 1064 nm.
Aerosol Rel Humidity Density Grow Factor Spec. Ext. Cross Lidar Ratio Single Scattering

Type % (%p, g/cm3) Section σ∗
e (m2/g) Sp (sr) Albedo (ω0)

Nitrate(fine) 0 1.769 1.00 0.232 33.5 1

Nitrate(fine) 10 1.769 1.00 0.232 33.5 1

Nitrate(fine) 20 1.769 1.00 0.232 33.5 1

Nitrate(fine) 30 1.769 1.00 0.232 33.5 1

Nitrate(fine) 40 1.430 1.10 0.351 36.3 1

Nitrate(fine) 50 1.390 1.20 0.412 39.3 1

Nitrate(fine) 60 1.349 1.25 0.498 40.8 1

Nitrate(fine) 70 1.302 1.30 0.632 42.3 1

Nitrate(fine) 80 1.245 1.35 0.895 43.9 1

Nitrate(fine) 85 1.210 1.50 1.097 48.5 1

Nitrate(fine) 90 1.165 1.70 1.518 54.8 1

Nitrate(fine) 95 1.101 2.10 3.121 66.4 1

Nitrate(coarse) 0 1.769 1.00 0.355 18 1

Nitrate(coarse) 10 1.769 1.00 0.355 12.6 1

Nitrate(coarse) 20 1.769 1.00 0.355 11.3 1

Nitrate(coarse) 30 1.769 1.00 0.355 11.3 1

Nitrate(coarse) 40 1.430 1.10 0.443 11.9 1

Nitrate(coarse) 50 1.390 1.20 0.555 12.6 1

Nitrate(coarse) 60 1.349 1.25 0.623 14.1 1

Nitrate(coarse) 70 1.302 1.30 0.697 15.9 1

Nitrate(coarse) 80 1.245 1.35 0.780 17.1 1

Nitrate(coarse) 85 1.210 1.50 1.093 18 1

Nitrate(coarse) 90 1.165 1.70 1.682 19 1

Nitrate(coarse) 95 1.101 2.10 3.651 18.7 1

Ammonium 0 1.769 1.00 0.212 34.1 1

Ammonium 10 1.769 1.00 0.254 34.1 1

Ammonium 20 1.769 1.00 0.300 34.1 1

Ammonium 30 1.769 1.00 0.350 34.1 1

Ammonium 40 1.430 1.17 0.376 39.8 1

Ammonium 50 1.390 1.22 0.403 41.3 1

Ammonium 60 1.349 1.28 0.460 43.2 1

Ammonium 70 1.302 1.36 0.520 45.7 1

Ammonium 80 1.245 1.49 0.583 49.2 1

Ammonium 85 1.210 1.58 0.650 52.6 1

Ammonium 90 1.165 1.73 0.794 57.6 1

Ammonium 95 1.101 2.09 0.952 67.9 1
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Appendix D Monthly mean profiles

In order to illustrate the shapes of the actual vertical β∗(z) profiles from the model (runs with, ASM,

and without assimilation, CTR) and the ceilometers, the 48 individual monthly average profiles are

given in Figures A13, A14, A15 and A16.

Fig. A13. Monthly median profiles 2016 from ceilometer (black), osuite (red) and control run (blue). The

median profile from the IFS forward operator is added as a dashed red line.

Fig. A14. Monthly median profiles 2017 from ceilometer (black), osuite (red) and control run (blue). The

median profile from the IFS forward operator is added as a dashed red line.
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Fig. A15. Monthly median profiles 2018 from ceilometer (black), osuite (red) and control run (blue). The

median profile from the IFS forward operator is added as a dashed red line.

Fig. A16. Monthly median profiles 2019 from ceilometer (black), osuite (red) and control run (blue). The

median profile from the IFS forward operator is added as a dashed red line.
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