
SPEAD 1.0 – A model for Simulating Plankton Evolution with
Adaptive Dynamics in a two-trait continuous fitness landscape
applied to the Sargasso Sea
Guillaume Le Gland1, Sergio M. Vallina2, S. Lan Smith3, and Pedro Cermeño1

1 Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM – CSIC), Barcelona, Spain Institut de
Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
2Spanish Institute of Oceanography (IEO), Ave Principe de Asturias 70 bis, 33212 Gijon, Spain
3Earth SURFACE Research Center, Research Institute for Global Change, JAMSTEC, Yokosuka, Japan

Correspondence to: Guillaume Le Gland (legland@icm.csic.es)

Abstract.

Diversity plays a key role in the adaptive capacity of marine ecosystems to environmental changes. However, modelling the

adaptive dynamics of phytoplankton traits remains challenging due to the competitive exclusion of sub-optimal phenotypes

and to the complexity of evolutionary processes leading to optimal phenotypes. Trait diffusion (TD) is a recently developed ap-

proach to sustain diversity in plankton models by introducing mutations, therefore allowing the adaptive evolution of functional5

traits to occur at ecological timescales. In this study, we present a model for "Simulating Plankton Evolution with Adaptive

Dynamics" (SPEAD) that resolves the eco-evolutionary processes of a multi-trait plankton community. The SPEAD model can

be used to evaluate plankton adaptation to environmental changes at different timescales or address ecological issues affected

by adaptive evolution. Phytoplankton phenotypes in SPEAD are characterized by two traits, nitrogen half-saturation constant

and optimal temperature, which can mutate at each generation using the TD mechanism. SPEAD does not resolve the different10

phenotypes as discrete entities, computing instead six aggregate properties: total phytoplankton biomass, mean value of each

trait, trait variances, and inter-trait covariance of a single population in a continuous trait space. Therefore SPEAD resolves

the dynamics of the population’s continuous trait distribution by solving its statistical moments, where the variances of trait

values represent the diversity of ecotypes. The ecological model is coupled to a vertically-resolved (1D) physical environment,

and therefore the adaptive dynamics of the simulated phytoplankton population are driven by seasonal variations in vertical15

mixing, nutrient concentration, water temperature, and solar irradiance. The simulated bulk properties are validated by obser-

vations from BATS in the Sargasso Sea. We find that moderate mutation rates sustain trait diversity at decadal timescales and

soften the almost total inter-trait correlation induced by the environment alone, without reducing the annual primary production

or promoting permanently maladapted phenotypes, as occur with high mutation rates. As a way to evaluate the performance of

the continuous-trait approximation, we also compare the solutions of SPEAD to the solutions of a classical discrete entities ap-20

proach, both approaches including TD as a mechanism to sustain trait variance. We only find minor discrepancies between the

continuous model SPEAD and the discrete model, the computational cost of SPEAD being lower by two orders of magnitude.
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Therefore SPEAD should be an ideal eco-evolutionary plankton model to be coupled to a general circulation model (GCM) at

of the global ocean.

1 Introduction

Phytoplankton are a polyphyletic group of microscopic primary producers widespread in aquatic environments. They are

mainly single-cell although colonial or multicellular species exist in most phytoplankton phyla (Beardall et al., 2009). Despite5

accounting for only 1% of the global photosynthetic biomass, phytoplankton they perform more than 45% of Earth’s net

primary production (Field et al., 1998; Falkowski et al., 2004). They are the basis of all oceanic food webs and play key roles

in biogeochemical cycles (Falkowski, 2012). In particular, they have a large impact on global climate through the export of

detritic carbon from the surface to the ocean interior, sequestrating carbon in the deep ocean for timescales from a few years to

more than a millenium, depending on the depth they reach (DeVries and Primeau, 2011; DeVries et al., 2012). This process,10

called the "biological carbon pump", regulates the concentration of carbon dioxide in the atmosphere (Volk and Hoffert, 1985;

Falkowski et al., 1998).

Phytoplankton are highly diverse and live in many different environments. They differ in their ecological interactions and

the processes through which they mediate biogeochemical cycles. For instance, some species can fix atmospheric nitrogen

and enrich oligotrophic regions, some produce ballast minerals (mainly silica and calcium carbonate) and sink faster to the15

deep ocean, some promote the formation of clouds by producing dimethylsulfide, and others are mixotrophic, being able

to both photosynthesize and feed on organic sources (Le Quéré et al., 2005). Most species are denser than seawater and

eventually sink but some are buoyant (Lännergren, 1979; Villareal, 1988). Phytoplankton size ranges from less than 1 µm for

cyanobacteria like Prochlorococcus (Chisholm et al., 1988) to more than 1 mm for the giant diatom Ethmodiscus rex (Swift,

1973; Villareal and Carpenter, 1994). Their half-saturation constants for the main limiting nutrients range over three orders20

of magnitude (Edwards et al., 2012), reflecting adaptation to different nutrient supply levels. They are also adapted to very

different temperatures: some diatoms can grow within sea ice (Ackley and Sullivan, 1994), whereas some hyperthermophilic

cyanobacteria can grow at up to 75 ◦C in hot springs (Castenholz, 1969). Most oceanic species have an optimal temperature for

growth between 0 and 35 ◦C (Thomas et al., 2012). Even within the same species or genus, wide variability has been observed

for key traits such as iron requirement (Strzepek and Harrison, 2004), light requirement (Biller et al., 2015) and resistance to25

predation (Yoshida et al., 2004). Given that any change in the abundance and composition of phytoplankton has far-reaching

consequences for other organisms and for the Earth’s climate, it is important to understand the factors driving the dynamics of

such communities.

Numerical modelling studies can address this issue by finding the mechanistic equations and parameters that most correctly

account for the observations, and thereby provide invaluable insights into the general rules controlling ecosystems. Models30

can also be used to make predictions of how phytoplankton will impact or be impacted by future environmental changes

(Norberg et al., 2012; Irwin et al., 2015). Mathematical models of phytoplankton growth as a function of nutrient concentration,

temperature and radiation have been developed since the 1940’s (Riley, 1946; Steele, 1958; Riley, 1965), leading to the
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now common NPZD ("Nutrient, Phytoplankton, Zooplankton, Detritus") models representing one or several compartments of

nutrients, phytoplankton, zooplankton and detritus (Fasham et al., 1990). Since the early 1990’s (Maier-Reimer, 1993), the

increase in computational power allowed biogeochemical models to be fully coupled with ocean circulation (Aumont et al.,

2003; Follows et al., 2007). However, representing all the phytoplankton diversity in models is neither feasible nor desirable.

The computational cost would be high, and even if computationally feasible, the existing observations would not suffice to5

constrain the many free parameters.

Instead, ecological models account for biodiversity through a few key traits representing physiological characteristics or

adaptation to different environments. The most widely investigated phytoplankton traits are cell size, nutrient niche, optimal

temperature, optimal irradiance and resistance to predation. Some trait-based models divide the phytoplankton community into

discrete entities or "boxes" with different traits. The boxes can be as simple as diatoms and small phytoplankton groups (Au-10

mont et al., 2015), with diatoms having higher nutrient concentration niches, or include more complex divisions into functional

groups (Baretta et al., 1995; Le Quéré et al., 2005; Follows et al., 2007). In this article, we will call these models "discrete"

or "multi-phenotype". The other approach, which further reduces the number of equations while still allowing communities

to adapt to changes in their environments, is to consider one or several continuously distributed traits and to compute only

the dynamics of aggregate properties, such as community biomass, mean trait values and trait variances (Wirtz and Eckhardt,15

1996; Norberg et al., 2001; Bruggeman and Kooijman, 2007; Merico et al., 2009; Acevedo-Trejos et al., 2016; Smith et al.,

2016; Chen and Smith, 2018). In this method trait variance can be used as a quantitative index of biodiversity. A community

with a higher trait variance is considered to be more diverse because it has a wider spread and more even distribution of trait

values (Li, 1997), although it does not necessarily have a higher number of taxonomic species ("richness") (Vallina et al.,

2017). This second type of models will be called "aggregate" or "continuous-trait".20

One weakness induced by the simplification of phytoplankton communities in both the aggregate and discrete models,

however, is that competitive exclusion (Hardin, 1960; Hutchinson, 1961) often leads to a collapse of the modeled diversity

(Merico et al., 2009), making adaptation impossible unless trait variance is artificially imposed (Norberg et al., 2012; Wirtz,

2013) or a mechanism is added explicitly to sustain it. One way to sustain biodiversity is through immigration from a distant

community (Norberg et al., 2001; Savage et al., 2007). Yet, immigration does not explain the diversity observed in closed25

laboratory experiments, including continuous cultures (Fussmann et al., 2007; Kinnison and Hairston, 2007; Beardmore et al.,

2011). Biodiversity can also be sustained by viruses (Thingstad and Lignell, 1997) or predators (Murdoch, 1969; Kiørboe

et al., 1996) if they specialize on a narrow range of preys or switch their preference to the most common phytoplankton species.

This is the idea behind the "Kill The Winner" theory (Thingstad, 2000; Vallina et al., 2014b), where predation concentrating

more so on the most dominant species maintains diversity, because then each prey species persists at the abundance where the30

predation rate equals its growth rate.

An alternative approach recently introduced to sustain diversity in models is to allow the simulated phytoplankton to mutate

their physiological functional traits (Kremer and Klausmeier, 2013; Merico et al., 2014), as mutations are the ultimate cause

of all diversity and adaptation. Due to their short generation times of around 1 day (Marañon et al., 2013), phytoplankton

are known to evolve at the timescale of a few years (Schlüter et al., 2016). For phytoplankton, the "ecological" timescales,35
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featuring successions of dominant species in reaction to changes in the environment and selection of the fittest, overlap with the

"evolutionary" timescales, where species can also evolve genetically to adapt to their new environment (Irwin et al., 2015). As

far as we know, the first aggregate phytoplankton model allowing a phytoplankton trait to randomly mutate through subsequent

generations, before being selected by the environment, was developed by Merico et al. (2014). They called their scheme "Trait

diffusion" (TD), where "diffusion" is a mathematical term referring to the spreading of a property, in this case the trait value,5

not to physical transport. Trait diffusion of a single physiological trait was recently introduced in a model coupled with oceanic

circulation (Chen and Smith, 2018). Upgrading the trait diffusion framework to several traits requires more complex equations

and the introduction of a new class of state variables: the covariances between traits. However, multi-trait models are more

realistic and conceptual modelling studies have shown that the dynamics of correlated traits sometimes differ from those of

single-trait models (Savage et al., 2007).10

There are several other types of plankton ecological (without mutations) or eco-evolutionary (with mutations) models, such

as individual-based models, residant-mutant models, or models with stochastic mutations. Each represents and sustains di-

versity in its own unique way. All the modelling approaches mentioned in this paper and others are reviewed with their as-

sumptions, costs and benefits by Ward et al. (2019). For instance the aggregate approach corresponds to the "parametric trait

distribution" model in their Figure 3 (eco-v) and the multi-phenotype approach encompasses the "Everything is everywhere"15

(eco-iii), "Functional groups" (eco-iv) and "Deterministic mutations" (evo-iii) cases, depending on the number of phenotypes

and the presence or absence of mutations. What makes aggregate models models particularly advantageous is their cost effi-

ciency and their applicability to a spatial context. Adding adaptive evolution to models has been identified as a key challenge for

the near future, as it will allow to answer several unresolved ecological questions, more fundamental than sustaining variance,

that cannot be answered by purely ecological models. For instance, eco-evolutionary models can be used to assess the relative20

roles of natural selection and neutral evolution in explaining the observed diversity patterns. They could also serve to explore

hypotheses on the emergence of new species and new environments after a mass extinction. Finally, representing evolution is

necessary to estimate the prevalence of extinction, adaptation and migration in response to future environmental changes.

Here we present a new aggregate phytoplankton model called SPEAD (Simulating Plankton Evolution with Adaptive

Dynamics), an eco-evolutionary model using the trait diffusion framework for two key phytoplankton traits: nitrogen half-25

saturation constant and optimal temperature for growth. The SPEAD model is based on a NPZD model (Vallina et al., 2014a,

2017), where the phytoplankton compartment is represented by the community biomass, mean trait values, trait variances and

covariance. SPEAD is embedded in a 1D (water column) physical setting simulating the Sargasso Sea using data from the

Bermuda Atlantic Time-series Studies (BATS). We chose the 1D rather than a simpler 0D setting because vertical turbulent

diffusion (not to be confused with trait diffusion) is the main source of covariance by mixing communities from different30

depths. Since the trait diffusion equations can easily be adapted to a discrete model, we have also built a discrete version of

SPEAD where the phytoplankton community consists of 625 different phenotypes (i.e. 25 half-saturation constants and 25

optimal temperatures), each characterized by its own fixed set of trait values. The discrete version is more intuitive and easier

to program, and provides a useful control experiment. SPEAD is intended as a prototype to be coupled later with 3D general

circulation models. Its equations for mean trait, trait variance and covariance can be used as a starting point to build more35
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comprehensive trait-based models, with or without mutations. In particular, we plan to add optimal irradiance as a third trait in

the near future for a more realistic description of phytoplankton distributions over depth.

In the following sections, we first describe our ecological model, the differential equations controlling the growth of phy-

toplankton and the adaptive evolution of their trait distribution, as well as the physical model setting. Then, we present the

model outputs. In order to validate SPEAD and to highlight its novelties, we will focus on answering the following four ques-5

tions: 1) How well does SPEAD represent the bulk properties of phytoplankton communities observed in the Sargasso Sea? 2)

Do the aggregate and discrete approaches agree? 3) How are phytoplankton dynamics changed by the value of the mutation

rates? 4) Can the mean value and variance of each trait be represented independently by a 1-trait model where only nitrogen

half-saturation or optimal temperature varies between phenotypes? Finally, we discuss the reach of our modelling framework,

focusing on three aspects: the performance of aggregate models, the choice of phytoplankton traits, and the relationship be-10

tween trait diffusion and evolution.

2 Methods

2.1 A phytoplankton community model with 2 traits

Our phytoplankton community model SPEAD extends an existing nitrogen-based NPZD model (Vallina et al., 2017). Nitrogen

is partitioned into four pools, all expressed in millimoles of nitrogen per cubic meter (mmolN m−3): phytoplankton (P in the15

equations), zooplankton (Z), Dissolved Inorganic Nitrogen or "DIN" (N ) and Particulate Organic Nitrogen or "PON" (D as

in "detritus"). Phytoplankton increases its biomass by taking up DIN (Vp Up). Zooplankton increases its biomass by grazing

phytoplankton (Gz). The non-predation mortalities of phytoplankton (Mp) and zooplankton (Mz) and the nitrogen exudation

by zooplankton (Ez) are divided between DIN and PON. Given that nitrogen is the limiting nutrient for phytoplankton growth,

we do not consider nitrogen exudation by phytoplankton. ωp, ωz and εz are constants representing the respective proportions20

of Mp, Mz and Ez going to DIN. PON is remineralized to DIN (Md). The fluxes from one pool to another are controlled by

the pool concentrations and by two environmental forcings: temperature (T , in ◦C) and Photosynthetically Available Radiation

or "PAR" (I , in W m−2). The main state variables of the model and their relationships are shown in Table 1 and Fig. 1a and the

expressions of the biogeochemical fluxes between the pools (in mmolN m−3 d−1) are given by the following equations, with

their dependencies:25

dP

dt
= UpVp(P,N,T,I)−Mp(P,T )−Gz(P,Z,T ) (1)

dZ

dt
=Gz(P,Z,T )−Ez(P,Z,T )−Mz(Z,T ) (2)

dN

dt
= εzEz(P,Z,T ) +ωpMp(P,T ) +ωzMz(Z,T ) +Md(D,T )−UpVp(P,N,T,I) (3)

dD

dt
= (1− εz)Ez(P,Z,T ) + (1−ωp)Mp(P,T ) + (1−ωz)Mz(Z,T )−Md(D,T ) (4)

Zooplankton, DIN and PON are generic pools, characterized by a single variable: their concentration. Phytoplankton and30

zooplankton mortality, zooplankton exudation, grazing and the particle remineralization rate have simple expressions as a
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Table 1. State variables of the ecosystem model

Symbol Description Unit

Prognostic variables of the aggregate model

P Phytoplankton concentration mmolN m−3

x Mean nitrogen half-saturation logarithm (trait 1) –

y Mean optimal temperature (trait 2) ◦C

Vx Half-saturation logarithm variance –

Vy Optimal temperature variance ◦C2

Cxy Inter-trait covariance ◦C

Prognostic variables of the multi-phenotype model

Pij Concentration of phytoplankton phenotype (xi,yj) mmolN m−3

Prognostic variables common to both models

Z Zooplankton concentration mmolN m−3

N Dissolved Inorganic Nitrogen (DIN) concentration mmolN m−3

D Particulate Organic Nitrogen (PON) concentration mmolN m−3

Diagnostic variables related to trait

σx Standard deviation of half-saturation logarithm –

σy Standard deviation of optimal temperature ◦C

Rxy Inter-trait correlation –

Other diagnostic variables

Chl Chlorophyll a concentration mgCHL m−3

PP Primary production mgC m−3 d−1

Environment variables

T Temperature ◦C

I Photosynthetically available radiation (PAR) W m−2

Kz Vertical diffusivity m2.d−1
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 Distribution width 
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𝑦� 

Figure 1. NPZD (Nutrient, Phytoplankton, Zooplankton, Detritus) model within its physical setting (a). The phytoplankton pool is repre-

sented by a discrete set of species with different traits (b) or by moments of the trait distributions, assuming a bivariate normal distribution

(c). Colors in b and c represent phytoplankton concentration.

function of the nitrogen pool concentrations and temperature:

Gz(P,Z,T ) = g0e
αh(T−T0)

P 2

P 2 +K2
p

Z (5)

Ez(P,Z,T ) = (1−βz)Gz(P,Z,T ) (6)

Mz(Z,T ) = ψze
αh(T−T0)Z2 (7)

Mp(P,T ) = ψpe
αh(T−T0)P (8)5

Md(T ) = ψde
αh(T−T0)D (9)

The constants appearing in this equation (αh, T0, Kp, βz , ψz , ψp and ψd) are described in Table 2. Zooplankton mortality

depends on the square of zooplankton concentration in order to prevent an explosion of zooplankton concentration. This
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stabilizing quadratic mortality term represents consumption by animals higher on the trophic chain, which is expected to

increase faster than a linear function of Z biomass. Grazing is formulated as a Holling type III function (Holling, 1959) of

phytoplankton concentration, with a niche at low concentrations to prevent the whole phytoplankton community from going

extinct, even when they have very low growth rates. Grazing, mortality and remineralization are considered as heterotrophic

processes and as such increase exponentially with temperature. The exponential factor is αh = 0.092 ◦C−1. This is equivalent5

to multiplying the speed of all these processes by 2.5 when the temperature increases by 10 ◦C, as in a "Q10 = 2.5" formulation.

This value of Q10 is close to measured values for zooplankton grazing (Hansen et al., 1997) and to the theoretical predictions

of the metabolic theory of ecology for respiration (Gillooly et al., 2001; Allen et al., 2005).

On the contrary, the phytoplankton pool is composed of diverse organisms responding to environmental conditions in differ-

ent ways. The diversity of phytoplankton is represented by variations in the values of two traits: the logarithm of half-saturation10

constant for nitrogen uptake (x) and the optimal temperature for growth (y). From now on, we will refer to each set (x,y) of

trait values as a "phenotype". Nutrient uptake by phytoplankton depends on the trait distribution. The bivariate trait distribution

is represented by a density p(x,y) (in mmolN m−3 ◦C−1) so that the biomass of phytoplankton (in mmolN m−3) with trait

values between x1 and x2 and between y1 and y2 is equal to
∫ x2

x1

∫ y2

y1
p(x,y)dxdy and by extension the total phytoplankton

biomass P is equal to the density integrated over the whole trait domain. Any phenotype has its own uptake rate up(x,y) (in15

d−1). The uptake rate is the product of a constant (u0p) and three dimensionless growth factors: a nutrient factor (γn(N,x)), a

temperature factor (γT (T,y)) and an irradiance factor (γI(I)). Two of these factors, γn(N,x) and γI(I), represent limitations

by resources. The third factor, γT (T,y), represents the kinetic effect of temperature on growth. In this study, we use the Monod

approach (Monod, 1949), so that cells do not store nutrients and the uptake rate is equal to the reproduction or growth rate.

Since phytoplankton are unicellular and we do not consider changes in their cell volumes, we will use the words "growth" and20

"reproduction" interchangeably. We assume that all phytoplankton are unicellular and we do not consider changes in their cell

volumes, which allows us to use the words "growth" and "reproduction" interchangeably. All phenotypes share the same rates

of mortality and grazing, respectively.

The last term in the equation of trait density (Eq. 10) is trait diffusion (TD), as defined by Merico et al. (2014). Trait diffusion

represents the fact that offspring can exhibit different trait values than their parents, due to mutations or otherwise heritable25

plasticity. In our numerical model, we assume only that these mutations are heritable and random. They can represent genetic

mutations as well as other, e.g. epigenetic, phenotypic plasticity. We assume that mutations on x and y are independent of each

other. In the limit of small but frequent mutations, stochasticity can be neglected (Dieckmann and Law, 1996; Champagnat

et al., 2006) and this process can be represented as a deterministic diffusion, depending on diffusivity parameters νx and νy

and on the second derivatives of the growth rate (up(x,y)) relative to each trait respectively. Note that in TD, "diffusion" is a30

mathematical term referring to the spreading of a property, in our case trait values, not to a physical mixing process. It should

therefore not be confused with vertical turbulent diffusion, which is also present in our model (see 2.3.). To avoid ambiguity,

from now on, we will refer to the trait diffusivity parameters as "mutation rates". νx and νy are mutation rates per generation,

not per unit of time, therefore time does not appear in their units. They have the same units as trait variances. The derivation of
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Table 2. Parameters of the ecosystem model

Symbol Description Value Unit

Phytoplankton parameters

T0 Reference temperature 20 ◦C

u0
p Phytoplankton maximum uptake rate for x= 0 and y = T0 1.1 d−1

∆T Difference between optimal and maximumal temperature 5 ◦C

εp Phytoplankton exudation fraction going to DIN 1/3 –

ψp Phytoplankton mortality rate at 20 ◦C 0.05 d−1

ωp Phytoplankton mortality fraction going to DIN 1/4 –

I0 Phytoplankton optimal irradiance 25 W m−2

χ Phytoplankton photoinhibition factor 12 –

αa Temperature dependence factor for autotrophic processes 0.056 ◦C−1

Speed multiplied by 1.75 ("Q10") with a temperature increase of 10 ◦C

νx Half-saturation diffusivity parameter 10−5 – 0.1 –

νy Optimal temperature diffusivity parameter 10−4 – 1 ◦C2

Other ecological parameters

g0 Zooplankton maximum grazing rate at 20 ◦C 1.5 d−1

Kp Half-saturation for grazing 0.4 mmolN m−3

βz Zooplankton assimilation efficiency 0.4 –

εz Zooplankton exudation fraction going to DIN 1/3 –

ψz Zooplankton (quadratic) mortality rate at 20 ◦C 0.25 (mmolN m−3) −1 d−1

ωz Zooplankton mortality fraction going to DIN 1/4 –

ψd PON remineralization rate at 20 ◦C 0.1 d−1

w PON sinking speed 1.2 m d−1

kw PAR vertical attenuation 0.04 m−1

αh Temperature dependence factor for heterotrophic processes 0.092 ◦C−1

Speed multiplied by 2.5 ("Q10") with a temperature increase of 10 ◦C

Numerical parameters

nx Number of half-saturation values (discrete model) 25 –

ny Number of optimal temperature values (discrete model) 25 –

xmin Minimum half-saturation logarithm (discrete model) -2.5 –

xmax Maximum half-saturation logarithm (discrete model) +1.5 –

ymin Minimum optimal temperature (discrete model) 18 ◦C

ymax Maximum optimal temperature (discrete model) 30 ◦C

zmax Maximum model depth 200 m
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Figure 2. Phytoplankton growth factors γn (nutrient-dependent), γT (temperature-dependent) and γI (PAR-dependent). a) and b) represent

the growth factor as a function of nutrient concentration and temperature respectively, for different phenotypes. c) and d) represent the growth

factor as a function of the corresponding trait for different values of the environmental parameter. The maximum of each curve corresponds

to the phenotype most adapted to a given environment. e) and f) are normalized versions of c) and d), respectively, so that their maximum is

always 1. g) is the PAR-dependent growth factor, which is common to all phenotypes in this version of SPEAD.

the trait diffusion term is explained in Appendix A. The differential equations followed by a given phenotype (x,y) are:

∂p(x,y, t)

∂t
=

[
up(N,T,I,x,y)−Mp(P,T )

P
− Gz(P,Z,T )

P

]
p(x,y, t) + νx

∂2(up · p)
∂x2

+ νy
∂2(up · p)
∂y2

(10)

up(N,T,I,x,y) = u0pγn(N,x)γT (T,y)γI(I) (11)

Like all biodiversity models, SPEAD must not allow a phenotype to outcompete all other phenotypes in all environments,

because any such Darwinian demon would drive all its sub-optimal competitors to extinction and trait variance would collapse5

to zero. In order to make competition for nutrients possible, we have defined two uptake traits so that either low or high values

are advantageous in certain environments and disadvantageous in others. The shape of the two trade-offs and the three growth

factors are presented in Fig. 2.

The first trait allowed to mutate in SPEAD is the half-saturation constant that controls the nutrient limitation factor γn(N,x).

The half-saturation constant can be linked to the well-known trade-off between the affinity for a nutrient and the maximum10
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uptake rate, also known as the "gleaner-opportunist" trade-off. The biomass-specific nitrogen uptake rate up(N,T,I,x,y) of a

given phenotype is proportional to its affinity for nitrogen fp (in d−1 mmol−1 m3) at low nitrogen concentration and reaches

the maximum uptake rate u∞p (in d−1) in nutrient-replete environments. The uptake rate follows a Michaelis-Menten function

of nutrient concentration: Phenotypes that specialize in taking up the few available nutrients at low concentrations (high fp) are

called "gleaners", whereas those that specialize in taking up nutrients quickly at saturating nutrient concentrations (high u∞p )5

are called "opportunists". We assume that the product fpu∞p is independent of x , a relation that defines a gleaner-opportunist

trade-off. The half-saturation constant Kn =
u∞p
fp

(in mmolN m−3) is the DIN concentration at which nitrogen uptake rate is

equal to one half of the maximum uptake rate for the same temperature and solar irradiance. The half-saturation constant is

assumed to be independent of the temperature and irradiance of the environment, as well as of the phytoplankton optimal

temperature. Half-saturation makes the analysis of our results more straightforward, because it has units of concentration and10

can therefore be compared directly to the ambient DIN concentration. Because the concentrations are always positive and span

several orders of magnitude, we use a natural logarithmic scale and define x= log
(
Kn
K0
n

)
as our first trait axis, with K0

n = 1

mmolN m−3 as a reference value for Kn. Thus, the nutrient limitation factor is:

The first trait allowed to mutate in SPEAD, x, is the logarithm of the half-saturation constant that controls the nutrient

limitation factor γn(N,x). The half-saturation constant Kn(x) is the DIN concentration at which which nitrogen uptake rate is15

equal to one half of the maximum uptake rate for the same temperature and solar irradiance. As the concentrations are always

positive and span several orders of magnitude, we use a natural logarithmic scale and define x= log
(
Kn
K0
n

)
as our first trait

axis, with K0
n = 1 mmolN m−3 as a reference value for Kn. The half-saturation constant can be linked to the well-known

trade-off between the affinity for a nutrient and the maximum uptake rate, also known as the "gleaner-opportunist" trade-off

(Frederickson and Stephanopoulos, 1981). For a given phenotype, γn(N,x) follows a Michaelis-Menten function of nutrient20

concentration.

γn(N,x) = γ∞n (x)
N

Kn(x) +N
= γ∞n (x)

N

K0
ne
x +N

(12)

The nutrient limitation factor at high nitrogen concentration, γ∞n (x), is set so that each phenotype has an ecological niche

where it grows faster than its competitors. To obtain the expression of γ∞n (x), we first introduce two variables that represent

the competitive ability of phytoplankton in two types of environment: the growth rate in the limit of high nitrogen concentration,25

noted u∞p (T,I,x,y) and expressed in d−1; and the affinity for nitrogen, noted fp(T,I,x,y) and expressed in d−1 mmol−1 m3.

These two variables fully define the Michaelis-Menten function for nutrient uptake. The affinity represents the initial slope of

the curve at zero resource concentration, while the maximum growth rate represents the horizontal asymptote of the curve that

is reached at infinite resource concentration (see Fig. 2 in Vallina et al. (2019)). The affinity is closely related to the growth rate

at low nitrogen concentration, which is equal to fp(T,I,x,y)N . The maximum growth rate is related to the biomass-specific30

handling rate of nutrient ions at high nitrogen concentrations. The values of u∞p (T,I,x,y) and fp(T,I,x,y) are given by

introducing Eq. 12 into Eq. 11 and taking the limit of high or low concentrations:

u∞p (T,I,x,y) = u0pγ
∞
n (x)γT (T,y)γI(I) (13)
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fp(T,I,x,y) =
u0pγ

∞
n (x)γT (T,y)γI(I)

Kn(x)
=
u∞p (T,I,x,y)

Kn(x)
(14)

In order to prevent phenotypes from dominating all nutrient niches (i.e. from being Darwinian demons), we assume that the

product of maximum growth and affinity fpu∞p =
(
u∞p
)2

(Kn)
−1 is constant with (independent of) x (Meyer et al., 2015).

Therefore, u∞p is proportional to the square root of Kn and to a factor independent of x, yielding the following expression for

γ∞n (x):5

γ∞n (x)=
√
ex = ex/2 (15)

With this "maximum growth rate - nutrient affinity" trade-off, phenotypes that grow faster than their competitors at high nutri-

ent concentration (high u∞p ), called "opportunists", are disadvantaged at low concentrations (low fp) by the same factor, and

those which grow comparatively fast at low nutrient concentration (high fp), called "gleaners", are at disadvantage under high

concentrations (low u∞p ). This constraint has been observed in bacteria and phytoplankton (Healey and Hendzel, 1980; Button10

et al., 2004; Elbing et al., 2004; Cermeño et al., 2011; Vallina et al., 2019), has been used in models (Dutkiewicz et al., 2009;

Vallina et al., 2014b; Smith et al., 2016; Vallina et al., 2017), and is the simplest way to discriminate the bloom-forming oppor-

tunist phytoplankton (such as diatoms) from the ubiquitous gleaners (such as Prochlorococcus) without explicitly representing

the complex effects of cell size or the way uptake sites are packed at cell surface. However, the thermodynamic bases of the

trade-off are still unclear (Wirtz, 2002). For any nutrient concentration N , we note that the phenotype corresponding to the15

largest growth rates is x= log(N). This is why, under the assumption of the gleaner-opportunist trade-off defined above, the

Kn defines the optimal nutrient concentration of each x phenotype where they are competitively superior (Vallina et al., 2017).

This result, however, is dependent on the specific model assumption that fpu∞p is a constant.

The second phytoplankton trait that is allowed to mutate in SPEAD is the optimal temperature. Temperature affects microbes

in two ways. One is generic and applies to the whole plankton community. An increase in temperature increases the speed of20

both primary production and heterotrophic processes for thermodynamic reasons. This effect is often assumed to be exponen-

tial. In our model, the exponential factor for autotrophic primary production is αa = 0.056 ◦C−1, which corresponds to a Q10

of 1.75, slightly lower than the classical value of 1.88 from Eppley (1972) but higher than the values based on the metabolic

theory of ecology for photosynthesis (López-Urrutia et al., 2006). The second effect of temperature is phenotype-specific. Each

phenotype has an optimal temperature for growth, which is the second trait axis and is denoted by y. The effect of temperature25

on a given phenotype (x,y) is asymmetric: at temperatures more than 5 ◦C above y growth ceases but temperatures below y

merely slows growth. We defined our temperature multiplicative growth factor to be as close as possible to the species-specific

curves of Eppley (1972):

γT (T,y) = e
(T−y)

∆T

(
y+ ∆T −T

∆T

)
eαa(y−T0) (16)

The temperature tolerance ∆T is set to 5 ◦C. T0 is a reference temperature with no ecological meaning. For a fixed value of30

y, γT (T,y) has a maximum at T = y with a value of eαa(y−T0). At T = y+ ∆T and warmer, growth is impossible. For a

given value of the environment temperature T , the phenotypes with the largest growth rates have an optimal temperature y

12



around 2 ◦C larger than T . This apparent mismatch, where the dominant phenotype at temperature T can grow even faster

at temperatures a few degrees warmer, is both coherent with other models (Beckmann et al., 2019) and observed in nature

(Thomas et al., 2012; Irwin et al., 2012).

In this study, the PAR limitation factor γI(I) is the same for all phenotypes. It includes an optimal PAR (Iopt) of 25 W m−2

and photoinhibition above this level. Our value for Iopt is in the middle of the range considered by Follows et al. (2007) and5

our expression for γI(I) is equivalent to theirs:

γI(I) = γ0I

(
1− e−ln(1+χ)

I
Iopt

)
e
− ln(1+χ)

χ
I

Iopt (17)

γ0I =
χ+ 1

χ
e−

1
χ ln( 1

χ+1 ) (18)

In the above equation, γ0I is a normalization factor (to ensure that γI(I) cannot exceed 1) and χ is an inhibition factor. The

higher the inhibition factor, the less photoinhibition there is at irradiances larger than Iopt. In this study, we use χ= 12, which10

is the average value in Follows et al. (2007) for large phytoplankton and corresponds well to published photoinhibition curves

(Platt et al., 1980; Whitelam and Codd, 1983; Walsh et al., 2001).

For comparison with data, two additional variables can be estimated from the model: primary production and chlorophyll a

concentration. Primary production (PP ) is expressed in mgC m−3 d−1. Our model-based estimate is calculated by multiplying

the phytoplankton concentration and the uptake rate, normalizing from nitrogen to carbon with the 106:16 Redfield molar15

ratio (Redfield, 1934) and then converting from amount of substance to mass using the molar mass of carbon (12 g.mol−1).

Chlorophyll a concentration (Chl, in mgCHL m−3) is obtained by dividing the phytoplankton concentration in mass of carbon

by a variable carbon to chlorophyll mass ratio (C:Chl). The C:Chl ratio is estimated as in Vallina et al. (2008) using a function

of depth and time developed by Lefèvre et al. (2002), with parameter values calibrated with the observations of Goericke and

Welschmeyer (1998). At the surface, C:Chl is a sinusoidal function of the day of year, varying between a maximum of 16020

mgC mgCHL−1 at the summer solstice and a minimum of 80 mgC mgCHL−1 at the winter solstice. From the depth where

I(z,t) = 25 W.m−2 to the bottom, C:Chl decreases linearly with I(z,t) down to a value of 40 mgC mgCHL−1 when light is

absent.

2.2 Aggregate and multi-phenotype models

Traits x and y have an infinity of possible values. In order to solve the equations numerically, the problem needs to be simpli-25

fied. Two approaches are considered here. In the "multi-phenotype" or "discrete" model approach (Fig. 1b), the trait-space is

discretized and only a finite number of phenotypes, with fixed trait values, are simulated. Phenotypes with intermediate trait

values are neglected. In the "aggregate" or "continuous" model approach (Fig. 1c), the state variables are total phytoplankton

concentration, the mean trait values, the trait variances and the inter-trait covariance. In the continuous-trait model, a specific

shape of the trait distribution must be assumed a priori (Wirtz and Eckhardt, 1996; Bruggeman and Kooijman, 2007). In the30

discrete-trait model, the trait distribution is an emergent property and thus it does not need to be assumed beforehand.

In the multi-phenotype model, only nx values of x and ny values of y are allowed. The phytoplankton community is divided

into nx×ny phenotypes. The values of both traits are explicitly bounded by xmin, xmax, ymin and ymax. Each phenotype
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is separated from its immediate neighbors by a trait interval ∆x= xmax−xmin
nx−1 on x or a trait interval ∆y = ymax−ymin

ny−1 on y.

Mutation fluxes at the boundaries (i.e. mutations of the phenotypes with the highest or lowest trait values leading out of the

domain) are set to zero. In the interior of our trait domain, the concentration of the phenotype with the jth value of x and the

kth value of y, noted Pjk, is controlled by the following equation, where aj,k = uj,k−gj,k−mj,k , called "net growth rate", is

the sum of all growth and death terms affecting phytoplankton concentration is the net growth rate:5

dPj,k
dt

=aj,k(N,T,I)Pj,k +
νx

(∆x)
2 (Pj−1,kuj−1,k +Pj+1,kuj+1,k − 2Pj,kuj,k)

+
νy

(∆y)
2 (Pj,k−1uj,k−1 +Pj,k+1uj,k+1− 2Pj,kuj,k) (19)

In all our discrete simulations, we impose xmin =−2.5 (Kn = 0.082 mmolN m−3), xmax = +1.5 (Kn = 4.48 mmolN m−3),

ymin = 18◦C and ymax = 30◦C. All model values of temperature and DIN concentrations are within these boundaries. We

set nx = 25 and ny = 25 in order to ensure that in most cases ∆x and ∆y are less than the standard deviations of x and y,10

respectively. Thus, the total number of discrete phenotypes (x,y) is 25× 25 = 625.

In the aggregate model, the trait distribution is assumed to be continuous. In this case, and contrary to the multi-phenotype

case, the trait axes are formally unbounded, although phenotypes with extreme trait values always have low net growth rates,

making them extremely rare. The prognostic variables are six statistical moments of the trait distribution: the total phytoplank-

ton concentration P (t), the mean trait values x(t) and y(t), the trait variances Vx(t) and Vy(t) and the inter-trait covariance15

Cxy(t). They are defined as follows:

P (t) =

∫ ∫
p(x,y, t) · dxdy (20)

x(t) =
1

P (t)

∫ ∫
x · p(x,y, t) · dxdy (21)

y(t) =
1

P (t)

∫ ∫
y · p(x,y, t) · dxdy (22)

Vx(t) =
1

P (t)

∫ ∫
(x−x(t))

2
p(x,y, t) · dxdy (23)20

Vy(t) =
1

P (t)

∫ ∫
(y− y(t))

2
p(x,y, t) · dxdy (24)

Cxy(t) =
1

P (t)

∫ ∫
(x−x(t))(y− y(t))p(x,y, t) · dxdy (25)

The second order moments (Vx,Vy and Cxy) are difficult to interpret directly due to their dimensions. In the analyses, we

thus transform variances into standard deviations (σx and σy) and covariance into correlation (Rxy) as follows:

σx(t) =
√
Vx(t) (26)25

σy(t) =
√
Vy(t) (27)

Rxy(t) =
Cxy(t)

σx(t)σy(t)
(28)
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These three diagnostic variables, along with P , x and y, are also computed for the multi-phenotype model for comparison.

The standard deviations have the same dimensions as the mean traits and can thus be compared to them. Ecologically, they

represent trait diversity. Inter-trait correlation is a dimensionless number between -1 and +1, which is easier to interpret than

the covariance. A correlation of -1 means above-average values of x always coincide with below-average values of y and vice-

versa. A correlation of +1 means above-average values of x always coincide with above-average values of y. A correlation of5

0 means all combinations are equally possible (i.e. the two traits are independent).

We follow the method developed by Norberg et al. (2001), based on Taylor expansions of the uptake and net growth rates,

to derive the differential equations for the moments of the trait distribution. We assume a bivariate normal distribution of traits,

which is a generalization of the 1D Gaussian function. Normal distributions are observed in nature for the logarithm of size

(Cermeño and Figueiras, 2008; Quintana et al., 2008; Downing et al., 2014) and are convenient assumptions for models because10

they produce the simplest forms for the equations (Wirtz and Eckhardt, 1996; Merico et al., 2009). The derivation is explained

in detail in Appendix B. In the absence of trait diffusion, our equations are a particular case of the general equations derived

by Bruggeman (2009) for multivariate normal trait distributions. In the single trait case, they are simpler than the original

equations of Merico et al. (2014) and identical to the more recent formulation of Coutinho et al. (2016). In the absence of

physical transport, the differential equations followed by the prognostic variables are:15

∂dP

∂dt
= P

(
a(x,y, t) +

1

2
Vx
∂2a

∂x2
+

1

2
Vy
∂2a

∂y2
+Cxy

∂2a

∂x∂y

)
(29)

∂dx

∂dt
= Vx

∂a

∂x
+Cxy

∂a

∂y
(30)

∂dy

∂dt
= Vy

∂a

∂y
+Cxy

∂a

∂x
(31)

∂dVx
∂dt

= V 2
x

∂2a

∂x2
+ 2VxCxy

∂2a

∂x∂y
+C2

xy

∂2a

∂y2
+ 2νx

(
u(x,y, t) +

1

2
Vx
∂2u

∂x2
+

1

2
Vy
∂2u

∂y2
+Cxy

∂2u

∂x∂y

)
(32)

∂dVy
∂dt

= V 2
y

∂2a

∂y2
+ 2VyCxy

∂2a

∂x∂y
+C2

xy

∂2a

∂x2
+ 2νy

(
u(x,y, t) +

1

2
Vx
∂2u

∂x2
+

1

2
Vy
∂2u

∂y2
+Cxy

∂2u

∂x∂y

)
(33)20

∂dCxy
∂dt

= VxCxy
∂2a

∂x2
+ (VxVy +C2

xy)
∂2a

∂x∂y
+VyCxy

∂2a

∂y2
(34)

The net growth rate a= u− g−m and its derivatives with respect to traits are in all cases taken near the mean trait val-

ues (x and y) and for the values of N , T and I at time t. The growth rate of the whole phytoplankton community depends

first on the net growth rate of the most abundant phenotype ("winner" of the competition), a(x,y, t), with correction terms(
1
2Vx

∂2a
∂x2 + 1

2Vy
∂2a
∂y2 +Cxy

∂2a
∂x∂y

)
for the less abundant, and generally less fit, phenotypes ("losers"). Mean traits increase25

when larger trait values are associated with larger net growth rates
(
∂a
∂x > 0 or ∂a

∂y > 0
)

, and decrease in the opposite case(
∂a
∂x < 0 or ∂a

∂y < 0
)

. The change is faster when trait variances (Vx and Vy) are high. As a consequence, the overall ef-

fect of trait diversity on primary production depends on the environmental conditions. In a stable environment, high trait

variances diminish the primary production, because phenotypes with low growth rates are present. Under frequent distur-

bances, however, high trait variances increase the short-term adaptive capacity, allowing the community to maintain mean30

traits close to the optimum and thereby increasing primary production (Smith et al., 2016). We note that when traits covary
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(Cxy 6= 0) due to covariance, the change in each trait depends on both environmental factors (N and T ) nutrient concentration

N
(
Vx

∂a
∂x for x and Cxy

∂a
∂x for y

)
and water temperature T

(
Vy

∂a
∂y for y and Cxy

∂a
∂y for x

)
. Variances decrease due to com-

petition when mean trait values are close to the values that maximize the net growth rate
(
∂2a
∂x2 < 0 and ∂2a

∂y2 < 0
)

. This is most

often the case, since phenotypes that are not optimal tend to be outcompeted. Trait diversity must therefore be maintained by

some other process: this is the role of trait diffusion. In these equations, trait diffusion is a (positive) source of variance equal to5

2νx/y

(
u(x,y, t) + 1

2Vx
∂2u
∂x2 + 1

2Vy
∂2u
∂y2 +Cxy

∂2u
∂x∂y

)
but does not affect the equations for phytoplankton concentration, mean

traits, nor covariance. This is coherent with the fact that mutations are symmetrical (no effect on x and y) and neither create nor

remove biomass (no effect on P ). Trait diffusion does not affect covariance because mutations of the two traits are independent

of each other. There is no mechanistic relationship between optimal temperature and half-saturation. Mutations can create all

combinations: cold-water gleaners, warm-water gleaners, cold-water opportunists and warm-water opportunists. However, by10

increasing variances, trait diffusion decreases the absolute value of correlation. Only the environment can correlate the traits

by favoring some combinations over others. Although correlation is defined as a local quantity, for a given depth and time, it is

expected to be influenced by the spatio-temporal patterns of environment variations, because local communities always contain

remnants of past communities and migrants from other locations.

2.3 Physical setting15

SPEAD 1.0 has one spatial dimension: the vertical. A depth-resolved simulation is the minimumal physical setting in the ocean

to resolve the different temperature and nutrient niches and the decisive effect of the vertical mixing on the variances and the

covariance. The model is divided into 20 vertical levels, from surface to 200 m deep, with a uniform vertical step of 10 m.

Two processes can transport matter from one vertical level to another, and thus need to be added to the differential equations

of the 0D model presented in sections 2.1 and 2.2. First, PON sinks at a speed of w = 1.2 m d−1. Sinking is represented by20

an extra term in the PON equation (Eq. 4), equal to −w ∂D
∂z , where z is depth and is always positive. Sinking The vertical

derivative ∂D
∂z is solved by a first order upwind scheme. Second, tracers are vertically mixed by turbulent diffusion. Vertical

turbulent diffusion (called "vertical diffusion" from now on, and unrelated to trait diffusion) tends to homogenize the spatial

distribution of each tracer. It is controlled by the vertical diffusivity parameter κz , expressed in m2 s−1. The vertical diffusion

of a conserved tracer A is ∂
∂z

(
κz(z, t)

∂A(z,t)
∂z

)
, where z is the vertical dimension. Diffusion operates on This expression25

applies to all concentrations of the discrete model and to concentrations N, P, Z and D of the continuous-trait model. As a

consequence, their full local (Eulerian) time derivatives at a given depth z are:

∂Z

∂t
=
dZ

dt
+

∂

∂z

(
κz
∂Z

∂z

)
(35)

∂N

∂t
=
dN

dt
+

∂

∂z

(
κz
∂N

∂z

)
(36)

∂D

∂t
=
dD

dt
+

∂

∂z

(
κz
∂D

∂z

)
−w∂D

∂z
(37)30

∂P

∂t
=
dP

dt
+

∂

∂z

(
κz
∂P

∂z

)
(38)
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but not on the phytoplankton trait distribution moments, as these are not material quantities and thus are not conserved during

mixing. In contrast, the vertical turbulent diffusions of the statistical moments x, y, Vx, Vy and Cxy do not follow a sim-

ple analytical expression because they are not material quantities and thus are not conserved during mixing. For instance,

the mixing of two phytoplankton communities with different mean traits creates additional trait variance. However Fortu-

nately, vertical mixing conserves the sums of phytoplankton trait values (equal to P x and P y) and the sum of squared trait5

values
(
P (Vx+x2),P (Vy+y2) and P (Cxy+x y)

)
. Therefore we need to convert the trait distribution moments to Px, Py,

P (Vx−x2), P (Vy − y2) and P (Cxy −xy) before applying vertical mixing to them, and then we convert them back to their

original values in the next numerical time step to compute growth and loss terms. Following the method of Bruggeman

(2009), we therefore use these conserved moments as tracers involved in physical transport. Their full Eulerian derivatives are

computed as follows, using the product rule:10

∂ (P x)

∂t
= P

dx

dt
+x

dP

dt
+

∂

∂z

(
κz
∂ (P x)

∂z

)
(39)

∂ (P y)

∂t
= P

dy

dt
+ y

dP

dt
+

∂

∂z

(
κz
∂ (P y)

∂z

)
(40)

∂
(
P
(
Vx +x2

))
∂t

= P
dVx
dt

+ 2Px
dx

dt
+
(
Vx +x2

) dP
dt

+
∂

∂z

(
κz
∂
(
P
(
Vx +x2

))
∂z

)
(41)

∂
(
P
(
Vy + y2

))
∂t

= P
dVy
dt

+ 2Py
dy

dt
+
(
Vy + y2

) dP
dt

+
∂

∂z

(
κz
∂
(
P
(
Vy + y2

))
∂z

)
(42)

∂ (P (Cxy +x y))

∂t
= P

dCxy
dt

+Py
dx

dt
+Px

dy

dt
+ (Cxy +x y)

dP

dt
+

∂

∂z

(
κz
∂ (P (Cxy +x y))

∂z

)
(43)15

The above Eulerian derivatives are the derivatives used in SPEAD to proceed from one time step to the following. Then, at

each time step, we recover the necessary statistical moments (x,y,Vx,Vy and Cxy) by back-computing them:

x=
(P x)

P
(44)

y =
(P y)

P
(45)

Vx =

(
P
(
Vx +x2

))
P

− (P x)
2

P 2
(46)20

Vy =

(
P
(
Vy + y2

))
P

− (P y)
2

P 2
(47)

Cxy =
(P (Cxy +x y))

P
− (P x)

P

(P y)

P
(48)

The derivatives with respect to z used in the vertical diffusion is represented terms are estimated by an implicit scheme in order

to avoid numerical instability. The depth-resolved model is solved in time with a fourth-order Runge-Kutta numerical scheme.

Three environmental forcings are necessary to run the model: temperature, PAR and vertical diffusivity. All three depend25

on depth and time and have been set to values from the Sargasso Sea. The forcings are seasonal. Interannual variations and

the day/night cycle are neglected. Temperature and surface PAR (I0(t)) directly affect the rates of plankton growth and death.

They are set for each day using observations collected during the Bermuda Atlantic Time-series Study (BATS) (Steinberg
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Figure 3. Distribution in depth and time of three environmental variables: a) Temperature, b) and d) Photosynthetically Available Radiation

(PAR) and c) Vertical turbulent diffusivity. The black curve in d) represents the lower limit of the mixed layer.

et al., 2001). PAR availability is assumed to decrease exponentially with depth
(
I(z, t) = I0(t)e−kwz

)
, with a PAR vertical

attenuation coefficient (kw) of 0.04 m−1. Self-shading by phytoplankton is neglected. The vertical diffusivity κz is the third

forcing. Contrary to temperature and PAR, it has not directly been observed. Therefore, the turbulent diffusivity comes from

the physical model GOTM for the Sargasso Sea (Bruggeman and Bolding, 2014). All three forcings as functions of time and

depth are shown in Fig. 3.5

2.4 List of simulations

The simulation of the aggregate 2-trait model with mutation rates νx = 0.001 and νy = 0.01 ◦C2 is our standard simulation for

this study. νx is expressed without unit because the trait axis x is in logarithmic scale, but like νy it is a variance increase per

generation. Most of the results presented in Figures 4, 5, 6, 7 and 9 come from this standard simulation. The bulk properties of

SPEAD 1.0 (total primary production, total phytoplankton biomass, nutrient and detritus concentrations) are validated using10

observations from the BATS station in the Sargasso Sea (Steinberg et al., 2001; Vallina et al., 2008; Vallina, 2008). The multi-

phenotype discrete version of SPEAD is used to validate i) the assumption made in the aggregate continuous model that traits

are normally distributed and ii) the simulated values and tendencies of the moments of the continuous-trait distribution. In

order to better understand the behavior of the model, the standard simulation is also compared to simulations with different
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mutation rates and to simulations with adaptive dynamics for only 1 trait, keeping the other trait unable to mutate but at its

optimal value.

Trait diffusion is a relatively recent concept and the values of the mutation rates are not yet well calibrated by observations.

To obtain a qualitative idea of the ecosystem model behavior, we tried a wide range of values for νx (from 0.00001 to 0.1).

The largest value was chosen for its similarity to the trait diffusivity parameter chosen by Merico et al. (2014) and Chen and5

Smith (2018) to account for the observed trait variance. However, νx = 0.1 allows the phytoplankton to reach a variance of

Vx = 4 in only 20 generations, since 2νx is added to the phytoplankton population variance at each generation. This variance

is the maximum allowed in the discrete model and corresponds to having half the community at each extreme of the trait

axis (x=−2.5 and x= +1.5). However, laboratory experiments based on single clones show significant evolution only on

timescales of hundreds to thousands of generations (Schlüter et al., 2016). For this reason we also conducted simulations with10

mutation rates as low as 0.00001, and a control simulation without trait diffusion at all (νx = 0). As the mutation rate has the

dimension of trait squared and as the range of temperature is around three times larger than the range of nutrient concentration

logarithms, we fixed the same ratio of mutation rates, νyνx = 10 ◦C2, for all simulations. We checked that departing from this

ratio did not qualitatively affect our results. In total, we conducted simulations for 10 sets of mutation rates, including the

control case.15

A 2-trait model is not simply the superposition of two 1-trait models, for at least two reasons. First, when two environmental

factors limit biomass growth, but only one is included in the model, the simulation is likely to overestimate the phytoplankton

growth rate. Second, when there is a strong inter-trait correlation, each environmental factor impacts both traits. For instance, if

the ambient DIN concentration (N ) is below the (geometric) mean half-saturation constant (ex), the competition for nutrients

will select for phenotypes with a lower half-saturation constant. If at the same time the half-saturation is negatively correlated20

with optimal temperature (i.e. if phenotypes with low half-saturation constants tend to also have a high optimal temperatures),

the competition for nutrients will also increase the amount of phenotypes with high optimal temperatures, in addition to the

effect of environment temperature. In the conceptual model of Savage et al. (2007), the inter-trait correlation in a 2-trait model

led to higher variances and to a considerable improvement in the ability of the mean phytoplankton traits to track optimal

values controlled by environmental conditions compared with 1-trait models. In order to know whether these results also apply25

to our model, we compare the dynamics of traits x and y in SPEAD to the dynamics of simplified 1-trait models where either

x or y vary between phenotypes and the other trait is optimized instantaneously (i.e. set to the optimal value at each location

and time given the environmental conditions).

The time step for our simulations is 6 hours. At the first time step and at all vertical levels, DIN concentration is initial-

ized to 1.8 mmolN m−3, phytoplankton and zooplankton concentrations to 0.1 mmolN m−3, and PON concentration to 0.030

mmolN m−3. The total amount of nitrogen in the water column is conserved, and every loss below 200 m due to PON sinking

is compensated by an equivalent gain of DIN, also at 200 m. Mean logarithm of half-saturation and mean optimal temperature

are initialized at -0.5 (corresponding to Kn = 0.61 mmolN m−3) and 24 ◦C respectively, with initial standard deviations of 0.1

and 0.3 ◦C. Each simulation is run for at least 3 years and until convergence is reached. Our convergence criterion is that, for

every day of year and every depth level, the difference between the two last years should be less than 0.1% for P, Vx and Vy ,35
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less than 0.1% of the modeled range for x and y and less than 0.001 for Rxy . In other words, convergence is achieved when

the seasonal cycle of the model state variables is repeated from year to year. The results shown are in all cases from the last

simulated year. We checked that total nitrogen was the only feature in the initial conditions that affected the results.

3 Results

3.1 Bulk modeled properties and comparison with observations5

The first step to validate the SPEAD model is to compare some bulk properties with observations from the Sargasso Sea in

order to assess the realism of the trait-independent biogeochemical parameters (Table 2). In Fig. 4, the primary production,

chlorophyll, DIN and PON concentrations of the aggregate model are compared to a 10-year climatology of monthly observa-

tions of primary production, chlorophyll, nitrate and PON concentrations (Vallina et al., 2008). The distribution pattern of bulk

properties in SPEAD does not depend much on the mutation rates and is very similar to those of 0-trait simulations without trait10

diversity (see Supplement). Differences between these simulations are small compared with the differences between model and

observations. With carefully chosen values for the parameters of the ecosystem model (Table 2), the model and observations

agree well, although some minor discrepancies exist, due to the simplicity of our parameterizations.

Primary production is the state variable best reproduced by the model, with a maximum around 10 mgC m−3 d−1 in the first

50 m in February and March in both the model and the observations. From May to September, primary production spreads15

slightly more in depth but is overall around half its maximumal value. Primary production is negligible deeper then 80 m.

Chlorophyll concentration is reproduced with the right order of magnitude, an absolute maximum correctly located in Febru-

ary between 50 m and 80 m deep, at about 0.25 mgCHL.m−3, and a deep chlorophyll maximum around 100 m in summer.

However, the model chlorophyll concentration is lower than the observations in spring and higher in late autumn. Chloro-

phyll concentration begins to increase in December in the model but only in February in the observations. Both chlorophyll20

concentration and primary production are proportional to phytoplankton concentration. The reason for the temporal mismatch

between SPEAD and the observations in chlorophyll concentration, but not in primary production, must then be related to the

temporal variability of the other factors affecting these two quantities: the nitrogen uptake rate and the C:CHL ratio. The rela-

tively high primary production and very low chlorophyll concentration observed in December might be accounted for better if

the uptake rate were faster in December than in February, despite the lower availability of nutrients and light, or if turbulence25

were included in the estimation of the C:CHL ratio so that it reaches its lowest value in February, when the waters are best

mixed and phytoplankton cannot stay close to the surface (Taylor et al., 1997), rather than in December, when the surface light

intensity is minimum (Lefèvre et al., 2002; Jakobsen and Markager, 2016).

Dissolved Inorganic Nitrogen is compared to the observed nitrate concentration, knowing that this form of DIN dominates at

depth but co-occurs with nitrite and ammonium, which are also components of DIN. The modeled DIN and the observed nitrate30

concentrations share the same range, with a maximum of 2.8 mmol m−3 in the observations and 3.3 mmol m−3 in the model.

Another common point between the model and the observations is that both reach a maximum at the bottom of our setting,

at 200 m, with concentrations between 2.1 and 2.8 mmol m−3 during most of the year. Because of the strong vertical mixing,
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Figure 4. Distribution in depth and time of a) model primary production, c) chlorophyll concentration, e) dissolved inorganic nitrogen

concentration and g) particulate organic nitrogen concentration for νx = 0.001 and νy = 0.01◦C2. Each variable is compared with equivalent

observations in the Sargasso Sea (b, d, f and h).

from February to April, the concentrations are lower, between 1.5 and 2.0 mmol m−3, but still a maximum. However, from

June to January, the modeled DIN concentration exhibits a second maximum that is absent from the observations. This second

maximum is located just below the euphotic layer, between 100 m and 150 m deep, with values as high as 3.3 mmol m−3 in

late November. Both modeled and observed observated concentrations are minimal at the surface, due to the nitrogen uptake

by phytoplankton. However, their values diverge by more than one order of magnitude. Modeled DIN concentrations at the5

surface vary between 0.18 and 1.34 mmol m−3, with a mean of 0.67 mmol m−3, whereas observed nitrate concentrations vary

between 0 and 0.11 mmol m−3, with a mean of 0.03 mmol m−3. We assume that these discrepancies are due to the contribution

of ammonium, and possibly nitrite, since the few studies reporting measured concentrations of ammonium in the Sargasso Sea

(Menzel and Spaeth, 1962; Brzezinski, 1988) showed that ammonium was more homogeneously distributed in the upper 200

m than nitrate and was the dominant form of dissolved nitrogen from surface to 100 m deep.10

Particulate organic nitrogen distributions from the model and observations are relatively similar, with a maximum around

0.5 mmol m−3 (0.45 mmol m−3 in the observations, 0.51 mmol m−3 in the model) in April and May at depths between 30 m

and 80 m. However, the seasonality and vertical gradients are much larger in the model, where particles are very rare in autumn
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and nearly absent at depths greater than 100 m, whereas observed PON concentrations are never below 0.08 mmol m−3. The

observations might be better explained if a minority of particle production went to a slowly remineralizing refractory pool,

enabling them to stay during the whole year and to reach greater depths (Aumont et al., 2017), but we did not increase the

complexity of the particle parameterization because this is not the focus of our study.

3.2 Trait distribution of SPEAD and comparison with a multi-phenotype model5

The second step to validate the aggregate SPEAD model and the only validation of its bivariate trait distribution is done by

comparing it to the multi-phenotype model. Although both are models and thus simplify reality in similar ways, the multi-

phenotype model is used as a reference for two reasons. First, it is more intuitive than the aggregate model, with birth and

death processes and mutations to the nearest neighbors as the only terms in the equations. Therefore, the moments of the trait

distribution in the multi-phenotype model can be used as a control to confirm that the equations of the aggregate model are10

correct. Second, the multi-phenotype model does not assume any particular trait distribution shape and can be used to validate

the a priori assumption of the aggregate model that the trait distribution is a bivariate normal distribution.

The spatial and temporal patterns of phytoplankton concentration, mean traits, trait standard deviations and inter-trait cor-

relation for the standard simulation with mutations rates of νx = 0.001 and νy = 0.01 ◦C2 are shown in Fig. 5. The value of x

varies between -0.83 (Kn = 0.44 mmolN m−3) and +0.6 (Kn = 1.82 mmolN m−3), with standard deviations between 0.31 and15

0.77. The value of y varies between 22.0 ◦C and 26.1 ◦C, with standard deviations between 0.81 ◦C and 1.92 ◦C. By compari-

son, the modeled DIN concentration varies between 0.18 and 3.31 mmolN m−3, and the water temperature varies between 18.5

and 27.8 ◦C. As expected, the mean trait values remain consistently within the range of the environmental drivers to which they

adapt. Because the best competitor at a given time and depth needs tens of generations to become dominant after having been

a rare phenotype, the mean traits react with a delay of 1 to 2 months and with a lower amplitude than their drivers. Cold-water20

opportunists (high x-trait, low y-trait) dominate in winter and spring throughout the water column. In summer, they are slowly

replaced by warm-water gleaners (low x-trait, high y-trait) in the upper 70 m but retain dominance at greater depths, where

their half-saturation constants continue increasing and their optimal temperatures continue decreasing. The coexistence of two

very distinct communities in summer and early autumn is made possible by the intense stratification, which creates a physical

barrier between the different depth levels. In late autumn, the two communities are rapidly mixed by the vertical turbulent25

diffusion, producing a peak in the standard deviation of each trait, in other words a peak in the local (alpha) diversity. Then,

as the water column becomes more homogeneous, competition selects for a single dominant phenotype, reducing the trait

diversity until the next autumn. Inter-trait correlation is negative at all times and depths, due to the negative correlation of the

environmental drivers. High DIN concentrations generally coincide with low temperatures, favoring cold-water opportunists.

This happens during winter because turbulent mixing brings nutrient-rich cold waters from the deep layers up to the surface.30

During summer, the consumption of nutrients by primary producers leads to a coincidence of warm temperatures with low DIN

concentrations at the surface. In late autumn, the negative correlation reaches its maximum absolute value when the two main

communities are suddenly mixed. During the rest of the year, trait diffusion progressively reduces the inter-trait correlation.
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Figure 5. Distribution in depth and time of trait distribution moments for νx = 0.001 and νy = 0.01◦C2: a) phytoplankton concentration,

b) (geometric) mean half-saturation, c) optimal temperature, d) inter-trait correlation, e) half-saturation logarithm standard deviation and f)

optimal temperature standard deviation. For readability, the mean value of trait x is transformed into a nitrogen concentration in b). To speak

properly and contrary to other means present in this study, the "mean half-saturation" is a geometric mean, not an arithmetic mean.

In Fig. 6, the state variables of the aggregate model are compared to the trait distribution moments of the discrete model.

The discrete model is considered as a "truth" and the difference between the two models as an "error", positive if the value is

higher in the aggregate model. The aggregate model reproduces P and x very precisely, with linear determination coefficients

(R2) of 0.998 and 0.988 respectively. The biases (mean errors) are very low: +0.0005 mmolN m−3 on P and -0.04 on x. The

bias of y is larger, at -0.50 ◦C, but the coefficient of determination is still very high, at R2 = 0.862. The error is largest in5

the deep community in summer and early autumn, reaching a maximum of -1.51 ◦C in early September around 100 m. The

most likely reason why the aggregate model underestimates y, but not x, is that the response of phytoplankton to temperature

is asymmetrical. Increases in the environment temperature put more selective pressure on the phytoplankton community than

decreases. This feature is poorly taken into account by the aggregate SPEAD model because of its assumption that traits are

normally distributed. There is a mismatch between the asymmetrical shape of temperature niches and the imposed symmetrical10

shape of the distribution of optimal temperatures (y-trait) in the aggregate model. This mismatch does not happen for the x-

trait. As is typically the case in aggregate models, there are more errors in the higher order moments, in our case the standard

deviations and the inter-trait correlation. The coefficients of determination for σx, σy and Rxy are R2 = 0.813, R2 = 0.462 and

R2 = 0.896 respectively. Their biases are -0.04, +0.09 ◦C and -0.001 respectively, which is around 10% of the mean value for

σy and σx and negligible for Rxy . All three variables decrease much faster in early winter in the aggregate model than in the15
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Figure 6. Comparison at all depths and times of the aggregate and multi-phenotype model state variables for νx = 0.001 and νy = 0.01 ◦C2:

a) total phytoplankton concentration, b) (geometric) mean half-saturation, c) mean optimal temperature, d) inter-trait correlation, e) half-

saturation logarithm standard deviation and f) optimal temperature standard deviation. Blue is winter, green is spring, red is summer and

black is autumn.

multi-phenotype model. Additionally, in summer, there is a strong discrepancy for σy . In the discrete model, σy can reach as

low as 0.57 ◦C but in the aggregate model it is never less than 0.81 ◦C and very rarely less than 1.0 ◦C.

The main errors on σx, σy and Rxy are caused by the aggregate model’s assumption of a multi-variate normal distribution,

which is not strictly correct based on the results of the discretely resolved model. In Fig. 7, we show in a 2D color plot

how the two traits are distributed in the discrete model at three different depths (surface, 50 m and 100 m) at the end of5

each season (March, June, September, December). This distribution is compared with the bivariate normal distribution of the

aggregate model, represented by ellipses. In March, when the waters are well-mixed, and in June, when the stratification has

just begun, the traits are normally distributed and the two models agree. There is only a small error on the distribution of

optimal temperature. In March at all depths and in June at 100 m, the normal distribution of the aggregate model contains

more phenotypes with low optimal temperatures than the distribution of the discrete model. In summer, the traits are also10

normally distributed near the surface. However, the distribution of optimal temperature is markedly right-skewed deeper in

the water column. Optimal temperatures below that of the most common phenotypes are extremely rare whereas those larger

than this level are more common. The aggregate model has its y below the peak of the multi-phenotype model and has a

much larger σy . This is the largest error for both a mean trait value and a trait standard deviation in this study. Since nothing

similar occurs with half-saturation, this error must be linked with the right skew in the temperature-dependent growth factor15
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when expressed as a function of optimal temperature (Fig. 2d). In stable environments with little change in temperature with

time and little vertical mixing, the distribution of optimal temperature tends to become naturally right-skewed. However, our

results show that re-mixing (in late autumn), fast environmental change (near the surface) and trait diffusion can reduce or

eliminate this skew, so that the trait distribution is often close to normality. In December during the re-mixing phase, the

trait distribution completely deviates from normality and becomes bimodal, with a community of warm-water gleaners and a5

community of cold-water opportunists co-occurring throughout the water column. At this time the standard deviations and the

inter-trait correlation are at their annual maxima. The moments of the trait distribution at that time are very well captured by the

aggregate model. However, assuming a normal trait distribution is not only wrong in terms of ecological description but also

leads to incorrect dynamics during winter. In winter, the ecological selection in the now mixed waters reduces trait diversity,

and trait diffusion reduces the inter-trait correlation. These processes occur faster in the aggregate model than in the multi-10

phenotype model (see Fig. 6) because the selective pressure is larger for a normal distribution than for a bimodal one. From

a mathematical point of view, this can be shown in a simplified 1-trait model. Selection through competition reduces the trait

variance at a speed equal to 1
2 (M4−V 2

x ) ∂
2a
∂x2 (this is a 1-trait unskewed version of equation B7), where M4 is the fourth order

moment or "kurtosis". In a Gaussian distribution, M4 = 3V 2
x . Bimodal distributions have a lower kurtosis, therefore they are

affected more slowly by ecological selection. By design, the aggregate model cannot account for this effect because it assumes15

a unimodal Gaussian distribution. From a more ecological point of view, it can be noted that in order to replace a bimodal

distribution by a unimodal one with a smaller variance, a previously rare intermediate phenotype must rise to prominence

and previously dominant phenotypes must become rare, which is a dramatic change. By comparison, in an already unimodal

Gaussian distribution, reducing the variance only means making rare and extreme phenotypes even rarer.

3.3 Trait dynamics with different mutation rates20

In this section, we compare the results of simulations conducted with 9 different sets of mutation rates, from νx = 0.00001

and νy = 0.0001 ◦C2 to νx = 0.1 and νy = 1.0 ◦C2. A control simulation with no trait diffusion is also included. That amounts

to a total of 10 simulations. This comparison highlights the unique role played by trait diffusion in SPEAD, even at very low

mutation rates. The ratio of mutation rates, νyνx = 10 ◦C2, is the same in all simulations presented in this study. We do not

assume that this ratio always has this value in nature. Simulations with other values were also performed and the ratio was25

found to have little effect on their results. The mean value and variance of each trait are very similar in all simulations where

they have the same mutation rate, whereas primary production and correlation are impacted in similar proportions by both

mutation rates. Therefore the variability in νy
νx

was overlooked for simplicity.

For each simulation, Fig. 8 shows the values of depth-integrated primary production per year and the yearly averaged values

and ranges of x, y, σx, σy and Rxy . Additional diagnostics are presented in Table 3. The number of years to converge to30

a steady state, beyond being just a numerical issue, can also serve as an ecological indicator of the time needed to damp a

perturbation or to adapt to a new physical setting, although, by design, our convergence times cannot be less than 3 years. The

Control simulation does not fully converge even after decades and we decided to run it 38 years, which is the convergence time

of the simulation with the lowest non-zero mutation rates. However, we find that the trait diversity of the Control scenario does
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Figure 7. Concentrations of each phenotype of the multi-phenotype model (color) compared with lines of equal density of the aggregate

model
(
νx = 0.001 and νy = 0.01◦C2

)
. Subplots correspond to days 71, 161, 251 and 341, and depths of 0, 50 and 100 m. Dashed lines

indicate the optimal competitor.

not collapse to zero as we expected because the standard deviations of its x and y traits ends up being higher than their initial

values and continue slowly increasing. Yet, the standard deviations of the Control scenario is significantly smaller than for the

scenarios with non-zero trait diffusion. For either trait, the maximum value of V
2ν is the number of generations required to reach

the highest trait variances of the simulation in the absence of ecological selection and with trait diffusion as the only source of

variance. Although highly idealized, this number is a proxy for the timescale of evolutionary processes. Table 3 also assesses5

whether bimodality is present occurs at some point in the year in the discrete model and whether the mean traits come within

one standard deviation of the discrete model boundaries at some point in the year. Bimodality was assessed visually based on

the trait distributions of the discrete model during the December mixing event.

Primary production is around 146.9 gC m−2 yr−1 lies between 146.8 and 147.0 gC m−2 yr−1 for all mutation rates between

νx = 0.00001 νx = 0 (control) and νx = 0.001, then decreases at higher trait diffusivities to finally reach 130.8 gC m−2 yr−1 for10

νx = 0.1. The primary production of the control simulation is 146.5 gC m−2 yr−1. This result agrees with the model of Chen

et al. (2019) as applied to the North Pacific. Their phytoplankton community was characterized by one trait, cell size, which is

somehow related to our half-saturation trait x. They found that primary production was diminished when νx increased, but they
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Figure 8. Primary production and trait distribution moments for different mutation rates. The ratio νy
νx

is kept constant and equal to 10 ◦C2.

Moment ranges are represented by error bars, and their mean by dots. The mean traits are compared to the extreme values of their environ-

mental drivers (dissolved inorganic nitrogen concentration and temperature). The trait standard deviations are compared to their values in a

uniform distribution within the boundaries of the discrete model.

Table 3. Convergence time and various properties of SPEAD 1.0 simulations with different mutation rates

νx νy Convergence time max
(
V
2ν

)
Out of range Bimodality Adapts faster

– [ ◦C2] [years] [generations] (discrete model) with 2 traits

0 0 51 – No Yes Yes

0.00001 0.0001 14 38 12904 12512 No Yes Yes

0.00003 0.0003 10 14 4270 4213 No Yes Yes

0.0001 0.001 8 10 1384 1363 No Yes Yes

0.0003 0.003 7 636 631 No Yes Yes

0.001 0.01 5 297 No Yes No

0.003 0.03 5 4 139 No Yes No

0.01 0.1 4 53 Yes No No

0.03 0.3 4 21 Yes No No

0.1 1 3 7 Yes No No

27



only considered relatively high mutation rates between 0.01 and 0.1, as well as a control simulation. Under relatively stable

conditions, we find that fast mutation rates (νx > 0.01) are a drawback for primary production because they promote large trait

variances, allowing non-competitive phenotypes (i.e. under-performers) to proliferate. However, phytoplankton mutating very

fast could be invaded by phenotypes mutating more slowly. Therefore we do not expect them to be common in nature.

In the simulations with νx = 0.01, νx = 0.03 and νx = 0.1, the mean trait values remain close to their environmental drivers5

and their range over the year is as wide as that of DIN concentration and temperature, respectively. On average, the community

adapts nearly instantaneously to its environment. However, the cost for this apparent success in fast-tracking the environmental

conditions is that the standard deviations of the trait distribution are very high and close to that of a uniform distribution

between the trait boundaries of the discrete model. Given that the trait domain of the discrete model is already wider than

the ranges of DIN concentration and in-situ temperature, this result suggests that either 1) phenotypes that are maladapted10

at all depths and throughout the year are common (explaining the low primary production) or 2) that we have reached the

limit of validity of the aggregate approach. These simulations do not have skewed or bimodal distributions, and their In these

simulations, skewed or bimodal distributions are extremely rare and smoothed out in a few days, and correlations are negligible,

even in December when the stratification is broken, because trait diffusion is a symmetrical process that constantly replenishes

all rare phenotypes, including warm-water opportunists and cold-water gleaners that are maladapted at all depths and during15

all the year. The simulations with large mutation rates converge in 3 or 4 years and can sustain their variances in less than 60

generations, that is, in less than a year. They use mutations to follow the seasonal cycle of their environment faster than the

usual timescales of evolution, even for phytoplankton (Schlüter et al., 2016).

When the mutation rates are lower, the mean traits still vary during the year but not as much nor as fast as the physical

environment, and no phenotypes are found outside of the trait domain of the discrete model. With νx at 0.001 or lower, several20

years are required to sustain the variance and to converge to a seasonally stable state. In this case, the mutations create variance

over the long term, facilitating the ecological successions of phenotypes seasonally and the adaptive evolution inter-annually.

However, low mutation rates do not allow the community to evolve seasonally. Bimodality is present in the discrete version,

at least during the late autumn mixing, and lasts longer as the mutation rates decrease. The variances increase when the trait

diffusivity parameters increase, which is what trait diffusion was designed for. We note that, contrary to chemostat models25

(Merico et al., 2009), SPEAD 1.0 does not require trait diffusion to sustain a positive trait diversity: the trait variances do not

collapse to zero even in the absence of trait diffusion. The late autumn mixing is a source of variance in its own right, avoiding

the collapse of trait diversity even in the control simulation. However, the trait standard deviations in the control case are very

low, between 0.13 and 0.43 0.12 and 0.41 for x, and between 0.49 and 1.64 ◦C for y. Trait diversity appears even lower when

accounting for the fact that correlation between x and y is blocked at -1. The x and the y traits totally determine each other,30

as if there were only one trait and no extra degree of freedom. The only active phenotypes are located on a straight line. Trait

diffusion is not necessary to sustain variance, but it is necessary to allow the model to explore the entire trait space and to adapt

to entirely new sets of environmental conditions.

Increasing trait diffusivity to νx = 0.00001, νx = 0.00003 or νx = 0.0001 does not produce a large increase in trait variance,

which keeps being extremely low and mainly controlled by the December mixing, but reduces the inter-trait correlation to35
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moderate values, mainly between -0.75 and -0.5. Simulations with the above mutation rates also share a high primary produc-

tion and timescales of a few years (≈ 100s to 1000s of generations) to adapt to their environments, features that are coherent

with our expectations on the effect of inter-generational mutations.

Increasing trait diffusion to νx = 0.00001 does not lead to any significant increase in trait variance, which keeps being

extremely low. The variance is still overwhelmingly controlled by the December mixing, producing very large correlations.5

Just above this level, the cases from νx = 0.00003 to νx = 0.0003 share features that are coherent with our expectations on the

effect of inter-generational mutations: a high primary production, a moderately high but never total correlation and timescales

of a few years ( 100s to 1000s of generations) to adapt to their environment.

3.4 Trait dynamics compared with 1-trait models

In Figs. 9 and 10, the trait distribution moments of SPEAD at the surface are compared with the environmental drivers (DIN10

concentration and water temperature) and with the outputs of two single-trait aggregate models, where only the half-saturation

constant or only optimal temperature is allowed to vary between phenotypes, subject to trait diffusion. Figure 9 shows the

comparison for the standard values of the mutation rates: νx = 0.001 and νy = 0.01 ◦C2. However, the differences between

2-trait and 1-trait models are likely to be larger when correlations between x and y are large. Therefore, in Fig. 10, we compare

the 2-trait and 1-trait model distributions obtained with the lowest non-zero mutation rates: νx = 0.00001 and νy = 0.0001 ◦C2,15

which lead to inter-trait correlations between -0.8 and -1 in the 2-trait model.

With standard mutation rates, the trait dynamics are very similar in all three models. The 2-trait model has slightly lower

standard deviations than the 1-trait models during some parts of the year, but the difference is always within 10%. The seasonal

patterns are very similar in both timing and amplitude. The greatest differences are found in summer, from mid-June to mid-

August, when the 1-trait model with adaptive dynamics for half-saturation has a greater phytoplankton concentration by as20

much as 29% and a lower nutrient concentration by as much as 24% compared to the other two models, which concentrations

are very similar to each other. This result means that at the onset of summer, the most important factor decreasing the ability

of phytoplankton to grow is not the lack of nutrients, but temperature itself. In other words, the phenotypes that dominated

in spring decline, not because they are not adapted to oligotrophic conditions, but because they are not adapted to the high

temperatures of summer and the growth rate of a phenotype declines sharply when temperature exceeds its optimal value. This25

effect is negligible at the highest mutation rates, because in this case the community is able to evolve and adapt very quickly

to the summer warming, but becomes more important as the mutation rates, and hence the optimal temperature variances,

decrease.

The differences between models are larger at low mutation rates. With the smallest non-zero mutation rates, the summer

difference in phytoplankton biomass increases. The 1-trait half-saturation model has now a phytoplankton biomass as much as30

57% greater and a DIN concentration as much as 30% smaller than in the other models. Trait variances are again lower in the

2-trait model during most of the year but sometimes exceed the 1-trait variances during the autumn mixing. However, the most

notable change is that the seasonal amplitude of mean half-saturation (x) is now 56% higher in the 2-trait model than in the

1-trait half-saturation model. Having a second trait allows the ecosystem to adapt faster to environmental changes. This effect
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Figure 9. SPEAD state variables at surface for νx = 0.001 and νy = 0.01 ◦C2 (standard) compared with the state variables of 1-trait models:

a) total phytoplankton concentration, b) (geometric) mean half-saturation, c) mean optimal temperature, d) inter-trait correlation, e) half-

saturation logarithm standard deviation and f) optimal temperature standard deviation. The dashed lines represent the environmental drivers.

is even more notable when considering that both the half-saturation variance and the nutrient-mediated selective pressure are

lower in the 2-trait model. This effect does not extend to the other trait, although the mean optimal temperature of the 2-trait

model and that of the 1-trait optimal temperature model sometimes show slight departure from each other, in a seasonally

dependent way.

The effects described above are related to inter-trait correlation, which is driven by correlated environmental conditions5

and becomes very large in the case of low mutation rates. Equations 29 to 34 30 to 35 can help understand the effect of trait

correlation on the seasonality of mean traits and trait variances. In the mean-trait equations (30 and 31 31 and 32), correlation

implies that both temperature and DIN concentration drive changes in both mean trait values. The covariance term can either

accelerate or slow down the response of each mean trait, but generally the sign of covariance is such that the change is

accelerated. This is what occurs from December to March, when the environment selects for higher half-saturation constants10

and lower optimal temperatures, and the environmentally induced negative correlation between traits further accelerates this

adaptation. From June to October, the same effect occurs but is significant only for half-saturation. During these months, the 2-

trait model actually experiences a slower increase in optimal temperature then the 1-trait model because it has a smaller variance

and because the selective pressure of high temperatures is much sharper than the nutrient-mediated pressure conveyed by the

correlative term. In November, correlation has the opposite effect: as the temperature decreases while the DIN concentration15
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Figure 10. SPEAD state variables at surface for νx = 0.00001 and νy = 0.0001 ◦C2 (low mutation rates) compared with the state variables

of 1-trait models: a) total phytoplankton concentration, b) (geometric) mean half-saturation, c) mean optimal temperature, d) inter-trait

correlation, e) half-saturation logarithm standard deviation and f) optimal temperature standard deviation. The dashed lines represent the

environmental drivers.

remains low, the environment at that time selects for both low optimal temperature and low half-saturation, and the negative

correlation prevents optimal temperature from decreasing.

The effect of correlation on variance is even more convoluted. In Equations 32 and 33 33 and 34, inter-trait correlation adds

a second variance-reducing competition term (C2
xy
∂2a
∂y2 and C2

xy
∂2a
∂x2 , respectively, both very likely to be negative). This is why

variances are smaller in the 2-trait model during most of the year. However, one source of variance is not accounted for in5

these equations: vertical mixing. Trait variance is not a conservative tracer. Indeed, mixing two communities with different

mean trait values "creates" additional variance. As phytoplankton adapts better to their environment in the 2-trait model than

in the 1-trait models, the difference between surface and sub-surface communities when the water column is stratified is larger

in the 2-trait model, and therefore the late autumn mixing event adds more trait variance in the 2-trait model. This is why the

variances are higher in the 2-trait model than in the 1-trait models in December.10
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4 Discussion

4.1 Strengths and weaknesses of aggregate models

SPEAD is an aggregate phytoplankton model. Aggregate models, used as far as we know since Wirtz and Eckhardt (1996),

do not compute the abundance of each phytoplankton species as discrete entities, but represent the phytoplankton community

by its total biomass together with the mean values, variances and covariances of a few key traits controlling its competitive5

ability along different environmental gradients. Aggregate models are known to reduce the computational cost of ecosystem

models by at least one order of magnitude. In a 0D physical setting (i.e. not spatially resolved), the single-trait aggregate model

of Acevedo-Trejos et al. (2016) was found to be 18 times faster to run than its alternative discrete model with as few as 10

phenotypes. SPEAD 1.0 is 70 times faster in its aggregate version than in its alternative discrete version with 25 × 25 = 625

phenotypes, despite the two model versions having to compute the same number of non-phytoplankton variables. The exact10

factor of cost reduction depends on the number of phenotypes used in the discrete model, and it is likely to be even larger if the

number of traits increases. The computational cost of a multi-phenotype model with phenotypes covering the entire trait domain

is an exponential function of the number of traits. For instance, allowing 25 values of optimal irradiance would multiply the cost

of our discrete model by 25. By contrast, the cost of an aggregate model is a quadratic function of the number of traits. In our

case, adding a third trait would simply increase the number of phytoplankton state variables from 6 to 10 (total phytoplankton15

concentration, 3 mean traits, 3 trait variances, 3 inter-trait covariances) and add a few new terms in each equation, which is

far less computationally demanding. This makes aggregate models promising tools to explore high-dimensional trait spaces of

the ecology and evolution of microbial ecotypes (Vallina et al., 2019). We note that some discrete models use an approach

different from the one described in our study: they run several simulations with a relatively low number of randomly sampled

phenotypes, and then make an ensemble mean of all their simulations. For instance, in Follows et al. (2007), each member20

of the ensemble contains 78 random phenotypes, which is not a particularly large number given that they have 4 functional

types and that their traits include half-saturation constants for several nutrients, optimal temperature, and optimal irradiance.

Still, running 10 such simulations to compute an ensemble mean is computationally expensive. Aggregate models do not need

ensemble means for sampling the trait space since they are continuous by design: their phytoplankton communities fill the trait

space completely, without the need of any arbitrary sampling.25

Aggregate models are very efficient because their state variables are the quantities that make most ecological sense. In ther-

modynamics, computing the trajectory of each atom or molecule is not only unfeasible, but also of little use. The collection of

trajectories does not provide more information on the macroscopic behavior of a thermodynamic system than aggregate prop-

erties such as temperature, pressure and density. Equally, modelling the dynamics of thousands of species would be incredibly

costly, and sufficient observational data would not be available to validate the models. Furthermore, the results would also be30

extremely difficult to interpret (Levins, 1966). Given that the most important quantities for understanding a community of

species with similar niches are biomass, followed by mean trait values and trait diversity, the aggregate model focuses com-

putational power where it is most needed, without much loss of information. Aggregate models also explicitly quantify the
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factors controlling biodiversity, such as the second derivatives of the net growth rate and the trait diffusivity parameters (Chen

et al., 2019).

However, the aggregate approach has one major weakness: a specific shape for the trait distribution must be assumed a priori,

with only as many degrees of freedom as there are free parameters (Wirtz and Eckhardt, 1996; Bruggeman and Kooijman,

2007). There is no universal distribution shape for phytoplankton traits, which is why the equations describing their dynamics5

are not as precise as the equations of thermodynamics. In this study, we assumed that optimal temperature was normally

distributed and that half-saturation constant was lognormally distributed. This Gaussian closure was chosen because of its

simple moment equations and low number of free or arbitrary parameters. Normally distributed temperature and irradiance

niches have been observed by Irwin et al. (2015). Half-saturation constant is strongly correlated to cell size (Litchman et al.,

2007; Edwards et al., 2012), and lognormal distributions have been observed in nature for size (Cermeño and Figueiras, 2008;10

Quintana et al., 2008; Schartau et al., 2010; Downing et al., 2014; Marañon, 2015), although not in all cases. Another very

common distribution is the power (or "log-linear") law (Rodríguez, 1994; Cermeño and Figueiras, 2008; Huete-Ortega et al.,

2012), although the power law must be truncated on at least one side. We note that a power law distribution with a cutoff on the

left might be better able to represent the right-skewed size distribution (even in logarithmic scale) of oligotrophic environments

where Prochlorococcus, the smallest known phytoplankton, dominates and coexists only with larger species (Marañon, 2015).15

What neither a unimodal nor a power law distribution can capture is bimodality, which is known to occur at least in lakes, due

to common herbivores, in particular daphnids, feeding optimally on preys of intermediate size (Gaedke and Klauschies, 2017).

Normal distributions are symmetrical, unimodal and unbounded. If the real trait distribution deviates from these three prop-

erties, errors will arise in aggregate models based on a normal distribution. Not only is information lacking by not including

higher-order moments such as skewness and kurtosis, but the dynamics of mean traits and trait variances could be signifi-20

cantly altered. If the trait distribution is skewed, the community will respond faster to a certain type of perturbation than to

the opposite perturbation. For instance, if optimal temperature is right-skewed, the phytoplankton community will adapt faster

to warming than to cooling environmental conditions. Phytoplankton with larger optimal temperature will need less time to

become dominant in case of warming than cold-water phenotypes in case of cooling because they will start from a higher

concentration. To express the above in terms of moment equations, the variance of a right-skewed distribution increases when25

the environment favors larger trait values, thus facilitating the adaptation, but decreases when the environment favors smaller

trait values (see Appendix B and the neglected term M30 in equation B7). If the trait distribution is multimodal, the reduction

in trait diversity induced by competitive exclusion (Hardin, 1960) will be slower. This is because replacing all pre-existing

communities by intermediate and previously rare phenotypes takes more time than making the most abundant phenotype even

more abundant and the rarest even rarer, as in a unimodal distribution. (see Appendix B and the neglected kurtosis term M4030

in equation B7, knowing that multimodal distributions have low kurtosis).

Normal distributions are unbounded, with the assumption that extreme values are rare and ecologically meaningless. The

consequence of this apparently reasonable assumption is that model phytoplankton can adapt to any environmental change if

they are given enough time, irrespective of the intensity of that change. This contrasts with expectations on the behavior of

real phytoplankton communities, as explained in the following example. If a closed (i.e. without immigration) phytoplankton35
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community experiences temperatures between 15 ◦C and 25 ◦C, the local phenotypes should be adapted to temperatures be-

tween 15 ◦C and 25 ◦C and not a single individual should be optimized for temperatures out of the boundaries, since it would

be outcompeted at all places and times. If the environment suddenly warms, the phenotypes with an optimal temperature closer

to 25 ◦C should come to dominate. However, if temperature reaches 30 ◦C, no phenotype with an optimal temperature of 30 ◦C

can rapidly come to dominate, since no such phenotype pre-exist in the system. Adaptation to temperatures larger than 25 ◦C5

can only occur through mutations or immigration. In an aggregate model, however, none of these processes are required. Phy-

toplankton will be able to adapt to any warming because an extremely small but non-zero biomass of phenotypes adapted to

very high temperatures is always present by model design and can become dominant if the environment selects them.

In the present study, the aggregate (continuous-trait) model agrees very well with a multi-phenotype (discrete-trait) model,

where no distribution shape is imposed but trait distribution is spontaneously close to normality during most of the year.10

Skewness and kurtosis occur during some times of the year, only to be removed later, and do not strongly impact our estimates

of the lower order moments. The assumed normal trait distribution is symmetrical and unimodal, therefore some errors occur

when the trait distribution is skewed or bimodal. The mean optimal temperature is slightly underestimated and its variance is

overestimated because SPEAD does not account for the slight right skew of optimal temperatures distributions. The other main

error is that variance tends to decrease too fast in winter, after the remixing of the previously stratified water column, because15

SPEAD cannot account for bimodality. The seasonal cycle and the orders of magnitude, however, are accurate. Our results

are similar to that of Acevedo-Trejos et al. (2016). However, other studies show much larger errors (Coutinho et al., 2016;

Klauschies et al., 2018) and consider Gaussian-based aggregate models to be inaccurate.

Whether the trait distribution of a model ecosystem is normal or not depends on the ecological processes included by the

modeler. At least two factors in SPEAD play in favor of a normal distribution. The first factor is trait diffusion. In a fluid, the20

diffusive movement of a tracer follows a Gaussian law, provided that the diffusivity coefficient is constant (Einstein, 1905).

Trait diffusion plays the same role here for traits and tends to erase skewness and bimodality. The second factor is the simplicity

of our ecological model. All our phytoplankton phenotypes compete for the same resource. In a given environment defined

by nutrient concentration and temperature, there is a single most competitive phenotype and the phytoplankton net growth

rate decreases continuously when moving away from this optimum. Grazing and mortality rates do not act against this trend25

because we impose them to be identical for all phenotypes. Conversely, two factors in SPEAD play against normality, but their

reach is relatively minor. The asymmetry of the temperature response curve promotes right-skewed distributions of optimal

temperature. However, and despite the naive expectation, this right-skew is generally not large in the discrete model because

the standard deviation of optimal temperature is always smaller than the temperature tolerance (∆T = 5 ◦C). The second effect

is the alternation of stratification and mixing during the year. In summer, stratification leads to the formation of two distinct30

communities in surface and in subsurface. When the vertical mixing strengthen again in late autumn, the two communities mix

into a temporary bimodal distribution.

Other ecological settings yield more widespread multimodality. Multimodality can be induced by immigration (Norberg

et al., 2001), resting stages (Beckmann et al., 2019), fast environmental oscillations (Beckmann et al., 2019), spatially hetero-

geneous environments (Wickman et al., 2019), "convex" trade-offs favoring extreme phenotypes (Coutinho et al., 2016), and35
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zooplankton prey selectivity (Wirtz, 2013; Klauschies et al., 2018). In particular, evolutionary branching of both phytoplankton

and zooplankton into tens of size clusters can occur when each zooplankton grazes only on a small size range (Sauterey et al.,

2017). However, it is important to point out that only fixed zooplankton preferences cause disruptive selection. By contrast,

active switching by grazers ("Kill The Winner") is insufficient to promote evolutionary branching as by design it promotes

uniform distributions, flattening the peaks and filling the gaps in trait distributions. Using a Gaussian-based aggregate model in5

a setting promoting branching would of course be inappropriate: SPEAD would be unable to simulate evolutionary branching

of phenotypes in these kind of ecological scenarios

Alternatives to Gaussian closures have been proposed since early in the development of aggregate models. Norberg et al.

(2001) and Norberg (2004) used more complex closures to estimate skewness and kurtosis. However, these closures had free

parameters, varying from ecosystem to ecosystem, and a discrete model was required to compute them, canceling the advantage10

of aggregate models in terms of computational cost. Klauschies et al. (2018) replaced the normal distribution by a beta

distribution. The beta distribution is bounded, allows bimodality, and was proven to increase the realism of trait-based aggregate

models in a bounded trait scenario. However, applying this method requires defining fixed boundaries for phytoplankton traits.

Phytoplankton has a minimum cell size (and half-saturation) at 0.5 µm, which is the size of Prochlorococcus, but it does

not have a well-defined maximum cell size. Also, optimal temperature at local scales does not have clear boundaries either.15

Therefore, any set of boundaries would be arbitrary and might prevent further adaptation to changing environments beyond

those limits.

A more practical approach to account for non-Gaussian distributions would be to divide the community into several func-

tional groups, each one having a normal trait distribution of its own (Terseleer et al., 2014; Chen and Laws, 2017). The sum of

these communities can have a skewed or multimodal trait distribution. Trait variances (in particular size variance) could be high20

within phytoplankton as a whole, without bolstering the adaptive capacity of each functional group (see 4.3.). All phenotypes

within a given functional groups must feed on the same nutrients, be subject to the same trade-offs and should not be subject

to processes promoting evolutionary branching. Ideally, and in order to prevent the convergence of all functional groups on the

same trait values, each group should have distinct qualitative properties or trade-offs. Functional groups could include diatoms,

mixotrophs, diazotrophs or Prochlorococcus, among others. Two communities defined by the same parameters could coexist25

and avoid merging if an intermediate trait range is permanently disadvantageous, due for instance to a convex trade-off or to

a size-specific grazer. The multi-Gaussian approach would combine the moderate computational cost of Gaussian aggregate

models with the more thorough description of planktonic ecosystems allowed by discrete models.

4.2 Traits in phytoplankton community models

In nature, many different traits define phytoplankton niches: nitrogen, phosphorus or iron uptake abilities, requirements in30

other nutrients (for instance silica or calcite), stoichiometry, optimal temperature, optimal irradiance, mixotrophy, diazotrophy,

motility, buoyancy, resistance to predation, toxicity, and many others. In many trait-based models, this complexity is reduced to

one trait. The most common trait is cell size (Terseleer et al., 2014; Acevedo-Trejos et al., 2016; Smith et al., 2016; Chen and

Smith, 2018). Cell size is used as a master trait because it is the most observable trait and correlates strongly with many other
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phytoplankton traits, such as light requirements (Taguchi, 1976; Edwards et al., 2015; Álvarez et al., 2017) and resistance

to predation (Kiørboe, 1993; Thingstad et al., 2005). Some other commonly modeled traits include resistance to predation

(Norberg et al., 2001; Merico et al., 2009), optimal temperature (Norberg et al., 2012; Beckmann et al., 2019) and optimal

irradiance (Follows and Dutkiewicz, 2011).

The first trait included in SPEAD, half-saturation for nutrients, is known to be strongly correlated to cell size (Litchman5

et al., 2007; Edwards et al., 2012). Small species, such as cyanobacteria, have low half-saturation constants and can thrive in

oligotrophic waters. They correspond to the "gleaners" of our model. Large species are more likely to be involved in blooms

but require more nutrients. They correspond to the "opportunists" of our model. In this study, we chose not to use size but to

impose only a simple gleaner-opportunist trade-off. This choice was made for two reasons: to maintain compatibility with the

Darwin model (Follows et al., 2007; Vallina et al., 2014a) and to facilitate the analysis of the outputs of our otherwise complex10

model, as in our setting the best competitors in a given environment have a half-saturation equal to the dissolved inorganic

nitrogen concentration. Our modelling framework can be, however, easily adapted to use size instead of half-saturation as the

first trait (Smith et al., 2016).

The trait dynamics of models with 2 traits differ from those of simpler and less realistic single-trait models. Savage et al.

(2007) obtain larger trait variances and much larger adaptive capacities when two traits are modeled together rather than in15

separate models. In our study, we also find a larger adaptive capacity, although it is conveyed by inter-trait correlation only.

We actually find decreased variances, caused by stronger competition, during most of the year, except during the late autumn

re-mixing of the water column, following the summer stratification. This discrepancy might have been caused by the presence

of an immigration term to sustain variance in Savage et al. (2007) but not in SPEAD, since our re-mixing of the water column

is most analogous to a dispersal or migration process and we simulate it explicitly. SPEAD simulations coupled with a realistic20

3D circulation model where phytoplankton is explicitly allowed to migrate in all directions (ideally in a patchy environment)

would finally tell us if variance is increased or decreased by including more traits.

The low computational costs of aggregate models allows increasing the number of modeled traits, provided that sufficient

observational data are available to constrain the corresponding trade-offs. Since the environmental drivers, such as nutrient

concentrations, temperature, and light are correlated with each other, the traits are likely to be correlated, unless some processes25

erasing the correlations are introduced. Regardless of the effect of interactions between traits on variance, multi-trait models

will be able to adapt to their environments faster without the need for large and unrealistic mutation rates or other terms

sustaining large variances, such as immigration or Kill The Winner grazing.

4.3 Trait diffusion, variance and evolution

Trait diffusion is a key process in SPEAD. Indeed, SPEAD is the first model to include diffusion of multiple traits, providing30

insights into how both mutations and selection can impact phytoplankton communities. For each modeled trait, a diffusivity

parameter, or "mutation rate", has to be set. The chosen values of these parameters decisively affect trait dynamics. However,

the mutation rates remain poorly constrained. The most appropriate rate depends on what the modeler intends to represent by
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trait diffusion. To understand why, we will need to discuss the notions of "ecological" and "evolutionary" timescales, as well

as the notions of "adaptation" and "species".

A first interpretation of trait diffusion is that it is the most conservative way to add variance when the exact processes sustain-

ing trait variance are unknown or too complex to be implemented in models. Indeed, trait diffusion simply adds new variance

(aggregate approach) or disperse phytoplankton in a trait space (discrete approach), leaving little room to arbitrary parameters.5

By contrast, immigration (Norberg et al., 2001) requires assumptions about both immigration rates and the composition of im-

migrant communities.? Likewise, Kill The Winner (Vallina et al., 2014b) requires assumption about whether it is mediated by

viruses or zooplankton, whether consumers are specialized or can actively switch their preference between preys, and whether

or not there is a time lag in their response.

This interpretation of trait diffusion as a generic source of variance is implicitly followed when the diffusivity parameter is10

set by an optimization algorithm in order to account for the observed trait variance and no other mechanism sustaining variance

is included. This way, Chen and Smith (2018) found a diffusivity for the logarithm of size of 0.1, equal to our largest diffusivity

for the logarithm of half-saturation. Even in the homogeneous environments of mesocosms, Wirtz (2013) reports a logarithmic

size variance of 0.2 to 0.5, which corresponds to standard deviations between 0.45 and 0.7. In SPEAD, reaching this high

values of trait variance is only possible with diffusivities superior or equal to 0.003, despite the fact that our physical setting15

creates its own variance by mixing phenotypes adapted to the environmental conditions of different depths. This interpretation

of trait diffusion is also coherent with the use of trait diffusion as a "variance treatment" (Chen et al., 2019) to study the effect

of diversity on primary production and with the original goal of trait diffusion, which was to sustain trait variance in 0D settings

(Merico et al., 2014; Acevedo-Trejos et al., 2016). In these models, trait diffusion is never run combined with other variance-

sustaining mechanisms. In real ecosystems, however, mutations are expected to occur at the same time as migration, Kill The20

Winner grazing, and many other mechanisms that may promote diversity, including multiple convex trade-offs (Beardmore

et al., 2011) and mixotrophy (Ward and Follows, 2016).

The way trait diffusion is derived opens a second interpretation of what it represents. Trait diffusion is symmetrical: mu-

tations occur at the same rate towards higher and lower trait values. Trait diffusion is also heritable: mutants transfer their

mutations to their offspring. These properties correspond to the evolutionary process of random mutations and selection of25

the fittest by the environment. It does not correspond to environmentally induced non-heritable variations such as phenotypic

plasticity (Ghalambor et al., 2007) or to any selective ecological process driven by the environment, even if some promote

variance.

According to Fussmann et al. (2007), "Evolution is the change of genotype frequencies within populations or species,

whereas community dynamics represent the change of abundances of different species". This definition depends on the no-30

tion of "species". Like many phytoplankton models, SPEAD lacks the notion of species and does not distinguish between

intraspecific and interspecific trait variance. Our trait space is continuous by design. By mutating, phytoplankton can cross the

boundaries between phenotypes, as if they were all of the same species. The only distinction in SPEAD is between mutations

and selection. Mutations are a strictly evolutionary process, represented in SPEAD by trait diffusion through subsequent gener-

ations. Selection encompasses both intraspecific selection, which is a second evolutionary process, and interspecific selection,35
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which is an ecological process. In SPEAD, selection has two effects: it drives the mean traits towards their optimum values

(see Eqs. 30-31) and decreases trait variances by eliminating the rarest and least fit phenotypes (see Eqs. 32-34). The only

distinction in SPEAD is between mutations, an evolutionary process represented by trait diffusion, and selection, necessary to

both ecological (interspecific) and evolutionary (intraspecific) processes and represented by an adaptive change in the mean

traits and a decrease in trait variance. Some cases of adaptive evolution to environmental changes in only a few generations5

have been reported (Fussmann et al., 2007; Kinnison and Hairston, 2007) but are not necessarily caused by mutations occur-

ring at these timescales. They can also be driven by ecological selection on a previously existing intraspecific diversity. In order

to choose correct mutation rates these two evolutionary processes must be distinguished.

An alternative interpretation is that ecological processes are particular cases of eco-evolutionary processes where the phe-

notypes of the offspring are identical to that of their parents (Doebeli et al., 2017). This definition emphasizes the lack of10

fundamental difference between the two types of processes from a mechanistic point of view, since both are rooted on the same

birth-death dynamics. Under this alternative interpretation, the "ecological" timescales are simply the timescales at which the

effect of mutations is small and the "evolutionary" timescales are those at which the effect of mutations is large. Therefore,

the ecological selection timescales overlap with the adaptive evolution timescales and the difference between the two is diffuse

at intermediate timescales. Schlüter et al. (2016) showed that an algal culture starting with a single clone of the abundant15

coccolithophore Emiliania huxleyi could evolve new traits in response to ocean acidification in a time measurable in the lab-

oratory. Their experiment lasted for 2100 generations and the changes after only 100 generations were small. These numbers

agree with the seminal studies on Escherichia coli where bacteria were shown to adapt to temperature increases or to changes

in nutrient availability in 100 to a few thousand generations (Bennett et al., 1990; Lenski et al., 1991; Travisano et al., 1995).

These are the timescales a "mutation rate" should reflect. In the case of phytoplankton this means a few years, which falls20

under the category of "contemporary evolution" but does not allow each species to adapt easily to a seasonal cycle or to faster

perturbations. The corresponding trait diffusivity parameters in our study are in the middle of or our range, between 3 × 10−5

and 10−3 for half-saturation and between 3 × 10−4 and 10−2 ◦C2 for optimal temperature (see Table 3).

The trait distributions in SPEAD provide additional insights. In absence of trait diffusion, the two traits become almost

totally correlated: one cannot vary without the other. This is a soft version of the diversity collapse observed in 0D models of a25

1-trait fitness lanscape. In our 1D model of a 2-trait fitness landscape, trait variances do not collapse to zero but a bidimensional

trait space becomes unidimensional and phytoplankton lose their ability to adapt in other directions. Nutrient and temperature

niches are known to be correlated in nature, but their correlation is never perfect (Irwin et al., 2012). A small trait diffusivity

is sufficient to avoid the collapse of the dimensional trait space into a unidimensional one and likely limits such trait correla-

tions in natural ecosystems, given that mutations affecting half-saturation and optimal temperature are likely independent and30

hence able to freely fill the full trait space. With very fast trait diffusion, the mean phenotypes adapt instantaneously to their

environment but at the cost of keeping a large pool of maladapted phenotypes, which regularly represent more than 15% of the

community even if they have very low fitness, because mutations are continuously creating them. These maladapted pheno-

types explain the decrease, by up to 10%, of the modeled annual primary production. In nature, the optimal niches of species

do not cover all the variability of nutrient concentration and water temperature (Irwin et al., 2012). Furthermore, most real35
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mutations having an effect on the phenotype are deleterious (Timofeeff-Ressovsky, 1940). A mutation rate able to permanently

sustain maladapted phenotypes despite strong selection against them would imply large amount of deleterious mutations not

represented in our model, and hence massive mortality. Moderate mutation rates are therefore more likely.

Modelling several communities with their own trait distributions and their own mutations might relax the contradiction

between the use of trait diffusion to explain trait variance and the use of trait diffusion to represent evolutionary processes.5

The variance within a species or a group is lower than the total community variance, and can be sustained with lower mutation

rates. This approach can also be used to separate the adaptive evolution of each species from the ecological successions (i.e.

inter-group competition) in response to environmental change (Norberg et al., 2012), finally disentangling all components of

eco-evolutionary processes.

4.4 Future directions10

SPEAD 1.0 is the first step of the SPEAD project, whose aim is to simulate plankton evolution with adaptive dynamics in the

ocean. In this first version of the model, we kept the complexity manageable, with only one spatial dimension (the vertical) and

two physiological functional traits, in order to facilitate the validation of our aggregate approach and to diagnose the effects

of trait diffusion. The equations of SPEAD 1.0 for mean trait, trait variance and covariance resolving two functional traits can

be used as a starting point to build more comprehensive trait-based models in multi-dimensional continuous trait spaces, with15

or without mutations. Three axes of potential future improvement have already been identified: 1) coupling SPEAD with a

general circulation model, 2) increasing the number of traits and 3) dividing the community into several functional groups,

which implies combining the continuous trait distribution approach with the discrete ecotypes approach.

More concretely, our goal for the near future is to include optimal solar irradiance as a third functional physiological trait

and implement the aggregate approach with trait diffusion in a 3D trait space into the Darwin model (Follows et al., 2007;20

Dutkiewicz et al., 2009; Barton et al., 2010; Follows and Dutkiewicz, 2011; Ward et al., 2012; Dutkiewicz et al., 2013). Darwin

is a versatile model that allows many discrete ecotypes to be resolved along several environmental axes gradients and can be

coupled with the MIT general circulation model (Marshall et al., 1997). Optimal irradiance has been present as a trait in the

Darwin model since its origin. Indeed, light can be a limiting resource for phytoplankton in the ocean, both in mixed water

columns, where plankton cannot stay close to the surface, and near the deep chlorophyll maximum of stratified water columns.25

Optimal irradiances are known to cover more than two orders of magnitude (Edwards et al., 2015) and to determine the niches

of many ecotypes, even within the same species (Biller et al., 2015). The inclusion of optimal solar irradiance as a mutating

trait in SPEAD will be a key step to better capture ecological successions. One challenge will be to allow phenotypes to

adapt to their environment while accounting at the same time for the mechanistic correlation between nutrient and irradiance

niches, since both are related to cell size. The phytoplankton in Darwin were originally divided into four functional groups:30

Prochlorococcus analogs, other small phytoplankton, diatoms and other large phytoplankton. Representing each functional

group by its own normal distribution is a possible starting point to develop the multi-Gaussian approach.

Improved versions of SPEAD should be able to address various ecological issues related to community assembly and re-

sponses to climate change that current models cannot address. The response of the phytoplankton community to environmental
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changes in a simple NPZD model can only be an increase or a decrease in primary production. Estimates of changes in primary

production from NPZD models are likely to be inaccurate because the parameters of NPZD models are validated against ob-

servations of present environments. Under environmental changes, the composition of plankton community is likely to change

and the model parameters have no reason to remain valid. Models based on plankton functional types are more accurate, as

they can account for ecological selection: a plankton type (e.g. diatoms) can be replaced by another type (e.g. cyanobacteria)5

in response to a perturbation (e.g. increased stratification). However, they do not represent the adaptive evolution, by which

groups or species can change their traits and maintain local dominance. Therefore they might overestimate the extinction rate

and the shift in community composition. Eco-evolutionary models like SPEAD do not explain why groups that diverged mil-

lions of years ago exist, but a multi-Gaussian version of SPEAD, where each group follows its own adaptive dynamics, could

account for their contemporary evolution to new environments. By including both trait diffusion and ecological selection of the10

fittest phenotypes competing in a given environment, SPEAD can potentially be used to disentangle the role of ecological and

evolutionary processes in shaping diversity patterns in phytoplankton. In particular, it can be used to determine the conditions

under which species or functional groups may survive climate change by evolving new traits or may be replaced by other

species or functional groups from other regions. Predicting changes in phytoplankton composition is particularly important as

species perform different functions or have different impacts on their environment. For instance, they contribute differently to15

the carbon pump (e.g. by sinking more or less fast) or to the nitrogen cycle (e.g. by fixing atmospheric nitrogen or not). There-

fore changes in community composition might dramatically impact global climate and should be included in climate prediction

models. The effect of environmental changes, such as warming and increased stratification, on plankton size structure, and the

effect of biodiversity – controlled by trait diffusion among other processes – on primary production and ecosystem functioning,

are other examples of contemporary ecological questions that SPEAD might contribute towards answering.20

5 Conclusions

In this article, we present an a new aggregate model of phytoplankton community called SPEAD (Simulating Plankton Evo-

lution with Adaptive Dynamics), where different phenotypes competing for dissolved inorganic nitrogen are characterized by

two traits: their half-saturation constants for nitrogen uptake (in logarithmic scale) and their optimal temperature for growth.

The phytoplankton community is represented by the six lowest order moments of its trait distribution: total concentration,25

the mean value of each trait, the variance of each trait, and the inter-trait covariance. The dynamics of these state variables are

driven by three environmental factors: nutrient concentration, temperature, and solar irradiance. The physical setting represents

a water column down to 200 m. The seasonal alternation of stratification and vertical mixing also has a strong effect on the

trait distribution. Trait diffusion through subsequent generations is included to represent heritable mutations and hence sustain

trait diversity. To our knowledge, SPEAD is the first aggregate model to include at the same time two traits (with a proper30

representation of inter-trait correlation) and trait diffusion.

The ecological parameters of SPEAD were set to reproduce the observed primary production, chlorophyll, nitrate and par-

ticulate organic nitrogen concentrations observed by the BATS time series in the Sargasso Sea. Despite its strong assumption
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that traits are normally distributed, SPEAD was shown to agree precisely with a discrete model explicitly representing all

phenotypes, with only minor deviations at depth in summer, where optimal temperature is underestimated, and in early winter,

where trait variances decrease too fast. This good agreement is made possible by trait diffusion and by the simplicity of our

ecological setting and might not be extendable to all ecosystem models. The trait dynamics depend strongly on the imposed

trait diffusivity parameters. With very high diffusivities, primary production is low, variances are high and the two traits are5

independent, filling the entire trait space. With very low diffusivities, variances are low (albeit non-zero) and the two traits

are very strictly correlated: only warm-water gleaners and cold-water opportunists can survive. We think that intermediate

values of mutation rates are more realistic, but the precise value depends on whether trait diffusion is meant to sustain the trait

diversity of a whole community or to represent the mutations occurring within a given species.

SPEAD has a computational cost two orders of magnitudes lower than a full discrete model and its variables are readily10

interpretable in ecological terms. This effectiveness makes it possible to increase the number of traits. As optimal irradiance

is key to explain phytoplankton distribution in the water column and is already present in the Darwin model, the next step

of the SPEAD project will be to include it as a third dynamic trait. In agreement with Savage et al. (2007), we showed that

adding traits accelerated the response of preexisting traits to environmental changes. Other venues of future improvement

include representing various functional groups, each with their own distinct normal distributions, and coupling SPEAD with a15

general circulation model. Future versions of our multi-trait framework may address ecological questions related to the impact

of selection, mutations, and biodiversity on community dynamics and to the response of phytoplankton to climate change.

6 Code and Data availability

The code and data of SPEAD 1.0 are freely available on GitHub (https://github.com/GuillaumeLeGland/SPEAD) and Zenodo

(and https://doi.org/10.5281/zenodo.4268431) under the MIT license. The code for SPEAD 1.0 is written in MATLAB (version20

R2010b) and is fully compatible with open-source GNU-Octave (version 4.4.1). To be able to install and operate SPEAD, the

user should be familiar with MATLAB or GNU-Octave and have the versions mentioned above or more recent ones. The

execution has been tested on Windows with a 2.5 GHz Intel i5-3210M processor, on Linux Ubuntu with a 2.4 GHz Intel Xeon

E5645 processor, and on Linux Debian with a 2.6 GHz Intel Xeon E5-2640 processor. The main code modules are:

– SPEAD_1D is the main script to launch SPEAD, calling all functions.25

– SPEAD_1D_keys is the function where the different options are declared.

– SPEAD_1D_parameters where the values of the model parameters are assigned.

– SPEAD_gaussecomodel1D_ode45eqs is a function called at each time step to solve the ordinary differential equations

of the aggregate (continuous) model.

– SPEAD_discretemodel1D_ode45eqs is a function called at each time step to solve the ordinary differential equations of30

the multi-phenotype (discrete) model.
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SPEAD 1.0 also contains numerous other functions to plot figures and to represent each physical or ecological process (vertical

mixing, aggregate trait diffusion, discrete trait diffusion ...). The 4 observations files (for primary production, chlorophyll

concentration, nitrate concentration and particulate organic nitrogen concentration) and the 4 external forcing files (for water

temperature, surface PAR, vertical mixing and mixed layer depth) are located in the INPUTS folder. Once all files are loaded,

SPEAD is run simply by calling SPEAD_1D.5

Appendix A: Why mutations can be represented as "Trait Diffusion"

In this study, we represented phytoplankton mutations as a "trait diffusion" term, following the work of Merico et al. (2014).

In this appendix we show how the expression for trait diffusion is derived and discuss its conditions of validity.

Let us consider the dynamics of an isolated a phytoplankton community, where each individual is characterized by the

values of two traits, called "x" (in trait unit x or "tux") and "y" (in tuy) . Trait is distributed with a density p(x,y, t) (in10

mmolN.m−3.tux−1.tuy−1). The mass concentration of phytoplankton cells with values of the first trait between x and x+ dx

and values of the second trait between y and y+ dy is p(x,y, t) · dxdy if dx and dy are small.

If traits are strictly inherited, the equation governing p(x,y, t) for a given phenotype (x,y) depends on the reproduction

(u(x,y, t), in d−1) and death (d(x,y, t), in d−1) rates:

∂p

∂t
(x,y, t) = (u(x,y, t)− d(x,y, t))p(x,y, t)15

∂p

∂t
(x,y, t) = a(x,y, t)p(x,y, t)

In the above equation, a(x,y, t) = u(x,y, t)− d(x,y, t) is the net growth rate. In our model study, the reproduction rate is

identical to the nitrogen uptake rate because nitrogen, the limiting nutrient, is not exuded, cells do not modify their nitrogen

content cell size is considered independent of time and all nitrogen taken up is used for reproduction. However, genetic muta-

tions or phenotypic plasticity can produce offspring with trait values different from that of their parents. For simplicity, we will20

consider that mutations increasing or decreasing the traits are equally probable. We assume that the offspring of a parent with

trait value x will have trait value x− δx with a probability ax = νx (δx)
−2

ax = νx (δx)
2 and trait value x+δx with the same

probability, where νx is a diffusivity parameter, expressed in tux2, considered independent of trait value, mutation step (δx)

and time. Mutations also occur on trait y, with a mutation step δy and a y-diffusivity parameter νy . Mutations on both traits

are assumed independent. The probability of having a mutation on both x and y is just the product of the probabilities of each25

mutation. Hence the time derivative of p(x,y, t) with mutations is:

∂p

∂t
(x,y, t) =[(1− 2ax)(1− 2ay)u(x,y, t)− d(x,y, t)]p(x,y, t)

+ (1− 2ay)ax [u(x− δx,y, t)p(x− δx,y, t) +u(x+ δx,y, t)p(x+ δx,y, t)]

+ (1− 2ax)ay [u(x,y− δy, t)p(x,y− δy, t) +u(x,y+ δy, t)p(x,y+ δy, t)]

+ axay[u(x− δx,y− δy, t)p(x− δx,y− δy, t) +u(x+ δx,y− δy, t)p(x+ δx,y− δy, t)30

+u(x− δx,y+ δy, t)p(x− δx,y+ δy, t) +u(x+ δx,y+ δy, t)p(x+ δx,y+ δy, t)]
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In the limit of small but frequent mutations, this equation can be simplified by making a second-order approximation of u ·p.

∂p

∂t
(x,y, t) =[(1− 2ax)(1− 2ay)u(x,y, t)− d(x,y, t)]p(x,y, t)

+ (1− 2ay)ax

[(
u · p− δx

∂(u · p)
∂x

+
1

2
δ2x
∂2(u · p)
∂x2

)
+

(
u · p+ δx

∂(u · p)
∂x

+
1

2
δ2x
∂2(u · p)
∂x2

)]
+ (1− 2ax)ay

[(
u · p− δy

∂(u · p)
∂y

+
1

2
δ2y
∂2(u · p)
∂y2

)
+

(
u · p+ δy

∂(u · p)
∂y

+
1

2
δ2y
∂2(u · p)
∂y2

)]
+ axay

[
u · p− δx

∂(u · p)
∂x

− δy
∂(u · p)
∂y

+
1

2
δ2x
∂2(u · p)
∂x2

+
1

2
δ2y
∂2(u · p)
∂y2

+ δxδy
∂2(u · p)
∂x∂y

]
5

+ axay

[
u · p+ δx

∂(u · p)
∂x

− δy
∂(u · p)
∂y

+
1

2
δ2x
∂2(u · p)
∂x2

+
1

2
δ2y
∂2(u · p)
∂y2

− δxδy
∂2(u · p)
∂x∂y

]
+ axay

[
u · p− δx

∂(u · p)
∂x

+ δy
∂(u · p)
∂y

+
1

2
δ2x
∂2(u · p)
∂x2

+
1

2
δ2y
∂2(u · p)
∂y2

− δxδy
∂2(u · p)
∂x∂y

]
+ axay

[
u · p+ δx

∂(u · p)
∂x

+ δy
∂(u · p)
∂y

+
1

2
δ2x
∂2(u · p)
∂x2

+
1

2
δ2y
∂2(u · p)
∂y2

+ δxδy
∂2(u · p)
∂x∂y

]
The sum of terms in ∂(u·p)

∂x , ∂(u·p)∂y and ∂(u·p)
∂x∂y is zero, and the sum of factors before u · p is 1. Hence the above equation

simplifies to:10

∂p

∂t
(x,y, t) =[u(x,y, t)− d(x,y, t)]p(x,y, t) + axδ

2
x

∂2(u · p)
∂x2

+ ayδ
2
y

∂2(u · p)
∂y2

=a(x,y, t)p(x,y, t) + νx
∂2(u · p)
∂x2

+ νy
∂2(u · p)
∂y2

This second-order approximation is valid in the limit as mutations become small (δx and δy tend to zero) and frequent

(ax = νx (δx)
−2 and ay = νy (δy)

−2 tend to infinity), so that higher-order terms can be neglected. The mathematical expression

of the mutation term
(
νx

∂2(u·p)
∂x2 + νy

∂2(u·p)
∂y2

)
is somewhat analogous to that representing the diffusion of a tracer in physical15

space. In this analogy, the trait space replaces the physical space, νx ·u and νy ·u replace the diffusivity, and the density p(x,y, t)

is the diffused tracer. This analogy is the origin of the phrase "trait diffusion". We note that in a multi-trait space, whatever the

number of traits, the diffusion of each trait has the same expression as in the one-trait space.

Appendix B: Differential equations of a multi-trait aggregate model with trait diffusion

Phytoplankton community models can be discrete or aggregate. In a discrete model, the phytoplankton community is divided20

into a finite number of phenotypes, each characterized by a different set of trait values. Mutations are discrete with steps equal

to the difference between a phenotype and its nearest neighbors. The differential equation for a discrete phenotype is intuitive

and depends only on its net growth rate and a trait diffusion term.

The variables of aggregate models and the differential equations they follow are less intuitive. In an aggregate model, a

general shape must be assumed for the trait distribution, with some degrees of freedom, and the prognostic variables are the25

moments of the trait distribution that are free to vary. In a single-trait model, the most commonly assumed shape is the normal
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(or "Gaussian") distribution (Wirtz and Eckhardt, 1996; Bruggeman and Kooijman, 2007), where the phytoplankton density

p(x,t) (in mmolN m−3 tux−1, with "tux" the "trait unit x") is equal to:

p(x,t) =
P (t)√
2πVx(t)

e−
(x−x(t))2

2Vx(t) (B1)

In this distribution, the three free parameters are the phytoplankton concentration P (t), the mean trait value x(t) and the trait

variance Vx(t). They are respectively equal to
∫
p(x,t) · dx,

∫
x · p(x,t) · dx and

∫
(x−x)

2
p(x,t) · dx. In a multi-trait space,5

we will assume that the traits follow a multivariate normal distribution, which is a generalization of a normal distribution. If N

is the number of dimensions:

p(x,t) =
P (t)

(2π)
N
2 det(Σ)

1
2

e−
1
2 (x−x(t))

TΣ(t)−1(x−x(t)) (B2)

In this case, x is the vector containing all traits, x(t) is the vector of mean trait values and Σ(t) is the matrix of variances

and covariances. There are (N+1)(N+2)
2 free parameters in total: 1 phytoplankton concentration, N mean trait values, N trait10

variances and N(N−1)
2 covariances. In the following, we will show how to derive the differential equations for each type of

variable. To this end, we use the method developed by Norberg et al. (2001), based on Taylor expansions of the rates of

reproduction and net growth. The assumption of normal trait distribution is only required to compute the time derivatives of

variance and covariance, but not for the equations of total biomass and mean trait values.

The trait space is considered to be unbounded, with the implicit assumption that extreme values are extremely rare and15

ecologically meaningless. This is expressed in the fact that p and all products including p or any of its derivatives tend to

0 when a trait tends to (plus or minus) infinity. For simplicity, in the following part of this section, we will not show the

dependencies on the environmental factors and will limit ourselves to two traits, but our method can be extended to derive

the equations for any given number of traits. The reproduction and net growth rates of the phenotype defined by trait values

(x,y) are denoted u(x,y) and a(x,y) respectively. Integrals are over the whole bi-dimensional domain. We will first derive the20

equations in the absence of trait diffusion and then discuss what terms are added by the trait diffusion scheme. The net growth

of a given phenotype is:

dp

dt
= a(x,y, t)p(x,y, t) (B3)

As a consequence, the equation controlling P (t) is:

dP

dt
=

∫ ∫
a(x,y, t)p(x,y, t) · dxdy25

We will use the notations ajk (in d−1.tux−j .tuy−k) for a(x,y, t) derivated j times with respect to x and k times with respect

to y, normalized by the factorials of j and k, and Mjk (in tuxj .tuyk) for the central moment of order j with respect to x and k

with respect to y:

ajk(t) =
1

j!k!

∂j+ka

∂xj∂yk
(x(t),y(t), t)
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Mjk(t) =
1

P (t)

∫ ∫
(x−x(t))j · (y− y(t))k · p(x,y, t) · dxdy

We note thatM00 = 1 (by definition of the total concentration),M10 = 0,M01 = 0 (by definition of the mean traits),M20(t) =

Vx(t), M02(t) = Vy(t) (by definition of the variance) and M11(t) = Cxy(t).

A Taylor expansion of the net growth rate on x and y around (x(t),y(t)) yields:5

a(x,y, t) =

∞∑
j=0

∞∑
k=0

1

j!k!

∂j+ka

∂xj∂yk
(x(t),y(t), t) · (x−x(t))

j · (y− y(t))
k

=

∞∑
j=0

∞∑
k=0

ajk(t) · (x−x(t))
j · (y− y(t))

k

The time derivative of P (t) depends on the time derivative of p(x,t). Unless explicitly indicated otherwise, all derivatives

with respect to traits are taken at the current mean trait values.

dP

dt
=

∫ ∫
∂p

∂t
(x,y, t) · dxdy10

=

∫ ∫
a(x,y, t)p(x,y, t) · dxdy

=

∫ ∫ ∞∑
j=0

∞∑
k=0

ajk(t) · (x−x(t))
j · (y− y(t))

k · p(x,y, t) · dxdy

=

∞∑
j=0

∞∑
k=0

ajk(t)

∫ ∫
(x−x(t))

j · (y− y(t))
k · p(x,y, t) · dxdy

= P (t)

∞∑
j=0

∞∑
k=0

ajk(t)Mjk(t)

The first and largest term of this sum is the net growth rate at the mean trait values, denoted a(x(t),y(t), t). This is the15

expected growth rate of a community without trait variance. Since M10 = 0 and M01 = 0, there is no term depending on ∂a
∂x or

∂a
∂y . As we want to estimate the effect of trait diversity on the community, we consider the second order terms, proportional to

Vx(t), Vy(t) or Cxy(t). Higher order terms, which vanish when variance is small, are neglected, so that:

dP

dt
= P (t)

(
a(x(t),y(t), t) +

1

2
Vx(t)

∂2a

∂x2
+

1

2
Vy(t)

∂2a

∂y2
+Cxy(t)

∂2a

∂x∂y

)
(B4)

Second order derivatives are expected to be negative if (x(t),y(t)) is in the neighborhood of the optimal trait value, and20

Vx(t) and Vy(t) are always positive. Therefore, the second order terms are generally negative. This means that having large

trait variances, or in other words having a large proportion of cells with non-optimal trait values, has a negative effect on the

net community growth.

In the equation for mean trait however, having a large variance is an advantage. Let us define an intermediate variable Sx(t)

(in mmolN.m−3.tux) as P (t)x(t) or, equivalently, as
∫ ∫

x · p(x,y, t) · dxdy. The time derivative of Sx(t) is:25

dSx
dt

=

∫ ∫
x
∂p

∂t
(x,y, t) · dxdy
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=

∫ ∫
x · p(x,y, t)a(x,y, t) · dxdy

=

∫ ∫
(x−x(t)) · p(x,y, t)a(x,y, t) · dxdy+x(t)

∫ ∫
p(x,y, t)a(x,y, t) · dxdy

=

∫ ∫ ∞∑
j=0

∞∑
k=0

ajk(t) · (x−x(t))
j+1 · (y− y(t))

k · p(x,y, t) · dxdy+
dP

dt
x(t)

=

∞∑
j=0

∞∑
k=0

ajk(t)

∫ ∫
(x−x(t))

j+1 · (y− y(t))
k · p(x,y, t) · dxdy+

dP

dt
x(t)

= P (t)

∞∑
j=0

∞∑
k=0

ajk(t)Mj+1,k(t) +
dP

dt
x(t)5

As Sx(t) is a product, its derivative can also be written as:

dS

dt
=
dx

dt
P (t) +

dP

dt
x(t)

By equating the two previous expressions, we get:

dx

dt
=

∞∑
j=0

∞∑
k=0

ajk(t)Mj+1,k(t)

In this equation, we only consider the highest order terms:10

dx

dt
= Vx(t)

∂a

∂x
+Cxy(t)

∂a

∂y
(B5)

This equation represents the adaptation of the community to its environment. If the mean trait is not optimal, it will increase

or decrease in order to maximize the net specific growth rate. The speed of this selection process is proportional to variance

: biodiversity is required to track the environmental conditions. The covariance term means that if traits are correlated, the

optimization of trait y will also affect trait x.15

The mean value of trait y follows a similar equation:

dy

dt
= Vy(t)

∂a

∂y
+Cxy(t)

∂a

∂x
(B6)

The equations describing time changes in variances and covariance require more assumptions. As previously, we define an

intermediate variable Zx(t) (in mmolN.m−3.tux2) as P (t)Vx(t) or, equivalently, as
∫ ∫

(x−x(t))
2 · p(x,y, t) · dxdy. In this

integral, two terms depend on time: x(t) and p(x,y, t). Hence, the time derivative of Zx(t) is:20

dZx
dt

=

∫ ∫
(x−x(t))2 · ∂p

∂t
(x,y, t) · dxdy+

∫ ∫
∂(x−x(t))2

∂t
p(x,y, t) · dxdy

=

∫ ∫
(x−x(t))

2 · p(x,y, t)a(x,y, t) · dxdy− 2
dx

dt

∫
(x−x) · p(x,y, t) · dxdy

By definition of x(t), we have
∫ ∫

(x−x) · p(x,y, t) · dxdy = 0. Thus:

dZx
dt

= P (t)

∞∑
j=0

∞∑
k=0

ajk(t)Mj+2,k(t)
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As Zx(t) is a product, its derivative can also be written as:

dZx
dt

=
dVx
dt

P (t) +
dP

dt
Vx(t)

By equating the two previous expressions, we get:

dVx
dt

=
1

P (t)

(
dZx
dt
− dP

dt
Vx(t)

)
=

∞∑
j=0

∞∑
k=0

ajk(t)Mj+2,k(t)−Vx(t)

∞∑
j=0

∞∑
k=0

ajk(t)Mjk(t)5

In this equation, the two terms proportional to a(x(t),y(t), t) compensate and it is no longer possible to neglect the third and

fourth orders of the trait distribution. With only the two lowest order non-zero terms retained, the time derivative of variance

is:

dVx
dt

=M30(t)
∂a

∂x
+M21(t)

∂a

∂y
+

1

2
(M40(t)−V 2

x (t))
∂2a

∂x2
+

1

2
(M22−VxVy)

∂2a

∂y2
+ (M31−VxCxy)

∂2a

∂x∂y
(B7)

The moments M30(t) and M40(t) are called the skewness and kurtosis of x respectively. They represent the shape of the10

trait distribution. These moments could be described by their own equations but their time derivatives depend on moments of

even higher orders, and so on. In order to limit mathematical complexity and computation time, we do not explicitly compute

moments of higher order than variance. Instead, we close our system by giving these moments the same value as in a bivari-

ate normal distribution. In a bivariate normal distribution, odd order moments (where j+ k is odd) are zero (for reasons of

symmetry) and even order moments can be expressed as a function of variances (Isserlis, 1916):15

M40(t) = 3V 2
x

M31(t) = 3VxCxy

M22(t) = VxVy + 2C2
xy

M13(t) = 3VyCxy

M04(t) = 3V 2
y20

The equation for Vx(t) then simplifies to:

dVx
dt

= V 2
x

∂2a

∂x2
+ 2VxCxy

∂2a

∂x∂y
+C2

xy

∂2a

∂y2
(B8)

The equation for Vy(t) is obtained by swapping the x and y indices:

dVy
dt

= V 2
y

∂2a

∂y2
+ 2VyCxy

∂2a

∂x∂y
+C2

xy

∂2a

∂x2
(B9)

These expressions represent the effect of competition on trait variance. If the mean trait is near an optimum, then ∂2a
∂x2 and25

∂2a
∂y2 are negative and trait diversity tends to collapse due to competitive exclusion.
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The equation for covariance is derived in a similar way. We define Zxy(t) as P (t)Cxy(t). The time derivative of Zxy(t) is:

dZxy
dt

=

∫ ∫
(x−x(t)) · (y− y(t)) · ∂p

∂t
(x,y, t) · dxdy− dx

dt

∫ ∫
(y− y(t)) · p(x,y, t) · dxdy

−dy
dt

∫ ∫
(x−x(t)) · p(x,y, t) · dxdy

The last two terms are zero since M10 = 0 and M01 = 0. Thus:

dZxy
dt

=

∫ ∫
(x−x(t)) · (y− y(t)) · p(x,y, t)a(x,y, t) · dxdy5

= P (t)

∞∑
j=0

∞∑
k=0

ajk(t)Mj+1,k+1(t)

Since Zxy is a product, its derivative can also be written as:

dZxy
dt

=
dCxy
dt

P (t) +
dP

dt
Cxy(t)

By equating the two previous expressions, we get:

dCxy
dt

=
1

P (t)

(
dZxy
dt
− dP

dt
Cxy(t)

)
10

=

∞∑
j=0

∞∑
k=0

ajk(t)Mj+1,k+1(t)−Cxy(t)

∞∑
j=0

∞∑
k=0

ajk(t)Mjk(t)

In the case of a bivariate normal distribution, the only terms remaining produce the following equation:

dCxy
dt

=
1

2
[M31(t)−Cxy(t)Vx(t)]

∂2a

∂x2
+

1

2
[M13(t)−Cxy(t)Vy(t)]

∂2a

∂y2
+
[
M22(t)−C2

xy(t)
] ∂2a
∂x∂y

Replacing M31(t), M22(t) and M13(t) by their expressions as a function of lower order moments yields:

dCxy
dt

= Cxy(t)Vx(t)
∂2a

∂x2
+Cxy(t)Vy(t)

∂2a

∂y2
+
[
Vx(t)Vy(t) +C2

xy(t)
] ∂2a
∂x∂y

(B10)15

Competition tends to reduce variance, which must therefore be sustained by another process. In our model, this is the role

of trait diffusion, described in Appendix A and originally derived by Merico et al. (2014). Trait diffusion represents the effect

of heritable mutations on the trait distribution and adds two new terms to the net growth equation (B3) that are mathematically

very similar to tracer diffusion:

dp

dt
= a(x,y, t)p(x,y, t) + νx

∂2 (u · p)
∂x2

(x,y, t) + νy
∂2 (u · p)
∂y2

(x,y, t) (B11)20

The additional term for the total biomass time derivative due to the diffusion of x is:∫ ∫
νx
∂2(u · p)
∂x2

· dxdy = νx

∫ [
∂(u · p)
∂x

]x=+∞

x=−∞
dxdy = 0
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This result comes from the fact that u·p and its derivatives tend towards zero when any trait tends towards infinity. The effect

of the diffusion of y would equally be zero. This means trait diffusion is not a source of biomass. The additional term for dSxdt
due to the diffusion of x is:∫ ∫

νx ·x
∂2(u · p)
∂x2

· dxdy = νx

∫ [
x · ∂(u · p)

∂x

]x=+∞

x=−∞
dy− νx

∫ ∫
∂(u · p)
∂x

· dxdy

= νx

∫ [
x · ∂(u · p)

∂x

]x=+∞

x=−∞
dy− νx

∫
[u · p]+∞−∞ dy5

= 0

The effect of y diffusion on x and of both x and y diffusion on y are equally zero. Trait diffusion has no effect on the mean

trait equations. It does not favor any direction of change. However, trait diffusion is a source of variance. Indeed, a similar

integration by parts adds a new non-zero term to dZx
dt :∫ ∫

νx · (x−x(t))
2 · ∂

2(u · p)
∂x2

(x,y, t) · dxdy10

=

∫
νx

[
(x−x(t))

2 · ∂(u · p)
∂x

]x=+∞

x=−∞
dy− 2νx

∫ ∫
(x−x(t)) · ∂(u · p)

∂x
(x,y, t) · dxdy

= 0− 2νx

∫
[(x−x(t)) ·u · p]x=+∞

x=−∞ dy+ 2νx

∫ ∫
u(x,y, t)p(x,y, t) · dxdy

= 2νx

∫ ∫
u(x,y, t)p(x,y, t) · dxdy

This integral is similar to dP
dt (replacing a by u), and can be Taylor-expanded in the same way. The contribution of y diffusion

on Vx is a different case. The extra term on dZx
dt is zero:15 ∫ ∫

νy · (x−x(t))
2 · ∂

2(u · p)
∂y2

(x,y, t) · dxdy

= νy

∫
(x−x(t))

2

[∫
∂2(u · p)
∂y2

(x,y, t) · dy
]
dx

= 0

Thus, the new equations of Vx(t) and Vy(t) accounting for trait diffusion are:

dVx
dt

= V 2
x

∂2a

∂x2
+ 2VxCxy

∂2a

∂x∂y
+C2

xy

∂2a

∂y2
+ 2νx

[
u(x(t),y(t), t) +

1

2
Vx(t)

∂2u

∂x2
+

1

2
Vy(t)

∂2u

∂y2
+Cxy(t)

∂2u

∂x∂y

]
(B12)20

dVy
dt

= V 2
y

∂2a

∂y2
+ 2VyCxy

∂2a

∂x∂y
+C2

xy

∂2a

∂x2
+ 2νy

[
u(x(t),y(t), t) +

1

2
Vx(t)

∂2u

∂x2
+

1

2
Vy(t)

∂2u

∂y2
+Cxy(t)

∂2u

∂x∂y

]
(B13)

Because u(x,y, t) is positive for every value of x and y, the trait diffusion term is positive. Trait diffusion is able to counter

the effect of competitive exclusion and sustain variance.

The effect on Zxy(t) is:∫ ∫
νx (x−x(t)) · (y− y(t)) · ∂

2(u · p)
∂x2

(x,y, t) · dxdy25
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= νx

∫
(y− y(t))

[∫
(x−x(t)) · ∂

2(u · p)
∂x2

(x,y, t) · dx
]
dy

= 0

Thus trait diffusion does not add nor remove covariance to the phytoplankton community. However, by increasing the

variances, trait diffusion decreases the correlation. In other words, trait diffusion decorrelates the traits by making rare trait

combinations more likely.5

We note that, in absence of trait diffusion, our equations are a particular case of the general equations derived by Bruggeman

(2009) for multivariate normal trait distributions. In a single trait case, they are simpler than the original equations (Merico

et al., 2014) but identical to the more recent formulation of Coutinho et al. (2016) and derived using the same method.
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