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Abstract. State-of-the-art Earth System models, like the ones used in the 6th Coupled Model Intercomparison Project (CMIP6intercomparis

projeet), suffer from temporal inconsistencies at the ocean-atmosphere interface. Indeed, the coupling algorithms generally im-
plemented in those models do not allow for a correct phasing between the ocean and the atmosphere, and hence between their
diurnal eyelescycle. A possibility to remove these temporal inconsistencies is to use an iterative coupling algorithm based
computational cost compared to standard coupling methods, which makes the method-algorithm implementation impractical
as is for production runs, Sehwarz-algerithms-are-the Schwarz method is useful to evaluate some of the errors made in state-of-
the-art ocean-atmosphere coupled models (e.g. in the representation of the processes related to diurnal cycle), as illustrated by
the present study. i i

IPSL-CM6-SW-VLR is a version of the low resolution version of IPSL-CM6 coupled model with a simplified land surface
model, implementing a Schwarz iterative coupling scheme. Comparisons between coupled solutions obtained with this new

scheme and the standard IPSL coupling scheme (referred to as parallel algorithm) show large differences at-sunrise-and-after
sunrise and before sunset, when the external forcing (insolation at top of atmosphere) has the fastest pace of change. At these
times of the day, the difference between the two numerical solutions is often larger than 100 % of the solution, even with a small
coupling time-stepperiod, thus suggesting that significant errors are potentially made with current coupling methods. Most of
those differences can be strongly reduced by making only two iterations of the Schwarz method which leads to a doubling of

the computing cost. A

error-with-only-oneiterationBesides the parallel algorithm used in IPSL-CM6, we also test a so-called sequential atmosphe-
re-first algorithm which is used in some coupled ocean-atmosphere models. We show that the sequential algorithm improves
the numerical results compared to the parallel one, at the expanse of a loss of parallelism. The present study focuses on the
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ocean-atmosphere interface, with no sea-ieesea ice. The problem with three components (ocean / sea-iee-sea ice / atmosphere)

remains to be investigated.

1 Introduction

For historical and physical reasons, present-day coupling algorithms implemented in ocean-atmosphere-coupled-models-(CMscoupled

general circulation models (CGCMs) are primarily driven by the necessity to conserve energy and mass at the air-sea inter-
face. However the discretization of the coupling problem often leads to inconsistencies in time and space associated to the
coupling algorithm and to the grid-to-grid interpolation of air-sea fluxes and temperaturessurface properties. In time, the cou-
pling algorithms currently used in state of the art EMs-CGCMs do not provide the exact solution to the ocean-atmosphere
problem, but an appreximation—of-approximate one. Indeed, these approaches are mathematically inconsistent in the sense
that they do not allow for a correct phasing between the ocean and the atmosphere. Roughly speaking, the existing coupling
algorithms used in €EMs-CGCMs split the total simulation time into smaller time intervals (called coupling periods) over

which averaged-in-time boundary data are exchanged.

atmosphere computes the fluxes at the interface (heat, water and momentum) and the ocean computes the oceanic surface
properties (water and sea ice temperatures, sea ice fraction, albedos, surface current). Two main algorithms are used, the
parallel and the sequential atmosphere-first algorithm. In both methods, the interface fluxes for a coupling period are com-
puted in the atmospheric model using the oceanic surface properties computed and-averaged-by the oceanic model and averaged
over the previous coupling period. The two algorithms are lagged: there is a time lag (of one coupling period) between the
model and its boundary conditions. They differ by the way atmospheric fluxes are used by the ocean. In the parallel algorithm,
ocean and atmosphere run concurrently, which adds a level of parallelism and reduces the time to solution. During a coupling.

eriod, the ocean run uses the interface fluxes of the previous one, and compute the oceanic properties. Therefore, for a given
coupling period, the fluxes used by the oceanic model are not coherent with the oceanic surface properties considered by the

atmospheric model.

tag-the-models—In the sequential atmosphere-first algorithm, the atmosphere runs the coupling period while the ocean waits.
This allows the ocean to use the fluxes of the present coupling period. The inconsistency is reduced, but not removed. The
models can not run concurrently, which suppresses a level of parallelism, except in the case of a two-coupling-period lag
(see the RPN model described below). The parallel algorithm has been implemented in many European CGCMs used in
CMIP6 besides IPSL-CMG, for example in CNRM-CM6-1 developed by CNRM-CERFACS (Centre National de Recherches
Météorologiques — Centre Européen de Recherche et de Formation Avancée en Caleul Scientifique), EC-Earth3 developed by
a Burope-wide consortium of 27 research institutes from 10 European countries, MPI-ESM the Earth System Model developed
by the Max-Planck-Institut fiir Meteorologie, or HadGEM3-GC31 set up by the UK MetOffice. The ocean-atmosphere coupling
algorithm implemented in the CGCM developed at the European Centre for Medium-Range Weather Forecast (ECMWE) is
quite different and involves three components, an atmosphere model, a wave model and an ocean model run sequentially in
that order and therefore corresponds to the sequential atmosphere-first algorithm, The CGCM developed by RPN (Centre
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de Recherche en Prévision Numérique) from the Canadian meteorological and climatic services (Environment and Climate
Change, Canada) also implements a sequential anmosphere-first algorithm, but with the particularity that the atmosphere
receives and uses for one coupling period the surface properties calculated two coupling periods before by the ocean. This
last algorithm allows to run the models concurrently and therefore to keep this level of parallelism, but increases the time lag.

and thus the inconsistency. To our knowledge, no model uses an sequential ocean-first algorithm.
Due to the overwhelming complexity of EMsCGCMs, the consequences of inaccuracies in coupling algorithms on numerical

solutions are hard to untangle, unless a properly (tightly) coupled solution can be used as a reference. Schwarz algorithms are
attractive iterative coupling methods to cure the aforementioned temporal inconsistencies and provide tightly coupled solutions.
As discussed in Lemarié (2008), the standard tagged-coupling methods correspond to one single iteration of a global-in-time
Sehwarz-Method-(i—e—of-whatshould-be-an-iterativeprocess)—iterative Schwarz method. However, the theoretical analysis of
the convergence properties of the Schwarz methods is restricted to relatively simple linear model problems (e.g. Gander et al.,
1999; Gander and Halpern, 2007; Lemarié et al., 2013). More recently, Thery et al. (2020) analyzed the convergence for a
coupled one-dimensional Ekmann-Ekman layer problem, with vertical profiles of viscosities in both fluids. But there is no a
priort-priory guarantee that the iterative process converges in practice when implemented in tri-dimensional ocean-atmosphere
coupled models.

Preliminary numerical experiments-simulations using the Schwarz coupling method for the simulation of a tropical cyclone
with a realistic regional coupled model have already been carried out (Lemarié-et-al-2644)by Lemarié et al. (2014). Ensemble
simulations were designed by perturbations of the initial conditions and of the length of the coupling period. One ensemble
was integrated using the Schwarz method and another using a lagged-methodparallel algorithm, as described previously.
The Schwarz iterative coupling method led to a significantly reduced spread in the ensemble results (in terms of cyclone
trajectory and intensity), thus suggesting that a source of error is removed with respect to the tagged-parallel coupling case.
For these experiments the iterative process converges when coupling fully realistic numerical codes (Lemarié et al., 2014),
which strengthens our belief that Schwarz methods can be a useful tool in the geophysical applications. Interestingly enough,
a similar link between model uncertainties and consistency of the coupling method has been observed by Connors and Ganis
(2011) on a coupled problem between two Navier-Stokes equations with interface conditions given by a bulk formulation.

The present study aims to assess the error made when using lagged coupling algorithms (parallel and sequential) in state-of-
the art EMsCGCMs. To do so, a mathematically consistent Schwarz iterative method is implemented in the IPSL Earth system
model. It is used as a reference to evaluate the error due to the lagged-methodlagged algorithms. We study the convergence
speed, compare the methods, and propose further developments in order to improve future ocean-atmosphere coupled models.

The paper is organized as follows. In section 2, we explain-the tagged-coupling-detail the lagged coupling algorithms, taking
as an example the IPSL model, and the Schwarz iterative method. Section 3 describes the model and the experimental set-up.
Section 4 analyses the results, in term of convergence speed and error assessment. Conclusion and future approaches are given

in section 5.



90

95

100

105

110

115

2 State of the art of ocean-atmosphere coupling metheds-algorithms and the Schwarz algerithmsmethod

Multiphysics coupling methods used in the context of Earth System models can be classified into two general categories (e.g.
Lemarié et al., 2015; Gross et al., 2018). The first one (usually referred to as asynchronous coupling, and called “lagged*
lagged in the present paper') is based on an exchange of average fluxes between the models. The second one (referred to
as synchronous coupling in Lemarié et al. (2015)) uses instantaneous fluxes. Climate modelling focuses primarily on how
energy is exchanged between the Earth and the outer space, and is transported by the ocean and the atmosphere. When de-
signing a coupling method in the context of €EMsCGCMs, water and energy conservation at the machine precision are the
key features. Those conservation principles are tedious-impossible to satisfy when exchanging instantaneous fluxes. Coupled
ocean-atmosphere models used for long-term integration (decades to millennia) all use a coupling methodology based on the

exchange of time averaged or time integrated fluxes.
2.1 Current ocean-atmosphere coupling methoed-in IPSL-CMG6: the legacy parallel algorithm

FigureThe top panel (a) of Fig. 1 describes how quantities are exchanged between the ocean and the atmosphere in the IPSL
climate model from 1997 to now (Braconnot et al., 1997; Marti et al., 2010; Dufresne et al., 2013; Sepulchre et al., 2020;
Boucher et al., 2020) knowing that both models are run in a eoneurrent-parallel way. The coupling time-step-period At (which
should not be confused with the dynamical time-step in the individual models) typically varies between 1hour to 1day,
depending on the configuration and the model generation. Ocean and atmosphere dynamical time steps are always smaller,
but commensurable with the coupling ereperiod. To describe this coupling strategy, we introduce the atmospheric state vector
A (encompassing temperature, humidity, pressure, velocitys—..) and the oceanic state vector @ (encompassing temperature,

salinity, velocity -...). The time evolution of the atmosphere and the ocean is symbolically described by

dA dO
I FaAL @
dt A(A7 Q)a dt

where F 4 and F o are partial differential operators including parameterizations, and fq, represents the fluxes at the ocean-

— Fol(O,f0) ()

atmosphere interface €2. This formulation is symmetric between the ocean and the atmosphere. But, in practice, in €Ms-CGCMs
the symmetry is broken between the fast atmospheric component and the slower oceanic component. The fluxes are generally
computed by the atmospheric component or by an interface model, using oceanic surface quantities and atmospheric quantities
taken in the vicinity of the air-sea interface (sea-surface properties are noted Oq, in the following), meaning that (1) can be

reformulated as

dA a0
o =F4(A, Op), e =Fo(0,fq), fo="£fq(A,00) ()

With such an approach, the atmospheric model receives surface properties like sea surface and sea-iee-sea ice surface

temperature, fraction of sea-ieesea ice, albedo and velocities of the surfaces (sea water and sea ice) and computes its own

I'The terms "synchronous" and "asynchronous" may have a totak-totally different signification for climate modellers, and we prefer to avoid them.
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interfacial fluxes which are then sent to the oceanic component. Interfacial fluxes sent by the atmosphere include heat fluxes
(radiative and turbulent), water fluxes (solid and liquid precipitation, evaporation, sublimation) and momentum fluxes (wind
stress).

As mentioned earlier, the coupling algorithm in the IPSL climate model is based on an exchange of averaged-in-time fluxes.
We define (...);* as the time average in the interval [t;,t,], and At the coupling time-step(i-e: the-durationof a-coupling
periodhperiod. A schematic view of the exchanges between the ocean and the atmosphere is given in Fig. 1. To run over

a coupling period At, each component uses the available boundary conditions which are time averaged from the previous

coupling period:-over-the-dnterval-{t;¢-+-A¢we-. We thus have:

dA t+At dO t+AL
I = F.A(A7 <OQ>§7At)= “dt = FO(O7 <fQ>£7At) 3)

To be more precise, the fluxes sent from the atmosphere to the ocean and the surface properties sent from ecean-to-the ocean

t t

to the atmosphere at time ¢ are :

t t
o)t si=(FalA O)BL) . (0ot si={ Oa(OLL, ) @
t—At t—At
Substituting (4) in (3), we thus can write the evolution of the ocean O and the atmosphere A from ¢ to ¢t + At as :
dO A RIVIRY. dA|HTA e Ap L\ PHA
g .- Fo <O7<f(¢47 <OQ>t—2At)>t_At>a g .- Fa (A7 < Oq(0, <fQ>t—2At)>t_At> @)

The interfacial flux used as a boundary condition for the ocean between #and+—+-Atis-computed-usingsurface-[t,t + At| is
computed by the atmosphere using sea-surface values of the ocean from the time range [t — 2A¢,¢ — At]. Symmetrically, the

sea-surface properties used to run the atmosphere between+and-++A+during the time range [t,t 4+ At] are computed using
surface values of the ocean from the time range [t — 2A¢,¢ — At]. Eq. (4) and Eq. (5) demonstrate the time shift between the
two models, and how the boundary conditions lag the models. The numerical solution thus obtained is not mathematically
consistent and suffers from synchronicity issues which ultimately may yield the numerical implementation to be unstable in

the sense that the error compared to the exact solution keeps increasing with time.

2.2 The sequential atmosphere-first algorithm

The bottom panel (b) of Fig. 1 describes how quantities are exchanged between the ocean and the atmosphere in the atmosphe-
re-first algorithm. The evolution of ocean O and atmosphere .A become :

dA A dO |ITAL
dt =Fa(A (Oa)f_as), at =Fo(0,(fa);™) ©)
t t
and
t t
(Fa)t a0 = <fQ<A, <oa>§:§gt> (O = <oa<o, <fQ>§_m> @



Figure 1. Time stencil of the exchanges between the ocean and the atmosphere in IPSE—models;—when-the legaey-lagged method—is
usedalgorithms. Redrawn-a) The parallel algorithm, redrawn from Fig. 5.4 of Lemarié€ (2008). b) The sequential atmosphere-first algorithm,

a) Parallel

— =F (A, (0 )_ar)

(),

<f(ﬂ, (024 >:_At

B O . [ }
do
— = Fo(0,(0)i_a))

t- At t t+At
b) Sequential atmosphere-first

dA
== = F(A{0)ay)

Il I .

() )i—At =

t
t—At

CICKN)

-

— =Fp(O0, ()4

- At t t+At
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Substituting (7) in (6), we now have an asymmetry of the evolution of the ocean © and the atmosphere A from ¢ to t + At :

t+At t+At

10
dt

t+At dA
Fo (0. (f(A4.©ak a), ).

dt

=Fa (A, < 0q(0, <fsz>§_m)>zm) @®)

t

t t

This atmosphere-first algorithm has been easily implemented in IPSL-CM6 by changing lag parameters in the OASIS3-MCT
coupler namelist. The symmetric ocean-first has been also implemented, but is not detailed here.

To our knowledge, no coupled ocean-atmosphere model uses a coupling algorithm that is fully mathematically consistent.
The survey of actual use cases (Valcke, personal communication) presented in the introduction shows that they all induce
a time lag between the models and the boundary conditions, either in both directions (double sided lag) or at least in one
direction (single sided lag). In the GFDL Earth system model, the FMS coupler offers the possibility to use an implicit scheme
to compute the interface quantities. But only the vertical turbulent diffusion part of the ocean and atmosphere models are

considered (Balaji et al., 2006), and the full model equations are not synchronised.
2.3 The Schwarz iterative method

The Schwarz iterative method is described and analyzed in Lemarié et al. (2015) in the context of ocean-atmosphere coupling.
The basic idea is to separate the global coupled problem on AU O into separated sub-problems on A and O, which can be
solved separately with an appropriate exchange of boundary conditions at the common interface &) . An iterative process
is applied to achieve the convergence to the solution of the global problem. The main concern about this approach is the
computational cost which directly depends on the convergence speed. As illustrated in Fig. 2, we iterate the system until
convergence over the time interval [t,¢ + At]. The first guesses of \A and O at time ¢ are taken from the eoupling-time-step
states of A and O at the end of the previous coupling period [t — At,¢]. The iterative process from iteration & — 1 to iteration
k is described by:

k
TA A 0n)
dr*o ko ke

dt :FO( Oa<k 1f§2>) (9)

Mao=Ffo(F 1A, (FP0))
PO o= 0o(" 10, (¥t q))

In the classification of domain decomposition methods, such a Schwarz algorithm applied to the parallel coupling algorithm
is called a parallel (or additive) Schwarz method, since it allows the concurrent resolution of the first two equations of (9).
The Schwarz method applied to a sequential coupling simply consists in replacing the index & — 1 by the index & in one of
the first two equations. One then obtains a so-called sequential (or multiplicative) Schwarz method, which imposes that the

equation using the information at iteration k£ — 1 be resolved first, allowing then the resolution of the equation in the other
medium. This sequential algorithm requires thus about twice the elapsed time of the concurrent version (if one considers that




Figure 2. Stencil of the Schwarz iterative method, shown for the parallel algorithm. k is the iteration numberindex. The * superscript denotes
the converged solution. At each iteration k, the initial-statesfirst guesses of @-and-A and O at time t are reset-te-taken from the same-initial

valuewhieh-isstates of \4 and O at the converged-selution-end of the previous eoupling-time-step-{t—A++#-Schwarz window [t — At,#] ,

and for the last iteration. Only the boundary conditions are updated at each iteration.

dA
- = Fal4, (*1Oy)
A --..'k 5 >
:\‘ <__f> <*(§0>
(FOq) ¥ e
"“~-.,__ Convergence ,:’
___________ :..'.-.:.'.'.‘nl--n---——- No Yes -r:"
..v"'(kfi ) A ‘\“
" / (“fo)
’ ke xY
\| - >_< OQ) e >
82 = Fo(0, (1))
t t+At t+At t+2At

the elapsed times for each medium are balanced and that the two medias run on different sets of processors or cores). However
it is well-known (and easy to prove) that, in linear cases, the sequential algorithm requires generally approximately twice less
175 iterations to converge than the parallel algorithm.

For a state-of-the-art EM-CGCMs with complex parameterizations, we have no mathematical evidence that the algorithm
converges. Indeed, as mentioned in Keyes et al. (2013), reaching a tight coupling between the components to be coupled
requires smoothness. However, both ocean and atmosphere models include parameterizations that are are potentially not dif-
ferentiable. This is for instance the case of the bulk formulas used to compute the turbulent fluxes at the air-sea interface (e.g.

180 Pelletier et al., 2018). A first step is thus to test the convergence when coupling realistic models. Assuming that the algorithm
converges, for large values of k we would have *~1(AUO) = *(AUO) = *(AUO), with the left superscript ** denoting
the converged solution. The evolution of *© and *A is given by:

t+At t+AtL

d o0
dt

t t

N . N t+At d* A
ZFO< Oa<f( A7< OQ>§+At)>t )7 F

where it is clear that models and boundary conditions are now fully synchronized, meaning that the algorithm is mathemati-

185 cally consistent. In simple linear models, the unicity of the converged solution is proven. It does not depend on the initial guess

t+At
:FA(*A,<*OQ(*O,<*fQ>§+At)>t ) (10)
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which can be chosen arbitrarily. It also does not depend on the coupling algorithm: parallel and the sequential algorithms yield
the same solution. However, different initial states will change the convergence speed. In our case, the models are strongly non
linear. The coupled problem may have several solutions, an the converged solution may depend on the initial guess. A relevant
choice of the initial guess is then important. We use what is the most simple and obvious choice: the converged solution of the

previous Schwarz window.
The Schwarz iterative procedure may span several coupling timre-stepsperiods. The time interval [¢, ¢t + At] is then called

the *Schwarz window’. It is divided in p coupling time-stepsperiods. At the end of each Schwarz window, the models send the
boundary conditions as a vector of values for the coupling intervals [¢,¢ + %At], [t+ %At,t + %At], e [E+ pTTlAt,t + At].

The boundaries conditions exchanged between the models are then vector of quantities :

t+%At t+%At t+ LAt t+%At

fo ={(fa), ; <fsz>t+%m, s <fsz>zif%m}, Oq = {{Oq), ; <OQ>H%N, s <Osz>ﬁ%m} an

With this method, the frequency of exchange can be different for each field, provided that the coupling period of each field
is a whole division of the Schwarz window (value of p is specific to each field). With more than two models, the Schwarz

method can be used to couple models by pairs, for the whole system, or for any relevant decomposition of the system. More
details about the technical implementation in an Earth System Model are given in section 3.2. The following study handles only

the case with-where the Schwarz window is equal to the coupling time-step-period (p = 1). The possibility to have a longer
Schwarz window has not been coded for the sake of simplicity. Also, we did not test the algorithm with a lag of two couplin

eriods, as it would have been quite difficult to implement technically.

3 Model deseriptionand experiments

3.1 The IPSL-CM6-SW-VLR version of the IPSL Earth system model

At the start of this study, IPSL had two operational Earth System Models available, IPSL-CM5A2-LR and IPSL-CM6-LR.
IPSL-CM5A2-LR is an upgrade of IPSL-CMS5A-LR (Marti et al., 2010; Dufresne et al., 2013) used by IPSL for the CMIP5
intercomparison exercise, made-set up by Sepulchre et al. (2020). Compared to IPSL-CM5A-LR, the atmospheric model is
tuned to reduce the surface cold bias and enhance the Atlantic meridional overturning circulation. The atmospheric code
includes a supplemental level of shared memory parallelization that strongly improves the model scalability and speed. This
model has an atmospheric resolution of 3.75° x 1.875° in longitude-latitude and 39 vertical levels. It has an oceanic resolution
of 2 degrees and 31 vertical levels in the ocean. It runs at 70 simulated years per wall-clock day.

IPSL-CM6-LR (Boucher et al., 2020) is the model used by IPSL for the CMIP6 intercomparison exercise. It has a higher

resolution in both ocean and atmosphere. All components (ocean, atmosphere, sea-iee-sea ice and land surface) has-have been

improved with better physics compared to IPSL-CMS5A2-LR. It runs at 10 simulated years per wall-clock day. IPSL-CM6-LR
computer code and running environment brings to the user a strong impreve-tn—term-improvement in terms of performance,
portability, readability, versatility and quality control. See Boucher et al. (2020) for details.



Table 1. IPSL-CM6-SW-VLR compared to IPSLCMS5-A2-LR and IPSL-CM6

Characteristics Comment and reference
Code version Same as IPSL-CM6 (Boucher et al., 2020).

Résolution Same as IPSLCMS-A2-LR (Dufresne et al., 2013; Sepulchre et al., 2020) for ocean and atmosphere.
Atmospheric and ocean physics  Same as IPSLCMS-AZ"LR (Marti et al., 2010; Dufresne et al., 2013; Sepulchre et al., 2020).
Parameter tuning (atmosphere)  Method described in Sepulchre et al. (2020)

Land surface scheme_ Bucket (Ducoudré et al., 1993). IPSLCM5A2 IPSLCM6 uses ORCHIDEE (Ducoudré et al., 1993).
Sea ice scheme LIM3 mono-category (Rousset et al., 2015).

The present study uses the codes of IPSL-CM®6, but runs at the resolution of IPSL-CM5A2-LR. As an iterative Schwarz
method strongly increases the computing time, the choice of a low resolution allows to contain the computing cost. As we
planned high difficulties to implement the Schwarz method in the old style coding of IPSL-CM5A2-LR, the choice of the

220 newer code appeared obvious.

The parameters of the atmospheric model allow to reproduce exactly the atmosphere of IPSL-CM5A2-LR when atmosphere
is run in standalone mode. In the ocean, the sea-ice-sea ice model LIM3 is used with one category of ice (IPSL-CM6-LR uses 5
ice categories, based on ice thickness; see Rousset et al. (2015) for more details for LIM3 in mono category). The land surface
model ORCHIDEE was removed to simplify and speed up the implementation of the Schwarz algorithm. As a soil model, we

225 use the simple bucket model included in the atmosphere code -

This—specifieversion—of-the-model-is—ealled-(Ducoudré et al., 1993). The specificity of IPSL-CM6-SW-VLR forfurther
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objeetive-of thisstadyfocuses-onthe This specific version of the model is called IPSL-CM6-SW-VLR for further reference, SW

standing for Schwarz. A short evaluation of the

of IPSL-CM6-SW-VLR is given in Appendix A.

3.2 Implementation of the Schwarz algorithm in IPSL-CM6

The base of the Schwarz iterative algorithm is to repeat each eeypling-timestep-Schwarz window with the same initial condition
for each iteration, but with changing boundary conditions at the ocean-atmosphere interface () at-each-iteration—with-the-one
(the ones produced by the previous iteration—PSE-EM-). IPSL-CMs are restartable models: they produce the same result
(bitwise) when run in one chunk, or when the run is splitted-split in small chunks, with the final state of each chunk written to
disk and read by the following one. In the ocean and atmosphere codes, we implement the possibility to save/restore the fields
needed for a restart to/from the computer memory.

The time loop of the models are replaced by three intricated-nested loops. The external-outer one loops on coupling periods.
The middle one loops over Schwarz iterations. The inside-inner one loops over the model time steps inside a coupling period.
(For a coupling time-step-period of At = 1h, the ocean performs 2 time steps and the atmosphere 6 time steps for the vertical
physics, 30 for the dynamics and 1 for the radiation scheme). i i i

At the first Schwarz iteration of a eoupling-time-stepSchwarz window, the initial states of the atmosphere .4 and the ocean

O eomesis the final state from the previous eeupling-time-stepSchwarz window, once the Schwarz iterations have converged.
This state is saved in memory, and will be read at the beginning of each iteration to initialize A and © with the same state at

for each Schwarz iteration. At the end of each iteration, the boundary conditions are send-sent to the companion model for use

during the next iterationone. The boundary conditions evelves-evolve during the iterative process. In this implementation, the

length of the Schwarz window must equals-equal the coupling period. The details of the different loops are given in Appendix
B.

o

3.3 Experiments

We have run 4-three sets of experiments (see Table 2);-with-and-without-Sehwarziterations—and-with-couplingtime steps—,
The first set uses the parallel algorithm. The second set uses the atmosphere-first algorithm. A third set uses the ocean-first
aleorithm. This last method is of no interest for operational use of climate model, but helped us to analyse some of the results.

11
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Table 2. Main characteristics of experiments

Name Coupling time-step-period  Sehwarziterations-Coupling algorithm
Swiht-Swilh50i At=1h H=Neo-Sehwarz)-Parallel

Swlhs0iA At=1h S0-atmospherefirst
Swaht-Sw4h50iA At =4h +H=No-Sehwarz)-atmosphere-first
Sw4hs0i0 At=14n 50-ocean-first

For each set, we run two experiments, with coupling periods of At = 1h and At = 4h. The number of iterations is fixed to 50.

The semmmmon e nee s o e ol o ol L s e g snioe Lol b b e sl s

coupling fields exchanged between the models are written out at all iterations by the coupler OASIS, which allow us to study
the convergence. Experiments are 5-day long (i.e. 120 and 30 Schwarz and-coupling-time-stepswindows, or coupling periods in
this case). The initial state is the end of a fifty year control experiment with pre-industrial forcings, run with the legaey-lagged

methodnon-iterated parallel algorithm.

4 Results
4.1 Convergence

Figure 3 shows the behaviour of the sea surface temperature T, along the iterative process for four selected cases in time and
space for the parallel algorithm. These cases represent typical behaviours. The yellow dots show the values at the end of the
previous time-step—Schwarz window. This is the initial state of the Schwarz iterations for the present coupling period. The
green dots show the values after the first iteration. It is the values that the models would compute without Schwarz. The blue
dots show the iterative process. Dots become grey when T, is considered to be converged.

To decide if the convergence is reached at iteration k. oy, We consider Ar(k)-Ax, (kcony) - the amplitude of the T, changes

after the iteration % — i

convergence criterion is fulfilled if one of the following condition is met :

— Oscillation from iteration k¢op, to 50 has an amplitude which is negligible in-frent-ef-compared to the total range of the
signal, i.e. if A1 (k<02 Ar{-Ar, (krope) <1073 A7, .

— Final oscillation from iteration k& = k; to k£ = 50 has an amplitude Ag (k. always lower than 10~*°C for temperature,

1072 Wm?? for heat fluxes.
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Figure 3. Behaviour of the sea surface temperature for four selected cases (i.e. instances of the Schwarz algorithm in space x time), for the

arallel algorithm. For each graph, the yellow dots show the values at the end of the previous eeupling-time-stepSchwarz window, which
when Schwarz has converged. This is the initial state of the present stepwindow. The green dots show the values after the first iteration. It is

the value that the models use with the lagged-methedlegacy parallel algorithm not iterated. The blue dots show the iterative process. Dots
become grey when T, is considered to be converged. The two top cases (a) and (b) come from the At = 4h experiment. The bottom cases

(c) and (d) come from the At = 1h experiment.
(a) (b)
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295 — Oscillation has an amplitude from iteration k.., to 50 which is not bigger than the amplitude from iteration 41 to 50, i.e

Ay, (kconw) < A1y, (40). This last criterion supposes that convergence is always reached at iteration & = 40. For points

free of the sea-icesea ice, this criterion is rever-neeessarynot necessary, as one of the two above is always verified.

300 The speed of convergence is sensitive to the definition of these criteria, which mostly come from a *rtle-of-the-thumb™rule
of the thumb rather than from a rigorous mathematical analysis. A small residual oscillation is observed at-in all cases. The
mathematics of the Schwarz method for the ocean-atmosphere coupling has been developed in Lemarié (2008), Lemarié et al.
(2014, 2015) er-and Thery et al. (2020). The theory is robust and well establish-established for two fluids with fixed turbulent
viscosities. We have no theoretical frame when a third medium, sea-iee-sea ice in our case, is present. In all of the following,

305 we will not analyse the behaviour of the model when sea-ice-sea ice is present, and study only ice-free points. Text and figures
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present the behaviour of the sea-surface temperature. We-have-checked-that-other-interface-variablesi—e-flaxes)-converge-at

+When
the sea-surface temperature has converged, the atmosphere sees the same boundary condition at each iteration, and compute
the same fluxes. The converged solution computed in Eq. (10) is theoretically the same for the three algorithms (parallel and

withoutSehwarzThis means that the results should be the same for all experiments with the same time step. But the convergence
is not fully reached. A small oscillation remains. That means that at the end of the first Schwarz window, the solution is specific
for each experiment. As small as it is, this difference explains why the experiments follow different trajectories, the climate
being chaotic.

Figure 4 shows an histogram of the number of iterations for all experiments. We consider all the instances of the iterative
procedures, for each ocean point of the atmosphere grid, and for each-coupling-timestep—As-explain-all Schwarz windows. As
explained above, we consider only points with no sea ice.

In-the-In the parallel-At = 1h simulationexperiment, the Schwarz algorithm converges at the first iteration in almost 20 %
of the cases. Two iterations are enough in almost 80 % of the cases. Only of few percents of cases require more iterations.
The ocean-first slightly improve the result by a few percents. The atmosphere-first algorithm shows convergence at the first
iteration for almost 100 % of the cases.

For the At = 4h simulationexperiments, convergence is rarely reached in 1 iteration. In most of the cases 2 to 4 iterations

are required. We still observed that the parallel and the ocean-first algorithms yield close results, the second one being faster.
The atmosphere-first strongly improves the speed of convergence.

But the number of iterations might be sensitive to the choice of the convergence criterion. In-the-By construction, the
convergence speed is in theory identical for all variables. After SST convergence, the atmosphere uses the same values of SST
at each iteration, and computes the same fluxes. Symmetrically, when the fluxes computed by atmosphere have converged, the
ocean can do nothing but producing the same SST at each iteration. In practice, the full convergence is not obtained, with a
small oscillation of the values. As the convergence criterion is somewhat arbitrary, the computation of the number of iterations

before convergence can give different values for the different variables. In the following, we diagnose the difference between
the solutions with and without Schwarz, which does not depend on an arbitrary criterion.

4.2 Diagnosing the error of lagged coupling

Figure 5 shows the relative error in the change of sea surface temperature during one coupling time-step;-made-period when
the Schwarz method is not used. The error is computed on the sea surface temperature (SST) trend during a coupling period.
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Figure 4. Number of iterations for convergence for the (a, top) At = 1h and (b, bottom) At = 4h experiments. The total number of
cases is 536,800 = 120 Schwarz windows x4,553 ice free grid points in the At = 1h experiments. And 136,800 = 30 Schwarz windows

x 4,560 ice free grid points in the At = 4 h experiments. This number of cases is given for the parallel algorithm, and slightly differs for the

other algorithms. The ordinates show the number of cases in percentage of the total number of cases in time X space.
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At each Schwarz iteration, the model computes an occurrence of the SST trend. At the first iteration, the trend is the one that

the model would calculate with the legacy lagged coupling. We can then compare it with the trend obtained after convergence.

This comparison of the two terms is done on a unique trajectory of the model. This trajectory uses the trend obtained at the last

iterations. The error is computed as the ratio between 1) the correction due to the iterative procedure (the jump from green dots
to converged solution in grey in Fig. 3) and ii) the solution change between ¢ to ¢ + At with no Schwarz iteration (the jump

from green to yellow dots in Fig. 3). In-the-

In the parallel- At = 1h simulationexperiment, the relative error made-in-thelagged-methoed-is negligible (less than 0.01) in
about 15 % of the cases. It is small (Iess than 0.1) in almost hal-50 % of the cases. But it is larger than 0.1 for the other half.

The relative error is even larger than 0.5 in 25 % of the cases. In-the-The atmosphere-first shows strongly improved results

with a negligible error for 97 % of the points. The conclusion for experiment ocean-first is somewhat different from what
the histogram of iterations (Fig. 4) shows. The results are very close to the atmosphere-first experiments, For the At =4h
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Figure 5. Relative error of the change of sea surface temperature during a eoupling-time-stepSchwarz window. The error is computed as the
ratio between 1) the correction due to the iterative procedure (the jump from green dets-dot to converged solution in grey in Fig. 3) and ii) the
solution change between ¢ to ¢ + At with no Schwarz iteration (the jump from yellow to green dots in Fig. 3). See legend for Fig. 4 for the

explanation of ordinate axis.
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~experiments, the
errors are larger than in the A¢ = 1h case, but with the same hierarchy between the algorithms. In Appendix C, we show that

these conclusions are robust when analysing the error on other interface variables.
Figure 6 shows the relative error that would remain if we had stopped the Schwarz method at 2 iterations. The histogram

shows that for the parallel At = 1h simulatien-experiment, which is the slowest converging one, non negligible errors (> 0.01)
account for only about 2 % of the cases. For small coupling time-steps;-a-two-iterations-periods, a two-iteration Schwarz method

strongly improves the solution eempared-to-the-tagged-methodfor the parallel algorithm, with only a handful of cases that
need more than 5 iterations to reach a small error (less than 0.1, not shown). All these points are at the ice edge, where the

convergence is slower. For parallel At = 4h, 25 % of the cases have an error in the range [0.01,0.1]. The number of cases with

error larger than 0.1 after 2 iterations amounts to about 3.5 %. This is still a large improvement compared to the lagged-method
~non-iterated parallel algorithm.

16



365

370

Figure 6. Same as Fig. 5, but with the relative error computed between the final iterated solution and the solution obtained after 2 iterations.
See legend for Fig. 4 for the explanation of erdinate-axisthe x-axis. The erdinates-ordinate axis is cut at 15 % to feets-or-make non negligible

errors visible.
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4.3 Thediurnaleyele

These results are coherent with the theoretical results on Schwarz methods mentioned previously. The sequential Schwarz
method requires approximately twice less iterations to converge than the parallel algorithm. In IPSL-CM6-SW-VLR, both
algorithm., We propose two hypotheses to explain this phenomenon. First, the characteristic time scales are longer in the
ocean than in the atmosphere, and the diurnal cycle is more marked in the atmosphere than in the ocean. Therefore, using the
information from the ocean on the previous time window to force the atmospheric model on the next time window is probably.
generally less problematic than doing the opposite. The atmospheric solution after the first half-iteration will then already be
quite close to its converged value, and will provide a relevant and synchronized forcing to compute the oceanic solution in the
second half-iteration. Second, the better performance of the armosphere-first case can also be linked to the phasing of the solar
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375

Figure 7. Histograms of errors as a function of the roman local time and error classes, for the parallel experiments. Left panels (a, b) for
At = 1h, right panels (c, d) for At = 4h. Top (a, ¢) panels shews-show the percentage of cases in space x time in each range of error, as a
6 regular pseudo hours. The same method is applied to the intervals sun set to noon, noon to sun set and sun set to midnight. This is similar
to the division of the day in the ancient Rome (Wikipedia, 2020). The percentages are computed with respect to the total number of cases for
each local time. Bottom panels (b, d) show the number of cases with errors larger than 0.1 (light purple), 0.5 (medium purple with hatches)
and 1.0 (dark purple).
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radiation, which is the only external forcing and constrains the diurnal cycle. In the parallel and ocean-first cases, the ocean is

forced by fluxes, including solar radiation, calculated at the previous coupling period. In the case of atmosphere-first, the solar

forcing is correctly phased.

4.3 The diurnal cycle of the error

Figure 2?-plots-the-7 plots the SST trend error in function of the roman local time and error classes, for the parallel experiments
see figure caption for the definition of the roman local time). The error histograms show a well-defined diurnal cycle with the
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lowest errors in-the-middle-of-the-during the night. In both experiments, but mostly for At = 4h, errors are larger at noon
than at midnight. The error is maximum areund-sunset-and-after sunset and before sunrise, when the change of the insolation
forcing evolves at the fastest pace. This pattern is clear for At = 1h. With At = 4h, the diurnal cycle of insolation is badly
resolved, but the diurnal cycle of the error is still present. Atsunrise-and-sunset; 45%-After sunrise and before sunset, 45 % of
cases in time X space show an error larger than 1 for the At = 1h case. At these times of the day more than 70%-70 % of the
cases show error larger than 0.5, and almost all cases have non negligible errors (> 0.01). All figures are slightly bigger for the
At = 4h case.

An error larger than 1.0 means that the correction due do the Schwarz method is larger than the solution jump due to the

lagged methodalgorithm. In both simulatiens-experiments, the error of the lag-methed-around-sunrise-and-sunseteanbeparallel
algorithm after sunrise and before sunset can affect the most important part of the solution computed by an Earth System model.

5 Conclusions and future approaches

Present time sehemes-algorithms used to couple ocean and atmosphere in state-of-the-art Earth System Model are mathemat-
ically inconsistent -as-the-in all implementation we are aware of. The components are not correctly synchronized with their
boundary conditions (Lemarié, 2008; Lemari¢ et al., 2014). A mathematically consistent Schwarz iterative method has been
implemented in the IPSL coupled model ;to solve the ocean-atmosphere interface. This implementation yields a multiplication
of the computing cost by the number of iterations. Although such a method is thus not affordable as is for climate studies,
the Schwarz iterative method is used as a reference to evaluate the error made with the legaeytagged-method-parallel and
the sequential atmosphere-first currently used by many ocean-atmosphere modelers. The sequential ocean-first has also been
tested.

We use the solution obtained with the Schwarz iterative method as a reference to diagnose the error in twe-experiences

where-only-the-coupling-timestep-At-differs—This—six_experiments, with the three coupling algorithms and two couplin

eriod lengths At = 1h and At = 4h . In the parallel algorithm, the error is quite large, with highest values areund-dawn-and
after dawn and before dusk, when the change of insolation at the top of the atmosphere, the only external forcing, has the

highest rate. With the shortest time-step-coupling period of At = 1h, 45% of the cases in time x space show an error larger
than 100% for this periods of the day. That means that for this time of the daily cycle, the solution without Schwarz suffers

from a large error in most of the cases. With a larger coupling time-stepperiod, the errors are even larger.

The-error-Qur analysis shows that implementing sequential algorithms are simple ways to strongly reduce the error, with
the ammosphere-first algorithm showing the best performance. We propose two hypotheses to explain the atmosphere-first
algorithm performance. First, the atmosphere has shorter characteristic time scales than the ocean, with a more marked diurnal
cycle. The atmospheric lower boundary condition evolves slowly, and the atmospheric solution after the first half-iteration
is then already quite close to its converged value, and provides a relevant and synchronized forcing to compute the oceanic
solution in the second half-iteration. Second, the better performance of the atmosphere-first case can also be linked to the
phasing of the solar radiation, which is the only external forcing and constrains the diurnal cycle. In the parallel ocean-first
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case, the ocean is forced by fluxes, including solar radiation, calculated by the atmosphere at the previous coupling period. In
the case of atmosphere-first, the solar forcing is correctly phased. The sequential algorithms, however, have a major drawback.
The models do not run concurrently as, while one model is running, the other model waits for its coupling information coming
from the one running. This eliminates a level of parallelism, and increases the time to solution of the coupled model, unless a
two-coupling-period lag is introduced for the feedback of the ocean on the atmosphere, which increases the time inconsistency.
of the algorithm.

The error of all algorithms, and particularly of the parallel one, can be strongly reduced by performing only two iterations.

This is still a huge increase of the computing cost, which is clearly unacceptable.

“The vast majority.
of iterative methods have a speed of convergence that is very sensitive to the fegaey-choice of the initial state. The target is
to reduce the number of iterations down to 1 which would mean keeping a classical, non-iterated lagged method. But we
ean-improve-it-by using a-better first guess-than-the solution-the idea would be to reduce the error thanks to a judiciously.

chosen initial state. A first approach could be an extrapolation of the previous time step—We-could-for-instanee-steps. A second
approach could be to perform Schwarz iterations on a sub part of the model, to get an improved first guess before running the

full model once. It will be effective if we can identify parts of the models that represent only a small part of the calculation

cost, but account for a large part of the tetal-selution—change of the model state during a coupling period. The coupled vertical

turbulent diffusion term of both models, including the computation of turbulent fluxes at the interface, is a possible candidate.
With two iterations, a conservation issue appears with the parallel algorithm. The second, and last, iteration of the ocean

model uses the fluxes computed by the atmosphere during the first iteration. The atmosphere will get its energy and water
balance from the fluxes computed at the second iteration. Both components do not use the same fluxes, which yield-yields
a conservation inconsistency at the interface. This happens when the iteration-iterative process is stopped before the full

convergence. In this case, the ocean model would have to run one more iteration than the atmosphere +-to close the energy and

water cycle between the model components—, at an expense of the computing time.

It is likely that our results observed at the ocean-atmosphere interface can be generalised to other couplings in Earth system
models when lagged algorithms are used, like ocean-sea ice, atmosphere-sea ice or atmosphere-soil. These interfaces with rapid
variability, especially with dry soil or thin sea ice, can be very sensitive to the coupling algorithm. We did not assess the effect

of the errors at the coupling interface on the simulated climate, in terms of means and variability at monthly to multi-deeadal

multi-decennial time scales. The internal feedbacks in a climate model make the impact uncertain. If the model with the legacy
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tagged-parallel coupling scheme computes, for instance, a too high interface temperature at a given time-stepcoupling period,
the atmosphere to ocean heat fluxes of the following time-step-coupling period will be reduced accordingly and may partly
compensate the error, with a time lag. A modification of the diurnal cycle in both amplitude and phase can be expected. But
the error might be somewhat reduced-canceled when considering diurnal means, or longer time scales. How will the long
term means and variability, which are the properties analyzed by climatologists, will-be affected? To assess this impact, two
ensembles of climate simulationsexperiments, with and without Schwarz, should be compared. The model with the Schwarz
iterative method is currently too expensive for us to carry out this set of experiments. We will try to redueed-reduce this cost
before carrying out a comprehensive assessment, mainly by improving the first guess, and limiting the Schwarz method to a

few iterations.

To reduce the error, one could simply reduce the coupling period. In IPSLCM6-SW-VLR, the ocean time step is 1h.
Reducing the length of the coupling period implies reducing the ocean time step, and increasing the computer time. With
higher resolution, the time step of the ocean or the atmosphere are smaller, and it is possible to couple more often. As with
any discretisation, the error decreases with the time step. This should be used cautiously however, as most interface fluxes
are computed by bulk formulas. Gross et al. (2018) shows that a Aypys,req time scale is needed for a bulk formulation to be
valid. The inputs of the bulk formula, like sea surface temperature, should be averaged over this time scale to minimize the
uncertainty (Gross et al., 2018; Large, 2006; Foken, 20060). Alpiys,req 18 usually greater than the model dynamical time step
Algyy . This means that reducing the time step is not coherent with the basic assumption made to obtain the bulk formulas,
and may yield large error in the flux computation.

Code and data availability

All code and data relative to this study are available at ¢2https://zenodo.org/record/4546183 (Marti et al., 2020). This Digital
Object (DOI) Identifier points to three files. Marti-GMD-2020-307_Models.tar.zip is a gzipped tar file of +66-MB-218 MB with
the model code and scripts needed to run the model (Fortran, C++ and bash). Marti-GMD-2020-307_Figures.zip is a zip file

of 74MB-3.3 MB containing the scripts needed to produce the figures: one Ferret-seript-and-four-PyFerret script and seven
Jupiter Python Notebooks. Marti-GMD-2020-307_Data.tar.zip is a a gzipped tar file of 6-5GB-18.5 GB with the model outputs

needed to produce the figures.

We give in the following more references for the code used. LMDZ, XIOS, NEMO and ORCHIDEE are released under the
terms of the CeCILL license. OASIS-MCT is released under the terms of the Lesser GNU General Public License (LGPL). We
used model version IPSLCM6.1.9-LR, which is build from the following model components and utilities (svn branches and

tags) :
— NEMO : branches/2015/nemo_v3_6_STABLE/NEMOGCM, Tag : 9455
— ORCALI config : trunk/ORCA1_LIM3_PISCES, Tag: 278

— IPSLCM6 : CONFIG/UNIFORM/v6/IPSLCM6, Tag : 4313
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ORCHIDEE : tags/ORCHIDEE_2_0/ORCHIDEE, Tag : 5661

480 OASIS : branches/OASIS3-MCT_2.0_branch/oasis3-mct, Tag: 1818

IOIPSL : TOIPSL/tags/v2_2_4/src, Tag: HEAD

LMDZ : LMDZ6/branches/IPSLCM6.0.15, Tag : 3427

libIGCM : trunk/1ibIGCM, Tag : 1478

— XIOS : XI0S/branchs/xios-2.5, Tag: 1550

485 Model documentation is available at https://forge.ipsl.jussieu.fr/igemg_doc/wiki/Doc. The code modifications made in IPSECM6IPSL-
CM6.1.9-LR to build IPSL-CM6-SW-VLR and implement the Schwarz iterative method are fully documented at https://forge.

ipsl.jussieu.fr/cocoa.

Appendix A: Evaluation of IPSL-CM6-SW-VLR

IPSL-CM6-SW-VLR simulated climate has substantial differences with IPSL-CMSA2-LR, due to the different soil and sea ice

490 models. We present here a short evaluation of the simulated climate of a steady-state pre-industrial simulation. The initial state
for the ocean of the atmosphere is taken from the reference IPSL.-CMSA2-LR simulation of Sepulchre et al. (2020). For the
ice model, LIM2 and LIM3 states are not compatible. In the present case, the sea ice initial state is set to a fixed height of ice
where the ocean temperature of the first level (at 5m depth) is at the freezing point. The height of ice is 3m in the northern
hemisphere and 1m in the south. On land the albedo parameters of the bucket model was taken from the albedo computed

495 by ORCHIDEE in the reference PREIND simulation of Sepulchre et al. (2020), which follows the CMIP6 intercomparison
project of the piControl experiment (Eyring et al., 2016). In a first attempt, the model evolves towards a cold state, due to an
imbalance of about —2.8 Wm? of the radiation budget at the top of the atmosphere (TOA).

The procedure described by Sepulchre et al. (2020) is then used to balance the model heat budget. A parameter controlling
the conversion of cloud water to rainfall is tuned to reach a near zero net flux at top of the atmosphere (TOA), with a target of

500 13.5°C for global mean near surface temperature (temperature at 2m height). The final TOA heat budget is 0.33 Wm ™2 . with
a global mean near surface temperature of 13.3°C . Figure Al shows the simulated sea surface temperature (SST) compared
to Sepulchre et al. (2020) and to the World Ocean Atlas (WOA, Locarnini et al., 2013).

As expected from the drastic simplification of the soil model, the performances, in term of simulated climate, of IPSLCM6-SW-VLR
are poorer than those of the state-of-the models participating for example in the CMIP6 intercomparison exercise. But as the

505 objective of this study focuses on the evaluation of the Schwarz method, a model with a perfect simulated climate is not
necessary. We estimate that a good p