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Abstract. TempestExtremes (TE) is a multifaceted framework for feature detection, tracking, and scientific analysis of re-

gional or global Earth system datasets on either rectilinear and unstructured/native grids. Version 2.1 of the TE framework now

provides extensive support for examining both nodal (i.e., pointwise) and areal features, including tropical and extratropical

cyclones, monsoonal lows and depressions, atmospheric rivers, atmospheric blocking, precipitation clusters, and heat waves.

Available operations include nodal and areal thresholding, calculations of quantities related to nodal features such as accumu-5

lated cyclone energy and azimuthal wind profiles, filtering data based on the characteristics of nodal features, and stereographic

compositing. This paper describes the core algorithms (kernels) that have been added to the TE framework since version 1.0,

including algorithms for editing pointwise trajectory files, composition of fields around nodal features, generation of areal

masks via thresholding and nodal features, and tracking of areal features in time. Several examples are provided of how these

kernels can be combined to produce composite algorithms for evaluating and understanding common atmospheric features and10

their underlying processes. These examples include analyzing the fraction of precipitation from tropical cyclones, composit-

ing meteorological fields around extratropical cyclones, calculating fractional contribution to poleward vapor transport from

atmospheric rivers, and building a climatology of atmospheric blocks.

1 Introduction

For many atmospheric and oceanic features, automated object identification and tracking in large datasets has enabled targeted15

scientific exploration of feature-specific processes. Software tools for feature tracking, colloquially referred to as “trackers”,

are valuable for evaluating model performance (Davini and D’Andrea, 2016; Stansfield et al., 2020); understanding upstream

process drivers, such as large-scale meteorological patterns (e.g. Grotjahn et al., 2016); and projecting future changes in feature

characteristics and climatology (Roberts et al., 2020a). When well-engineered, these automated tools provide a means for

analyzing the multiple petabytes of climate data now available and anticipated in the next decade (Schnase et al., 2016; Hassani20

et al., 2019). Since its introduction, TempestExtremes (TE, Ullrich and Zarzycki, 2017) has been continuously augmented with

new kernels – that is, basic data operators that can act as building-blocks for more complicated tracking algorithms – designed

to streamline data analysis and generalize capabilities present in other trackers. These kernels thus provide more options and
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flexibility in exploring the space of trackers for each feature, and enable a deeper understanding of how robust a given scientific

conclusion is with respect to the choice of tracker. We describe the most significant of these updates and provide a number of25

use cases to demonstrate TE’s functionality for real scientifically driven case studies.

Numerous publications over the past several decades have presented automated algorithms for identification of both nodal

(i.e., pointwise) and areal atmospheric features. Ullrich and Zarzycki (2017) Appendices A-C summarized dozens of such

automated algorithms for extratropical cyclones, tropical cyclones, and tropical easterly waves. Even so, work to identify op-

timal tracking criteria continues (Murata et al., 2019). Beyond these traditionally tracked features, many recent papers have30

focused on defining regionally relevant features such as monsoonal lows and depressions , associated with heavy precipita-

tion in monsoonal regions (Hurley and Boos, 2015; Vishnu et al., 2020). Areal feature tracking algorithms have also been

developed for clouds (Heikenfeld et al., 2019), atmospheric rivers (Shields et al., 2018; Rutz et al., 2019), atmospheric block-

ing (Scherrer et al., 2006), mesoscale convective systems (Prein et al., 2017; Feng et al., 2018), precipitation clusters (Clark

et al., 2014; Pendergrass et al., 2016), convectively-generated outflow boundaries (Chipilski et al., 2018), gust fronts (Delanoy35

and Troxel, 1993), and frontal systems (Hope et al., 2014; Schemm et al., 2015; Parfitt et al., 2017). Both nodal and areal

algorithms generally feature a similar set of kernels, motivating the development of a single package encompassing relevant

capabilities. For example, the majority of detection algorithms are built upon an algorithmic paradigm known as MapReduce

(Dean and Ghemawat, 2008), where individual time slices are assessed independent of one another
:::::::::::
independently

::::::::
assessed

(an embarrassingly parallel “map” operation) then combined via a serial “reduce” operation. By building a single framework40

for distributing time slices to different feature identification algorithms, then combining multiple features into a single dataset,

we can avoid duplication of this infrastructure across multiple trackers. Leveraging commonalities such as these enables im-

provements in algorithmic efficiency to be simultaneously administered to multiple trackers, and reduces redundancies from

algorithmic validation and testing.

TE has been engineered with the goal of providing a comprehensive and user-friendly toolbox for feature tracking in model,45

reanalysis, or observational data products. It features a set of core design principles to enable its easy application in scientific

analyses:

– The TE kernels
::::::
Kernels

:
are encapsulated in a variety of executables that are fully configurable from the command line

(i.e., containing no hard-coded thresholds). Thus the processing operations performed by TE can be easily conveyed

simply by communicating the relevant command(s).50

– TE abstracts many
:::::
Many of the finer details about the structure of climate datasets

::
are

:::::::::
abstracted

:
through the use of

physically-motivated kernels (such as the closed-contour
:::::
closed

:::::::
contour

:
operator), physically-based units, and internal

indexing with Climate and Forecast compliant (CF-compliant)
::::
(CF)

:::::::::
compliant time variables.

– TE directly addresses the need for
:::
The

::::
data

:::::::
analysis

:::::::::
capabilities

:::
are

::::::::
designed

::
to

::
be

:
high-throughput, readily usable, and

standardizeddata analysis tools. Its kernels are individually .
::::

All
:::
TE

:::::::::::
functionality

::
is

:
implemented in optimized and ,55

where appropriate,
::::::
(where

::::::::::
appropriate)

:
parallelized C++.
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– TE also addresses a growing need for data analysis tools that
:
It
::
is

::::::::
designed

::
to work with “big data”, enabling significant

data volume reduction by isolating characteristics of individual features rather than full fields.

– TE’s algorithmic kernels
::::::
Kernels

:
are designed for arbitrarily grids, recognizing that climate models have largely moved

away from latitude-longitude grids and towards quasi-uniform grids (Ullrich et al., 2017).60

– TE is a fully
::
All

:::
TE

:::::
code

::
is open-sourceproduct, publicly developed and distributed via GitHub with permissive open

source licensing.

These principles complement the underlying foci motivating TE’s development: robustness, usability, maintainability, and

extensibility. To the best of the authors’ knowledge, no other comprehensive toolkit exists for general nodal and areal feature

tracking in Earth system datasets.65

The remainder of this paper follows an analogous structure to Ullrich and Zarzycki (2017): Section 2 describes the core

algorithms and kernels now available in TE version 2.1. In section 3 , we present
::::::
Section

:
3
::::::::

presents several examples of

how these kernels can be combined together to form recipes for tracking tropical cyclones (TCs), for calculating fractional

contribution of precipitation from TCs, for tracking and compositing extratropical cyclone fields, for tracking atmospheric

rivers, and for tracking atmospheric blocks. A summary of results and future work is given in section 4.70

2 TempestExtremes algorithms and kernels

In this section we describe the kernels available in the TE software package, organized by executable, with an emphasis on

additions since TE version 1.0. Technical details on the operation of TempestExtremes can be found in the user guide (Ullrich,

2020).

2.1 DetectNodes and StitchNodes75

DetectNodes (formerly DetectCyclonesUnstructured
:::::::::::
DetectNodes

::::::::
(formerly

::::::::::::::::::::::::
DetectCyclonesUnstructured) is used for the de-

tection of nodal feature candidates, and corresponds to the parallel “map” step in the “MapReduce” framework – that is,

candidate points are first selected based on information at a single time slice. DetectNodes
::::::::::
DetectNodes is typically fol-

lowed by StitchNodes
:::::::::
StitchNodes, which represents the serial “reduce” operation in the chain. StitchNodes

::::::::
processing

::::::
chain.

::::::::::
StitchNodes connects nodal features together in time and produces paths associated with singular features. Both of these ex-80

ecutables and their algorithmic kernels are described in Ullrich and Zarzycki (2017), although v2.1 now supports the use of

physical time units for thresholds and time subsetting. For example, mintime may be specified as a minimum number of time

slices (e.g., "5") or as the minmum number of hours between first and last candidate in a path (e.g., "24h").

DetectNodes and StitchNodes
::::::::::
DetectNodes

:::
and

::::::::::
StitchNodes output trajectories in a format originally defined by the GFDL

tropical cyclone tracker (TSTORMS; Vitart et al., 1997; Zhao et al., 2009). These files are generally referred to as nodefiles.85

2.2 NodeFileEditor
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NodeFileEditor
::::::::::::
NodeFileEditor is a new addition to TE for editing nodefiles. It includes options for (1) appending new details

to trajectories, such as radial wind profiles or accumulated cyclone energy,
:
; (2) removing certain columns from nodefiles,

:
; or

(3) filtering trajectories or points along a trajectory, e.g., when outside of a specific time interval. A list of functions currently

available in NodeFileEditor
::::::::::::
NodeFileEditor are given in Table 1. These functions may be chained to perform multiple related90

operations, such as computing a radial wind profile of a tropical cyclone and then extracting the radius where a particular wind

threshold is exceeded. An example of such chaining of commands is given in section 3.3.

Most of the implemented algorithms are straightforward, except for max_closed_contour, whose pseudocode is pro-

vided in Algorithm 1. Intuitively, this algorithm can be thought of as filling up a 3D extruded surface representative of the

contours of the field until fluid spills farther out than the prescribed maximum distance. The last height difference is then95

recorded as the maximum delta for the closed contour.

Algorithm 1 Determine the maximum closed contour delta (largest field delta that permits a closed contour within the given

distance of the feature) for each node in a given nodefile N, over field F and maximum distance maxdist. This algorithm

uses a priority queue, which places the node with the highest priority (in this case the smallest delta) at the top of the queue.

max_delta = max_closed_contour(nodefile N, field F, maxdist)

for each node n in N

max_delta[n] = 0

define empty priority_queue pqueue

insert node n into pqueue with delta 0

visited = []

while pq is not empty

p = remove node from pqueue with lowest delta

add p to visited

for all neighbors q of p

if q is not in visited then add q to pqueue with delta (F[q] - F[n])

if (dist(p,n) < maxdist) and (F[p] - F[n] > max_delta[n]) then

max_delta[n] = F[p] - F[n]

2.3 NodeFileFilter

NodeFileFilter
:::::::::::
NodeFileFilter encapsulates algorithms for masking spatial data using nodefile information, i.e., effectively

converting nodefiles into binary raster masks at each time slice and (optionally) applying them to available data. Filtering can

be performed using the distance from each feature, based on the closed contour of each feature (as described by Algorithm 2),100
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Operator Description

eval_ace Calculate the instantaneous accumulated cyclone energy (ACE, Bell et al., 2000), equal to 10�4u2
kt,max where

ukt,max is the maximum wind speed within a prescribed radius of the nodal feature, in knots. We use a value

of 1.94384 kt (m s�1)�1 to convert m s�1 to kt.

eval_acepsl Approximate ACE using sea level pressure
::::
(SLP)

:
to predict surface wind speed (ACEPSL). Currently, ACEPSL

is calculated as ACE, but using ukt,max = 1.94384 kt (m s�1)�1 ⇥ 3.92⇥ (1016.0 hPa� slpmin)
0.644 (Hol-

land, 2008), where pslmin :::::
slpmin is the minimum sea level pressure

:::
SLP

:
within a prescribed radius.

eval_ike Calculate the instantaneous integrated kinetic energy (Powell and Reinhold, 2007), defined as
P

i
1
2u

2
iAi,

where ui is the magnitude of the wind speed at that grid cell (in m s�1), Ai is the area of that grid cell in

m2, and the sum is taken over all grid cells within a prescribed radius.

eval_pdi Calculate the power dissipation index (Emanuel, 2005), defined as u3
max, where umax is the maximum wind

speed within a prescribed radius in m s�1.

radial_profile Develop a radial profile of the specified variable at each time slice around the nodal feature point by binning by

radial distance and averaging gridpoint values. The output is expressed using python
:::::
Python

:
array syntax.

radial_wind_profile As radial_profile but for the radial and azimuthal wind speed. The radial and azimuthal components are com-

puted by projecting the 2D velocity at each grid point onto the radial and azimuthal vector fields around each

nodal feature prior to binning.

lastwhere Given an array as input, such as the output of radial_profile, identify the distance or index of the array that

satisfies a given threshold. For example, this operator is used for determining the radius at which azimuthal

wind speed is greater than 8 m s�1.

value Given an array, extract the value at the specified index using linear interpolation where needed.

max_closed_contour For a given field, determine the largest value that satisfies the closed contour criteria (see Ullrich and Zarzycki

(2017) section 2.6) around each nodal feature (see Algorithm 1).

region_name Given the names and coordinates of polygons in longitude-latitude space, identify the name of the region for a

given pointwise feature. Each point is identified as being in a given region using a straight-line test along lines

of constant latitude. If the number of intersections with edges of the polygon is odd (even), then the point is

inside (outside).
Table 1. Functions implemented in NodeFileEditor

::::::::::::
NodeFileEditor as of TempestExtremes version 2.1.
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or by thresholding of areal regions that are within a given distance of each nodal feature (as described by Algorithm 3). The

latter is useful for identifying, for instance, precipitation clusters associated with tropical cyclones.

Algorithm 2 Generate a binary mask using a closed contour criterion, given nodefile N, field F, closed contour magnitude

delta, maximum mask distance dist, and maximum distance for minima/maxima search minmaxdist. The functions

find_min_near and find_max_near are given by Algorithm 4 in Ullrich and Zarzycki (2017).

M = mask_by_closed_contour(nodefile N, field F, delta, dist, minmaxdist)

for each node n in N

if (delta > 0) m = find_min_near(n, F, minmaxdist)

if (delta < 0) m = find_max_near(n, F, minmaxdist)

visited = []

tovisit = [m]

ref_value = F[m]

while tovisit is not empty

p = remove node from tovisit

if visited contains p then continue

add p to visited

if (dist(p,m) > dist) then continue

if (sign(delta) * (F[p] - F[m]) > abs(delta)) then continue

M[p] = 1

add neighbors of p to tovisit

2.4 NodeFileCompose

NodeFileCompose
::::::::::::::
NodeFileCompose includes functionality for snapshotting fields around nodal features (i.e., at each time

slice projecting fields onto the stereographic plane centered on a nodal feature) or compositing fields (i.e., averaging snap-105

shots). In the same vein, it also includes functionality for snapshotting or compositing a particular geographic region when a

feature is present. Stereographic composites are computed using Algorithm 4. The mathematical operators used for the local

stereographic projection are given in Appendix A.

2.5 DetectBlobs

DetectBlobs
:::::::::
DetectBlobs is used for identifying areal features (blobs), such as atmospheric blocks, atmospheric rivers, or110

precipitation clusters. As with DetectNodes
:::::::::::
DetectNodes, this executable represents the parallel “map” step in the “MapReduce”
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Algorithm 3 Generate a binary mask by picking out blobs satisfying a threshold within a given radius of each node. The

inputs include the nodefile N, field F, the search distance searchdist, threshold operation threshold, and maximum

mask distance maxdist.

M = mask_by_nearbyblobs(nodefile N, field F, searchdist, threshold, maxdist)

for each node n in N

visited = []

tovisit = [n]

while tovisit is not empty

p = remove node from tovisit

if visited contains p then continue

add p to visited

if (dist(p,n) > searchdist) then continue

add neighbors of p to tovisit

if F[p] does not satisfy threshold then continue

tovisitnested = [p]

while tovisitnested is not empty

q = remove node from tovisitnested

if visited contains q then continue

add q to tovisitnested

if (dist(q,n) > maxdist) then continue

if F[q] does not satisfy threshold then continue

M[q] = 1

add neighbors of q to tovisitnested

7



Algorithm 4 Generate a stereographic composite of field F over the given set of nodes N, generated by

DetectNodes
:::::::::::
DetectNodes. The stereographic grid has resolution res and grid spacing dist, given as the great circle

distance along coordinate lines passing through the origin.

field C = stereographic_composite(field F, node_list N, res, dist)

C = empty 2D stereographic grid with parameters (res,dist)

for each node n in N

G = generate 2D stereographic grid with parameters (res,dist) centered on n

for each node m in G

use inverse stereographic projection to obtain point p corresponding to G[m]

q = nearest grid point in F to p

assign G[m] to value F[q]

C = C + G

C = C / size(N)

framework. Candidate regions are selected based on information at a single time slice, typically simple thresholds such as “all

points where precipitation is greater than 1 mm d�1”. Features are marked using a binary mask and output stored in NetCDF

format. Contiguous regions may then be excluded based on either geometric thresholds or criteria derived from other variables.

DetectBlobs
::::::::::
DetectBlobs supports MPI-based parallelism over input files.115

2.6 StitchBlobs

StitchBlobs
:::::::::
StitchBlobs is used for tracking areal features (blobs) in time, assigning connected features a unique global id

and/or applying time-dependent criteria to each contiguous region. Given input as a time-dependent binary mask variable,

blobs that overlap at sequential time steps will be assigned the same global identifier. The algorithm implemented in TE for

connecting blobs in time uses a forward-backward search that can treat the
:
“2D space + 1D time

:
” object as a single

:::
3D object,120

allowing for both splitting and merging of features in time.

The pseudocode for this search protocol is provided in Algorithms 5 and 6, and its operation is illustrated in Figure 1. Put

briefly, contiguous regions at each time slice are identified using a flood fill algorithm and assigned a unique tag of the form

(time id, blob id). An additional “merge distance” argument can be specified that merges nearby blobs at each time slice if their

perimeters are within this specified distance. A graph is then constructed with each of these tags corresponding to the nodes of125

the graph. Edges are then added to the graph where a pair of areal features are deemed to be connected in time. Since multiple

edges could be generated to or from a feature on a given time slice, multiple mergers or splits may occur simultaneously.

Finally, the components of the graph are each assigned a unique global id, with lower global ids corresponding to blobs that
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Figure 1. A depiction of Algorithms 5 and 6 for forward-backward areal feature search used by StitchBlobs
::::::::
StitchBlobs, simplified to show

one space dimension (e.g., longitude) and the time dimension.

first appear at earlier times. In Figure 1, feature 1 and 2
::::::
features at time index 1, denoted (1,1) and (1,2), will both be assigned

the same global id since they are connected at a later time. Similarly, feature 1 and 2
::::::
features

:
at time index 3, denoted (3,1)130

and (3,2), are assigned the same global id since they were connected at an earlier time. Note that global ids start at 1 and are

consecutive thereafter; they are assigned only after connected components of the graph are identified, and as such are unrelated

to the blob id on each time slice.

By default, areal features are deemed to be connected in time if they share at least one grid point at subsequent time steps

(regardless of the area of that grid point). For example, in Figure 1, areal regions (1,1) and (2,1) overlap in space and so are135

deemed to be connected. If a stricter threshold on the overlap area is needed for blobs at sequential time slices to be deemed

part of the same cluster, StitchBlobs
:::::::::
StitchBlobs provides arguments for minimum overlap between the current blob and blobs

at the previous and/or next timestep. In this example, blob tag (2,2) overlaps only 25% of the area of blob tag (1,2), meaning

that (2,2) and (1,2) are deemed unconnected if the “minimum previous overlap” is greater than 25%. On the other hand blob

tag (1,2) covers 50% of the area of blob tag (2,2), so these two would be deemed unconnected if the “minimum next overlap”140

is greater than 50%.

2.7 Other Utilities

In addition to the core functionality described in previous sections, TE also provides a number of other utilities to manage

nodefiles, binary masks, and other climatological data relevant to feature tracking. These are briefly mentioned here as this

functionality is employed in the composite tracking algorithms and analysis of section 3.145

– Climatology is used for constructing climatological time series, including long-term daily, monthly, seasonal, and annual

means. It supports parallel execution over files via MPI, as well as arguments that can be used to limit the amount of

memory used by each thread.
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Algorithm 5 Flood fill blobs on unstructured grid using breadth-first graph search over binary field G, merging blobs within

the given distance merge_dist.

blob set array S =

flood_fill_and_tag_with_merging(binary_field G, merge_dist)

% Perform flood fill and tag

current_tag = 0

visited = []

kdP = empty array of kdtrees

P = array storing perimeter points for each tag

for each node p

if (F[p] is not 0) and (visited does not contain p) then

current_tag = current_tag + 1

tovisit = [p]

while tovisit is not empty

q = remove node from tovisit

if visited contains q then continue

add q to visited

if (F[q] is not zero) then

insert q into S[current_tag]

add neighbors of q to tovisit

if any neighbors r of q have (F[r] = 0) then

add q to P[current_tag] and kdP[current_tag]

% Build list of blobs to merge by distance

M = empty graph with integer nodes denoting merged blobs

for all ordered pairs of tags (s,t)

for all nodes p in P[s]

if nearest neighbor from kdP[t] is closer than merge_dist then

add edge (s,t) to M

% Merge blob sets

for each tag t from 1 to current_tag

find minimum tag s of connected subgraph containing t

merge S[t] into S[s]
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Algorithm 6 Forward-backward algorithm for areal-feature search. Given a time series of binary fields G[t], a merge

distance merge_dist and overlap thresholds min_overlap_* and max_overlap_*.

field F[t] = stitch_blobs(binary_field G[t], merge_dist,

min_overlap_prev, max_overlap_prev,

min_overlap_next, max_overlap_next)

% Use flood fill and merge to identify blobs

for all times t from 0 to length(G)

S[t] = flood_fill_and_tag_with_merging(G[t], merge_dist)

% Build overlap graph

M = empty graph denoting (time,blob) pairs

for all times t from 0 to length(G)

for all blobs p in S[t]

insert nfode (t,p) into M

% Identify blobs to be stitched together in time

for all times t from 0 to length(G)-1

for all blobs p in S[t]

for all blob n in S[t+1]

prev_area = area of S[t][p]

next_area = area of S[t+1][n]

overlap_area = overlap area between S[t][p] and S[t+1][n]

if (overlap_area / prev_area >= min_overlap_prev) then

and (overlap_area / prev_area <= max_overlap_prev)

and (overlap_area / next_area >= min_overlap_next)

and (overlap_area / next_area <= max_overlap_next)

add edge ((t,p),(t+1,n)) to M

S_prev = S_next

% Assign a common global_id to overlapping blobs

global_id = 1

for all nodes (t,p) in M

for each node (tx,px) in connected subgraph of M containing (t,p)

for each node p in S[tx][px]

F[t][p] = global_id

global_id = global_id + 1

11



– FourierFilter is used for Fourier filtering/smoothing of input data series. Although it provides a general implementation

that could be used for any dataset, it has primarily been used for smoothing long-term daily means produced from150

Climatology.

– VariableProcessor provides direct access to TE’s internal variable processing capability, allowing arithmetic and grid-

based operations to be applied to gridded data files. The operation of this utility is roughly analogous to that of the

NetCDF Operator ncap2 (NCO; Zender, 2008).

3 Selected examples155

In this section we present selected
::::::
several examples of tracking and analysis of different features; that is, different recipes for

combining the algorithmic kernels described in section 2 to produce composite tracking and analysis algorithms. In all exam-

ples, the corresponding TE commands are provided to both demonstrate that they are effective at conveying the operation in a

human-readable manner and to enable reproducability of our results. Past examples from the literature using TE are provided in

section 3.1. This is then followed by several examples from TE of feature-based tracking and subsequent analysis. These exam-160

ples include TC tracking in ERA5, fractional contribution of precipitation from TCs in ERA5 and TRMM, atmospheric river

tracking in ERA5, extratropical cyclone tracking in CMIP6 data, and finally generation of an atmospheric blocking climatology

using MERRA2 data.

3.1 Examples from the existing literature

Since version 1.0, TE has been employed for feature tracking in a number of scientific studies. Here we catalogue known165

publications emerging from those studies, organized by feature type.

Tropical Cyclones (TCs): More than any other feature, TE has been employed for the study of TCs. TE was first employed

as a TC tracker to understand intensity errors associated with one-way coupling between ocean and atmosphere in Zarzycki

(2016). It was subsequently used to investigate the TC wind-pressure relationship in Chavas et al. (2017), a relationship later

revisited in Moon et al. (2020) where TE was used to assess its sensitivity to model resolution. In Wing et al. (2019), TE was170

applied to native grid data produced using the Community Atmosphere Model Spectral Element (CAM-SE) dynamical core

to track TCs; outputs were then used to investigate the processes underlying moist intensification of TCs. A related study by

Camargo et al. (2020) used this dataset to investigate the large-scale environment around TCs. In Roberts et al. (2020a) and

Roberts et al. (2020b), TE-derived TC tracks were used to understand resolution sensitivity and future change in both historical

and future HighResMIP experiments (Haarsma et al., 2016) across several models. Along these lines, Balaguru et al. (2020)175

used TE to characterize TC climatology in the Energy Exascale Earth System Model (E3SM). Reed et al. (2020, 2021) used

TE to extract tracks of Hurricanes Florence (2018) and Dorian (2019) and attribute human influence on these storms. TE has

also been used for tracking storms in aquaplanet simulations (Chavas and Reed, 2019) so as to better understand how dynamic

forcing impacts TC genesis and size. Recent work by Stansfield et al. (2020) has also leveraged some of the more advanced

capabilities in TE to filter fields (e.g., precipitation) in the vicinity of tracked features to evaluate model performance. TE has180
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also been used for tracking of TCs in extremely high-resolution regional simulations (Steptoe et al., 2021) and investigating

TCs in paleoclimate simulations (Kiehl et al., 2021).

Extratropical Cyclones (ETCs): In order to better understand cyclonic storms and their impacts, Zarzycki et al. (2017) de-

veloped the ExTraTrack software framework atop TE to track TCs and ETCs through their entire lifecycle. This module enabled

cyclonic storms to be examined using the thermal wind and thermal asymmetry phase space of Hart (2003). ExTraTrack was185

later applied to a suite of high-resolution global simulations in Michaelis and Lackmann (2019) and Michaelis and Lackmann

(2021). ETCs were also tracked in the Community Earth System Model Large Ensemble (CESM-LENS) in Zarzycki (2018)

to understand the drivers responsible for snowstorms in the US Northeast. Then in Small et al. (2019), extratopical storms

tracked using TE were used to determine if resolving ocean fronts improves the representation of simulated storm tracks. In

Zhang et al. (2021) the vertical symmetry criterion from ExTraTrack was also adapted for tracking of Mediterranean Hurri-190

canes (Medicanes). Finally, TE was also used to track ETCs as part of an effort to evaluate severe local storm environments in

climate models and reanalysis (Li et al., 2020).

Monsoonal lows and depressions: Analogous to the study of Zarzycki and Ullrich (2017), Vishnu et al. (2020) optimized

DetectNodes
::::::::::
DetectNodes for tracking of monsoon lows and depressions. A comprehensive analysis of input fields found

that 850hPa streamfunction tended to produce better results compared with trackers based on sea level pressure, vorticity,195

and geopotential. A weighted Critical Success Index (CSI) (Di Luca et al., 2015) was used to determine tracker performance.

However, acknowledging the possibility of errors in the reference dataset (here the Sikka archive), the weighted CSI index used

in this analysis also considered the degree to which a track is represented similarly across all reanalyses. A related study by

Zhang et al. (2019) also tracked tropical depressions in the North Indian Ocean in 2018 to investigate anthropogenic impact on

this storm season, and a recent study by You and Ting (2021) used TE to assess trends in South Asian Monsoon low pressure200

systems.

Atmospheric blocking: In Pinheiro et al. (2019), a suite of atmospheric blocking methods from TE were applied to ERA-

Interim data to better understand sensitivities of atmospheric blocks to the detection algorithm and the meteorological environ-

ment around blocking features.

Atmospheric rivers (ARs): Atmospheric river tracking with TE was first documented as part of the Atmospheric River205

Transport Method Intercomparison Project (ARTMIP) in Shields et al. (2018), and later in Rutz et al. (2019). The pro-

posed algorithm used the Laplacian of the integrated vapor transport (IVT) field rather than the IVT field itself, thus flag-

ging IVT “ridges” rather than IVT over a threshold; this choice addressed issues of stationarity generally present in track-

ers using an IVT threshold. TE’s algorithm has since been used both for AR detection and tracking (with DetectBlobs and

StitchBlobs
::::::::::
DetectBlobs

:::
and

:::::::::
StitchBlobs) in several subsequent studies (Rhoades et al., 2020b, a; Patricola et al., 2020; Mc-210

Clenny et al., 2020; Huang et al., 2021; Zhou et al., 2021).

3.2 Tropical Cyclone Tracking in ERA5

In Zarzycki and Ullrich (2017), a sensitivity analysis was applied
::::::
carried

:::
out

:
to optimize TE for the detection of tropical

cyclones by benchmarking hit rate (HR) and false alarm rate (FAR) from reanalysis products against the International Best
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Track Archive for Climate Stewardship (IBTrACS; Knapp et al., 2010). The resulting configuration, which tracked storms215

based on sea level pressure minimum, produced the highest HR minus FAR differential in the literature across a wide range

of reanalysis products. An interesting result that emerged from this analysis was that upper level geopotential layer thickness

(typically Z300 minus Z500) was the most robust indicator of an upper level warm core across products. In this section we

apply the same configuration that provided maximal agreement between earlier-generation reanalyses and IBTrACS to ERA5

input (Hersbach et al., 2020) so as to identify ERA5 TC tracks.220

3.2.1 Step 1: Identify candidate storms

Tropical cyclone tracking is an exemplar of the MapReduce paradigm discussed earlier in this paper. Essentially all published

algorithms for TC tracking (e.g., Ullrich and Zarzycki, 2017, Appendix B) make use of a two-step process consisting of first

detecting TC candidates, then stitching together candidates in time. Both steps of this process include hard thresholds that

separate TCs from related features. Although TE allows users to vary the values of these thresholds, here we only consider one225

such variation of these parameters.

In the TC detection algorithm described in Zarzycki and Ullrich (2017), candidates are defined as are points that have both

a sea-level pressure minimum and an upper level
:::::::::
upper-level

:
warm core. These conditions are codified via the command:

DetectNodes --in_data_list ERA5_TC_files.txt --timefilter "6hr" \

--out_file_list ERA5_DN_files.txt \230

--searchbymin MSL \

--closedcontourcmd "MSL,200.0,5.5,0;_DIFF(Z(300hPa),Z(500hPa)),-58.8,6.5,1.0" \

--mergedist 6.0 \

--outputcmd "MSL,min,0;_VECMAG(VAR_10U,VAR_10V),max,2;ZS,min,0"

For this example, our ERA5 data comes from the NCAR Research Data Archive (European Centre for Medium-Range235

Weather Forecasts, 2019), with 3D time-series data provided at hourly resolution in daily chunks, 2D time-series data provided

at hourly resolution in monthly chunks, and 2D invariant data provided in a single file. The timefilter argument here indi-

cates that data should be downselected to six-hourly, which is typical for analysis of TCs. As different variables are distributed

across multiple files, the first two lines of the input data consist of several files containing 3D geopotential height on pressure

surfaces (Z), 2D mean sea level pressure (MSL), 2D 10 meter zonal and meridional wind speeds (VAR_10U and VAR_10V),240

and surface elevation (ZS), separated by semicolons. Note that TE supports different agglomerations of time slices, as it uses

the CF-compliant time to match time slices across files.

To first limit the search space of possible TCs, we identify candidates as local minima in the sea level pressure field. Two

closed contour criteria are used to eliminate candidates. As argued in Ullrich and Zarzycki (2017), closed contour criteria

are a more physically grounded way of defining features since they can be employed for both discrete and continuous fields245

– as opposed to, e.g., “gridpoint maxima” that are inherently sensitive to the dataset’s grid structure and spacing. The first

criterion we use for TCs is "MSL,200.0,5.5,0", which indicates that mean sea level pressure must increase by 200
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(Pa )
::
Pa

:
over a distance of 5.5� great-circle-distance

::::
great

::::::
circle

:::::::
distance

:
(GCD) from the candidate point (the low pres-

sure region must be of sufficient magnitude and sufficiently compact to be considered coherent). The second criterion is

"_DIFF(Z(300hPa),Z(500hPa)),-58.8,6.5,1.0" which indicates that the difference between geopotential (Z)250

on the 300hPa and 500hPa surfaces must decrease by 58.8 m2 s�2 (equal to 6 m geopotential height) over a distance of 6.5�

GCD, using the maximum value of this field within 1� GCD as reference. This second criterion indicates that there must be

a coherent upper-level warm core attached to the local low so as to structurally differentiate these features from extratropical

systems. It is also an example of TE’s ability to evaluate functions of meteorological fields at run-time. Finally, candidates that

have been identified with this protocol are eliminated if a stronger minimum exists within 6 degrees great circle distance
::::
GCD255

.

The remaining outputcmd argument
::::::::
argument

:::::::::::
outputcmd indicates three additional outputs that are calculated and

written as additional columns in each nodefile. Here "MSL,min,0" outputs the value of MSL at the candidate point,

"_VECMAG(VAR_10U,VAR_10V),max,2" outputs the maximum magnitude of the vector wind at 10 m altitude within 2�

GCD of the candidate, and "ZS,min,0" outputs the surface height at the candidate point. These variables are needed in the260

subsequent StitchNodes
:::::::::
StitchNodes step to construct and filter TC trajectories.

3.2.2 Step 2: Connect candidate storms together in time

Once TC candidates have been identified on each time slice, the “stitching” step in the algorithm ties these candidates together

in time to form TC trajectories (the “Reduce” operation in the MapReduce paradigm). Some features that are too weak, too

short-lived, or too disorganized are eliminated from contention at this stage. Also, features that are more likely related to265

topographic anomalies rather than real storms are also removed.

To build these trajectories with TE, we apply the StitchNodes
:::::::::
StitchNodes command to the output from Step

:::
step

:
1:

StitchNodes --in_list ERA5_DN_files.txt --out ERA5_TC_tracks.txt \

--in_fmt "lon,lat,slp,wind,zs" \

--range 8.0 --mintime "54h" --maxgap "24h" \270

--threshold "wind,>=,10.0,10;lat,<=,50.0,10;lat,>=,-50.0,10;zs,<=,150.0,10"

The first three arguments here indicate the input candidate nodefile (produced by DetectNodes
::::::::::
DetectNodes) and the output

nodefile. The format of these files differ because they convey different information – the former containing candidates detected

at each time slice, and the latter containing paths, or lists of candidates from different time slices. Nonetheless
:
,
:
auxiliary

candidate information computed with DetectNodes
::::::::::
DetectNodes’ outputcmd is preserved.275

The relevant tuning parameters are specified by range, mintime and maxgap and refer to the maximum distance (in

degrees GCD) that a feature can move between subsequent detections, the minimum persistence time of each trajectory (cal-

culated as the time between initiation and termination), and the maximum duration between two sequential detections, respec-

tively. In particular, maxgap is a novel option that allows for a path to be missing candidates for some time slices (for instance

due to temporary weakening of
:
a
:
TC as it passes over land).280
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Four field-dependent thresholds are then specified for a trajectory to be accepted. The first threshold "wind,>=,10.0,10"

indicates that the wind magnitude (derived from the “wind” column in the nodefile) must be greater than 10 m s�1 for at least

10 time slices; this ensures that these features are sufficiently intense to be classified as tropical storms. The next two thresh-

olds "lat,<=,50.0,10;lat,>=,-50.0,10" indicate that the latitude of the feature must be between 50S and 50N for

at least 10 time slices, so as to eliminate any extratropical features that could not have existed as tropical storms. The final285

threshold "zs,<=,150.0,10" indicates that the feature must exist at an elevation below 150 m for at least 10 time slices;

this removes false alarms that can often appear in regions of rough topography associated with PSL correctionformulations
:::
that

::
are

:::::::::
associated

::::
with

:::
the

:::
sea

:::::
level

:::::::
pressure

::::::::
correction.

3.2.3 Results from the generation of tropical cyclone trajectories

Figure 2 depicts the tropical cyclone trajectories produced from this analysis in ERA5, along with IBTrACS over the same290

period for reference. Storms are color-coded by sea level pressure, as opposed to surface winds, since it has been found that

the former is better resolved in coarser datasets (Chavas et al., 2017). With that said, this procedure may overestimate storm

intensity at higher latitudes where storms are beginning to undergo extratropical transition. While ERA5 tracked storms
::::::
tracked

:::::
storms

:::
in

:::::
ERA5

:
are generally too weak in aggregate (lower density of orange and red trajectories in top panel), a common

problem amongst reanalyses (Schenkel and Hart, 2012; Murakami, 2014; Hodges et al., 2017), the method shows high spatial295

and temporal correlation of storm climatology when compared to pointwise observations, and produces superior hit rates (78%

for all TCs and 95% for those with wind speeds exceeding 33 m s�1) and false alarm ratios (14% globally) when compared to

many legacy tracking techniques (Zarzycki et al., 2021).

The TC detector described in this section was run on the NERSC Cori supercomputer on one node and using 32 threads.

When run over the ERA5 data from January 1979 through February 2020 at 6 hourly temporal resolution, with 15,035 daily300

files, DetectNodes
::::::::::
DetectNodes required 140 minutes run time. DetectNodes

::::::::::
DetectNodes on Cori is strongly I/O bound, with

reads from NetCDF files responsible for 81% of the total runtime. StitchNodes
::::::::::
StitchNodes required 4 minutes and 55 seconds

to process all 15,035 outputs from DetectNodes
::::::::::
DetectNodes.

3.3 Fractional contribution of precipitation from TCs

For the examples here, we calculate the fractional contribution of precipitation from TCs for one reanalysis dataset, ERA5, and305

one observational dataset, the Tropical Rainfall Measuring Mission (TRMM3B42; Huffman et al., 2007). For ERA5, the TC

track files are created as described in Section 3.2. For TRMM, the IBTrACS dataset is used for TC track observations. Because

there are limited comprehensive and long-term observational datasets of complete TC wind fields, ERA5 wind field data is

combined with IBTrACS to calculate the outer radius , r8, at every timestep for all historical TC tracks for the TRMM analysis.
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Figure 2. Tropical cyclone trajectories from ERA5 (top) and IBTrACS (bottom) over the period 1980-2019, inclusive. TempestExtremes is

used to track TCs in ERA5, while pointwise observation are used for IBTrACS. Coloring denotes the instantaneous Saffir-Simpson category

of the tropical cyclone. Category is
:::
The

:::::::
categories

:::
are

:
computed from sea level pressure and applying the pressure-wind relationship of

Atkinson and Holliday (1977) with updated coefficients from Knaff and Zehr (2007). The discontinuity at 180� longitude in the bottom

panel is due to historical forecast center responsibilities.
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3.3.1 Step 1: Compute the outer radius of each tracked TC310

As argued by Schenkel et al. (2017), the largest radius outside of the eyewall where the azimuthally-averaged wind speed

exceeds 8 m s�1 (r8) tends to be a good measure of the outer size of a TC. In Stansfield et al. (2020), TE was used to examine

the distribution of r8 among TCs in reanalysis data in ERA5 and a series of runs from
:::
with

:
the Community Earth System Model

(CESM). This paper
::::
They

:
further compared and contrasted TC-related precipitation within r8 against precipitation within a

fixed distance of 500 km. We thus follow Stansfield et al. (2020) and use r8 as our criterion for grid points to be part of the TC.315

To begin, radial profiles and radius of 8 m s�1 wind are added to the nodefile generated in section 3.2.2 and the IBTrACS

nodefile (not shown):

NodeFileEditor --in_data_list ERA5_TC_files.txt --in_nodefile ERA5_TC_tracks.txt \

--in_fmt "lon,lat,slp,wind,zs" --out_nodefile ERA5_TC_radprofs.txt \

--out_fmt "lon,lat,rsize,rprof" --time_filter "6hr" \320

--calculate "rprof=radial_wind_profile(VAR_10U,VAR_10V,159,0.125); \

rsize=lastwhere(rprof,>,8)"

The input to this operation includes the files containing the 2D ERA5 10 meter zonal and meridional wind speeds (VAR_10U

and VAR_10V), and the nodefile generated in section 3.2.2. As part of this analysis we also augment an IBTrACS nodefile

in a similar manner, using the IBTrACS TC tracks, but ERA5 winds to estimate TC size (command not shown here). As in325

section 3.2.1, a time filter is used to only analyze 6-hourly time slices of data. Internal to the execution of this command is the

construction of a date object for each entry of the nodefile, which is then cross-referenced against every time slice in the list of

datafiles to find the corresponding field – in this way indexing is abstracted from the user.

The calculations requested from NodeFileEditor
::::::::::::
NodeFileEditor are specified by the calculate argument, executed from

left to right. First the radial profile is computed with radial_wind_profile(VAR_10U,VAR_10V,159,0.125) and330

stored in variable rprof. These arguments indicate which variables should be used for the calculation, and that the radial

profile should consist of 159 bins of width 0.125 degrees GCD. After the radial profile is calculated, the last value where the

radial wind profile is greater than 8 m s�1 is located and output
::::::
written to the nodefile. The last value in the array is taken

because we want to avoid recording the radius of the 8 m s�1 wind within the TC inner core. The number of bins and
:::
the bin

width were chosen based on the horizontal grid spacing of the ERA5 wind data, which is approximately 31 km. The bin width335

of 0.125� was chosen to adequately sample
:::::::::
adequately

:::::::
samples points at this grid spacing to create the radial wind profiles.

The number of bins was chosen to ensure
::::::
ensures

:
the radial averaging extended out far enough from the TC center points to

capture the storms’ complete wind circulations.

3.3.2 Step 2: Build a mask using the outer radius of
::
the

:
storm

With the r8 value for each TC now in hand, we define “TC-related precipitation” as any precipitation which occurs in
::
at

:
grid340

points that are considered part of a TC. Employing TE’s NodeFileFilter
::::::::::::
NodeFileFilter command, precipitation outside of the

circle with radius r8 centered on each TC is set to zero:
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NodeFileFilter --in_nodefile ERA5_TC_radprofs.txt --in_fmt "lon,lat,rsize,rprof" \

--in_data_list ERA5_precip_files.txt \

--out_data_list ERA5_filtered_precip_files.txt \345

--var "PRECT" --bydist "rsize"

The input nodefile is the output nodefile from NodeFileEditor
:::::::::::::
NodeFileEditor, now augmented with the radius of 8 m s�1

winds. The input data contain 6-hourly ERA5 precipitation data from the NCAR Research Data Archive (European Centre

for Medium-Range Weather Forecasts, 2019) under variable name PRECT. Precipitation in ERA5 is calculated from hourly

forecasts initialized from the analysis at 06:00UTC
::
00

::::
UTC

:
and 18:00UTC

::
00

::::
UTC. Precipitation is converted from hourly to350

6-hourly by adding up the accumulated precipitation 3 hours before and 3 hours after the desired timesteps of 00:00UTC
::
00

::::
UTC, 06:00UTC

::
00

:::::
UTC, 12:00UTC

::
00

:::::
UTC, and 18:00UTC

::
00

:::::
UTC. For example, to calculate 6-hourly precipitation at

06:00UTC
::
00

::::
UTC, the precipitation from 03:00UTC

::
00

:::::
UTC to 09:00UTC

::
00

::::
UTC

:
is added up. For the TRMM analysis,

the TRMM precipitation data is originally 3-hourly, so before analysis the TRMM data is summed into 6-hourly data. This is

done using a centered averaging method, so for example, to calculate 6-hourly precipitation at 06:00UTC
::
00

::::
UTC, half of the355

03:00UTC
::
00

:::::
UTC precipitation, all of the 06:00UTC

::
00

:::::
UTC precipitation, and half of the 09:00UTC

::
00

::::
UTC

:
precipitation

are added up. Output consists of a sequence of NetCDF files, one for each input file, containing filtered precipitation.

The final argument specifies how the filtering is performed, in this case “by distance ”
::
by

:::::::
distance

:
using rsize. This proce-

dure only keeps precipitation grid point values that are within this distance of each detected TC. Internally to NodeFileFilter
::::::::::::
NodeFileFilter,

the mask is computed through the employ of
::
by

:::::::::
employing

:
a kd-tree (see discussion in Ullrich and Zarzycki, 2017).360

3.3.3 Results from the generated tropical cyclone precipitation climatology

Figure 3 shows the percent
::::::
relative

:
contribution to global precipitation from TCs for ERA5 and TRMM, calculated by using

NCO’s ncra to sum up the TC precipitation within r8 filtered by NodeFileFilter
::::::::::::
NodeFileFilter and dividing it by the sum of

the total precipitation over the entire length of the datasets (1985-2019 for ERA5 and 1998-2014 for TRMM). The areas of

largest TC contribution align with the areas of the highest TC activity shown in Figure 2 and typically occur over the ocean,365

in broad agreement with Prat and Nelson (2013). Khouakhi et al. (2017) (their Figure 3b) made a similar plot, except using

land-based gauge data and for a slightly different time period, and showed similar locations of maximum contributions of

40-50% over northwestern Australia and eastern Asia.

3.4 Extratropical cyclones

Extratropical cyclones (ETCs) are mid-latitude, synoptic scale weather features responsible for a host of impacts, including370

high winds, coastal surge, and heavy precipitation, which can fall as rain, snow, sleet, or freezing rain (Schultz et al., 2019;

Dacre, 2020). Even though these features occur at relatively large spatial scales, models still have difficulty in capturing hazards

related to ETCs (e.g., Colle et al., 2015; Catalano et al., 2019), emphasizing the importance of evaluating them at a process

level in weather and climate datasets.
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Figure 3. Percent contribution to precipitation from tropical cyclones using precipitation field from (left) ERA5 and (right) TRMM.

Here we produce two-dimensional composites of several field associated with ETCs tracked in the first historical member375

of the Community Earth System Large Ensemble (Kay et al., 2015). ETCs over the northeastern United States were originally

analyzed in this dataset in Zarzycki (2018). The years available for analysis in the historical simulations range from 1990-2015,

inclusive. We also apply a pre-defined intensity threshold and spatially constrain ETCs to pass over the continental United States

(CONUS) in order to demonstrate a regional analysis and highlight both the filtering and compositing capabilities of TE.

3.4.1 Step 1: Generate extratropical cyclone trajectories380

The algorithm applied here identifies cyclonic storms as sea level pressure minima. To avoid topographic lows and other

features that are not meteorological in character, additional criteria are imposed on the minimum lifetime and propagation

distance. Note that while the algorithm is highly similar to that published in Zarzycki (2018), other ETC detection algorithms

analogous to those published in the Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; Neu et al., 2013) can be

configured using TE’s command line options. These alternative approaches include tracking on low-level geopotential height385

(vorticity) minima (maxima)
::::::
minima

::
or

::::::::
vorticity

:::::::
maxima, filtering based on spatial gradients, and removing candidate storms

over higher terrain (see Table 1 in Neu et al. (2013)). Also, while a more complex algorithm could help eliminate cyclones

that are tropical in nature (e.g., by using the no_closed_contour argument to eliminate candidates with an upper level

warm core), one is not
::::
none

:
is
:

applied here due to the relatively low resolution of CESM LENS. These coarser grid spacings

are generally insufficient to resolve TCs (Walsh et al., 2015), although higher resolution
::::::::::::::
higher-resolution

:
evaluations of ETCs390

may require additional exclusionary thresholds to minimize their inclusion in storm track datasets if desired.

To begin, cyclonic storms are identified using DetectNodes
:::::::::::
DetectNodes by following sea level pressure (here, PSL) minima

in 6-hourly data:

DetectNodes --in_data_list B20TRC5CNBDRD.001.PS_list.txt --out cyclone_candidates \

--closedcontourcmd "PSL,200.0,6.0,0" --mergedist 6.0 \395
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Figure 4. Track density maps for all CONUS ETCs tracked in the first historical member of CESM LENS (left) and only ETCs with simulated

SLP less than or equal to 990 hPa (right). Units are number of six-hourly ETC occurrences per 5�x5� grid box per year.

--searchbymin "PSL" --outputcmd "PSL,min,0"

Our criterion for cyclonic storms is that the minimum pressure must be enclosed by a closed contour of 200 Pa within 6.0�

of cyclone center. This minimum pressure location also defines the cyclone center. Candidates within 6.0� of one another are

merged, with the lower pressure taking precedence. Outputs from DetectNodes
::::::::::
DetectNodes are then concatenated into a single

candidate list, and StitchNodes
::::::::::
StitchNodes is run to track these features in time:400

StitchNodes --in_fmt "lon,lat,slp" --in_list candidate_list.txt \

--out etc-all-traj.txt \

--range 6.0 --mintime 60h --maxgap 18h --min_endpoint_dist 12.0 \

--threshold "lat,>,24,1;lon,>,234,1;lat,<,52,1;lon,<,294,1"

Here the StitchNodes
::::::::::
StitchNodes thresholds require that storms persist for at least 60 hours, with a maximum gap (time405

between sequential detections satisfying the DetectNodes
::::::::::
DetectNodes criteria) of at most 18 hours. Further

::::::::::
Furthermore, at

least one point must pass through a geographic region (representing CONUS) bounded by 24�N and 52�N latitude and 234�E

and 294�E longitude. We also require ETCs move at least 12� GCD from the start to the end of the trajectory, as specified by

the min_endpoint_dist argument, in order to eliminate stationary features (e.g., the Icelandic Low) and spurious shallow

lows generated over regions of high topography.410
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3.4.2 Step 2: Filter out ETCs with sea level pressure above 990hPa

In some cases, it may be desirable to filter out the more intense, potentially more impactful, events. While the definition of a

strong ETC is inherently subjective, we define a central pressure of 990 hPa as the demarcation between strong and moder-

ate/weak ETCs as in Zhang and Colle (2017). To do so, all ETCs tracked in Step
:::
step

:
1 are passed into NodeFileEditor

:::::::::::::
NodeFileEditor,

where a new trajectory file specified by argument out_nodefile is generated with storms only possessing intensities of 990415

hPa or lower:

NodeFileEditor --in_nodefile etc-all-traj.txt \

--in_data_list B20TRC5CNBDRD.001.PRECT_list.txt \

--in_fmt "lon,lat,slp" --out_fmt "lon,lat,slp" \

--out_nodefile etc-strong-traj.txt \420

--colfilter "slp,<=,99000."

Figure 4 shows the annual track density of all ETCs tracked in Step
:::
step

:
1 (left) and the same plot but with only the subset

of ETCs stronger than 990 hPa included (right). These results broadly match those of other ETC trackers depicted in Fig. 1 of

Neu et al. (2013), with a storm track belt extending across the North Atlantic centered on approximately 40-60�N latitude.

3.4.3 Step 3: Filter data within 25 degrees of storm center and composite425

Corresponding precipitation rate outputs from the same ensemble member are masked within 25� GCD of a storm center

tracked in step 1. Here, all precipitation associated with the cyclone is retained while all precipitation not within 25� of a storm

is set to zero.

To extract spatial information associated with ETCs we first filter a spatiotemporally continuous gridded dataset using

NodeFileFilter
::::::::::::
NodeFileFilter:430

NodeFileFilter --in_nodefile etc-all-traj.txt --in_fmt "lon,lat,slp" \

--in_data_list B20TRC5CNBDRD.001.PRECT_list.txt \

--out_data_list B20TRC5CNBDRD.001.PRECT_FILT_list.txt \

--var "PRECT" --bydist 25.0 --maskvar "mask"

A binary variable named ‘mask’ (as specified by argument maskvar) is also included in the filtered files for reference and435

can be used for offline masking and visualization.

As a last step, storm-centered composites are generated using the command:

NodeFileCompose --in_nodefile etc-strong-traj.txt --in_fmt "lon,lat,slp" \

--in_data_list B20TRC5CNBDRD.001.PRECT_FILT_list.txt \

--out_data "composite_PRECT.nc" \440

--var "PRECT" --max_time_delta "2h" --op "mean" --dx 1.0 --resx 80
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Figure 5. Composites of meteorological quantities centered on ETC storm center of all filtered storms with SLP less than or equal to 990

hPa in the first CESM-LENS historical member. Shown from left to right are precipitation rate (mm day�1), 850 hPa temperature (K) with

overlain 850 hPa wind vectors (m s�1) and integrated vapor transport (g kg�1) with overlain 600 hPa pressure velocity (omega) contours

(every hPa hr�1 starting at -2 hPa hr�1) . Each composite includes 11,164 data points.

Here, only ETCs filtered above to have central SLP values below 990 hPa are composited. Although we can composite

any 2D field, here we apply the compositing tool to precipitation filtered by NodeFileFilter
::::::::::::
NodeFileFilter. The argument

max_time_delta indicates that the data slice nearest in time to the tracked feature (within 2 hours) should be composited –

this is useful when the discrete times from data and features are not exactly aligned. The arithmetic mean is calculated centered445

on the storm location (see section 2.4). The resulting stereographic composite has a grid spacing of 1� and a resolution of

80x80
:::

grid
:::::
points.

3.4.4 Results from compositing extratropical cyclone fields

Figure 5 shows the composited precipitation rate field (PRECT), along with analogously calculated composites of 850 hPa

temperature (T850) and integrated vapor transport (IVT). Total precipitation is largest near the storm center. Further, advection450

of warm, moist air wrapping cyclonically around the eastern side of the storm center is seen in the 850 hPa temperature field

(composite wind vectors shown in black). Lastly, the collocation of high values of IVT and rising motion in the mid-troposphere

(600 hPa omega contours shown in white) shows strong upward and poleward moisture advection associated with the warm

conveyor belt, as previously shown in hand-compositing studies (e.g., Browning, 1986; Field and Wood, 2007).

3.5 Atmospheric Rivers455

Atmospheric rivers (ARs) are thin and long filamentary structures characterized by high integrated vapor transport (IVT; Payne

et al., 2020). As found by Zhu and Newell (1998), ARs are responsible for approximately 90% of poleward vapor transport.
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Our goal in this section is to reproduce this result in 20 years of ERA5 reanalysis using the Tempest AR detection algorithm

(Shields et al., 2018; Rhoades et al., 2020b, a; McClenny et al., 2020).

3.5.1 Step 1: Detect ridges in the IVT Field460

As described in McClenny et al. (2020), the Tempest AR detection algorithm detects ARs as ridges in the IVT field, where

IVT is defined pointwise as

IVT=
p
VIWVE2 +VIWVN2. (1)

Here we have adopted the nomenclature of ERA5 for vertically-integrated eastward vapor transport (VIWVE) and northward

vapor transport (VIWVN). Ridge points are associated with high downward curvature, and identified as those points where the465

Laplacian of the IVT field is below a fixed threshold (here chosen to be �2⇥ 104 kgm�2s�1rad�2). These points are useful

indicators of the presence of ARs because this threshold identifies either long and narrow features or localized maxima (which

are subsequently filtered using a minimum area criterion). Here the Laplacian is calculated using 8 radial points at a distance

of 10� GCD (as described in Appendix B); this large stencil on the Laplacian provides some smoothing of the field. Note that

all field manipulation routines are handled by TE internally. The command line for this operation is as follows:470

DetectBlobs --in_data_list ERA5_IVT_files.txt --out_list ERA5_AR_files.txt \

--timefilter "6hr" \

--thresholdcmd "_LAPLACIAN{8,10}(_VECMAG(VIWVE,VIWVN)),<=,-20000,0" \

--minabslat 15 --geofiltercmd "area,>=,4e5km2"

The first three arguments in this command simply refer to the list of input files, output files and specify that data should be475

downsampled to 6-hourly timesteps. The meat of the
::::::::::::
gridpoint-level

:::::::
filtering

:
operation is specified via the thresholdcmd

argument, which uses the gridded data processor kernel built into TE to internally process the eastward and northward com-

ponents of the integrated vapor transport (VIWVE and VIWVN, respectively) during the tagging operation. Specifically, the

operation specified here identifies candidate grid points using a threshold on the Laplacian of the IVT. This command first

calculates IVT using the vector magnitude operator, then calculates the Laplacian of the resulting field. Only points whose480

Laplacian is less than the threshold are retained. The last two arguments are then used to remove features too near the equator

and those that are deemed too small: the latitude of each tagged grid point must be at least 15�, and each blob must have a

minimum area of 4⇥ 105 km2. Such filtering criteria are typical for AR trackers (Shields et al., 2018).

3.5.2 Step 2: Filter out tropical cyclones

As noted in McClenny et al. (2020), tropical cyclones, which also tend to exhibit large values of IVT, are sometimes picked up485

as part of the detection procedure. Although their contribution to poleward IVT is small, it is nonetheless desirable to exclude

TCs from this calculation. This can be done using the ERA5 TC tracks produced in section 3.2 to filter out points within a

prescribed distance of each detected TC:
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Figure 6. ERA5 integrated vapor transport (IVT) field with AR mask (black outlines) from 2019-02-25 18:00 UTC. Tropical cyclones that

have been filtered from the AR mask are indicated with black dashed lines (8� radius GCD).

NodeFileFilter --in_nodefile ERA5_TC_tracks.txt --in_fmt "lon,lat,slp,wind,zs" \

--in_data_list ERA5_AR_files.txt --out_data_list ERA5_AR_NFF_files.txt \490

--var "binary_tag" --bydist 8.0 --invert

Here the nodefile from ERA5 is specified by in_nodefile and in_fmt. The input list of files containing the AR binary

masks, specified with in_data_list,
:

is the same as the output from DetectBlobs
::::::::::
DetectBlobs. The filtered output files

are written to the filelist
:::
file specified by out_data_list. The last two arguments here are key to the filtering procedure,

specifying that the mask should include all points except those within 8 degrees GCD of each nodal feature.495

Figure 6 shows the ERA5 integrated vapor transport (IVT) field on 2019-02-25 at 18:00 UTC, along with the outlines of

AR objects detected using TE. On this date, an AR event on this date was responsible for flooding in California’s Russian

River basin (seen here intersecting the US West Coast). Dashed lines in this plot show the footprint of Super Typhoon Wutip at

(139.75E, 15N) and Tropical Cyclone Pola at (175.5W, 14S), both of which have been excluded from the AR mask. Notably,

Pola does not appear in IBTrACS until 2019-02-26 06:00:00 UTC.500

3.5.3 Step 3: Apply AR mask to northward vapor transport field

To now investigate AR and non-AR poleward moisture transport, we apply the mask generated in Step
:::
step

:
2 to the VIWVN

field (northward vapor transport). Here we leverage the VariableProcessor executable, which allows us to apply TE’s built-in
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operations on a set of input files. Here the input file list ERA5_VPIN.txt is the same as ERA5_AR_NFF_files.txt,

except with the corresponding ERA5 VIWVN file appended to each line. To perform the processing we apply the command:505

VariableProcessor --in_data_list ERA5_VPIN.txt --out_data_list ERA5_VPOUT.txt \

--timefilter "6hr" \

--var "_PROD(binary_tag,VIWVN);_PROD(_DIFF(1,binary_tag),VIWVN)" \

--varout "VIWVN_PW_AR,VIWVN_PW_NONAR"

The var argument here is specified to leverage TE’s internal gridded variable processor. Since binary_tag only has510

value 0 or 1, the product of VIWVN and binary_tag will capture points within ARs, whereas the product of of VIWVN

and _DIFF(1,binary_tag) will capture points not within ARs. These two variables are then written as VIWVN_AR and

VIWVN_NONAR in the output file.

Once AR and non-AR northward IVT have been calculated on a gridpoint level, the final processing step is handled outside

of TE. To do so we take the time average and zonal average of the fields produced by VariableProcessor using NCO’s robust515

record-averaging
:::::
record

:::::::::
averaging (ncra) and weighted averager

::::::::
averaging (ncwa) operators.

3.5.4 Results from calculation of northward vapor transport from AR and non-AR points

Figure 7 shows zonal mean northward IVT for AR and non-AR points (top row), along with the relative contribution to

northward IVT from ARs (bottom row). Note that because it is a fractional quantity, the bottom row equivalently shows

fractional contribution to poleward IVT. The top row here is complementary to Rutz et al. (2019) Figure 14 (middle), which520

was computed with 6-hourly MERRA2 data. The agreement between these two results is reassuring and confirms that the

AR tracker employed in this section is consistent with other trackers. In the lower figure we see that the AR contribution to

poleward transport around 45N and 45S is indeed close to the 90% value reported by Zhu and Newell (1998), although this

contribution then decays precipitously at more poleward latitudes. Note, however, that this is in part because AR moisture

transport is almost always poleward, whereas non-AR transport is a mix of both poleward and equatorward contributions.525

The AR detector described in this section was run on the NERSC Cori supercomputer on two nodes with 32 threads per

node (64 threads total). When run over the ERA5 monthly data from January 1979 through February 2020 at 6 hourly temporal

resolution, with 494 monthly files, DetectBlobs
::::::::::
DetectBlobs required 34 minutes and 42 seconds. Again this run was largely I/O

bound, with 66% of the total run time from file input. Approximately 13% of the total run time is spent applying the Laplacian

operator, while 6% (2 minutes and 10 seconds) is spent constructing the Laplacian. Again using 64 threads, NodeFileFilter530

::::::::::::
NodeFileFilter required 50 seconds while VariableProcessor required 14 minutes and 14 seconds.

3.6 Atmospheric Blocking

Our final example addresses the development of a climatology of atmospheric blocking frequency. Atmospheric blocking events

are synoptic-scale weather phenomena characterized by persistent obstruction of the normal westerly flow and associated with

heat waves, cold spells, flooding and drought (Glickman, 2012). In Pinheiro et al. (2019) (hereafter PUG19), several 2D535
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Figure 7. [top] Northward IVT (IVTn) from AR and non-AR grid points. [bottom] Fractional contribution to IVTn from AR points by

latitude.

algorithms were compared for the detection and characterization of blocking features; it .
::
It
:
was found that the identification

algorithm of Dole and Gordon (1983) (hereafter DG83), which identifies blocks as anomalously high values of geopotential

height at 500hPa (Z500), was a robust method for global block detection and characterization. In this section we will employ TE

to generate a climatology of blocking events using the modified DG83 algorithm of PUG19 as applied to MERRA2 reanalysis

data (Gelaro et al., 2017).540

3.6.1 Step 1: Generate the blocking threshold

Following PUG19, a grid point is defined as a candidate for being blocked if the Z500 field exceeds a threshold Z500 value. This

threshold value must be specified as a function of latitude, longitude, and time, given the geographical and seasonal variations

in Z500 climatology. PUG19 suggest a threshold value equal to the daily mean Z500 plus the maximum of 100 meters or

1.5 times the daily standard deviation of the Z500 field. Given that only 40 years of MERRA2 reanalysis are available, daily545

averaged data tends to be quite noisy and so Fourier smoothing is employed in time and space.

MERRA2 stores the 3D geopotential height variable in the inst3_3d_asm_Np dataset using variable name “H”. For

simplicity we assume that the input files contain a list of all files from this dataset from 1980/01/01-2020/06/30 (40.5 years).

Within this dataset the 500hPa geopotential height variable can be specified by variable name H(500hPa), where the vertical

index is determined automatically by TE. The first step described in Pinheiro et al. (2019) is the construction of a Fourier-550

filtered long-term daily mean (LTDM) climatology of the Z500 field and its square. The Climatology executable is used in this

step, and can be executed in parallel:
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Climatology --in_data_list MERRA2_H_files.txt --out_data MERRA2_H_LTDM.nc \

--var "H(500hPa)" --period "daily" --type "mean" --missingdata

Climatology --in_data_list MERRA2_H_files.txt --out_data MERRA2_H2_LTDM.nc \555

--var "H(500hPa)" --period "daily" --type "meansq" --missingdata

Here the missingdata argument is needed since the 500hPa pressure surface sometimes falls below the ground in the

vicinity of the Himalayas, which is indicated in MERRA2 with missing values. Note that, relevant to subsequent command

lines
::::::::
commands, Climatology automatically prepends the descriptor “dailymean_” to the variable, so the final climatology is

written to variable “dailymean_H”.560

We now calculate the standard deviation of the H(500hPa) field using the VariableProcessor:

VariableProcessor --in_data "MERRA2_H_LTDM.nc;MERRA2_H2_LTDM.nc" \

--out_data "MERRA2_H_mean_stddev.nc" \

--var "dailymean_H,_SQRT(_DIFF(dailymeansq_H,_POW(dailymean_H,2)))" \

--varout "dailymean_H,stddev_H"565

We then apply a 4-mode Fourier filter to both the dailymean_H and stddev_H fields across the time dimension, and a

2-mode Fourier filter to the stddev_H field in the zonal direction:

FourierFilter --in_data MERRA2_H_mean_stddev.nc \

--out_data MERRA2_H_mean_stddev_timesmoothed.nc \

--var "dailymean_H,stddev_H" --dim "time" --modes 4570

FourierFilter --in_data MERRA2_H_mean_stddev_timesmoothed.nc \

--out_data MERRA2_H_mean_stddev_smoothed.nc \

--var "stddev_H" --preserve "dailymean_H" --dim "lon" --modes 2

Finally the threshold is computed as H500⇤ =H500+max(1.5⇥H500stddev,100) via the command line

VariableProcessor --in_data MERRA2_H_mean_stddev_smoothed.nc \575

--out_data MERRA2_threshold_H_filtered.nc \

--var "_SUM(dailymean_H,_MAX(100.0,_PROD(1.5,stddev_H)))" --varout "threshold_H"

After performing these operations, a 365-day time series of the threshold field is obtained, plotted in Figure 8 on January 1st

and July 1st. Note that this VariableProcessor operation could also have been performed using other climate data processing

software, such as NetCDF operators or a simple Python script; however, TE’s support for parallelization over files allows for580

these computations to be performed rapidly on supercomputing systems.
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Figure 8. January 1st and July 1st MERRA2 blocking threshold generated with the command sequence in section 3.6.1.

3.6.2 Step 2: Identify regions of geopotential above the blocking threshold

With the LTDM blocking threshold in hand, we now define blocking features as sufficiently large contiguous regions where all

points exceed the blocking threshold. As blocking is primarily a midlatitudinal feature, we also focus only on points between

25� N/S and 75� N/S.585

The newly generated LTDM threshold file is appended to each line of the input data list so it can be accessed by DetectBlobs
::::::::::
DetectBlobs.

The output file list has the same number of lines as this input list, but contains the output files that will contain the binary tags

for tagged points.

DetectBlobs

--in_data_list MERRA2_DB_files.txt --out_list MERRA2_blocktag_files.txt \590

--thresholdcmd "_DIFF(H(500hPa),threshold_H),>=,0,0" \

--minabslat 25 --maxabslat 75 --geofiltercmd "area,>,1e6km2" --tagvar "block_tag"

This command tags points as candidates when 500 hPa geopotential height equals or exceeds the blocking threshold. We further

remove candidate points equatorward of 25� N/S and poleward of 75� N/S and only retain contiguous regions whose area is at

least 106km2.595

3.6.3 Step 3: Enforce a minimum duration for blocks and build climatology

Besides being regions of anomalously high geopotential, blocking events must also be sufficiently persistent (Glickman, 2012).

Although the AMS Glossary uses a typical duration of 7 days to indicate persistence, we follow PUG19 and retain events which

last at least 5 days.
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To determine the duration of individual events, we use StitchBlobs
:::::::::
StitchBlobs to connect blocking features in time, imposing600

that events are connected in time if they overlap by at least 20%. Features that do not persist for at least 5 days are discarded.

The algorithm used here is described in detail in section 2.6. Here we use the following command:

StitchBlobs

--in_list MERRA2_blocktag_files.txt --out_list MERRA2_blockid_files.txt \

--var "block_tag" --mintime "5d" --min_overlap_prev 20 --flatten605

The criteria here require that blobs exist for at least 5 days continuously, and that blobs are considered to be connected

in time only when 20% of the area of the blocked object at the previous time step is covered by the new blob (specified

by min_overlap_prev). The flatten argument indicates that only binary occurrence of a feature (0 or 1) should be

recorded after stitching. If this argument was not specified, then each object would be assigned a unique global integer identifier,

as described in section 2.6.610

To build a seasonal climatology of blocking features, the blocking data from StitchNodes
::::::::::
StitchNodes is post-processed.

Since the presence of blocking is given with a binary indicator, this command is in effect calculating the fraction of timesteps

where blocking occurs:

Climatology --in_data_list MERRA2_blockid_files.txt \

--out_data MERRA2_blocking_climo.nc --var "object_id" --period "seasonal"615

3.6.4 Results from the generated blocking
::::::::
Blocking climatology

:::::
results

The generated blocking climatology in the boreal winter (December-January-February) and boreal summer (June-July-August)

is depicted in Figure 9. Results are generally in agreement with the climatology of Pinheiro et al. (2019), and show substantial

wintertime blocking in the North Atlantic and Pacific. A snapshot of blocked regions on 2013-12-07 6Z
::::
06:00

:::::
UTC is further

depicted in Figure 10 (black outlines). The blocking feature present in the Northern Pacific at the time was associated with620

anomalous dry conditions in California and anomalous warmth in Alaska.

4 Conclusions

Automated feature tracking capabilities have been frequently and successfully employed throughout the literature to evaluate

regional and global models, investigate the drivers and environments of extreme weather events, and understand future change

in the statistics of atmospheric features. Feature trackers further provide an important mechanism for extracting relevant in-625

formation from large climate datasets, including reanalysis and observational datasets, and climate model simulations. This is

particularly important as the stakeholder needs for climate data associated with societally relevant impacts grow larger.

As there are significant overlaps across
::
in

:
the core functionality of these trackers, there is a clear added benefit to integrating

these kernels within a single framework. TempestExtremes (TE) is one such framework, with generalized kernels for identify-

ing, characterizing, and analyzing both nodal
::::::
(point) and areal features. Although

:::::
While version 1 of TE was primarily focused630
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Figure 9. Percentage occurrence of blocking during (left) boreal winter and (right) boreal summer.

Figure 10. A snapshot of blocked regions in MERRA2 data detected on 2013-12-07 6Z
::::

06:00
::::
UTC

:
(the three black outlines) atop the

H(500hPa) field at this time.
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on tropical and extratropical cyclones (Ullrich and Zarzycki, 2017), version 2 of TE has since added substantial new function-

ality for areal feature tracking, characterizing and compositing features, and more dataset-agnostic parameters and thresholds.

TE focuses on high-throughput data processing, including continued MPI support for core executables
::
to

:::::::::
parallelize

:::
file

::::::
system

::::::::
operations. Such a framework has clear scientific relevance, enabling the development of feature catalogues, and addressing

questions related to specific features, including those commonly associated with extreme weather. As TE further exposes all635

tuning parameters, users are able to easily investigate sensitivities of the tracker, or optimize the tracker for detecting particular

features.

In this paper we have described some of the newer algorithmic kernels exposed by TE, and shown how these kernels can

be composited to build robust tracking algorithms for many important atmospheric features. The tracking capability enables

the probing of deeper scientific questions related to individual features. To demonstrate this functionality, TE was employed640

in section 3.3 for tracking of tropical cyclones (TCs) and calculated
::::::::
calculating

:
the fractional contribution of TC precipitation

to total precipitation in each region. Ultimately, with the suite of trackers available from
:::::::
provided

::
by

:
TE, a global climatology

can be constructed that attributes total precipitation to features; i.e.
:::
e.g., using TE we showed that TCs contribute to 20-40%

of total precipitation in the tropical regions of the Pacific and South Indian Ocean in both satellite observations and ERA5

reanalysis. In section 3.4, an analysis of the composited characters of extratropical cyclones in the CESM large ensemble was645

performed to understand climatological track density and meteorological fields, enabling evaluation of model performance and

better communication of the relevant underlying processes. In section 3.5, a novel atmospheric river detection algorithm was

developed using TE and validated against meridional moisture transport put forward in Zhu and Newell (1998). Finally, in sec-

tion 3.6, TE was used to construct a seasonal climatology of atmospheric blocking. Notably, the data reductions demonstrated

in these sections could support model evaluation via feature-specific and process-oriented metrics and diagnostics.650

Nonetheless, TEv2.1 does have several limitations that may be addressed in future versions. At present, TE does not support

detection of sub-grid-scale
:::::::::::
subgrid-scale

:
extrema (e.g., using harmonics as in Benestad and Chen (2006) or bicubics as in

Murray and Simmonds (1991)), although this feature is largely necessitated by coarse spatial resolution inputs. TE also does

not allow for extrapolation of the search position, as in some TC and ETC tracking schemes (Marchok, 2002). TE does not

provide support for inline or offline percentile calculations, zonal/meridional averages, or time derivatives. Nor does v2.1655

include support for common calculus operators (e.g., relative vorticity, divergence, vector dot gradient, gradient magnitude),

although experimental versions of these operators have been added in v2.2. It is also missing operations sometimes used for

areal feature tracking, including dilation of areal features (Heikenfeld et al., 2019; Feng et al., 2018) and geometric operations

sometimes used in AR tracking, including filtering of ARs with low width/length ratio (Mundhenk et al., 2016); support for

these features is anticipated before v3.0. Additionally, as mentioned earlier in this paper, parallelism is presently only supported660

across files; given that data products sometimes concatenate many times within a single file, support for parallelism within files

is also desirable. In general, development of TE has been guided by the needs of its userbase, with many current features having

been added by request; we anticipate this to continue into the future.

It is expected that TE will continue to evolve to meet the needs of the scientific community. New kernels are already being

investigated that encompass functionality present in other standalone trackers. A continued focus will be on maximizing TE’s665
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robustness across datasets, so as to ensure the framework is useful for standalone users and operational modeling centers, or

for comparative analysis across reanalysis products, multi-model ensembles (Eyring et al., 2016) and single model ensembles

(Kay et al., 2015). Finally, new capabilities to perform direct evaluation of simulation products in TE are now being developed,

using the characteristics of tracked features as evaluation metrics.

Code availability. The TempestExtremes v2.1 release is available from ZENODO at https://dx.doi.org/10.5281/zenodo.4385656. The GitHub670

repository used for ongoing code development is available at https://github.com/ClimateGlobalChange/tempestextremes.

Appendix A: Stereographic Projection

The stereographic projection is used in the construction of composites using NodeFileFilter
:::::::::::
NodeFileFilter. The equations used

for projection are provided here for reference.

The forward stereographic projection around a central point (�0,�0) is given by:675

K = [1+ sin�sin�0 +cos�cos�0 cos(���0)]
�1 (A1)

X(�,�;�0,�0) =K cos�sin(���0) (A2)

Y (�,�;�0,�0) =K [cos�0 sin�� sin�0 cos�cos(���0)] (A3)

The inverse projection is given by:

⇢=
p
X2 +Y 2, (A4)680

c= 2arctan(⇢/2) , (A5)

�(X,Y ;�0,�0) =

8
<

:
�0, if ⇢= 0,

arcsin [coscsin�0 +(Y/⇢)sinccos�0] , otherwise.
(A6)

�(X,Y ;�0,�0) =

8
<

:
�0, if ⇢= 0,

�0 +arctan2[X sinc,⇢cos�0 cosc�Y sin�0 sinc] , otherwise.
(A7)

Appendix B: Laplacian Operator

The stereographic discrete pointwise Laplacian operator defined in TE is constructed in a grid-independent manner using a685

discrete radial formulation. To begin, a set of N initial sample points are generated using a ring of radius R degrees around

each grid point X0. Using a kd-tree-based implementation, the nearest grid points to each initial sample point are then selected

to give a set of adjusted grid points Xn with n= 1, . . . ,N . For each of the initial sample points we then define the distance Dn

by the great-circle
::::
great

:::::
circle

:
distance between grid point X0 and Xn. The averaged Laplacian over a disc of radius R/2 is

then computed discretely using the divergence theorem on the stereographic plane and a centered difference approximation for690
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Figure B1. For a uniform (stereographic) grid with grid spacing of 2.5� GCD, an illustration of the grid points used in the calculation of the

Laplacian with 8 radial points and radius 10� GCD. This operator is constructed in TE using notation _LAPLACIAN{8,10}. The central

grid point is shaded black, and the modified centroids are shaded in gray.

the radial derivative:

1

⇡(R/2)2

Z
r2

qdA=
4

⇡R2

I
rq · dS ⇡ 4

⇡R2

N�1X

n=0

✓
qn � q0

Dn

◆✓
⇡R

N

◆
=

4

NR

N�1X

n=0

qn � q0

Dn
(B1)

where qn denotes the value of the field at Xn.
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