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Abstract. TempestExtremes (TE) is a multifaceted framework for feature detection, tracking, and scientific analysis of regional

or global Earth-system
::::
Earth

::::::
system

:
datasets on either structured and unstructured(native )

::::::::
rectilinear

::::
and

::::::::::::::::
unstructured/native

grids. Version 2.1 of the TE framework now provides extensive support for examining both nodal
::::
(i.e.,

:::::::::
pointwise) and areal fea-

tures, including tropical and extratropical cyclones, monsoonal lows and depressions, atmospheric rivers, atmospheric block-

ing, precipitation clusters, and heat waves. Available operations include nodal and areal thresholding, calculations of quan-5

tities related to nodal features such as accumulated cyclone energy and azimuthal wind profiles, filtering data based on the

characteristics of nodal features, and stereographic compositing. This paper describes the core algorithms (kernels) that have

been added to the TE framework since version 1.0, and gives several examples
::::::::
including

:::::::::
algorithms

:::
for

::::::
editing

:::::::::
pointwise

::::::::
trajectory

::::
files,

::::::::::
composition

::
of
:::::
fields

::::::
around

:::::
nodal

::::::::
features,

::::::::
generation

:::
of

::::
areal

:::::
masks

:::
via

:::::::::::
thresholding

:::
and

:::::
nodal

:::::::
features,

::::
and

:::::::
tracking

::
of

::::
areal

:::::::
features

::
in

:::::
time.

::::::
Several

::::::::
examples

:::
are

::::::::
provided of how these kernels can be combined to produce composite10

algorithms for evaluating and understanding common atmospheric features and their underlying processes.
:::::
These

::::::::
examples

::::::
include

::::::::
analyzing

:::
the

:::::::
fraction

::
of

:::::::::::
precipitation

::::
from

:::::::
tropical

::::::::
cyclones,

:::::::::::
compositing

::::::::::::
meteorological

:::::
fields

::::::
around

:::::::::::
extratropical

:::::::
cyclones,

::::::::::
calculating

::::::::
fractional

::::::::::
contribution

::
to
::::::::

poleward
:::::
vapor

::::::::
transport

:::::
from

::::::::::
atmospheric

:::::
rivers,

::::
and

:::::::
building

::
a

::::::::::
climatology

::
of

::::::::::
atmospheric

::::::
blocks.

:

1 Introduction15

For many atmospheric and oceanic features, automated object identification and tracking in large datasets has enabled targeted

scientific exploration of feature-specific processes. Software tools for feature tracking, colloquially referred to as “trackers”,

are valuable for evaluating model performance (Davini and D’Andrea, 2016; Stansfield et al., 2020), ;
:
understanding upstream

process drivers(such as large-scale meteorological patterns; e.g., Grotjahn et al., 2016), ,
:::::

such
::
as

::::::::::
large-scale

:::::::::::::
meteorological

::::::
patterns

:::::::::::::::::::::::
(e.g. Grotjahn et al., 2016); and projecting future changes in feature characteristics and climatology (Roberts et al.,20

2020a). When well-engineered, these automated tools provide a means by which we can analyze
::
for

::::::::
analyzing

:
the multiple

petabytes of climate data now available (and anticipated in the next decade ) (Schnase et al., 2016; Hassani et al., 2019). Since

its introduction, TempestExtremes (TE, Ullrich and Zarzycki, 2017) has been continuously augmented with new kernels – that
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is, basic data operators that can act as building-blocks for more complicated tracking algorithms – designed to streamline data

analysis and generalize capabilities present in other trackers. These kernels thus permit
::::::
provide more options and flexibility25

in exploring the space of “valid” trackers for each feature, and enable a deeper understanding of how robust a given scientific

conclusion is
::::
with

::::::
respect to the choice of tracker. Herein we

::
We

:
describe the most significant of these updates and provide a

number of use cases to demonstrate TE’s functionality for real scientifically-driven
::::::::::
scientifically

:::::
driven

:
case studies.

Numerous publications over the past several decades have investigated
::::::::
presented automated algorithms for identification of

both nodal
::::
(i.e.,

:::::::::
pointwise) and areal atmospheric features. Ullrich and Zarzycki (2017) Appendices A-C summarized dozens30

of such automated algorithms for extratropical cyclones, tropical cyclones, and tropical easterly waves. Even so, work to iden-

tify optimal tracking criteria continues (Murata et al., 2019). Beyond these traditionally tracked features, many recent papers

have focused on defining regionally-relevant
::::::::
regionally

:::::::
relevant

:
features such as monsoonal lows and depressions, associated

with heavy precipitation in monsoonal regions (Hurley and Boos, 2015; Vishnu et al., 2020). Areal feature tracking algorithms

have also been developed for clouds (Heikenfeld et al., 2019), atmospheric rivers (Shields et al., 2018; Rutz et al., 2019),35

atmospheric blocking (Scherrer et al., 2006), mesoscale convective systems (Prein et al., 2017; Feng et al., 2018), precipitation

clusters (Clark et al., 2014; Pendergrass et al., 2016),
:::::::::::::::::::
convectively-generated

::::::
outflow

::::::::::
boundaries

:::::::::::::::::::
(Chipilski et al., 2018),

::::
gust

:::::
fronts

:::::::::::::::::::::::
(Delanoy and Troxel, 1993), and frontal systems (Hope et al., 2014; Schemm et al., 2015; Parfitt et al., 2017). Both nodal

and areal algorithms generally feature a similar set of kernels, motivating the development of a single package encompassing

relevant capabilities. For example, the majority of these
:::::::
detection

:
algorithms are built upon an algorithmic paradigm known40

as MapReduce (Dean and Ghemawat, 2008), where individual timeslices
::::
time

:::::
slices are assessed independent of one another

(an embarrassingly parallel “map” operation) then combined via a serial “reduce” operation. With significant commonality

between these algorithms, there is clear value in bringing together this functionality under a single community-built and

tested interface
:::
By

:::::::
building

:
a
::::::
single

:::::::::
framework

:::
for

::::::::::
distributing

::::
time

:::::
slices

::
to

::::::::
different

::::::
feature

:::::::::::
identification

::::::::::
algorithms,

::::
then

:::::::::
combining

:::::::
multiple

:::::::
features

::::
into

::
a

:::::
single

:::::::
dataset,

:::
we

::::
can

:::::
avoid

:::::::::
duplication

:::
of

:::
this

::::::::::::
infrastructure

::::::
across

:::::::
multiple

::::::::
trackers.45

:::::::::
Leveraging

::::::::::::
commonalities

::::
such

:::
as

::::
these

:::::::
enables

::::::::::::
improvements

::
in

:::::::::
algorithmic

:::::::::
efficiency

::
to

::
be

:::::::::::::
simultaneously

:::::::::::
administered

::
to

:::::::
multiple

:::::::
trackers,

:::
and

:::::::
reduces

:::::::::::
redundancies

::::
from

::::::::::
algorithmic

:::::::::
validation

:::
and

::::::
testing.

TE has been engineered with the goal of providing a comprehensive and user-friendly toolbox for feature tracking in model,

reanalysis, or observational data products. It features many
:
a
:::
set

::
of

:
core design principles to enable its easy application in

scientific analyses:50

– The TE kernels are encapsulated in a variety of executables that are fully configurable from the command line (i.e.
:
,

containing no hard-coded thresholds). Thus the processing operations performed by TE can be easily conveyed simply

by communicating the relevant commandline(s).

– TE abstracts many of the finer details about the structure of climate datasets through the use of physically-motivated

kernels (such as the closed-contour operator), physically-based units, and internal indexing with
::::::
Climate

:::
and

::::::::
Forecast55

::::::::
compliant

:
(CF-compliant

:
) time variables.
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– TE directly addresses the need for high-throughput, readily usable, and standardized data analysis tools: namely, its .
:::
Its

kernels are individually implemented in optimized and, where appropriate, parallelized C++.

– TE also addresses a growing need for data analysis tools that work with “big data”, enabling significant data volume

reduction by isolating characteristics of individual features rather than total
::
full

:
fields.60

– TE
::
’s

::::::::::
algorithmic

::::::
kernels

:::
are

::::::::
designed

:::
for

:::::::::
arbitrarily

:::::
grids,

::::::::::
recognizing

:::
that

:::::::
climate

::::::
models

:::::
have

::::::
largely

::::::
moved

:::::
away

::::
from

:::::::::::::::
latitude-longitude

::::
grids

:::
and

:::::::
towards

::::::::::::
quasi-uniform

:::::
grids

:::::::::::::::::
(Ullrich et al., 2017).

–
::
TE

:
is a fully open-source product, publicly developed and distributed via GitHub with permissive open source licensing.

These principles complement the underlying focii
:::
foci motivating TE’s development, namely: robustness, usability, maintain-

ability, and extensibility. To the best of the authors’ knowledge, no other comprehensive toolkit exists for general nodal and65

areal feature tracking in climate
::::
Earth

::::::
system

:
datasets.

The remainder of this paper follows an analogous structure to Ullrich and Zarzycki (2017): Section 2 describes the core

algorithms and kernels now available in TE version 2.1. In section 3, we present several examples of how these kernels can

be combined together to form recipes for tracking tropical cyclones (TCs), for calculating fractional contribution of precipi-

tation from TCs, for tracking and compositing extratropical cyclone fields, for tracking atmospheric rivers, and for tracking70

atmospheric blocks. A summary of results and future work is given in section 4.

2 TempestExtremes algorithms and kernels

In this section we describe the kernels available in the TE software package(,
:
organized by executable), with an emphasis

on additions since TE version 1.0– that is, essentially all of TE’s executables and their core algorithms are described here

except for DetectNodes and StitchNodes. Technical details on the operation of TempestExtremes can be found in the user75

guide (Ullrich, 2020). Notably, a key novelty of the functionality described here is its applicability to either unstructured or

structured grids.

2.1 DetectNodes and StitchNodes

DetectNodes (formerly DetectCyclonesUnstructured) is used for the detection of nodal feature candidates, and corresponds

to the parallel “map” step in the “MapReduce” framework – that is, candidate points are first downselected
::::::
selected

:
based80

on information at a single timeslice
:::
time

:::::
slice. DetectNodes is typically followed by StitchNodes, which represents the serial

“reduce” operation in the chain; .
:

StitchNodes connects nodal features together in time and produces paths associated with

singular features. Both of these executables and their algorithmic kernels are described in Ullrich and Zarzycki (2017), although

version 2.1
::::
v2.1 now supports the use of physical time units for thresholds and time subsetting– e. g.

:
.
:::
For

::::::::
example, mintime

may be specified as a minimum number of timeslices
::::
time

:::::
slices (e.g.,

:
"5") or as the minmum number of hours between first85

and last candidate in a path (e.g.,
:
"24h").
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::::::::::
DetectNodes

::::
and

:::::::::::
StitchNodes

::::::
output

:::::::::
trajectories

:::
in

::
a

::::::
format

::::::::
originally

:::::::
defined

:::
by

:::
the

::::::
GFDL

:::::::
tropical

:::::::
cyclone

:::::::
tracker

:::::::::::::::::::::::::::::::::::::::::
(TSTORMS; Vitart et al., 1997; Zhao et al., 2009).

:::::
These

::::
files

:::
are

::::::::
generally

::::::
referred

::
to
:::
as

:::::::
nodefiles

:
.

2.2 NodeFileEditor

NodeFileEditor is a new addition to TE that encapsulates functionality for editing of nodefiles(outputs from DetectNodes)90

through the calculation of auxiliary quantities or filtering of existing quantities
::
for

::::::
editing

:::::::::
nodefiles.

::
It

:::::::
includes

:::::::
options

:::
for

::
(1)

:::::::::
appending

::::
new

::::::
details

::
to
:::::::::::

trajectories,
::::
such

::
as

:::::
radial

:::::
wind

:::::::
profiles

::
or

:::::::::::
accumulated

:::::::
cyclone

::::::
energy,

:::
(2)

:::::::::
removing

::::::
certain

:::::::
columns

::::
from

:::::::::
nodefiles,

::
or

:::
(3)

:::::::
filtering

:::::::::
trajectories

::
or

::::::
points

:::::
along

:
a
:::::::::
trajectory,

::::
e.g.,

:::::
when

::::::
outside

::
of

::
a
::::::
specific

:::::
time

::::::
interval.

A list of functions currently available in NodeFileEditor are given in Table 1. These functions may be chained to perform

multiple related operations, such as computing a radial wind profile of a tropical cyclone and then extracting the radius where95

a particular wind threshold is exceeded. An example of such chaining of commands is given in section 3.3.

Most of the implemented algorithms are straightforward
:
, except for max_closed_contour, whose pseudocode is pro-

vided in Algorithm 1. Intuitively, this algorithm can be thought of as filling up a 3D extruded surface representative of the

contours of the field until fluid spills farther out than the prescribed maximum distance. The last height difference is then

recorded as the maximum delta for the closed contour.100

Algorithm 1 Determine the maximum closed contour delta (largest field delta that permits a closed contour within the given

distance of the feature) for each node in a given nodefile N, over field F and maximum distance maxdist. This algorithm

uses a priority queue, which places the node with the highest priority (in this case the smallest delta) at the top of the queue.

max_delta = max_closed_contour(nodefile N, field F, maxdist)

for each node n in N

max_delta[n] = 0

define empty priority_queue pqueue

insert node n into pqueue with delta 0

visited = []

while pq is not empty

p = remove node from pqueue with lowest delta

add p to visited

for all neighbors q of p

if q is not in visited then add q to pqueue with delta (F[q] - F[n])

if (dist(p,n) < maxdist) and (F[p] - F[n] > max_delta[n]) then

max_delta[n] = F[p] - F[n]
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Operator Description

eval_ace Calculate the instantaneous accumulated cyclone energy (ACE, Bell et al. (2000)),
:::::::::::::::::
(ACE, Bell et al., 2000),

equal to 10−4u2
kt,max where ukt,max is the maximum wind speed within a prescribed radius of the nodal

feature, in knots. We use a value of 1.94384 kt (m s−1)−1 to convert m s−1 to kt.

eval_acepsl Approximate ACE using sea level pressure to predict surface wind speed (ACEPSL). Currently
:
, ACEPSL is

calculated as ACE, but using ukt,max = 1.94384 kt (m s−1)−1×3.92×(1016.0 hPa−pslmin)
0.644 (Holland,

2008), where pslmin is the minimum sea level pressure within a prescribed radius.

eval_ike Calculate that
:::
the instantaneous integrated kinetic energy (Powell and Reinhold, 2007), defined as

∑
i
1
2
u2
iAi,

where the sum is taken over all grid cells within a prescribed radius, ui is the magnitude of the wind speed at

that grid cell (in m s−1), and Ai is the area of that grid cell in m2
:
,
:::
and

::
the

::::
sum

:
is
:::::
taken

:::
over

::
all

::::
grid

:::
cells

:::::
within

:
a
::::::::
prescribed

:::::
radius.

eval_pdi Calculate the power dissipation index (Emanuel, 2005), defined as u3
max, where umax is the maximum wind

speed within a prescribed radius in m s−1.

radial_profile Develop a radial profile of the specified variable at each timeslice
:::
time

::::
slice around the nodal feature point by

binning
::
by

:::::
radial

::::::
distance

:
and averaging gridpoint values. The output is expressed as a python-format array

::::
using

:::::
python

::::
array

::::::
syntax.

radial_wind_profile As radial_profile but for the radial and azimuthal wind speed. The radial and azimuthal components are com-

puted by projecting the 2D velocity at each grid point onto the radial and azimuthal vector fields around each

nodal feature prior to binning.

lastwhere Given an array as input(
:
, such as the output of radial_profile) identify the last element

:
,
::::::
identify

::
the

:::::::
distance

:
or

::::
index of the array that satisfies a given threshold(e. g.

:
.
:::
For

:::::::
example,

:::
this

::::::
operator

::
is
:
used for determining the

radius at which azimuthal wind speed is greater than 8 m s−1).

value Given an array,
:
extract the value at the specified index using linear interpolation

::::
where

::::::
needed.

max_closed_contour For a given field,
:

determine the largest value that could be used to satisfy
::::::
satisfies the closed contour criteria

(see Ullrich and Zarzycki (2017) section 2.6) around each nodal feature (see Algorithm 1).

region_name Given containing the names and coordinates of polygons in longitude-latitude space, identify the name of the

region for a given pointwise feature. Each point is identified as being in a given region using a straight-line test

along lines of constant latitude– if .
::
If the number of intersections with edges of the polygon is odd (even), then

the point is inside (outside).
Table 1. Functions implemented in NodeFileEditor as of TempestExtremes version 2.1.
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2.3 NodeFileFilter

NodeFileFilter encapsulates algorithms for filtering
:::::::
masking

:
spatial data using nodefile information– ,

::::
i.e., effectively convert-

ing nodefiles into binary raster masks at each timeslice
::::
time

::::
slice

:
and (optionally) applying them to available data. Filtering

can be performed using the distance from each feature, based on the closed contour of each feature (as described by Algorithm

2), or by thresholding of areal regions that are within a given distance of each nodal feature (as described by Algorithm 3). The105

latter is useful for identifying, for instance, precipitation clusters associated with tropical cyclones.

Algorithm 2 Generate a binary mask using the
:
a closed contour criteria

::::::
criterion, given nodefile N, field F, closed contour

magnitude delta, maximum mask distance dist, and maximum distance for minima/maxima search minmaxdist. The

functions find_min_near and find_max_near are given by Algorithm 4 in Ullrich and Zarzycki (2017).

M = mask_by_closed_contour(nodefile N, field F, delta, dist, minmaxdist)

for each node n in N

if (delta > 0) m = find_min_near(n, F, minmaxdist)

if (delta < 0) m = find_max_near(n, F, minmaxdist)

visited = []

tovisit = [m]

ref_value = F[m]

while tovisit is not empty

p = remove node from tovisit

if visited contains p then continue

add p to visited

if (dist(p,m) > dist) then continue

if (sign(delta) * (F[p] - F[m]) > abs(delta)) then continue

M[p] = 1

add neighbors of p to tovisit

2.4 NodeFileCompose

NodeFileCompose encapsulates functionality for taking snapshots of fields
::::::
includes

:::::::::::
functionality

:::
for

::::::::::
snapshotting

:::::
fields

::::::
around

::::
nodal

:::::::
features

:
(i.e., storm extraction) or compositing fields either around

::
at

::::
each

::::
time

::::
slice

::::::::
projecting

:::::
fields

::::
onto

:::
the

:::::::::::
stereographic

::::
plane

::::::::
centered

::
on

:
a nodal featureor over

:
)
::
or

:::::::::::
compositing

::::
fields

:::::
(i.e.,

::::::::
averaging

::::::::::
snapshots).

::
In

:::
the

:::::
same

::::
vein,

::
it

:::
also

::::::::
includes110

::::::::::
functionality

:::
for

:::::::::::
snapshotting

::
or

:::::::::::
compositing

:
a particular geographic region . Most commonly this is used for constructing

6



Algorithm 3 Generate a binary mask by picking out blobs satisfying a threshold within a given radius of each node. The

inputs include the nodefile N, field F, the search distance searchdist, threshold operation threshold, and maximum

mask distance maxdist.

M = mask_by_nearbyblobs(nodefile N, field F, searchdist, threshold, maxdist)

for each node n in N

visited = []

tovisit = [n]

while tovisit is not empty

p = remove node from tovisit

if visited contains p then continue

add p to visited

if (dist(p,n) > searchdist) then continue

add neighbors of p to tovisit

if F[p] does not satisfy threshold then continue

tovisitnested = [p]

while tovisitnested is not empty

q = remove node from tovisitnested

if visited contains q then continue

add q to tovisitnested

if (dist(q,n) > maxdist) then continue

if F[q] does not satisfy threshold then continue

M[q] = 1

add neighbors of q to tovisitnested
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compositions on the stereographic plane centered on each feature . Such stereographic
::::
when

::
a

::::::
feature

:
is
:::::::
present.

::::::::::::
Stereographic

composites are computed using Algorithm 4. The mathematical operators used for the local stereographic projection are given

in Appendix A.

Algorithm 4 Generate a stereographic composite of field F over the given set of nodes N, generated by DetectNodes. The

stereographic grid has resolution res and grid spacing dist, given as the great circle distance along coordinate lines passing

through the origin.

field C = stereographic_composite(field F, node_list N, res, dist)

C = empty 2D stereographic grid with parameters (res,dist)

for each node n in N

G = generate 2D stereographic grid with parameters (res,dist) centered on n

for each node m in G

use inverse stereographic projection to obtain point p corresponding to G[m]

q = nearest grid point in F to p

assign G[m] to value F[q]

C = C + G

C = C / size(N)

2.5 DetectBlobs115

DetectBlobs is used for identifying areal features (blobs), such as atmospheric blocks, atmospheric rivers, or precipitation

clusters. As with DetectNodes, this executable represents the parallel “map” step in the “MapReduce” framework. Candidate

regions are selected based on information at a single timeslice
:::
time

:::::
slice, typically simple thresholds such as “all points where

precipitation is greater than 1 mm day
:
d−1”. Features are marked using a binary mask and output stored in NetCDF format.

Contiguous regions may then be excluded based on either geometric thresholds or using criteria derived from other variables.120

DetectBlobs supports MPI-based parallelism
::::
over

::::
input

::::
files.

2.6 StitchBlobs

StitchBlobs is used for tracking areal features (blobs) in time, assigning connected features a unique global id and/or applying

time-dependent criteria to each contiguous region. Given input as a time-dependent binary mask variable, blobs that overlap in

:
at
:
sequential time steps will be assigned the same global identifier. The algorithm implemented in TE for connecting blobs in125

time uses a forward-backward search that can treat the 2D space + 1D time object as a single object, allowing for both splitting

and recombining
:::::::
merging of features in time.
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The pseudocode for this search protocol is provided in Algorithms 5 and 6, and its operation
:
is illustrated in Figure 1. Put

briefly, contiguous regions at each timeslice
:::
time

:::::
slice are identified using a flood fill algorithm and assigned a unique tag

of the form (time id, blob id). An additional “merge distance” argument can be specified that merges nearby blobs at each130

timeslice
:::
time

:::::
slice if their perimeters are within this specified distance. A graph is then constructed with each of these tags

corresponding to the nodes of the graph. Edges are then added to the graph where two sequential
:
a
::::
pair

::
of

:
areal features are

deemed to be connected in time.
::::
Since

:::::::
multiple

::::::
edges

:::::
could

::
be

::::::::
generated

::
to
:::

or
::::
from

::
a

::::::
feature

::
on

::
a
:::::
given

::::
time

::::
slice,

::::::::
multiple

::::::
mergers

:::
or

::::
splits

:::::
may

:::::
occur

:::::::::::::
simultaneously. Finally, the components of the graph are

:::
each

:
assigned a unique global id, with

lower global ids corresponding to blobs that first appear at earlier times.
:
In

::::::
Figure

::
1,

::::::
feature

::
1

:::
and

::
2

::
at

::::
time

:::::
index

::
1,

:::::::
denoted135

::::
(1,1)

:::
and

:::::
(1,2),

::::
will

::::
both

:::
be

:::::::
assigned

:::
the

:::::
same

::::::
global

::
id

:::::
since

::::
they

:::
are

:::::::::
connected

::
at

:
a
:::::
later

::::
time.

:::::::::
Similarly,

::::::
feature

::
1

:::
and

::
2

:
at
:::::

time
:::::
index

::
3,

:::::::
denoted

::::
(3,1)

::::
and

:::::
(3,2),

:::
are

:::::::
assigned

:::
the

:::::
same

::::::
global

::
id

:::::
since

::::
they

::::
were

:::::::::
connected

::
at

:::
an

:::::
earlier

:::::
time.

:::::
Note

:::
that

::::::
global

:::
ids

::::
start

::
at

:
1
::::

and
:::
are

::::::::::
consecutive

:::::::::
thereafter;

::::
they

:::
are

::::::::
assigned

::::
only

::::
after

:::::::::
connected

::::::::::
components

::
of

:::
the

::::::
graph

:::
are

::::::::
identified,

:::
and

:::
as

::::
such

:::
are

::::::::
unrelated

::
to

:::
the

::::
blob

::
id

::
on

::::
each

::::
time

:::::
slice.

:

By default, areal features are deemed to be connected in time if they share at least one grid point at sequential times140

:::::::::
subsequent

::::
time

:::::
steps

:
(regardless of the area of that grid point). For example, in Figure 1, areal regions (1,1) and (2,1)

overlap in space and so are deemed to be connected. If a stricter threshold on the overlap area is needed for blobs at se-

quential timeslices
::::
time

:::::
slices to be deemed part of the same cluster, StitchBlobs provides arguments min_overlap_prev,

max_overlap_prev, min_overlap_next, max_overlap_next. The values specified by these arguments are percentages

based on the area of the feature at each timeslice. The min_* arguments specify minimum overlap area and max_* specify145

maximum overlap area. The *_prev arguments use the blob at the past timeslice as reference, whereas *_next uses the blob

at the future timeslice
::
for

:::::::::
minimum

::::::
overlap

:::::::
between

::::
the

::::::
current

::::
blob

::::
and

:::::
blobs

::
at

:::
the

:::::::
previous

::::::
and/or

::::
next

:::::::
timestep. In this

example, blob tag (2,2) has a
:::::::
overlaps

::::
only 25% overlap with

:
of

:::
the

::::
area

::
of

:
blob tag (1,2); thus these two blobs are only deemed

to be connected if the value 25 is within the range specified by min_overlap_prev, max_overlap_prev. Similarly

:
,
:::::::
meaning

::::
that

::::
(2,2)

:::
and

:::::
(1,2)

:::
are

:::::::
deemed

::::::::::
unconnected

::
if
:::
the

:::::::::
“minimum

::::::::
previous

:::::::
overlap”

::
is

::::::
greater

::::
than

:::::
25%.

:::
On

:::
the

:::::
other150

::::
hand blob tag (2,1) has a

::
,2)

::::::
covers 50% overlap with

:
of
:::
the

::::
area

::
of

:
blob tag (2,2); thus these two blobs will be connected if the

value 50 is within the range specified by min_overlap_next, max_overlap_next,
::
so

:::::
these

::::
two

:::::
would

:::
be

:::::::
deemed

::::::::::
unconnected

::
if

:::
the

:::::::::
“minimum

::::
next

:::::::
overlap”

::
is

::::::
greater

::::
than

::::
50%.

2.7 Other Utilities

In addition to the “core ”
:::
core

:
functionality described in previous sections, TE also provides a number of other utilities to155

manage nodefiles, blobfiles
:::::
binary

:::::
masks, and other climatological data relevant to feature tracking. These are briefly mentioned

here as this functionality is employed in the composite tracking algorithms and analysis of section 3.

– Climatology is used for constructing climatological time series, including long-term daily, monthly, seasonal, and annual

means. It supports parallel execution
::::
over

::::
files

:
via MPI, as well as arguments that can be used to limit the amount of

memory used by each thread.160
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Algorithm 5 Flood fill blobs on unstructured grid using breadth-first graph search over binary field G, merging blobs within

the given distance merge_dist.

blob set array S =

flood_fill_and_tag_with_merging(binary_field G, merge_dist)

% Perform flood fill and tag

current_tag = 0

visited = []

kdP = empty array of kdtrees

P = array storing perimeter points for each tag

for each node p

if (F[p] is not 0) and (visited does not contain p) then

current_tag = current_tag + 1

tovisit = [p]

while tovisit is not empty

q = remove node from tovisit

if visited contains q then continue

add q to visited

if (F[q] is not zero) then

insert q into S[current_tag]

add neighbors of q to tovisit

if any neighbors r of q have (F[r] = 0) then

add q to P[current_tag] and kdP[current_tag]

% Build list of blobs to merge by distance

M = empty graph with integer nodes denoting merged blobs

for all ordered pairs of tags (s,t)

for all nodes p in P[s]

if nearest neighbor from kdP[t] is closer than merge_dist then

add edge (s,t) to M

% Merge blob sets

for each tag t from 1 to current_tag

find minimum tag s of connected subgraph containing t

merge S[t] into S[s]

10



Algorithm 6 Forward-backward algorithm for areal-feature search. Given a time series of binary fields G[t], a merge

distance merge_dist and overlap thresholds min_overlap_* and max_overlap_*.

field F[t] = stitch_blobs(binary_field G[t], merge_dist,

min_overlap_prev, max_overlap_prev,

min_overlap_next, max_overlap_next)

% Use flood fill and merge to identify blobs

for all times t from 0 to length(G)

S[t] = flood_fill_and_tag_with_merging(G[t], merge_dist)

% Build overlap graph

M = empty graph denoting (time,blob) pairs

for all times t from 0 to length(G)

for all blobs p in S[t]

insert node (t,p) into M

% Identify blobs to be stitched together in time

for all times t from 0 to length(G)-1

for all blobs p in S[t]

for all blob n in S[t+1]

prev_area = area of S[t][p]

next_area = area of S[t+1][n]

overlap_area = overlap area between S[t][p] and S[t+1][n]

if (overlap_area / prev_area >= min_overlap_prev) then

and (overlap_area / prev_area <= max_overlap_prev)

and (overlap_area / next_area >= min_overlap_next)

and (overlap_area / next_area <= max_overlap_next)

add edge ((t,p),(t+1,n)) to M

S_prev = S_next

% Assign a common global_id to overlapping blobs

global_id = 1

for all nodes (t,p) in M

for each node (tx,px) in connected subgraph of M containing (t,p)

for each node p in S[tx][px]

F[t][p] = global_id

global_id = global_id + 1

11
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Figure 1. A depiction of Algorithms 5 and 6 for forward-backward areal feature search used by StitchBlobs, simplified to show one space

dimension (e.g.
:
, longitude) and the time dimension.

– FourierFilter is used for Fourier filtering/smoothing of input data series. Although it provides a general implementation

that could be used for any dataset, it has primarily been used for smoothing long-term daily means produced from

Climatology.

– VariableProcessor provides direct access to TE’s internal variable processing capability, allowing arithmetic and grid-

based operations to be applied to gridded data files. The operation of this utility is roughly analogous to that of the165

NetCDF Operator (NCO, Zender (2008)) ncap2
:::::::::::::::::
(NCO; Zender, 2008).

3 Selected examples

In this section we present selected examples of tracking and analysis of different features–
:
; that is, different recipes for com-

bining the algorithmic kernels described in section 2 to produce composite tracking and analysis algorithms. In all examples,

the corresponding TE command lines
:::::::::
commands

:
are provided to both demonstrate that these command lines

:::
they

:
are effective170

at conveying the operation in a human-readable manner and to enable reproducability of our results. Past examples from the

literature using TE are provided in section 3.1. This is then followed by a several examples of composite tracking algorithms

assembled using TE’s tracking kernels, and subsequent employ of TE for characterization and
::::::
several

::::::::
examples

::::
from

:::
TE

:::
of

:::::::::::
feature-based

:::::::
tracking

:::
and

::::::::::
subsequent analysis. These examples include TC tracking in ERA5, fractional contribution of pre-

cipitation from TCs in ERA5 and TRMM, atmospheric river tracking
::
in

:::::
ERA5, extratropical cyclone tracking in CMIP6 data,175

and finally generation of an atmospheric blocking climatology using MERRA2 data. In each step of these composite algorithms

we provide the actual TE command lines as they are effective at conveying, in a manner easily understood by a human reader,

the tunings employed in configuring each algorithm.

3.1 Examples from the existing literature

Since version 1.0, TE has been employed for feature tracking in a number of scientific studies. Here we catalogue known180

publications emerging from those studies, organized by feature type:
:
.
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Tropical Cyclones (TCs): More than any other feature, TE has been employed for the study of TCs. The TC tracker was

first used
:::
TE

:::
was

::::
first

:::::::::
employed

::
as

::
a
:::
TC

::::::
tracker

:
to understand intensity errors associated with one-way coupling between

ocean and atmosphere in Zarzycki (2016). It was subsequently used to investigate the TC wind-pressure relationship in Chavas

et al. (2017), a relationship later revisited in Moon et al. (2020) where TE was used to assess its sensitivity to model resolution.185

In Wing et al. (2019), TE was applied to native grid data produced using the Community Atmosphere Model Spectral Element

(CAM-SE) dynamical core to track TCs; outputs were then used to investigate the processes underlying moist intensification

of TCs. A related study by Camargo et al. (2020) used this dataset to investigate the large-scale environment around TCs.

In Roberts et al. (2020a) and Roberts et al. (2020b), TE-derived TC tracks were used to understand resolution sensitivity and

future change in both historical and future HighResMIP experiments (Haarsma et al., 2016) across several models. Along these190

lines, Balaguru et al. (2020) used TE to characterize TC climatology in the Energy Exascale Earth System Model (E3SM).

Reed et al. (2020)
::::::::::::::::::::
Reed et al. (2020, 2021) used TE to extract tracks of Hurricane Florence and

:::::::::
Hurricanes

::::::::
Florence

::::::
(2018)

:::
and

::::::
Dorian

::::::
(2019)

::::
and

:
attribute human influence on this storm

::::
these

::::::
storms. TE has also been used for tracking storms in

aquaplanet simulations (Chavas and Reed, 2019)
:
so

:::
as to better understand how thermal

:::::::
dynamic

:
forcing impacts TC genesis

and size. Recent work by Stansfield et al. (2020) has also leveraged some of the more advanced capabilities in TE to filter fields195

(e.g., precipitation) in the vicinity of tracked features to evaluate model performance.
::
TE

::::
has

::::
also

::::
been

::::
used

:::
for

:::::::
tracking

:::
of

:::
TCs

::
in
:::::::::
extremely

:::::::::::::
high-resolution

:::::::
regional

:::::::::
simulations

:::::::::::::::::::::
(Steptoe et al., 2021) and

::::::::::
investigating

::::
TCs

::
in

:::::::::::
paleoclimate

::::::::::
simulations

::::::::::::::::
(Kiehl et al., 2021).

Extratropical Cyclones (ETCs): In order to better understand cyclonic storms and their impacts, Zarzycki et al. (2017) de-

veloped the ExTraTrack software framework atop TE to track TCs and ETCs through their entire lifecycle. This module enabled200

cyclonic storms to be examined using the thermal wind and thermal asymmetry phase space of Hart (2003). ExTraTrack was

later applied to a suite of high-resolution global simulations in Michaelis and Lackmann (2019)
:::
and

:::::::::::::::::::::::::::
Michaelis and Lackmann (2021).

ETCs were also tracked in the Community Earth System Model Large Ensemble (CESM-LENS) in Zarzycki (2018) to un-

derstand the drivers responsible for snowstorms in the US Northeast. Then in Small et al. (2019), extratopical storms tracked

using TE were used to determine if resolution of
::::::::
resolving ocean fronts improves the representation of simulated storm tracks.205

In ?
::::::::::::::::
Zhang et al. (2021) the vertical symmetry criteria

:::::::
criterion

:
from ExTraTrack was also adapted for tracking of Mediter-

ranean Hurricanes (Medicanes). Finally, TE was also used to track ETCs as part of an effort to evaluate severe local storm

environments in climate models and reanalysis (Li et al., 2020).

Monsoonal lows and depressions: Analogous to the study of Zarzycki and Ullrich (2017), Vishnu et al. (2020) optimized

DetectNodes for tracking of monsoon lows and depressions. A comprehensive analysis of input fields found that 850hPa210

streamfunction tended to produce better results compared with trackers based on sea level pressure, vorticity, and geopotential.

A weighted Critical Success Index (CSI) (Di Luca et al., 2015) was used to determine tracker performance. However, acknowl-

edging the possibility of errors in the reference dataset (here the Sikka archive), the weighted CSI index used in this analysis

also considered the degree to which a track is represented similarly across all reanalyses. A related study by Zhang et al. (2019)

also tracked tropical depressions in the North Indian Ocean in 2018 to investigate anthropogenic impact on this storm season
:
,215

:::
and

:
a
::::::
recent

::::
study

:::
by

:::::::::::::::::::::
You and Ting (2021) used

:::
TE

::
to

::::::
assess

:::::
trends

::
in

:::::
South

:::::
Asian

:::::::::
Monsoon

:::
low

:::::::
pressure

:::::::
systems.
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Atmospheric blocking: In Pinheiro et al. (2019), a suite of atmospheric blocking methods from TE were applied to ERA-

Interim data to better understand sensitivities of atmospheric blocks to the detection algorithm and the meteorological environ-

ment around blocking features.

Atmospheric rivers (ARs): Atmospheric river tracking with TE was first documented as part of the Atmospheric River220

Transport Method Intercomparison Project (ARTMIP) in Shields et al. (2018), and later in Rutz et al. (2019). The pro-

posed algorithm used the Laplacian of the integrated vapor transport (IVT) field rather than the IVT field itself, thus flag-

ging IVT “ridges” rather than IVT over a threshold. This choice was made to address with ;
::::
this

::::::
choice

::::::::
addressed

:
issues of

stationarity generally present in trackers using an IVT threshold. TE’s algorithm has since been used both for AR detection

and tracking (with DetectBlobs and StitchBlobs) in Rhoades et al. (2020b), Rhoades et al. (2020a), Patricola et al. (2020), and225

McClenny et al. (2020)
:::::
several

:::::::::
subsequent

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rhoades et al., 2020b, a; Patricola et al., 2020; McClenny et al., 2020; Huang et al., 2021; Zhou et al., 2021).

3.2 Tropical Cyclone Tracking in ERA5

In Zarzycki and Ullrich (2017), a sensitivity analysis was applied to optimize DetectNodes
:::
TE for the detection of tropical

cyclones by benchmarking hit rate (HR) and false alarm rate (FAR) from reanalysis products against the International Best

Track Archive for Climate Stewardship (IBTrACS; Knapp et al., 2010). The resulting configuration, which tracked storms230

based on sea level pressure minima
::::::::
minimum, produced the highest HR minus FAR differential in the literature across a wide

range of reanalysis products. An interesting result that emerged from this analysis was that upper level geopotential layer

thickness (typically Z300 minus Z500) was the most robust indicator of an upper level warm core across products. In this

section we apply the same configuration that provided maximal agreement between earlier-generation reanalyses and IBTrACS

to ERA5 input (Hersbach et al., 2020) so as to identify ERA5 TC tracks.235

3.2.1 Step 1: DetectNodes
:::::::
Identify

:::::::::
candidate

::::::
storms

The first step in the
:::::::
Tropical

:::::::
cyclone

:::::::
tracking

::
is

:::
an

::::::::
exemplar

::
of

:::
the

:::::::::::
MapReduce

::::::::
paradigm

::::::::
discussed

::::::
earlier

:::
in

:::
this

::::::
paper.

:::::::::
Essentially

::
all

:::::::::
published

:::::::::
algorithms

:::
for

:::
TC

::::::::
tracking

:::::::::::::::::::::::::::::::::::::::::::
(e.g., Ullrich and Zarzycki, 2017, Appendix B) make

:::
use

:::
of

:
a
::::::::
two-step

::::::
process

:::::::::
consisting

::
of

::::
first

::::::::
detecting TC tracking process is the detection of TC candidates, which are

:::
then

::::::::
stitching

:::::::
together

::::::::
candidates

:::
in

::::
time.

:::::
Both

:::::
steps

::
of

:::
this

:::::::
process

:::::::
include

::::
hard

:::::::::
thresholds

:::
that

:::::::
separate

::::
TCs

:::::
from

::::::
related

:::::::
features.

:::::::::
Although

:::
TE240

:::::
allows

:::::
users

::
to

::::
vary

:::
the

:::::
values

:::
of

::::
these

:::::::::
thresholds,

::::
here

:::
we

::::
only

:::::::
consider

::::
one

::::
such

::::::::
variation

::
of

::::
these

::::::::::
parameters.

:

::
In

:::
the

:::
TC

::::::::
detection

:::::::::
algorithm

:::::::::
described

::
in

::::::::::::::::::::::::
Zarzycki and Ullrich (2017),

:::::::::
candidates

:::
are

:::::::
defined

::
as

::::
are points that have

both a sea-level pressure minima
:::::::
minimum

:
and an upper level warm core. These conditions are codified via the following

commandline:
::::::::
command:

:

DetectNodes --in_data_list ERA5_TC_files.txt --timefilter "6hr" \245

--out_file_list ERA5_DN_files.txt \

--searchbymin MSL \

--closedcontourcmd "MSL,200.0,5.5,0;_DIFF(Z(300hPa),Z(500hPa)),-58.8,6.5,1.0" \
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--mergedist 6.0 \

--outputcmd "MSL,min,0;_VECMAG(VAR_10U,VAR_10V),max,2;ZS,min,0"250

For this example, our ERA5 data is comes from the NCAR Research Data Archive (European Centre for Medium-Range

Weather Forecasts, 2019), with 3D time-series data provided at hourly resolution in daily chunks, 2D time-series data provided

at hourly resolution in monthly chunks, and 2D invariant data provided in a single file. The timefilter argument here indi-

cates that data should be downselected to six-hourly, which is typical for analysis of TCs. As different variables are distributed

across multiple files, the first two lines of the input data consist of several files containing 3D geopotential height on pressure255

surfaces (Z), 2D mean sea level pressure (MSL), 2D 10 meter zonal and meridional wind speeds (VAR_10U and VAR_10V),

and surface elevation (ZS), stringed together
:::::::
separated

:
by semicolons. Note that TE supports different agglomerations of

timeslices
::::
time

::::
slices, as it uses the CF-compliant time to match timeslices

:::
time

:::::
slices

:
across files.

To first limit the search space of possible TCs, we identify candidates as local minima in the sea level pressure field. Two

closed contour criteria are used to eliminate candidates. As argued in Ullrich and Zarzycki (2017), the closed contour cri-260

teria is desirable since it mitigates some of the effects that arise on unstructured grids and makes the criteria more robust

across resolutions
:::
are

:
a
:::::
more

:::::::::
physically

::::::::
grounded

::::
way

::
of

:::::::
defining

:::::::
features

:::::
since

::::
they

:::
can

:::
be

::::::::
employed

:::
for

::::
both

:::::::
discrete

::::
and

:::::::::
continuous

:::::
fields

::
–

::
as

:::::::
opposed

:::
to,

::::
e.g.,

:::::::::
“gridpoint

::::::::
maxima”

::::
that

:::
are

:::::::::
inherently

:::::::
sensitive

:::
to

:::
the

:::::::
dataset’s

::::
grid

::::::::
structure

::::
and

::::::
spacing. The first criteria

:::::::
criterion

:::
we

::::
use

:::
for

::::
TCs

:
is "MSL,200.0,5.5,0", which indicates that MSL

::::
mean

:::
sea

:::::
level

:::::::
pressure must increase by 200 (Pa) over a distance of 5.5◦ great-circle-distance (GCD) from the candidate point (the low pres-265

sure region must be of sufficient magnitude and sufficiently compact to be considered coherent). The second criteria
:::::::
criterion

is "_DIFF(Z(300hPa),Z(500hPa)),-58.8,6.5,1.0" which indicates that the difference between geopotential (Z)

on the 300hPa and 500hPa surfaces must decrease by 58.8 m2 s−2 (equal to 6 m geopotential height) over a distance of 6.5◦

GCD, using the maximum value of this field within 1◦ GCD as reference. This second criteria
:::::::
criterion indicates that there

must be a coherent upper-level warm core attached to the local low so as to structurally differentiate these features from extrat-270

ropical systems. This further provides
:
It

::
is

:::
also

:
an example of the ability of TEto evaluate functional relationships

::::
TE’s

::::::
ability

::
to

:::::::
evaluate

::::::::
functions

::
of

:::::::::::::
meteorological

:::::
fields at run-time. Finally, candidates that have been identified with this protocol are

eliminated if a stronger minima
:::::::
minimum

:
exists within 6 degrees great circle distance.

The remaining outputcmd argument indicates three additional outputs that are calculated and output
::::::
written

:
as additional

columns in each nodefile. Here "MSL,min,0" outputs the value of MSL at the candidate point, "_VECMAG(VAR_10U,VAR_10V),max,2"275

outputs the maximum magnitude of the vector wind at 10 m altitude within 2◦ GCD of the candidate, and "ZS,min,0" out-

puts the surface height at the candidate point. These variables are needed in the subsequent StitchNodes step to construct and

filter TC trajectories.

3.2.2 Step 2: StitchNodes
:::::::
Connect

:::::::::
candidate

::::::
storms

:::::::
together

:::
in

::::
time

The next step is to concatenate nodefiles and perform feature tracking
::::
Once

:::
TC

:::::::::
candidates

::::
have

:::::
been

::::::::
identified

::
on

:::::
each

::::
time280

::::
slice,

:::
the

:::::::::
“stitching”

::::
step

::
in

:::
the

::::::::
algorithm

:::
ties

:::::
these

::::::::
candidates

:::::::
together

::
in
::::
time

::
to
:::::
form

:::
TC

:::::::::
trajectories (the “Reduce” operation
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in the MapReduce framework). Tracks are formed using
:::::::::
paradigm).

:::::
Some

:::::::
features

::::
that

:::
are

:::
too

:::::
weak,

::::
too

:::::::::
short-lived,

:::
or

:::
too

::::::::::
disorganized

:::
are

:::::::::
eliminated

:::::
from

:::::::::
contention

:
at
::::

this
:::::
stage.

:::::
Also,

:::::::
features

:::
that

:::
are

:::::
more

:::::
likely

::::::
related

::
to

::::::::::
topographic

:::::::::
anomalies

:::::
rather

::::
than

:::
real

::::::
storms

:::
are

::::
also

::::::::
removed.

::
To

:::::
build

::::
these

::::::::::
trajectories

::::
with

:::
TE,

:::
we

:::::
apply the StitchNodes command , as follows:

::
to

:::
the

:::::
output

:::::
from

::::
Step

::
1:285

StitchNodes --in_list ERA5_DN_files.txt --out ERA5_TC_tracks.txt \

--in_fmt "lon,lat,slp,wind,zs" \

--range 8.0 --mintime "54h" --maxgap "24h" \

--threshold "wind,>=,10.0,10;lat,<=,50.0,10;lat,>=,-50.0,10;zs,<=,150.0,10"

The first three arguments here indicate the input candidate nodefile (produced by DetectNodes) and the output nodefile. The290

format of these files differ because they convey different information – the former conveying
:::::::::
containing candidates detected at

each time slice, and the latter containing paths, or lists of candidates from different time slices. Nonetheless auxiliary candidate

information computed with DetectNodes’ outputcmd is preserved.

The relevant tuning parameters are specified by range, mintime and maxgap and refer to the maximum distance (in

degrees GCD) that a feature can move between subsequent detections, the minimum persistence time of each trajectory (cal-295

culated as the time between initiation and termination), and the maximum duration between two sequential detections, respec-

tively. In particular, maxgap is a novel option that allows for a path to be missing candidates for some timeslices
::::
time

:::::
slices

(for instance due to temporary weakening of TC as it passes over land).

Four field-dependent thresholds are then specified for a trajectory to be accepted. The first threshold "wind,>=,10.0,10"

indicates that the wind magnitude (derived from the “wind” column in the nodefile) must be greater than 10 m s−1 for at least300

10 timeslices
::::
time

:::::
slices; this ensures that these features are sufficiently intense to be classified as tropical storms. The next two

thresholds "lat,<=,50.0,10;lat,>=,-50.0,10" indicate that the latitude of the feature must be between 50S and

50N for at least 10 timeslices
::::
time

:::::
slices, so as to eliminate any extratropical features that could not have existed as tropical

storms. The final threshold "zs,<=,150.0,10" indicates that the feature must exist at an elevation below 150 m for at least

10 timeslices
:::
time

:::::
slices; this removes false alarms that can often appear in regions of rough topography associated with PSL305

correction formulations.

3.2.3 Tropical
::::::
Results

:::::
from

:::
the

:::::::::
generation

::
of
::::::::
tropical cyclone trajectories

Figure 2 depicts the tropical cyclone trajectories produced from this analysis in ERA5,
:::::
along

::::
with

:::::::::
IBTrACS

::::
over

:::
the

:::::
same

:::::
period

:::
for

::::::::
reference. Storms are color-coded by sea level pressure

:
,
:
as opposed to surface winds

:
, since it has been found that

the former is better resolved in coarser datasets (Chavas et al., 2017), although this
:
.
::::
With

::::
that

::::
said,

:::
this

:::::::::
procedure may overes-310

timate storm intensity at higher latitudes where storms are beginning to undergo extratropical transition. While
:::::
ERA5

:::::::
tracked

storms are generally too weak in aggregate
:::::
(lower

:::::::
density

::
of

::::::
orange

::::
and

:::
red

:::::::::
trajectories

:::
in

:::
top

::::::
panel), a common problem

amongst reanalyses (Schenkel and Hart, 2012; Murakami, 2014; Hodges et al., 2017), the method shows high spatial and tem-

poral correlation of storm climatology when compared to observational products such as IBTrACS
:::::::
pointwise

:::::::::::
observations, and
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produces superior hit rates (78% for all TCs and 95% for those with wind speeds exceeding 33 m s−1) and false alarm ratios315

(14% globally) when compared to many legacy tracking techniques (?)
::::::::::::::::::
(Zarzycki et al., 2021).

:::
The

:::
TC

:::::::
detector

:::::::::
described

::
in

:::
this

:::::::
section

:::
was

::::
run

::
on

:::
the

:::::::
NERSC

:::::
Cori

::::::::::::
supercomputer

:::
on

:::
one

:::::
node

:::
and

:::::
using

:::
32

:::::::
threads.

:::::
When

:::
run

::::
over

:::
the

::::::
ERA5

::::
data

::::
from

:::::::
January

:::::
1979

::::::
through

::::::::
February

:::::
2020

::
at

:
6
::::::
hourly

::::::::
temporal

:::::::::
resolution,

::::
with

::::::
15,035

:::::
daily

::::
files,

:::::::::::
DetectNodes

:::::::
required

::::
140

::::::
minutes

::::
run

::::
time.

:::::::::::
DetectNodes

:::
on

::::
Cori

::
is

:::::::
strongly

:::
I/O

::::::
bound,

::::
with

:::::
reads

::::
from

::::::::
NetCDF

::::
files

:::::::::
responsible

:::
for

::::
81%

:::
of

:::
the

::::
total

:::::::
runtime.

::::::::::
StitchNodes

::::::::
required

:
4
:::::::
minutes

::::
and

::
55

:::::::
seconds

::
to
:::::::

process
:::
all

::::::
15,035

::::::
outputs

:::::
from320

:::::::::::
DetectNodes.

3.3 Fractional contribution of precipitation from TCs

As argued by Schenkel et al. (2017), the largest radius outside of the eyewall where the azimuthally-averaged wind speed

exceeds 8 m s−1 (r8) tends to be a good measure of the outer size of a TC . In Stansfield et al. (2020), TE was used to examine

the distribution of r8 among TCs in reanalysis data in ERA5 and a series of runs from the Community Earth System Model325

(CESM). This paper further compared and contrasted TC-related precipitation within r8 against precipitation within a fixed

distance of 500 km.

For the examples here, we calculate the fractional contribution of precipitation from TCs for one reanalysis dataset, ERA5,

and one observational dataset, the Tropical Rainfall Measuring Mission (TRMM3B42; Huffman et al., 2007). For ERA5, the

TC track files are created as described in Section 3.2. For TRMM, the IBTrACS dataset is used for TC track observations.330

Because there are limited comprehensive and long-term observational datasets of complete TC wind fields, ERA5 wind field

data is combined with IBTrACS to calculate the outer radius, r8, at every timestep for all historical TC tracks for the TRMM

analysis.

3.3.1 Step 1: NodeFileEditor
::::::::
Compute

:::
the

:::::
outer

::::::
radius

::
of

::::
each

:::::::
tracked

::::
TC

::
As

::::::
argued

:::
by

:::::::::::::::::::
Schenkel et al. (2017),

:::
the

::::::
largest

::::::
radius

::::::
outside

:::
of

:::
the

:::::::
eyewall

:::::
where

::::
the

::::::::::::::::::
azimuthally-averaged

::::
wind

::::::
speed335

::::::
exceeds

::
8
::
m

:::
s−1

::::
(r8)

:::::
tends

::
to

::
be

:
a
:::::
good

:::::::
measure

::
of

:::
the

:::::
outer

:::
size

::
of
::
a
:::
TC.

:::
In

:::::::::::::::::::
Stansfield et al. (2020),

:::
TE

:::
was

::::
used

::
to
::::::::
examine

::
the

::::::::::
distribution

:::
of

::
r8

::::::
among

::::
TCs

::
in

:::::::::
reanalysis

:::
data

:::
in

:::::
ERA5

::::
and

:
a
:::::
series

:::
of

::::
runs

::::
from

:::
the

::::::::::
Community

:::::
Earth

:::::::
System

::::::
Model

:::::::
(CESM).

::::
This

::::::
paper

::::::
further

::::::::
compared

::::
and

:::::::::
contrasted

:::::::::
TC-related

:::::::::::
precipitation

:::::
within

:::
r8

::::::
against

:::::::::::
precipitation

::::::
within

:
a
:::::
fixed

:::::::
distance

::
of

:::
500

::::
km.

:::
We

::::
thus

:::::
follow

::::::::::::::::::::::
Stansfield et al. (2020) and

::::
use

::
r8

::
as

:::
our

:::::::
criterion

:::
for

::::
grid

:::::
points

::
to

:::
be

:::
part

::
of
:::
the

::::
TC.

To begin, radial profiles and radius of 8 m s−1 wind are added to the nodefile generated in section 3.2.2 and the IBTrACS340

nodefile (not shown):

NodeFileEditor --in_data_list ERA5_TC_files.txt --in_nodefile ERA5_TC_tracks.txt \

--in_fmt "lon,lat,slp,wind,zs" --out_nodefile ERA5_TC_radprofs.txt \

--out_fmt "lon,lat,rsize,rprof" --time_filter "6hr" \

--calculate "rprof=radial_wind_profile(VAR_10U,VAR_10V,159,0.125); \345

rsize=lastwhere(rprof,>,8)"
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Figure 2. Tropical cyclone trajectories from ERA5 over the period 1980-2019, inclusive. Coloring denotes the instantaneous

Saffir-Simpson category of the tropical cyclone as measured by sea level pressure and applying the pressure-wind relationship of

Atkinson and Holliday (1977) with updated coefficients from Knaff and Zehr (2007).
::::::
Tropical

::::::
cyclone

:::::::::
trajectories

::::
from

:::::
ERA5

::::
(top)

::::
and

:::::::
IBTrACS

:::::::
(bottom)

:::
over

:::
the

:::::
period

:::::::::
1980-2019,

:::::::
inclusive.

::::::::::::::
TempestExtremes

:
is
::::

used
::
to

::::
track

::::
TCs

::
in

:::::
ERA5,

:::::
while

:::::::
pointwise

:::::::::
observation

:::
are

:::
used

:::
for

::::::::
IBTrACS.

::::::
Coloring

::::::
denotes

:::
the

::::::::::
instantaneous

:::::::::::
Saffir-Simpson

:::::::
category

::
of

:::
the

::::::
tropical

::::::
cyclone.

:::::::
Category

::
is

:::::::
computed

::::
from

:::
sea

::::
level

::::::
pressure

:::
and

:::::::
applying

::
the

:::::::::::
pressure-wind

:::::::::
relationship

:
of
::::::::::::::::::::::::::
Atkinson and Holliday (1977) with

::::::
updated

:::::::::
coefficients

::::
from

:::::::::::::::::
Knaff and Zehr (2007).

:::
The

::::::::::
discontinuity

:
at
::::
180◦

:::::::
longitude

::
in

::
the

::::::
bottom

::::
panel

::
is

:::
due

::
to

:::::::
historical

::::::
forecast

:::::
center

::::::::::::
responsibilities.
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The input to this operation includes the files containing the 2D ERA5 10 meter zonal and meridional wind speeds (VAR_10U

and VAR_10V), and the nodefile generated in section 3.2.2. As part of this analysis we also augment an IBTrACS nodefile in

a similar manner, using the IBTrACS TC tracks, but ERA5 winds to estimate TC size (command line not shown here). As in

section 3.2.1, a time filter is used to only analyze 6-hourly time slices of data. Internal to the execution of this command is the350

construction of a date object for each entry of the nodefile, which is then cross-referenced against every timeslice
::::
time

::::
slice in

the list of datafiles to find the corresponding field – in this way indexing is abstracted from the user.

The calculations requested from NodeFileEditor are specified by the calculate argument, executed from left to right.

First the radial profile is computed with radial_wind_profile(VAR_10U,VAR_10V,159,0.125) and stored in

variable rprof. These arguments indicate which variables should be used for the calculation, and that the radial profile should355

consider
::::::
consist of 159 bins of width 0.125 degrees GCD. After the radial profile is calculated, the last value where the radial

wind profile is greater than 8 m s−1 is located and output to the nodefile. The last value in the array is taken because we want to

avoid recording the radius of the 8 m s−1 wind within the TC inner core.
:::
The

:::::::
number

::
of

::::
bins

:::
and

:::
bin

:::::
width

:::::
were

::::::
chosen

:::::
based

::
on

:::
the

:::::::::
horizontal

:::
grid

:::::::
spacing

::
of

:::
the

::::::
ERA5

::::
wind

:::::
data,

:::::
which

::
is

::::::::::::
approximately

::
31

::::
km.

::::
The

:::
bin

:::::
width

::
of

::::::
0.125◦

::::
was

::::::
chosen

::
to

:::::::::
adequately

::::::
sample

:::::
points

::
at
::::
this

::::
grid

::::::
spacing

::
to
::::::
create

:::
the

:::::
radial

::::
wind

::::::::
profiles.

:::
The

:::::::
number

::
of

::::
bins

::::
was

::::::
chosen

::
to

::::::
ensure

:::
the360

:::::
radial

::::::::
averaging

::::::::
extended

:::
out

::
far

:::::::
enough

::::
from

:::
the

:::
TC

:::::
center

::::::
points

::
to

::::::
capture

:::
the

:::::::
storms’

::::::::
complete

::::
wind

::::::::::
circulations.

:

3.3.2 Step 2: NodeFileFilter
:::::
Build

:
a
:::::
mask

:::::
using

:::
the

:::::
outer

::::::
radius

:::
of

:::::
storm

Once the nodefile has been updated, the 8 m s −1 radius is then employed to build a circular mask around each tracked object:

::::
With

:::
the

::
r8

:::::
value

:::
for

:::::
each

:::
TC

::::
now

::
in

:::::
hand,

:::
we

::::::
define

::::::::::
“TC-related

::::::::::::
precipitation”

::
as

:::
any

:::::::::::
precipitation

::::::
which

::::::
occurs

::
in

::::
grid

:::::
points

::::
that

:::
are

:::::::::
considered

::::
part

::
of

::
a
::::
TC.

:::::::::
Employing

:::::
TE’s

::::::::::::
NodeFileFilter

:::::::::
command,

:::::::::::
precipitation

:::::::
outside

::
of

:::
the

:::::
circle

:::::
with365

:::::
radius

::
r8

:::::::
centered

:::
on

::::
each

:::
TC

::
is

:::
set

::
to

::::
zero:

:

NodeFileFilter --in_nodefile ERA5_TC_radprofs.txt --in_fmt "lon,lat,rsize,rprof" \

--in_data_list ERA5_precip_files.txt \

--out_data_list ERA5_filtered_precip_files.txt \

--var "PRECT" --bydist "rsize"370

The input nodefile is the output nodefile from NodeFileEditor, now augmented with the radius of 8 m s−1 winds. The input

data contain 6-hourly ERA5 precipitation data from the NCAR Research Data Archive (European Centre for Medium-Range

Weather Forecasts, 2019) under variable name PRECT. Precipitation in ERA5 is calculated from hourly forecasts initialized

from the analysis at 06:00UTC and 18:00UTC. Precipitation is converted from hourly to 6-hourly by adding up the accumulated

precipitation 3 hours before and 3 hours after the desired timesteps of 00:00UTC, 06:00UTC, 12:00UTC, and 18:00UTC. For375

example, to calculate 6-hourly precipitation at 06:00UTC, the precipitation from 03:00UTC to 09:00UTC is added up. For the

TRMM analysis, the TRMM precipitation data is originally 3-hourly, so before analysis the TRMM data is summed into 6-

hourly data. This is done using a centered averaging method, so for example, to calculate 6-hourly precipitation at 06:00UTC,
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Figure 3. Percent contribution to precipitation from tropical cyclones using precipitation field from (left) ERA5 and (right) TRMM.

half of the 03:00UTC precipitation, all of the 06:00UTC precipitation, and half of the 09:00UTC precipitation are added up.

Output consists of a sequence of NetCDF files, one for each input file, containing filtered precipitation.380

The final argument specifies how the filtering is performed, in this case “by distance” using rsize. This procedure only

keeps precipitation grid point values that are within this distance of each detected TC. Internally to NodeFileFilter, the mask is

computed through the employ of a kd-tree (see discussion in Ullrich and Zarzycki (2017))
:::::::::::::::::::::::::::::::::::::
(see discussion in Ullrich and Zarzycki, 2017).

3.3.3 TC Precipitation Climatology
:::::::
Results

::::
from

:::
the

:::::::::
generated

:::::::
tropical

:::::::
cyclone

::::::::::::
precipitation

::::::::::
climatology

Figure 3 shows the percent contribution to global precipitation from TCs for ERA5 and TRMM, calculated by using NCO’s385

ncra to sum up the TC precipitation within r8 filtered by NodeFileFilter and dividing it by the sum of the total precipitation

over the entire length of the datasets (1985-2019 for ERA5 and 1998-2014 for TRMM). The areas of largest TC contribution

align with the areas of the highest TC activity shown in Figure 2 and typically occur over the ocean, in broad agreement with

Prat and Nelson (2013). Khouakhi et al. (2017) (their Figure 3b) made a similar plot, except using land-based gauge data

and for a slightly different time period, and showed similar locations of maximum contributions of 40-50% over northwestern390

Australia and eastern Asia.

3.4 Extratropical cyclones

Extratropical cyclones (ETCs) are mid-latitude, synoptic scale weather features responsible for a host of impacts, including

high winds, coastal surge, and heavy precipitation, which can fall as rain, snow, sleet, or freezing rain (Schultz et al., 2019;

Dacre, 2020). Even though these features occur at relatively large spatial scales, models still have difficulty in capturing hazards395

related to ETCs (e.g., Colle et al., 2015; Catalano et al., 2019), emphasizing the importance of their process-level evaluation

::::::::
evaluating

:::::
them

::
at

:
a
:::::::
process

::::
level in weather and climate datasets.
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Here we produce two-dimensional composites of several field associated with ETCs tracked in the first historical member

of the Community Earth System Large Ensemble (Kay et al., 2015). ETCs over the northeastern United States were originally

analyzed in this dataset in Zarzycki (2018). The years available for analysis in the historical simulations range from 1990-2015,400

inclusive. We also apply a pre-defined intensity threshold and spatially constrain ETCs to pass over the continental United States

(CONUS) in order to demonstrate a regional analysis and highlight both
:::
the filtering and compositing capabilities of TE.

3.4.1 Step 1: Generate
:::::::::::
extratropical

:::::::
cyclone trajectories

:::
The

:::::::::
algorithm

::::::
applied

:::::
here

::::::::
identifies

:::::::
cyclonic

::::::
storms

:::
as

:::
sea

:::::
level

:::::::
pressure

:::::::
minima.

:::
To

:::::
avoid

:::::::::::
topographic

::::
lows

::::
and

:::::
other

::::::
features

::::
that

:::
are

:::
not

:::::::::::::
meteorological

::
in
:::::::::

character,
:::::::::
additional

::::::
criteria

:::
are

::::::::
imposed

::
on

:::
the

:::::::::
minimum

:::::::
lifetime

:::
and

:::::::::::
propagation405

:::::::
distance.

::::
Note

::::
that

:::::
while

:::
the

::::::::
algorithm

::
is

::::::
highly

::::::
similar

::
to

:::
that

:::::::::
published

::
in

::::::::::::::
Zarzycki (2018),

::::
other

:::::
ETC

::::::::
detection

:::::::::
algorithms

::::::::
analogous

::
to

:::::
those

::::::::
published

:::
in

:::
the

:::::::::::::
Intercomparison

:::
of

:::
Mid

::::::::
Latitude

:::::
Storm

::::::::::
Diagnostics

:::::::::::::::::::::::::::
(IMILAST; Neu et al., 2013) can

:::
be

:::::::::
configured

::::
using

:::::
TE’s

::::::::
command

::::
line

:::::::
options.

:::::
These

:::::::::
alternative

::::::::::
approaches

::::::
include

:::::::
tracking

:::
on

::::::::
low-level

::::::::::
geopotential

::::::
height

::::::::
(vorticity)

:::::::
minima

::::::::
(maxima),

:::::::
filtering

:::::
based

:::
on

:::::
spatial

:::::::::
gradients,

:::
and

::::::::
removing

::::::::
candidate

::::::
storms

::::
over

::::::
higher

:::::
terrain

::::
(see

:::::
Table

:
1
::
in

:::::::::::::::
Neu et al. (2013)).

:::::
Also,

:::::
while

::
a
:::::
more

:::::::
complex

::::::::
algorithm

:::::
could

::::
help

::::::::
eliminate

::::::::
cyclones

::::
that

:::
are

::::::
tropical

::
in
::::::

nature
:::::
(e.g.,410

::
by

:::::
using

:::
the

:::::::::::::::::::::
no_closed_contour

:::::::
argument

::
to
:::::::::

eliminate
:::::::::
candidates

::::
with

::
an

::::::
upper

::::
level

:::::
warm

:::::
core),

::::
one

::
is

:::
not

:::::::
applied

:::
here

::::
due

::
to

:::
the

:::::::::
relatively

:::
low

:::::::::
resolution

::
of

::::::
CESM

:::::::
LENS.

:::::
These

:::::::
coarser

::::
grid

:::::::
spacings

:::
are

::::::::
generally

::::::::::
insufficient

::
to

:::::::
resolve

:::
TCs

:::::::::::::::::
(Walsh et al., 2015),

::::::::
although

::::::
higher

::::::::
resolution

::::::::::
evaluations

::
of

::::::
ETCs

::::
may

::::::
require

:::::::::
additional

:::::::::::
exclusionary

::::::::
thresholds

:::
to

::::::::
minimize

::::
their

::::::::
inclusion

::
in

:::::
storm

::::
track

:::::::
datasets

::
if

::::::
desired.

:

To begin, cyclonic storm trajectories
::::::
storms are identified using DetectNodes by following sea level pressure (here, PSL)415

minima in 6-hourly data: Our criteria

DetectNodes --in_data_list B20TRC5CNBDRD.001.PS_list.txt --out cyclone_candidates \

--closedcontourcmd "PSL,200.0,6.0,0" --mergedist 6.0 \

--searchbymin "PSL" --outputcmd "PSL,min,0"

:::
Our

::::::::
criterion for cyclonic storms is that the minimum pressure must be enclosed by a closed contour of 200 Pa within 6.0◦420

of cyclone center. This minimum pressure location
::::
also defines the cyclone center. Candidates within 6.0◦ of one another are

merged, with the lower pressure taking precedence. Outputs from DetectNodes are then concatenated into a single candidate

list, and StitchNodes is run to track these features in time:

StitchNodes --in_fmt "lon,lat,slp" --in_list candidate_list.txt \

--out etc-all-traj.txt \425

--range 6.0 --mintime 60h --maxgap 18h --min_endpoint_dist 12.0 \

--threshold "lat,>,24,1;lon,>,234,1;lat,<,52,1;lon,<,294,1"

Here the StitchNodes thresholds require that storms persist for at least 60 hours, with a maximum gap (time between sequential

detections satisfying the DetectNodes criteria) of at most 18 hours. Further, at least one point must pass through a geographic
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region (representing CONUS) bounded by 24◦N and 52◦N latitude and 234◦E and 294◦E longitude. We also require ETCs430

move at least 12◦ GCD from the start to the end of the trajectory, as specified by the min_endpoint_dist argument,

in order to eliminate stationary features (e.g., the Icelandic Low) and spurious shallow lows generated over regions of high

topography.

Note that while the algorithm is highly similar to that published in Zarzycki (2018), other ETC detection algorithms analogous

to those published in the Intercomparison of Mid Latitude Storm Diagnostics (IMILAST, Neu et al. (2013)) can be configured435

using TE’s command line options. Also, while a more complex algorithm could help eliminate cyclones that are tropical in

nature, one is not applied here due to the relatively low resolution of CESM LENS. These coarser grid spacings are generally

insufficient to resolve TCs (Walsh et al., 2015), although higher resolution evaluations of ETCs may require additional exclusionary

thresholds to minimize their inclusion in storm track datasets if desired.

3.4.2 Step 2: NodeFileFilter and NodeFileEditor440

3.4.2
::::
Step

::
2:

:::::
Filter

:::
out

::::::
ETCs

::::
with

:::
sea

:::::
level

:::::::
pressure

::::::
above

:::::::
990hPa

To extract spatial information associated with ETCs we first filter a spatiotemporally continuous gridded dataset using NodeFileFilter:

Corresponding precipitation rate outputs from the same ensemble member are masked within 25GCD of a storm center

tracked in Step 1. Here, all precipitation associated with the cyclone is retained while all precipitation not within 25of a storm445

is set to zero. A binary variable named ‘mask’ (as specified by argument maskvar) is also included to the filtered files for

reference and can be used for offline masking and visualization.

Finally
:
In

:::::
some

::::::
cases,

::
it

::::
may

:::
be

::::::::
desirable

::
to

:::::
filter

:::
out

:::
the

:::::
more

:::::::
intense,

::::::::::
potentially

::::
more

:::::::::
impactful,

:::::::
events.

:::::
While

::::
the

::::::::
definition

::
of

:
a
::::::
strong

::::
ETC

::
is

:::::::::
inherently

:::::::::
subjective,

::
we

::::::
define

:
a
::::::
central

:::::::
pressure

:::
of

:::
990

::::
hPa

::
as

:::
the

::::::::::
demarcation

:::::::
between

::::::
strong

:::
and

:::::::::::::
moderate/weak

:::::
ETCs

::
as

::
in

::::::::::::::::::::
Zhang and Colle (2017).

:::
To

::
do

:::
so, all ETCs tracked in Step 1 are passed into NodeFileEditor,450

where a new trajectory file specified by argument out_nodefile is generated with storms only possessing intensities of 990

hPa or lower:

NodeFileEditor --in_nodefile etc-all-traj.txt \

--in_data_list B20TRC5CNBDRD.001.PRECT_list.txt \

--in_fmt "lon,lat,slp" --out_fmt "lon,lat,slp" \455

--out_nodefile etc-strong-traj.txt \

--colfilter "slp,<=,99000."

Figure 4 shows the annual track density of all ETCs tracked in Step 1 (left) and the same plot but with only the sub-

set of ETCs stronger than 990 hPa included (right). These results
::::::
broadly

:
match those of other ETC trackers depicted in

Neu et al. (2013)
:::
Fig.

:
1
::
of

:::::::::::::::
Neu et al. (2013),

::::
with

:
a
:::::
storm

::::
track

:::
belt

:::::::::
extending

:::::
across

:::
the

:::::
North

:::::::
Atlantic

:::::::
centered

::
on

::::::::::::
approximately460

:::::
40-60◦

:
N

:::::::
latitude.
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Track density maps for all CONUS ETCs

tracked in the first historical member of CESM LENS (left) and only ETCs with simulated SLP less than or equal to 990 hPa. Units are

number of six-hourly ETC occurrences per 5x5grid box per year.

Figure 4.
::::
Track

::::::
density

::::
maps

::
for

:::
all

::::::
CONUS

:::::
ETCs

:::::
tracked

::
in

::
the

::::
first

:::::::
historical

::::::
member

::
of

:::::
CESM

:::::
LENS

::::
(left)

:::
and

:::
only

:::::
ETCs

:::
with

::::::::
simulated

:::
SLP

:::
less

::::
than

::
or

::::
equal

::
to

:::
990

:::
hPa

::::::
(right).

::::
Units

:::
are

::::::
number

::
of

:::::::
six-hourly

::::
ETC

:::::::::
occurrences

:::
per

:
5◦

::
x5◦

:::
grid

:::
box

:::
per

::::
year.

3.4.3 Step 3: NodeFileCompose
:::::
Filter

::::
data

::::::
within

::
25

:::::::
degrees

:::
of

:::::
storm

::::::
center

::::
and

:::::::::
composite

::::::::::::
Corresponding

:::::::::::
precipitation

:::
rate

:::::::
outputs

:::::
from

:::
the

:::::
same

::::::::
ensemble

:::::::
member

:::
are

:::::::
masked

::::::
within

:::
25◦

::::
GCD

::
of

::
a
:::::
storm

::::::
center

::::::
tracked

::
in

::::
step

::
1.

::::
Here,

:::
all

::::::::::
precipitation

:::::::::
associated

::::
with

:::
the

:::::::
cyclone

:
is
:::::::
retained

:::::
while

:::
all

::::::::::
precipitation

:::
not

::::::
within

::
25◦

:
of

::
a
:::::
storm

:
is
:::
set

::
to

:::::
zero.465

::
To

::::::
extract

::::::
spatial

:::::::::::
information

:::::::::
associated

::::
with

:::::
ETCs

:::
we

::::
first

:::::
filter

::
a

::::::::::::::
spatiotemporally

:::::::::
continuous

:::::::
gridded

:::::::
dataset

:::::
using

::::::::::::
NodeFileFilter:

:

NodeFileFilter --in_nodefile etc-all-traj.txt --in_fmt "lon,lat,slp" \

--in_data_list B20TRC5CNBDRD.001.PRECT_list.txt \

--out_data_list B20TRC5CNBDRD.001.PRECT_FILT_list.txt \470

--var "PRECT" --bydist 25.0 --maskvar "mask"

:
A
::::::

binary
:::::::
variable

::::::
named

::::::
‘mask’

:::
(as

::::::::
specified

:::
by

::::::::
argument

:::::::::
maskvar)

::
is
::::

also
::::::::
included

::
in

:::
the

::::::
filtered

::::
files

:::
for

::::::::
reference

::::
and

:::
can

::
be

::::
used

:::
for

::::::
offline

:::::::
masking

:::
and

::::::::::::
visualization.

As a last step, storm-centered composites are generated using the command:

NodeFileCompose --in_nodefile etc-strong-traj.txt --in_fmt "lon,lat,slp" \475

--in_data_list B20TRC5CNBDRD.001.PRECT_FILT_list.txt \
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--out_data "composite_PRECT.nc" \

--var "PRECT" --max_time_delta "2h" --op "mean" --dx 1.0 --resx 80

Here, only ETCs filtered above to have central SLP values below 990 hPa are composited. Although we can composite any

2D field, here we apply the compositing tool to precipitation filtered by NodeFileFilter. The argument max_time_delta480

indicates that the data slice nearest in time to the tracked feature (within 2 hours) should be composited – this is useful when the

discrete times from data and features are not exactly aligned. The arithmetic mean is calculated centered on the storm location

(see section 2.4). The resulting stereographic composite has grid spacing 1.0
:
a
::::
grid

::::::
spacing

::
of

::
1◦ and resolution

:
a
:::::::::
resolution

::
of

80x80.

3.4.4 Composited ETC
:::::::
Results

::::
from

:::::::::::
compositing

::::::::::::
extratropical

::::::
cyclone

:
fields485

Figure 5 shows the composited precipitation rate field (PRECT), along with analogously calculated composites of 2-meter

temperature (
:::
850

::::
hPa

::::::::::
temperature

:
(TREFHT

:::::
T850) and specific humidity (

::::::::
integrated

:::::
vapor

::::::::
transport

:
(QREFHT

::::
IVT). Total

precipitation is maximized
:::::
largest

:
near the storm center. Further, strong advection of warm, moist , equatorward air wrapping

cyclonically around the
::::::
eastern

::::
side

::
of

:::
the

:
storm center is seen in the near-surface temperature and moisture fields. This

demonstrates that the heaviest ETC precipitation is
:::
850

:::
hPa

::::::::::
temperature

::::
field

::::::::::
(composite

::::
wind

::::::
vectors

::::::
shown

::
in

::::::
black).

::::::
Lastly,490

::
the

::::::::::
collocation

::
of

:::::
high

:::::
values

:::
of

::::
IVT

:::
and

::::::
rising

::::::
motion

::
in

:::
the

::::::::::::::
mid-troposphere

:::::
(600

:::
hPa

::::::
omega

::::::::
contours

::::::
shown

::
in

::::::
white)

:::::
shows

:::::
strong

:::::::
upward

:::
and

::::::::
poleward

::::::::
moisture

::::::::
advection

:
associated with the warm conveyor belt, as previously shown in other

hand-compositing studies (e.g., Field and Wood, 2007)
:::::::::::::::::::::::::::::::::::::
(e.g., Browning, 1986; Field and Wood, 2007).

3.5 Atmospheric Rivers

Atmospheric rivers (ARs) are thin and long filamentary structures characterized by high integrated vapor transport (Payne et al., 2020).495

As claimed in
::::::::::::::::::::
(IVT; Payne et al., 2020).

:::
As

:::::
found

:::
by Zhu and Newell (1998), ARs are responsible for approximately 90% of

poleward vapor transport. In this section we identify ARs in
:::
Our

::::
goal

::
in

::::
this

::::::
section

::
is

::
to

:::::::::
reproduce

:::
this

:::::
result

::
in

:::
20

::::
years

:::
of

ERA5 reanalysis using the Tempest AR detection algorithm (Shields et al., 2018; Rhoades et al., 2020b, a; McClenny et al.,

2020), and extract the poleward vapor transport in order to verify this claim.

3.5.1 Step 1: DetectBlobs
:::::
Detect

::::::
ridges

::
in

:::
the

::::
IVT

:::::
Field500

ERA5 files containing vertically-integrated eastward vapor transport (VIWVE) and northward vapor transport (VIWVN) are

first listed in ERA5_IVT_files.txt. The
::
As

::::::::
described

::
in
::::::::::::::::::::

McClenny et al. (2020),
:::
the

:
Tempest AR detection algorithm

detects ARs as ridges in the IVT field, where IVT is defined pointwise as

IVT=
√
VIWVE2 +VIWVN2. (1)

::::
Here

:::
we

::::
have

:::::::
adopted

:::
the

:::::::::::
nomenclature

:::
of

:::::
ERA5

:::
for

:::::::::::::::::
vertically-integrated

:::::::
eastward

:::::
vapor

::::::::
transport

:::::::::
(VIWVE)

:::
and

:::::::::
northward505

:::::
vapor

:::::::
transport

:::::::::
(VIWVN).

:
Ridge points are associated with high downward curvature, and identified as those points where the
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Figure 5. Composites of meteorological quantities centered on ETC storm center of all filtered storms with SLP less than or equal to

990 hPa in the first CESM-LENS historical member. From
:::::
Shown

::::
from

:
left to right are precipitation rate (mm day−1), 2-meter

::
850

::::
hPa

temperature (K)
:::
with

:::::::
overlain

:::
850

:::
hPa

:::::
wind

:::::
vectors

:::
(m

::::
s−1) and specific humidity

:::::::
integrated

::::
vapor

:::::::
transport

:
(g kg−1)

:::
with

::::::
overlain

::::
600

:::
hPa

::::::
pressure

::::::
velocity

:::::::
(omega)

:::::::
contours

:::::
(every

:::
hPa

::::
hr−1

::::::
starting

::
at

::
-2

:::
hPa

::::
hr−1)

:
.
:::
Each

::::::::
composite

:::::::
includes 11,164 data pointsare included

in each composite.

Laplacian of the IVT field is below a fixed threshold (here chosen to be−2×104 kgm−2s−1rad−2). The ridge
:::::
These points are

useful indicators of the presence of ARs because this threshold identifies either long and narrow features or localized maxima

(which are subsequently filtered using a minimum area criteria
:::::::
criterion). Here the Laplacian is calculated using 8 radial points

at a distance of 10◦ GCD (as described in Appendix B); this large stencil on the Laplacian provides some smoothing of the510

field. Note that all field manipulation routines are handled by TE internally. The command line for this operation is as follows:

DetectBlobs --in_data_list ERA5_IVT_files.txt --out_list ERA5_AR_files.txt \

--timefilter "6hr" \

--thresholdcmd "_LAPLACIAN{8,10}(_VECMAG(VIWVE,VIWVN)),<=,-20000,0" \

--minabslat 15 --geofiltercmd "area,>=,4e5km2"515

The first three command line arguments
::::::::
arguments

::
in
::::

this
::::::::
command

:
simply refer to the list of input files, output files and

specify that data should be downsampled to 6-hourly timesteps. The meat of the operation is specified via the thresholdcmd

argument, which uses the gridded data processor kernel built into TE to internally process the eastward and northward com-

ponents of the integrated vapor transport (VIWVE and VIWVN, respectively) during the tagging operation. Specifically, the

operation specified here identifies candidate grid points using a threshold on the Laplacian of the IVT. This command first520

calculates IVT using the vector magnitude operator, then calculates the Laplacian of the resulting field. Only points whose

Laplacian is less than the threshold are retained. The last two arguments are then used to isolate high-IVT features
::::::
remove

::::::
features

::::
too near the equator (imposing a minimum absolute

:::
and

:::::
those

::::
that

:::
are

:::::::
deemed

:::
too

:::::
small:

::::
the latitude of each grid
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tagged grid point of
::::
must

:::
be

::
at

::::
least

:
15◦), and

:
,
:::
and

:::::
each

::::
blob

:::::
must

::::
have

:
a minimum area per blob of 4× 105 km2. Such

filtering criteria are typical for AR trackers (Shields et al., 2018).525

3.5.2 Step 2: NodeFileFilter
:::::
Filter

:::
out

:::::::
tropical

::::::::
cyclones

Using the thresholds above
::
As

:::::
noted

:::
in

:::::::::::::::::::
McClenny et al. (2020), tropical cyclones,

::::::
which

::::
also

::::
tend

::
to

::::::
exhibit

:::::
large

:::::
values

:::
of

::::
IVT, are sometimes picked up as part of the detection procedure. Using

:::::::
Although

::::
their

:::::::::::
contribution

::
to

::::::::
poleward

::::
IVT

:
is
::::::
small,

:
it
::
is
::::::::::
nonetheless

::::::::
desirable

::
to
:::::::

exclude
::::

TCs
:::::

from
::::
this

::::::::::
calculation.

::::
This

:::
can

:::
be

:::::
done

:::::
using the ERA5 TC tracks produced in

section 3.2 we can
::
to

:
filter out points within a prescribed distance of these objects. This functionality uses the NodeFileFilter530

executable as follows
::::
each

:::::::
detected

:::
TC:

NodeFileFilter --in_nodefile ERA5_TC_tracks.txt --in_fmt "lon,lat,slp,wind,zs" \

--in_data_list ERA5_AR_files.txt --out_data_list ERA5_AR_NFF_files.txt \

--var "binary_tag" --bydist 8.0 --invert

Here the nodefile from ERA5 is specified by in_nodefile and in_fmt. The input list of AR blobfiles
::::
files

:::::::::
containing535

::
the

::::
AR

:::::
binary

::::::
masks, specified with in_data_list is the same as the output from DetectBlobs. The filtered output files are

written to the filelist specified by out_data_list. The last two arguments here are key to the filtering procedure, specifying

that the mask should include all points except those within 8 degrees GCD of each nodal feature.

Figure 6 shows the ERA5 integrated vapor transport (IVT) field on 2019-02-25
::
at 18:00 UTC, along with the outlines of

AR objects detected using TE. On this date, an AR event on this date was responsible for flooding in California’s Russian540

River basin (seen here intersecting the US West Coast). Dashed lines in this plot show the footprint of Super Typhoon Wutip at

(139.75E, 15N) and Tropical Cyclone Pola at (175.5W, 14S), both of which have been excluded from the AR mask. Notably,

Pola does not appear in IBTrACS until 2019-02-26 06:00:00 UTC.

3.5.3 Step 3: Apply AR mask to VIWVN
:::::::::
northward

::::::
vapor

::::::::
transport

::::
field

To now investigate AR and non-AR poleward moisture transport, we apply the mask generated in Step 2 to the VIWVN field545

(northward vapor transport). Here we leverage the VariableProcessor executable, which allows us to apply TE’s built-in opera-

tions on a set of input files. Here the input file lis
::
list

:
ERA5_VPIN.txt is the same as ERA5_AR_NFF_files.txt, except

with the corresponding ERA5 VIWVN file appended to each line. To perform the processing we apply the command:

VariableProcessor --in_data_list ERA5_VPIN.txt --out_data_list ERA5_VPOUT.txt \

--timefilter "6hr" \550

--var "_PROD(binary_tag,VIWVN);_PROD(_DIFF(1,binary_tag),VIWVN)" \

--varout "VIWVN_PW_AR,VIWVN_PW_NONAR"

The var argument here is specified to leverage TE’s internal gridded variable processor. Since binary_tag only has

value 0 or 1, the product of VIWVN and binary_tag will capture points within ARs, whereas the product of of VIWVN

26



Figure 6. ERA5 integrated vapor transport (IVT) field with AR mask (black outlines) from 2019-02-25 18:00 UTC. Tropical cyclones that

have been filtered from the AR mask are indicated with black dashed lines (8◦ radius GCD).

and _DIFF(1,binary_tag) will capture points not within ARs. These two variables are then written as VIWVN_AR and555

VIWVN_NONAR in the output file.

3.5.4 Poleward VIWVN from AR and non-AR points

Once AR and non-AR northward IVT have been calculated on a gridpoint level, the final processing step is handled outside

of TE. To do so we take the time average and zonal average of the fields produced by VariableProcessor using NCO’s robust

record-averaging (ncra) and weighted averager (ncwa) operators. The zonal mean IVTn is then plotted in figure 7560

3.5.4
::::::
Results

:::::
from

::::::::::
calculation

::
of

::::::::::
northward

:::::
vapor

:::::::::
transport

::::
from

::::
AR

::::
and

:::::::
non-AR

::::::
points

:::::
Figure

::
7

:::::
shows

:::::
zonal

:::::
mean

:::::::::
northward

::::
IVT for AR and non-AR points (top figure

:::
row), along with the relative contribution to

IVTn
::::::::
northward

::::
IVT

:
from ARs (bottom figure). The top figure

::::
row).

::::
Note

::::
that

:::::::
because

:
it
::
is
::
a
::::::::
fractional

:::::::
quantity,

:::
the

:::::::
bottom

:::
row

:::::::::::
equivalently

:::::
shows

:::::::::
fractional

::::::::::
contribution

::
to

::::::::
poleward

:::::
IVT.

::::
The

:::
top

::::
row here is complementary to Rutz et al. (2019)

Figure 14 (middle), which was computed with 6-hourly MERRA2 data, and shows that the algorithm .
::::
The

:::::::::
agreement

:::::::
between565

::::
these

::::
two

:::::
results

::
is
:::::::::
reassuring

:::
and

::::::::
confirms

:::
that

:::
the

::::
AR

::::::
tracker

::::::::
employed

:
in this section exhibits results are

:
is

:
consistent with

other AR trackers. In the lower figure we see that the AR contribution to poleward transport
:::::
around

:::::
45N

:::
and

::::
45S is indeed

close to
::
the

:
90% around 45N and 45S, although the

::::
value

:::::::
reported

:::
by

::::::::::::::::::::
Zhu and Newell (1998),

:::::::
although

::::
this contribution then
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Figure 7. [top] Northward IVT (IVTn) from AR and non-AR grid points. [bottom] Fractional contribution to IVTn from AR points by

latitude.

decays precipitously at more poleward latitudes. Note, however, that this is in part because AR moisture transport is almost

always poleward, whereas non-AR transport is a mix of both poleward and equatorward contributions.570

:::
The

::::
AR

:::::::
detector

::::::::
described

::
in

::::
this

::::::
section

::::
was

:::
run

:::
on

:::
the

:::::::
NERSC

::::
Cori

:::::::::::::
supercomputer

::
on

::::
two

:::::
nodes

::::
with

:::
32

:::::::
threads

:::
per

::::
node

:::
(64

::::::
threads

:::::
total).

::::::
When

:::
run

::::
over

:::
the

:::::
ERA5

:::::::
monthly

::::
data

::::
from

:::::::
January

::::
1979

:::::::
through

::::::::
February

::::
2020

::
at

:
6
::::::
hourly

::::::::
temporal

::::::::
resolution,

::::
with

::::
494

:::::::
monthly

::::
files,

::::::::::
DetectBlobs

::::::::
required

::
34

:::::::
minutes

:::
and

::
42

::::::::
seconds.

:::::
Again

:::
this

:::
run

::::
was

::::::
largely

:::
I/O

::::::
bound,

::::
with

::::
66%

::
of

:::
the

::::
total

:::
run

:::::
time

::::
from

:::
file

:::::
input.

:::::::::::::
Approximately

::::
13%

:::
of

:::
the

::::
total

:::
run

::::
time

::
is

:::::
spent

::::::::
applying

:::
the

::::::::
Laplacian

::::::::
operator,

::::
while

::::
6%

::
(2

:::::::
minutes

:::
and

:::
10

:::::::
seconds)

::
is

:::::
spent

::::::::::
constructing

:::
the

:::::::::
Laplacian.

:::::
Again

:::::
using

:::
64

:::::::
threads,

::::::::::::
NodeFileFilter

:::::::
required

:::
50575

::::::
seconds

:::::
while

:::::::::::::::
VariableProcessor

:::::::
required

:::
14

:::::::
minutes

:::
and

:::
14

:::::::
seconds.

3.6 Atmospheric Blocking

Our final example addresses the design of a tracker for detection
:::::::::::
development

::
of

:
a
::::::::::
climatology of atmospheric blocking events,

::::::::
frequency.

:::::::::::
Atmospheric

::::::::
blocking

::::::
events

:::
are synoptic-scale weather phenomenon

:::::::::
phenomena

:
characterized by persistent ob-

struction of the normal westerly flow and associated with heat waves, cold spells, flooding and drought
::::::::::::::
(Glickman, 2012). In580

Pinheiro et al. (2019)
::::::::
(hereafter

:::::::
PUG19), several 2D algorithms were compared for the detection and characterization of block-

ing features. They find
:
;
:
it
::::

was
::::::
found that the identification algorithm of Dole and Gordon (1983)

:::::::
(hereafter

:::::::
DG83), which

identifies blocks as anomalously high values of
::::::::::
geopotential

:::::
height

::
at

:::::::
500hPa

:
(Z500, is fairly robust

:
),
::::
was

:
a
:::::
robust

:::::::
method for

global block detection and characterization.
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3.6.1 Step 1: Generate Blocking Threshold585

We describe here how to apply the Z500 (geopotential height at 500hPa) anomaly algorithm globally to 3-hourly
:
In

::::
this

::::::
section

::
we

::::
will

:::::::
employ

:::
TE

::
to

:::::::
generate

:
a
:::::::::::
climatology

::
of

:::::::
blocking

::::::
events

:::::
using

:::
the

:::::::
modified

::::::
DG83

::::::::
algorithm

::
of

:::::::
PUG19

::
as

:::::::
applied

::
to

MERRA2
::::::::
reanalysis data (Gelaro et al., 2017).

3.6.1
::::
Step

::
1:

::::::::
Generate

:::
the

::::::::
blocking

:::::::::
threshold

::::::::
Following

:::::::
PUG19,

:
a
::::
grid

::::
point

::
is
::::::
defined

:::
as

:
a
::::::::
candidate

:::
for

::::
being

:::::::
blocked

::
if

:::
the

::::
Z500

::::
field

:::::::
exceeds

:
a
::::::::
threshold

:::::
Z500

:::::
value.

::::
This590

:::::::
threshold

:::::
value

:::::
must

::
be

::::::::
specified

::
as

:
a
:::::::
function

:::
of

:::::::
latitude,

::::::::
longitude,

:::
and

:::::
time,

:::::
given

:::
the

:::::::::::
geographical

:::
and

:::::::
seasonal

:::::::::
variations

::
in

::::
Z500

:::::::::::
climatology.

:::::::
PUG19

::::::
suggest

::
a
::::::::
threshold

:::::
value

:::::
equal

::
to
::::

the
::::
daily

:::::
mean

:::::
Z500

::::
plus

:::
the

:::::::::
maximum

:::
of

:::
100

::::::
meters

:::
or

:::
1.5

::::
times

:::
the

:::::
daily

:::::::
standard

::::::::
deviation

:::
of

:::
the

::::
Z500

:::::
field.

:::::
Given

::::
that

::::
only

:::
40

::::
years

:::
of MERRA2

::::::::
reanalysis

:::
are

::::::::
available,

:::::
daily

:::::::
averaged

::::
data

:::::
tends

::
to

::
be

:::::
quite

::::
noisy

::::
and

::
so

:::::::
Fourier

::::::::
smoothing

::
is
:::::::::
employed

::
in

::::
time

:::
and

::::::
space.

::::::::
MERRA2

:
stores the 3D geopotential height variable in the inst3_3d_asm_Np dataset using variable name “H”. For595

simplicity we assume that the input files contain a list of all files from this dataset from 1980/01/01-2020/06/30 (40.5 years).

Within this dataset the 500hPa geopotential height variable can be specified by variable name H(500hPa), where the vertical

index is determined automatically by TE. The first step described in Pinheiro et al. (2019) is the construction of a Fourier-

filtered long-term daily mean (LTDM) climatology of the Z500 field and its square. The Climatology executable is used in this

step, and can be executed in parallel:600

Climatology --in_data_list MERRA2_H_files.txt --out_data MERRA2_H_LTDM.nc \

--var "H(500hPa)" --period "daily" --type "mean" --missingdata

Climatology --in_data_list MERRA2_H_files.txt --out_data MERRA2_H2_LTDM.nc \

--var "H(500hPa)" --period "daily" --type "meansq" --missingdata

Here the missingdata argument is needed since the 500hPa pressure surface sometimes falls below the surface
::::::
ground605

in the vicinity of the Himalayas, and consequently can cause problems if not employed
:::::
which

::
is

::::::::
indicated

::
in

:::::::::
MERRA2

::::
with

::::::
missing

::::::
values. Note that, relevant to subsequent command lines, Climatology automatically prepends the descriptor “daily-

mean_” to the variable, so the final climatology is written to variable “dailymean_H”.

We now calculate the standard deviation of the H(500hPa) field using the VariableProcessor:

VariableProcessor --in_data "MERRA2_H_LTDM.nc;MERRA2_H2_LTDM.nc" \610

--out_data "MERRA2_H_mean_stddev.nc" \

--var "dailymean_H,_SQRT(_DIFF(dailymeansq_H,_POW(dailymean_H,2)))" \

--varout "dailymean_H,stddev_H"

We then apply a 4-mode Fourier filter to both the dailymean_H and stddev_H fields across the time dimension, and a

2-mode Fourier filter to the stddev_H field in the zonal direction:615
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Figure 8. January 1st and July 1st MERRA2 blocking threshold generated with the command sequence in section 3.6.1.

FourierFilter --in_data MERRA2_H_mean_stddev.nc \

--out_data MERRA2_H_mean_stddev_timesmoothed.nc \

--var "dailymean_H,stddev_H" --dim "time" --modes 4

FourierFilter --in_data MERRA2_H_mean_stddev_timesmoothed.nc \

--out_data MERRA2_H_mean_stddev_smoothed.nc \620

--var "stddev_H" --preserve "dailymean_H" --dim "lon" --modes 2

Finally the threshold is computed as H500∗ =H500+max(1.5×H500stddev,100) via the command line

VariableProcessor --in_data MERRA2_H_mean_stddev_smoothed.nc \

--out_data MERRA2_threshold_H_filtered.nc \

--var "_SUM(dailymean_H,_MAX(100.0,_PROD(1.5,stddev_H)))" --varout "threshold_H"625

After performing these operations, a 365-day time series of the threshold field is obtained, plotted in Figure 8 on January 1st

and July 1st. Note that this VariableProcessor operation could also have been performed using other climate data processing

software, such as NetCDF operators or using a
:
a
::::::
simple Python script; however, the parallelism built into TE

:::
TE’s

:::::::
support

:::
for

:::::::::::
parallelization

::::
over

::::
files

:
allows for these computations to be performed rapidly on supercomputing systems.

3.6.2 Step 2: DetectBlobs
::::::
Identify

:::::::
regions

::
of

:::::::::::
geopotential

::::::
above

:::
the

::::::::
blocking

::::::::
threshold630

With the LTDM
:::::::
blocking

:
threshold in hand, we can now identify areal features that exceed this pointwise threshold.

::::
now

:::::
define

:::::::
blocking

:::::::
features

::
as

::::::::::
sufficiently

::::
large

:::::::::
contiguous

:::::::
regions

:::::
where

:::
all

:::::
points

::::::
exceed

:::
the

:::::::
blocking

:::::::::
threshold.

::
As

::::::::
blocking

::
is

:::::::
primarily

::
a
::::::::::::
midlatitudinal

::::::
feature,

:::
we

::::
also

::::
focus

:::::
only

::
on

:::::
points

::::::::
between

:::
25◦

::::
N/S

:::
and

:::
75◦

:::::
N/S.
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The newly generated LTDM threshold file is appended to each line of the input data list so it can be accessed by DetectBlobs.

The output file list has the same number of lines as this input list, but points to
::::::
contains

:
the output files that will contain the635

binary tags for tagged points.

DetectBlobs

--in_data_list MERRA2_DB_files.txt --out_list MERRA2_blocktag_files.txt \

--thresholdcmd "_DIFF(H(500hPa),threshold_H),>=,0,0" \

--minabslat 25 --maxabslat 75 --geofiltercmd "area,>,1e6km2" --tagvar "block_tag"640

This command specifies points where
:::
tags

::::::
points

:::
as

:::::::::
candidates

:::::
when

:
500 hPa geopotential height equals or exceeds the

threshold are tagged as candidate blob points
:::::::
blocking

::::::::
threshold. We further remove candidate points equatorward of 25◦

N/S and poleward of 75◦ N/S and only retain contiguous regions whose are
:::
area

:
is at least 106km2.

3.6.3 Step 3: StitchBlobs
:::::::
Enforce

:
a
:::::::::
minimum

::::::::
duration

:::
for

::::::
blocks

::::
and

:::::
build

::::::::::
climatology

The last step in block detection is to stitch together blobs from each timeslice to enable tracking of blobs in space and time.645

The StitchBlobs algorithm
::::::
Besides

:::::
being

::::::
regions

:::
of

::::::::::
anomalously

:::::
high

::::::::::
geopotential,

::::::::
blocking

::::::
events

::::
must

::::
also

::
be

::::::::::
sufficiently

::::::::
persistent

:::::::::::::::
(Glickman, 2012).

::::::::
Although

:::
the

:::::
AMS

::::::::
Glossary

::::
uses

:
a
::::::
typical

:::::::
duration

::
of

::
7
::::
days

::
to

:::::::
indicate

::::::::::
persistence,

:::
we

::::::
follow

::::::
PUG19

:::
and

:::::
retain

::::::
events

:::::
which

::::
last

::
at

::::
least

:
5
:::::
days.

::
To

::::::::
determine

:::
the

:::::::
duration

:::
of

::::::::
individual

::::::
events,

:::
we

:::
use

::::::::::
StitchBlobs

::
to

::::::
connect

::::::::
blocking

::::::
features

::
in
:::::
time,

::::::::
imposing

:::
that

::::::
events

::
are

:::::::::
connected

::
in

::::
time

::
if

:::
they

:::::::
overlap

::
by

::
at

::::
least

:::::
20%.

:::::::
Features

:::
that

:::
do

:::
not

:::::
persist

:::
for

::
at

::::
least

:
5
:::::
days

::
are

:::::::::
discarded.

::::
The

::::::::
algorithm650

::::
used

::::
here is described in detail in section 2.6. Here we use the command line:

:::::::
following

:::::::::
command:

:

StitchBlobs

--in_list MERRA2_blocktag_files.txt --out_list MERRA2_blockid_files.txt \

--var "block_tag" --mintime "5d" --min_overlap_prev 20 --flatten

The criteria here require that blobs exist for at least 5 days continuously, and that blobs are considered to be connected655

in time only when 20% of the area of the blocked object at the previous time step is covered by the new blob (specified

by min_overlap_prev). The flatten argument indicates that only binary occurrence of a feature (0 or 1) should be

recorded after stitching. If this command
::::::::
argument

:
was not specified,

:
then each object would be assigned a unique global

integer identifier, as described in section 2.6.

3.6.4 Blocking climatology660

The blocking data is then post-processed to
::
To

:
build a seasonal climatology of blocking features,

:::
the

::::::::
blocking

::::
data

:::::
from

::::::::::
StitchNodes

::
is

:::::::::::::
post-processed. Since the presence of blocking is given with a binary indicator, this command is in effect

calculating the fraction of timesteps where blocking occurs:

Climatology --in_data_list MERRA2_blockid_files.txt \
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Figure 9. Percentage occurrence of blocking during (left) boreal winter and (right) boreal summer.

--out_data MERRA2_blocking_climo.nc --var "object_id" --period "seasonal"665

The resulting

3.6.4
::::::
Results

:::::
from

:::
the

:::::::::
generated

::::::::
blocking

::::::::::
climatology

:::
The

::::::::
generated

:
blocking climatology in the boreal winter (December-January-February) and boreal summer (June-July-August)

is depicted in Figure 9. The results
::::::
Results are generally in agreement with the climatology of Pinheiro et al. (2019), and show

substantial wintertime blocking in the North Atlantic and Pacific. A snapshot of blocked regions on 2013-12-07 6Z is further670

depicted in Figure 10 (black outlines). The blocking feature present in the Northern Pacific at the time was associated with

anomalous dry conditions in California and anomalous warmth in Alaska.

4 Conclusions

Automated feature tracking capabilities have been frequently and successfully employed throughout the literature to evaluate

regional and global models, investigate the drivers and environments of extreme weather events, and understand future change675

in the statistics of atmospheric features. Feature trackers further provide an important mechanism for extracting relevant in-

formation from large climate datasets, including reanalysis and observational datasets, and climate model simulations. This is

particularly important as the stakeholder needs for climate data associated with societally relevant impacts grow larger.

As there are significant overlaps across the core functionality of these trackers, there is a clear added benefit to developing

:::::::::
integrating these kernels within a single framework. TempestExtremes (TE) is one such framework, with generalized kernels680

for identifying, characterizing, and analyzing both nodal and areal features. Although initially
::::::
version

::
1

::
of

:::
TE

::::
was

::::::::
primarily

focused on tropical and extratropical cyclones (Ullrich and Zarzycki, 2017),
::::::
version

::
2

::
of

:
TE has since added substantial

:::
new

:
functionality for areal feature tracking, characterizing and compositing features, and more dataset-agnostic command
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Figure 10. A snapshot of blocked regions in MERRA2 data detected on 2013-12-07 6Z (the three black outlines) atop the H(500hPa) field

at this time.

line arguments. TE has further continued to remain focused
:::::::::
parameters

:::
and

::::::::::
thresholds.

:::
TE

:::::::
focuses on high-throughput data

processing, including continued MPI support for core executables. Such a framework has clear scientific relevance, enabling685

the development of feature catalogues, and addressing questions related to specific features(including those features
:
,
::::::::
including

::::
those

:
commonly associated with extreme weather). As TE further exposes all tuning parameterson the command line, it allows

users ,
:::::
users

:::
are

:::
able

:
to easily investigate sensitivities of the tracker, or optimize the tracker for detecting particular features.

In this paper we have described some of the newer
:::::::::
algorithmic

:
kernels exposed by TE, and shown how these kernels can be

composited to build robust tracking algorithms for many consequential
:::::::
important

:
atmospheric features. The tracking capability690

enables the probing of deeper scientific questions related to individual features. To demonstrate this functionality, TE was

employed in section 3.3 for tracking of tropical cyclones (TCs) and calculated the fractional contribution of TC precipitation

to total precipitation in each region. Using TE
:::::::::
Ultimately,

::::
with

:::
the

::::
suite

:::
of

::::::
trackers

::::::::
available

::::
from

::::
TE,

:
a
:::::
global

::::::::::
climatology

::::
can

::
be

::::::::::
constructed

:::
that

::::::::
attributes

::::
total

:::::::::::
precipitation

::
to
::::::::
features;

:::
i.e.,

:::::
using

:::
TE

:
we showed that TCs contribute to 20-40% of total

precipitation in the tropical regions of the Pacific and South Indian Ocean in both satellite observations and ERA5 reanalysis.695

Ultimately, with the suite of trackers available in TE in hand, a global climatology can be constructed that attributes total

precipitation to features. In section 3.4, an analysis of the composited characters of extratropical cyclones in the CESM large

ensemble was performed to understand climatological track density and meteorological fields, enabling evaluation of model

performance and better communication of the relevant underlying processes. In section 3.5, a novel atmospheric river detection

algorithm was developed using TE and validated results related to
::::::
against meridional moisture transport put forward in Zhu and700
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Newell (1998). Finally, in section 3.6, TE was used to construct a seasonal climatology of atmospheric blocking. Notably, the

data reductions demonstrated in these sections enable
::::
could

:::::::
support

:::::
model

:::::::::
evaluation

:::
via feature-specific and process-oriented

metrics and diagnosticsthat would streamline model evaluation.
:
.

::::::::::
Nonetheless,

:::::::
TEv2.1

::::
does

::::
have

::::::
several

:::::::::
limitations

::::
that

:::
may

:::
be

::::::::
addressed

::
in

:::::
future

::::::::
versions.

::
At

:::::::
present,

:::
TE

::::
does

:::
not

:::::::
support

:::::::
detection

::
of

::::::::::::
sub-grid-scale

:::::::
extrema

::::
(e.g.,

:::::
using

:::::::::
harmonics

::
as

::
in

::::::::::::::::::::::::
Benestad and Chen (2006) or

:::::::
bicubics

::
as

::
in

:::::::::::::::::::::::::
Murray and Simmonds (1991)),705

:::::::
although

:::
this

::::::
feature

::
is
::::::
largely

:::::::::::
necessitated

::
by

::::::
coarse

:::::
spatial

:::::::::
resolution

::::::
inputs.

:::
TE

::::
also

::::
does

:::
not

:::::
allow

:::
for

:::::::::::
extrapolation

::
of

:::
the

:::::
search

::::::::
position,

::
as

::
in

:::::
some

:::
TC

:::
and

::::
ETC

::::::::
tracking

:::::::
schemes

::::::::::::::
(Marchok, 2002).

:::
TE

:::::
does

:::
not

::::::
provide

:::::::
support

:::
for

:::::
inline

::
or

::::::
offline

::::::::
percentile

:::::::::::
calculations,

::::::::::::::
zonal/meridional

::::::::
averages,

::
or

:::::
time

:::::::::
derivatives.

::::
Nor

::::
does

:::::
v2.1

::::::
include

:::::::
support

:::
for

:::::::
common

::::::::
calculus

:::::::
operators

:::::
(e.g.,

:::::::
relative

::::::::
vorticity,

::::::::::
divergence,

::::::
vector

:::
dot

::::::::
gradient,

:::::::
gradient

:::::::::::
magnitude),

::::::::
although

:::::::::::
experimental

:::::::
versions

:::
of

::::
these

::::::::
operators

:::::
have

::::
been

::::::
added

::
in

:::::
v2.2.

:
It
::

is
::::

also
:::::::

missing
:::::::::
operations

::::::::::
sometimes

::::
used

:::
for

::::
areal

:::::::
feature

:::::::
tracking,

:::::::::
including710

::::::
dilation

::
of

:::::
areal

::::::
features

::::::::::::::::::::::::::::::::::::::
(Heikenfeld et al., 2019; Feng et al., 2018) and

:::::::::
geometric

:::::::::
operations

:::::::::
sometimes

::::
used

::
in

:::
AR

::::::::
tracking,

::::::::
including

::::::
filtering

:::
of

::::
ARs

::::
with

:::
low

:::::::::::
width/length

::::
ratio

::::::::::::::::::::
(Mundhenk et al., 2016);

:::::::
support

:::
for

::::
these

:::::::
features

::
is

:::::::::
anticipated

::::::
before

::::
v3.0.

:::::::::::
Additionally,

:::
as

:::::::::
mentioned

::::::
earlier

::
in

::::
this

:::::
paper,

::::::::::
parallelism

::
is
::::::::
presently

:::::
only

::::::::
supported

::::::
across

:::::
files;

:::::
given

::::
that

::::
data

:::::::
products

:::::::::
sometimes

::::::::::
concatenate

:::::
many

::::
times

::::::
within

:
a
:::::
single

::::
file,

::::::
support

:::
for

:::::::::
parallelism

::::::
within

:::
files

::
is

::::
also

::::::::
desirable.

::
In

:::::::
general,

::::::::::
development

::
of

:::
TE

:::
has

:::::
been

::::::
guided

::
by

:::
the

:::::
needs

::
of

:::
its

:::::::
userbase,

::::
with

:::::
many

::::::
current

:::::::
features

::::::
having

::::
been

::::::
added

::
by

:::::::
request;

:::
we715

::::::::
anticipate

:::
this

::
to

::::::::
continue

:::
into

:::
the

::::::
future.

It is expected that TE will continue to evolve to meet the needs of the scientific community. New kernels are already being in-

vestigated that encompass functionality present in other standalone trackers(Parfitt et al., 2017; Feng et al., 2018; Heikenfeld et al., 2019).

It will further continue to maximize its
:
.
::
A

::::::::
continued

:::::
focus

:::
will

:::
be

::
on

::::::::::
maximizing

::::
TE’s

:
robustness across datasets, so ensuring

::
as

::
to

:::::
ensure

:
the framework is useful for standalone users and operational modeling centers, or for comparative analysis across720

reanalysis products, multi-model ensembles (Eyring et al., 2016) and single model ensembles (Kay et al., 2015). Finally, new

capabilities to perform direct evaluation of simulation products in TE are now being developed, using the characteristics of

tracked features as evaluation metrics.

Code availability. The TempestExtremes v2.1 release is available from ZENODO at https://dx.doi.org/10.5281/zenodo.4385656. The GitHub

repository used for ongoing code development is available at https://github.com/ClimateGlobalChange/tempestextremes.725

Appendix A: Stereographic Projection

The stereographic projection is used in the construction of composites using NodeFileFilter. The equations used for projection

are provided here for reference.
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The forward stereographic projection around a central point (λ0,φ0) is given by:

K = [1+ sinφsinφ0 +cosφcosφ0 cos(λ−λ0)]−1 (A1)730

X(λ,φ;λ0,φ0) =K cosφsin(λ−λ0) (A2)

Y (λ,φ;λ0,φ0) =K [cosφ0 sinφ− sinφ0 cosφcos(λ−λ0)] (A3)

The inverse projection is given by:

ρ=
√
X2 +Y 2, (A4)

c= 2arctan(ρ/2) , (A5)735

φ(X,Y ;λ0,φ0) =

 φ0, if ρ= 0,

arcsin [coscsinφ0 +(Y/ρ)sinccosφ0] , otherwise.
(A6)

λ(X,Y ;λ0,φ0) =

 λ0, if ρ= 0,

λ0 +arctan2[X sinc,ρcosφ0 cosc−Y sinφ0 sinc] , otherwise.
(A7)

Appendix B: Laplacian Operator

The stereographic discrete pointwise Laplacian operator defined in TE is constructed in a grid-independent manner using a

discrete radial formulation. To begin, a set of N initial sample points are generated using a ring of radius R degrees around740

each grid point X0. Using a kd-tree-based implementation, the nearest grid points to each initial sample point are then selected

to give a set of adjusted grid points Xn with n= 1, . . . ,N . For each of the initial sample points we then define the distance

Dn by the great-circle distance between grid point X0 and Xn. The averaged Laplacian over a disc of radius R/2 is then

computed discretely using the divergence theorem on the stereographic plane and a centered difference approximation for the

radial derivative:745

1

π(R/2)2

∫
∇2qdA=

4

πR2

∮
∇q · dS ≈ 4

πR2

N−1∑
n=0

(
qn− q0
Dn

)(
πR

N

)
=

4

NR

N−1∑
n=0

qn− q0
Dn

(B1)

where qn denotes the value of the field at Xn.
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Competing interests. The authors declare that they have no competing interests.

35



2.5o
10o

X0

R2

X2

X1

X3

X4

X5

X6

X7

X8

Figure B1. For a uniform (stereographic) grid with grid spacing of 2.5◦ GCD, an illustration of the grid points used in the calculation of the

Laplacian with 8 radial points and radius 10◦ GCD. This operator is constructed in TE using notation _LAPLACIAN{8,10}. The central

grid point is shaded black, and the modified centroids are shaded in gray.
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