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Abstract. When estimating fossil fuel carbon dioxide (FFCO2) emissions from observed CO2 concentrations, the accuracy can 

be hampered by biogenic carbon exchanges during the growing season even for urban areas where strong fossil fuel emissions 15 

are found. While biogenic carbon fluxes have been studied extensively across natural vegetation types, biogenic carbon fluxes 

within an urban area have been challenging to quantify due to limited observations and differences between urban versus rural 

regions. Here we developed a simple model representation, i.e., Solar-Induced Fluorescence (SIF) for Modeling Urban 

biogenic Fluxes (“SMUrF”), that estimates the gross primary production (GPP) and ecosystem respiration (Reco) over cities 

around the globe. Specifically, we leveraged space-based SIF, machine learning, eddy-covariance (EC) flux data, and ancillary 20 

remote sensing-based products, and developed algorithms to gap fill fluxes for urban areas. Grid-level hourly mean net 

ecosystem exchange (NEE) are extracted from SMUrF and evaluated against 1) non-gapfilled measurements at 67 EC sites 

from FLUXNET during 2010 – 2014 (r > 0.7 for most data-rich biomes), 2) independent observations at two urban vegetation 

and two crop EC sites over Indianapolis from Aug 2017 to Dec 2018 (r = 0.75), and 3) an urban biospheric model based on 

fine-grained land cover classification in Los Angeles (r = 0.83). Moreover, we compared SMUrF-based NEE with inventory-25 

based FFCO2 emissions over 40 cities and addressed the urban-rural contrast in both the magnitude and timing of CO2 fluxes. 

To illustrate the application of SMUrF, we used it to interpret a few summertime satellite tracks over four cities and compared 

the urban-rural gradient in column CO2 (XCO2) anomalies due to NEE against XCO2 enhancements due to FFCO2 emissions. 

With rapid advances in space-based measurements and increased sampling of SIF and CO2 measurements over urban areas, 

SMUrF can be useful for informing the biogenic CO2 fluxes over highly vegetated regions during the growing season.  30 

 



2 
 

1 Introduction 

Climate change and urbanization are two major worldwide phenomena in recent decades. In close connection with both themes, 

cities have attracted increasing attention from both researchers and policymakers. Urban ecosystems are unique and complex 

given the wide variety of land use/covers in cities, along with higher levels of atmospheric CO2 concentration, air temperature, 

and vapor pressure deficit than surrounding rural ecosystems (George et al., 2007). The consequences of climate change, such 5 

as severe heat, drought, and water shortage events, may be exacerbated particularly over (semi)arid and/or developing cities 

(Rosenzweig et al., 2018), resulting in possible population movement from increasingly hot/dry places to relatively cool/moist 

ones. Meanwhile, rapid urban expansion and population growth contribute to the rise in the total anthropogenic CO2 emissions 

into the atmosphere and urban heat island that further influences the plant phenology (Meng et al., 2020). Human activities 

have been continuously modifying the urban and natural vegetation and soil, e.g., expansion of agricultural lands at the cost 10 

of the natural landscape, leading to less reversible ecological and climatic impacts (Ellis and Ramankutty, 2008; Hutyra et al., 

2014; Pataki et al., 2006). Hence, urban areas function as both biophysical and socioeconomic systems, and studying their 

carbon sources/sinks facilitates understanding cities’ roles in the global carbon cycle.  

 

To study the urban carbon pool and its exchange with the atmosphere, the top-down approach based on measured atmospheric 15 

CO2 concentrations is commonly used. McRae and Graedel (1979) noted over four decades ago that separation between 

anthropogenic and biogenic CO2 flux signals is needed to interpret urban CO2 observations. Biogenic CO2 fluxes are found to 

modify the surface CO2 and even atmospheric column CO2 (XCO2) concentrations downwind (e.g., Lin et al., 2004, Turnbull 

et al., 2015, Hardiman et al., 2017, Sargent et al., 2018, Ye et al., 2020). For example, the seasonal variation in biogenic CO2 

signals in Los Angeles was found to be one-third of the observed annual mean anthropogenic signal and further highlights the 20 

importance of urban irrigation (Miller et al., 2020). Over the Pearl River Delta in China, simulated biogenic contributions 

using 15 different models in the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP, Huntzinger 

et al., 2013) lead to downwind XCO2 anomalies ranging from nearly zero up to 1 ppm depending on seasons and models, 

which reveal the non-neglectable biogenic influence on XCO2 as well as the large inter-model uncertainty (Ye et al., 2020). 

Thus, assessing the contributions from biogenic fluxes in observed signals is crucial for top-down estimates of urban emissions 25 

and yet remains challenging, especially given limited urban fluxes observations across the globe. Although deciduous trees 

are found to be the dominant tree type in urban areas based on a meta-analysis of 328 global cities (Yang et al., 2015a), a more 

accurate approximation of the vegetation coverages, types, and biological activities in cities is currently hard to obtain.  

 

Existing approaches to separate biogenic and anthropogenic CO2 components involve the use of ancillary tracers and terrestrial 30 

biospheric models. For instance, since radiocarbon (14C) has decayed in fossil fuels, 14C serves as a tracer for the combustion 

of FF emission (Miller et al., 2020; Turnbull et al., 2015). Carbonyl sulfide (COS) shares a similar seasonal variation as CO2 

over the land, a result of biospheric sinks (Kettle et al., 2002). However, measurements of 14C, COS, and CO2 fluxes are costly 
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and lacking in most cities around the globe. Besides observations, many global terrestrial biospheric models provide insights 

for informing and constraining CO2 fluxes at continental to global scales (Huntzinger et al., 2013; Knorr and Heimann, 2001; 

Philip et al., 2019), but their relatively coarse resolution and simplifications on urban biosphere limit the use for studying urban 

carbon cycles. Only a few biospheric models are designed for simulating urban biogenic fluxes. Research has revealed urban-

rural differences in vegetation and soil properties, in part due to management strategies and environmental conditions, which 5 

complicate the flux quantification (Decina et al., 2016; Hardiman et al., 2017; Smith et al., 2019; Vasenev and Kuzyakov, 

2018). Among these few models, the urban Vegetation Photosynthesis and Respiration Model (urbanVPRM, Hardiman et al., 

2017) is an empirical model that incorporates the urban heat island effect and impervious surface area into its flux calculations 

and currently uses conventional greenness indices e.g., the Enhanced Vegetation Index (EVI). 

 10 

Our work is primarily motivated by the relatively coarse spatial grid spacing and the simplifications of urban ecosystems in 

many models. We attempted to bridge between coarse-scale global biospheric models and highly customized local models to 

offer a global solution to modeling biogenic CO2 fluxes within and around urban areas, which would provide insight into CO2 

partitioning between fossil fuel and biogenic components. 

 15 

Thanks to advances in spaceborne and ground-based measurements, solar-induced fluorescence (SIF) has been retrieved 

successfully from various satellite platforms and has proven to be an effective proxy for photosynthesis and thus modeling 

gross primary production (GPP) (Frankenberg et al., 2011a; Guanter et al., 2014; Joiner et al., 2013; Yang et al., 2015b). SIF 

tracks the unique seasonal and interannual variations in GPP across diverse plant functional types (PFT) (Luus et al., 2017; 

Smith et al., 2018; Turner et al., 2020; Zuromski et al., 2018) and their responses to physiological stress (Magney et al., 2019). 20 

In an effort to improve long-term, high resolution spatial mapping capabilities, several spatially continuous SIF products have 

been created using machine learning (ML) techniques and light use efficiency modeling to combine satellite retrieved SIF with 

ancillary vegetation data (Duveiller et al., 2020; Duveiller and Cescatti, 2016; Li and Xiao, 2019a; Turner et al., 2021; Zhang 

et al., 2018). Moreover, the empirical and PFT-specific linear correlations between GPP and SIF, derived from regressions of 

temporally aggregated (~monthly) with eddy covariance GPP (Frankenberg et al., 2011; Guanter et al., 2014; Magney et al., 25 

2019; Sun et al., 2017; Turner et al., 2021; Zhang et al., 2018; Zuromski et al., 2018) have spurred the development of upscaled 

GPP estimates (Li and Xiao, 2019b; Yin et al., 2020). SIF information has also been incorporated into existing process-based 

biospheric models and data assimilation systems (MacBean et al., 2018; Van Der Tol et al., 2009). Within the context of the 

urban biosphere, SIF retrieved from space has shown to reveal the urban-rural gradient in photosynthetic phenology (Wang et 

al., 2019). Given all these advantages, SIF would potentially benefit the GPP estimates and CO2 fluxes partitioning over cities.   30 

 

Ecosystem respiration (Reco), the other component of the net ecosystem exchange (NEE), is defined as the sum of the 

autotrophic (RA) and heterotrophic (RH) components. In terms of modeling urban Reco, urbanVPRM follows the conventional 

approach of VPRM (Mahadevan et al., 2008) to estimate an initial air temperature (Tair)-scaled Reco and splits Reco into equal 
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components (RA and RH) that will be further modified by considering impervious fractions and urban heat island effects 

(Hardiman et al., 2017). However, the exact partitioning of Reco between RA versus RH and the separation between above- 

versus below-ground respiration can be challenging and highly uncertain, as acknowledged in Hardiman et al. (2017). The 

initial Reco that urbanVPRM modified may be an overly simplistic function of ambient air temperature. After all, the complexity 

of biological and non-biological processes of Reco and the lack of mechanistic understanding of how biotic and abiotic factors 5 

affect Reco render challenging mechanistic modeling of Reco. Given the complexity in modeling Reco, we will turn instead to 

ML techniques that have been increasingly applied in many disciplines to help answer complicated, entangled problems via 

extracting patterns from data streams for predictions and generalizations. Reichstein et al. (2019) provided a comprehensive 

review on the many applications of ML techniques in solving geoscience and remote sensing problems and identified 

challenges in successfully adopting ML approaches—e.g., interpretability, integration with physical understanding and 10 

modeling, and the ability to cope with model/data uncertainties. In the context of ecosystem modeling, artificial neural network 

(NN) has been utilized to generate SIF beyond satellite soundings (Li and Xiao, 2019a; Zhang et al., 2018), harmonize multiple 

SIF satellite instruments (Wen et al., 2020), map carbon and energy fluxes  (Tramontana et al., 2016), and reveal and predict 

the trend in global soil respiration (Zhao et al., 2017).  

 15 

In this paper, we present a model representation of GPP, Reco, and NEE fluxes targeting urban areas around the globe, the 

Solar-Induced Fluorescence (SIF) for Modeling Urban biogenic Fluxes (“SMUrF”), by taking advantages of SIF and NN 

technique. Our main objectives include: 1) examine the biogenic and anthropogenic CO2 fluxes and their temporal variations 

over urban and surrounding rural areas; and 2) demonstrate one application of SMUrF to help interpret satellite CO2 

observations by revealing the urban-rural gradient in biogenic CO2 fluxes along satellite swaths of the Orbiting Carbon 20 

Observatory 2 (OCO-2, Crisp et al., 2012).  

2 Data and methodology  

SMUrF incorporates SIF as an indicator of photosynthesis, along with possible drivers for Reco (i.e., air and soil temperatures 

and SIF-driven GPP), and performs hourly downscaling using reanalysis-based temperature and radiation fields (Fig. 1). We 

accounted for variations in biome types and Reco at 500 m before aggregating fluxes to the final grid spacing of 0.05°. Gridded 25 

uncertainties of daily mean fluxes are quantified by assigning biome-specific coefficient of variations (CVs) from model-data 

comparisons (Sect. 2.5). To gain insight into the column CO2 anomalies caused by anthropogenic and biogenic fluxes, we 

further adopted an atmospheric transport model to link fluxes and concentrations (Sect. 2.6). Before introducing the steps for 

estimating individual flux components, we first go through the main input datasets (Sect 2.1).  
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2.1 Input datasets 

Similar to many biospheric models, SMUrF estimates gridded GPP, Reco, and NEE (= Reco – GPP) fluxes based on land cover 

types. Main required data streams are summarized in Fig. 1, including 1) the 500 m MODIS-based land cover classification; 

2) 0.05° spatiotemporally contiguous SIF (CSIF) product; 3) 100 m above-ground biomass (AGB) from GlobBiomass; 4) 

eddy-covariance (EC) flux measurements across continents; and 5) gridded products of air and soil temperatures.   5 

2.1.1 Land cover classification 

Land cover classifications with more sophisticated algorithms in urban areas (e.g., NLCD 2016) are often available for limited 

regions. Thus, we adopted the land cover types defined by the International Geosphere–Biosphere Programme (IGBP) from 

MCD12Q1 v006 (Friedl and Sulla-Menashe, 2019) to inform biome types over global lands. Twelve biomes include croplands 

(CRO), closed and open shrublands (CSHR, OSHR), deciduous/evergreen broadleaf/needleleaf forests (DBF, DNF, EBF, 10 

ENF), grasslands (GRA), mixed forests (MF), savannas (SAV), woody savannas (WSAV), and permanent wetlands (WET). 

Since MCD12Q1 simply treats the entire urban area as one category (URB), we developed an algorithm to approximate the 

vegetation types and fractions in cities (Sect 2.2.2).  

2.1.2 Data for GPP estimates 

We used spatiotemporally Contiguous SIF (CSIF, Zhang et al. 2018) product and GPP fluxes from FLUXNET2015 (Pastorello 15 

et al., 2017) to calculate biome-specific GPP-CSIF slopes (𝛼, Supplementary Fig. S1). 98 global EC tower sites with screened 

data points (quality flag < 3) from 2010 to 2014 are chosen to represent various biomes. CSIF offers global 4-day mean SIF at 

the grid spacing of 0.05° during 2000–2018 using the NN approach (Zhang et al., 2018). The NN model in CSIF is constructed 

based upon OCO-2 SIF and four broadband reflectances from MCD43C4 V006 under clear-sky conditions and is used for 

mapping SIF beyond sounding locations. CSIF agrees well with SIF retrievals from OCO-2 and GOME-2, considering the 20 

inevitable spatial mismatch between CSIF (0.05°) and the direct sounding-level SIF measurements (OCO-2’s footprint of ~1 

km × 2 km). Two largest biases of CSIF with respect to OCO-2 SIF arise from croplands (–12.72 %) and urban areas (–14.59 

%), caused by the saturation effect in broadband reflectances and built-up contaminations to the reflectance signal, respectively 

(Zhang et al., 2018). To compensate for the potential bias of urban CSIF, we scale up the GPP-SIF slope for urban areas (details 

in Sect. 2.2.2).  25 

 

In addition, the clear-sky instantaneous CSIF are compared to TROPOMI-based downscaled SIF for summer 2018 (Turner et 

al., 2021) and vegetated fractions inferred from the WUDAPT product (Appendix A). Despite some discrepancies over a few 

regions, these comparisons confirmed CSIF’s performance and capability in revealing urban-rural gradient in biogenic 

activities (Supplementary Figs. S2-S3). 30 

 



6 
 

2.1.3 Data for approximation of urban vegetation globally 

To assign trees and grass within the MODIS-based urban domain, several steps are carried out to approximate the relative 

fractions of 1) tree versus non-tree, 2) individual tree types, and 3) grassland versus shrubland (details in Sect. 2.2.2). Relative 

tree fractions (i.e., ratio of tree fractions to total vegetated fractions) can be obtained from two data sources—i.e., a 0.6 m 

NAIP-based urban land cover product (Coleman et al. 2020) and a 250 m Vegetation Continuous Fields (VCF) from MOD44B 5 

(Dimiceli et al., 2015). Both products offer estimated tree and vegetated fractions. The former one is produced only over Los 

Angeles via random forest algorithms that trained on Sentinel-2 (~5 m) and NAIP (~0.6 m) optical imagery (Coleman et al., 

2020) and possesses much higher tree fractions than MODIS VCF (see comparisons in Sect. 2.2.2). Thus, we decided not to 

utilize MODIS VCF for indicating urban vegetation in this work, only for comparing tree fractions from Coleman et al. (2020).  

 10 

To approximate relative tree fractions (ftree) in cities, we treat the gridded AGB at 100 m from GlobBiomass (Santoro et al. 

2018) as the spatial proxy (see methodology explained in Sect. 2.2.2). GlobBiomass deployed a complex retrieval algorithm 

system which involves a series of retrieval algorithms using the radar backscatter and several other data such as laser 

measurement from ICESAT (Schutz et al., 2005), the tree and land cover data (e.g., from Landsat), and collections of reanalysis 

and models. AGB and its grid-level uncertainty [tons ha-1] by definition describe the “oven-dry weight of the woody parts 15 

(stem, bark, branches, and twigs) of all living trees excluding stump and roots” (Santoro et al. 2018). GlobBiomass AGB has 

demonstrated good agreement against independent data products for different continents (Santoro et al. 2018).  

2.1.4 Reanalyses for Reco estimates 

In efforts to train and predict Reco via neural network models, we chose GPP, air and soil temperatures (Tair and Tsoil) as 

explanatory variables (details in Sect. 2.3). Modeled Tair and Tsoil are grabbed from the ECMWF ReAnalysis-5 (ERA5, 0.25°; 20 

Copernicus Climate Change Service Information, 2017) for the entire globe; or from Daymet (1km; Thornton et al., 2016) and 

the North American Land Data Assimilation System (NLDAS, 0.125°;	Xia et al. 2012) as alternative inputs for CONUS runs 

(Fig. 1). It is worth pointing out that different models/reanalysis provide Tair at 2 meters above ground but Tsoil at different soil 

depths. For instance, four soil depths from NLDAS range from 10, 30, 60, and 100 cm below ground, whereas ERA5 simulates 

mean Tsoil over four vertical layers, i.e., 0 – 7, 7 – 28, 28 – 100, and 100 – 289 cm. Measured soil depths from FLUXNET are 25 

even more complicated and vary among sites with the most common shallowest soil depth of ~2 cm below ground. To reconcile 

differences in soil depths, we chose measured Tsoil from the shallowest layer in both the model and observational datasets and 

separately build NN models (Sect. 2.3).  

2.1.5 Data for flux comparisons 

We further carried out flux comparisons against two independent sets of eddy-covariance data, i.e., FLUXNET2015 and the 30 

Indianapolis Flux Experiment (INFLUX; Davis et al., 2017, Wu et al., 2020a), and one alternative urban biospheric model of 
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urbanVPRM over Los Angeles in Sect. 3.2. Only non-gapfilled measured NEE fluxes from FLUXNET2015 (with quality flag 

of 0) are used for validation. Since NEE fluxes measured from INFLUX have not been gap-filled, we only chose the hours 

from SMUrF where valid INFLUX data are available.  

 

The INFLUX project includes EC flux measurements which accompany the tower- and aircraft-based GHG mole fraction 5 

measurements. These sites have been periodically moved to sample different components of the urban landscape. For the 

period from Aug 10, 2017 to June 7, 2019, these flux towers were deployed at two urban vegetation sites (#1 and #4) and two 

agricultural sites (#2 and #3). Two urban vegetation (turf grass) sites were located in a cemetery area (site #1) and a golf course 

(site #4). Because CSIF is not available beyond 2018 as of this writing, we cannot yet extend the flux comparison into 2019. 

Fluxes from INFLUX sites were computed using EddyPro software (LI-Cor, Inc., Lincoln, NE; Biosciences, 2012, 2017) and 10 

post-processed to filter out data when a) the LI-COR gas analyser signal strength was low and b) during periods of weak 

turbulence (Wu et al., 2020a). It is worth noting that INFLUX data provides valuable independent evaluations as flux sites 

with urban imprint are lacking from FLUXNET2015 and observed fluxes from INFLUX sites were not used when calibrating 

parameters in SMUrF.  

 15 

The urbanVPRM model, applied over Los Angeles, estimates GPP from a light use efficiency modeling perspective driven by 

reanalysis-based Photosynthetically Active Radiation (PAR) and satellite-derived EVI and Land Surface Water Index for 

phenology and water availability; and estimates Reco via an air temperature function with extra modifications to air temperature 

due to urban heat island effect and impervious surface area. UrbanVPRM-based fluxes rely on the 60 cm NAIP-based land 

cover classification in Los Angeles (Coleman et al., 2020; Sect. 2.1.3). Due to differences in grid spacing between models, 20 

fluxes from urbanVPRM are aggregated and re-projected from 30 m to 0.05° to match SMUrF for purposes of comparison.  

2.2 GPP estimates 

We used 4-day mean clear-sky SIF from CSIF and 4-day mean observed GPP fluxes from 98 global eddy-covariance (EC) 

towers from FLUXNET2015 to derive biome-specific GPP-SIF slopes (𝛼, Supplementary Fig. S1) with special treatments 

to 𝛼 over croplands and urban areas described in the following subsections. While non-linear relationships between SIF and 25 

GPP at leaf- and canopy- level have been observed (Helm et al., 2020; Magney et al., 2017; Maguire et al., 2020; Marrs et al., 

2020; Verma et al., 2017), GPP is observed to be linearly related to SIF at increasing temporal and spatial (ecosystem and 

regional) scales (Frankenberg et al., 2011; Sun et al., 2017) as leaf-level differences in composition, light exposure, stress, and 

stress response mix out (Magney et al., 2020). Considering uncertainty in CSIF and flux tower-partitioned GPP as well as the 

noise in the GPP-SIF relationship across global flux sites (Supplementary Fig. S1), we adopted linear fits instead of non-30 

linear fits between GPP and CSIF. Errors due to departure from linearity will be implicitly included in GPP uncertainties 

calculated from model-tower validations (Sect. 2.5). The calculated 𝛼 values are in proximity to those reported in Zhang et al. 

(2018) from 40 towers and are then assigned to each 500 m gridcell according to its corresponding biome type.  
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2.2.1 C3/C4 partitioning of croplands  

GPP-SIF relationships differ between C4 and C3 crops at the canopy scale, since GPP for C3 crops may saturate at high PAR 

levels. Different statistical fits between observed GPP and SIF are suggested in use for C3 versus C4 crops (He et al., 2020). 

Despite the focus of SMUrF on urban areas, we still attempted to differentiate C4 from C3 crops and estimate two different 𝛼 

values from EC sites dominated by C3 or C4 crops. Specifically, the Spatial Production Allocation Model (SPAM 2010V1.1, 5 

You et al., 2014) is used for areal estimates of 42 crop species, among which the following are identified as C4 crops: maize, 

pearl and small millet, sorghum, and sugarcane. As a result, we produced maps of C3:C4 ratios at a grid spacing of 10 km for 

the entire world (Fig. 2ab). Four of the selected 13 cropland EC FLUXNET sites fall within grid cells with high C4 ratio of > 

50%; the remaining sites fall into grid cells with C4 ratios of < 10%. We thereby arrive at 𝛼!" of ~35.6 [𝜇mol m-2 s-1]:[mW 

m−2 nm−1 sr−1] from sites with high C4 ratio and 𝛼!#	of ~19.7 [𝜇mol m-2 s-1]:[mW m−2 nm−1 sr−1] from the rest 9 cropland sites. 10 

Eventually, we calculated the weighted mean 𝛼 according to the C3:C4 ratio map and identified tropical regions, mid-west 

US, northeastern China, and spots in India and south Africa as regions with higher 𝛼 and C4 crop ratios (Fig. 2c). Note that 

these weighted mean 𝛼 will only be activated over MODIS-based croplands.  

2.2.2 Modification to urban vegetation  

We next turn to the estimate of 𝛼 over MODIS-based “urban” category shown in the following three steps (Fig. 1): 15 

1) Estimate the relative tree fraction (ftree = tree / vegetated). A power-law relationship (Fig. 3a) between AGB bins and 

relative tree fractions obtained from the NAIP-based land cover classification (top panel in Fig. 3b) is used to predict ftree 

(bottom panel in Fig. 3b). Although the AGB binning procedure may not fully recreate the variations in ftree especially for 

grid cells with zero AGB (dark red hexagons in Fig. 3a), the predicted ftree using AGB is tied to a smaller bias of +2.3 % 

than ftree using MOD44B (–23.5 %), when the high-resolution NAIP-based land cover product is compared (Fig. 3b).  20 

 

2) Estimate relative fractions of five tree types, grass, and shrub based on climatology. Due to the lack of global data on 

urban biome types, the relative non-tree vegetated fraction (fnon-tree = 1 – ftree) is simply split into half grass and half shrub 

(2nd row in Fig. 4). The relative tree fractions are divided into five possible tree types (i.e., DBF, DNF, EBF, ENF, MF). 

The share of each tree type in cities is approximated as a function of latitude based on the climatology of land cover types 25 

(Supplementary Fig. S4a) — e.g., high fractions of ENF over high-latitudes, EBF over tropical lands, and DBF plus MF 

over the midlatitudes (Supplementary Fig. S4b).   

 

3) Calculate weighted mean 𝛼. 𝛼 for urban areas are weighted mean values calculated from biome-specific 𝛼 values and 

their corresponding fractions approximated in step 2. To account for potential negative bias of ~14.5% in CSIF over cities 30 

(Zhang et al., 2018), we scaled up urban 𝛼 by 1.145.  
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In the end, 𝛼 at 500 m over urban and natural lands (3rd row in Fig. 4) are aggregated to 0.05° and multiplied by CSIF to arrive 

at GPP at 0.05°. The exact partitioning between grass and shrub in step 2) plays a minor role on the final GPP flux at 0.05o 

(Supplementary Fig. S5). It is worth clarifying that we implicitly assumed vegetation “exists” over urban grid cells and only 

solved for the relative tree/grass fractions as illustrated in steps 1) and 2), as information of vegetated/impervious fractions has 

been embedded in the CSIF product. Additional information about vegetated/impervious fractions was not necessary in the 5 

calculation of 𝛼 for every 500 m urban grid (see Appendix A for more explanations).  

2.3 Reco estimates   

Three explanatory variables—Tair, Tsoil, and GPP— are chosen to train against the observed daily mean Reco from FLUXNET. 

To account for mismatches in reported soil depths (introduced in Sect. 2.1.4), we built separate sets of NN models using 1) 

direct temperatures and GPP observations from EC towers, 2) ERA5-based temperatures and SIF-based GPP, or 3) Daymet & 10 

NLDAS-based temperatures and SIF-based GPP (only for US as alternative runs). SIF-based GPP is ingested in order to pass 

SIF information onto Reco estimation. Data points from a few EC sites with relatively large uncertainties in modeled GPP were 

excluded before the training of NN models to prevent error propagation into Reco (Appendix B). 

 

For each set of NN model, we manually split data points based on their biome types and obtain 12 separate NN models. Data 15 

points from open and closed shrublands are combined due to the extremely low numbers of EC sites around the globe. To be 

consistent with the C3:C4 crops partition for GPP estimates (Sect. 2.2.1), we obtained 2 separate NN models for C3 and C4 

crops and calculated the weighted mean Reco based on the derived C3:C4 ratios. 80 % and 20 % of the data points per biome 

are used for training and testing, respectively. Models with two hidden layers are constructed with 32 and 16 neurons chosen 

for the first and the second layer. We computed Reco at 500 m by applying biome-specific models and aggregated those Reco to 20 

0.05°. We also tested two alternative ways to train Reco based on 1) all data points without differentiating their land cover types 

and 2) additional categorical variables from biomes and month and season of the year. Please refer to Appendix B for 

sensitivity tests and technical details about data preparation and cross validation of neural networks.  

2.4 NEE estimates  

We obtained hourly surface downward shortwave radiation (SWrad) and air temperature (Tair) from the ERA5 reanalysis to 25 

calculate the hourly scaling factors for GPP and Reco. Tair and SWrad are initially provided on a grid spacing of 0.25° and then 

bilinearly interpolated to 0.05°. To estimate the hourly radiation scaling factors Iscale for GPP, we normalized the hourly SWrad 

by the 4-day mean SWrad with the same time window of the 4-day mean GPP. Regarding the calculation of hourly temperature 

scaling factors Tscale for Reco, a temperature sensitivity function (𝑆𝑅$%) has been modified from prior studies (Fisher et al., 

2016; Olsen and Randerson, 2004): 30 

     𝑆𝑅$% =	𝑄$&
!"#$,&'()*°,

&*°, ,                                                (1) 
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where Q10 is an unitless temperature sensitivity parameter that could vary across biomes and Tair is in °C. Because the hourly 

downscaling procedure is performed on GPP and Reco fluxes at 0.05° and no single biome is tied to each 0.05° grid cell, we 

adopt a typical Q10 value of 1.5 according to previous studies (Fisher et al., 2016) despite possible biome-dependent variations 

in Q10. 𝑆𝑅$% is then normalized by its daily mean value to obtain Tscale. Finally, Tscale and Iscale are used to temporally downscale 

the daily mean Reco and 4-day mean GPP, i.e., 𝑅'(),$++++++++++ and 𝐺𝑃𝑃"+++++++++:  5 

                            𝑅'(),$% =	𝑅'(),$++++++++++ ∗ 	𝑇,(-.' = 𝑅'(),$++++++++++ ∗ 	 /0&'
&
-.∑ /0&'&/

, 

                        𝐺𝑃𝑃$% =	𝐺𝑃𝑃"+++++++++ ∗ 	 𝐼,(-.' = 𝐺𝑃𝑃"+++++++++ ∗ 		 /2$"/,&'
&

-.∗.∑ /2$"/,&'./
.                           (2) 

Examples of Iscale and Tscale over the western US on July 2, 2018 are displayed in Supplementary Fig. S6bc. As a sanity check 

for the ERA-based SWrad, a higher resolution product is utilized, of which SWrad and PAR were estimated based on the Earth 

Polychromatic Imaging Camera (EPIC) data onboard the Deep Space Climate Observatory (DSCOVR) and random forest 10 

algorithms (Hao et al., 2020a, 2020b). The EPIC-based radiation data is available globally at 10 km from June 2015 to June 

2019 and has been validated against in situ observations from the Baseline Surface Radiation Network and Surface Radiation 

Budget Network. Hourly Iscale using ERA5-based SWrad and EPIC-based SWrad or PAR generally agree well regarding the 

diurnal cycles, despite small discrepancies in peak radiation and Iscale values during noon hours (Supplementary Fig. S6de).  

2.5 Uncertainty quantification and direct flux validation 15 

Error quantification is important for characterizing the precision and accuracy of modeled fluxes. Previous studies have carried 

out comprehensive uncertainty estimates towards their reported biogenic flux estimates (Dietze et al., 2011; Hilton et al., 2014; 

Lin et al., 2011; Xiao et al., 2014). Here we estimated errors in modeled GPP and Reco based on FLUXNET observations.  

 

We extrapolated the biome type, 4-day mean SIF, and daily mean Tair & Tsoil, from their originated gridded fields to each flux 20 

tower location and computed directly the modeled GPP and Reco using 𝛼 value and NN models. Comparisons between these 

direct computations and screened observations from FLUXNET2015 yield biome-specific root-mean-square errors (RMSE), 

mean biases, and coefficient of variations (CV). The uncertainties in assuming linear GPP-SIF relationship were not explicitly 

quantified but incorporated within these error statistics on top of other error sources such as inter-site variations. Eventually, 

biome-specific CVs are assigned to each 500 m grid and aggregated to 0.05 °  assuming statistical independence. For 25 

visualization purpose, we collected model-data pairs regardless of their biome types as density plots in Fig. 5.  

 

Directly computed 4-day mean GPP at most towers match well with observations regarding their magnitude and seasonality. 

Modeled GPP shows underestimations against irrigated maize sites in Nebraska (e.g., US-Ne1, US-Ne2) and sites in the central 

valley (e.g., US-Twt) in California (Supplementary Fig. S8) likely because irrigation effect is not implicitly included, and 30 

high crop chlorophyll concentration may not be fully recreated in the reflectance-driven CSIF data. Nevertheless, the overall 
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correlation coefficient between directly modeled GPP and partitioned GPP from FLUXNET is 0.86 with a mean bias of –0.069 

𝜇mol m-2 s-1 for 89 tower sites. When removing cropland sites from consideration, RMSE in 4-day mean GPP drops from 1.91 

to 1.74 𝜇mol m-2 s-1 (Fig. 5a vs. 5b).  

 

Next, we reported the predicting performance of Reco only using testing sets, i.e., 20 % of the entire data volume. Reco trained 5 

and predicted using measured variables from FLUXNET overperform the ones using ERA5’s temperatures and SIF-modeled 

GPP (r = 0.90 vs. r = 0.87; Fig. 5c vs. 5d). The constant CSIF within a 4-day interval and the constant 𝛼 over seasons make it 

difficult to reproduce daily variations in Reco as Tair and Tsoil likely become the main drivers. Recall that temperature fields 

from higher resolution fields of Daymet + NLDAS were also used for training and predicting Reco over CONUS. These Daymet 

+ NLDAS runs appear to slightly outperform the ERA5 runs (Fig. 5g vs. Fig. 5f). Although the NN model using observed 10 

variables yields the best performance, we are inclined to use NN models trained by modeled features for two reasons: 1) to 

account for discrepancies in GPP and temperature between tower observations and model/reanalyses and 2) for spatial 

generalization beyond points with “ground truth” as only modeled GPP are available away from the EC sites. Nevertheless, 

mean bias on testing sets across biomes remains small (< 10-3 𝜇mol m-2 s-1) with RMSE of 1.14 𝜇mol m-2 s-1. Since the error 

statistics associated with the ERA5 runs resemble those with the Daymet + NLDAS runs over the US (Figs. 5f vs. 5g), we 15 

only present the ERA5-based results in the following sections.  

 

An additional hourly mean NEE evaluation against FLUXNET can be found in Sect. 3.2.1 and Fig. 9. We stress that the 

directly computed fluxes and the validation with FLUXNET presented in this section differ from those presented in Sect. 3.2.1, 

as the latter one uses the spatially weighted mean flux at 0.05° that takes the spatial heterogeneity into account.  20 

2.6 Comparisons of FFCO2 vs. NEE fluxes and their contributions in column CO2  

FFCO2 emissions from the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC2019, Oda et al. 2018) are 

compared against NEE from SMUrF in terms of the seasonal magnitude, summertime diurnal cycle, and spatial distribution 

(Sect. 3.1). Initial ODIAC emissions at 1 km grid spacing are averaged to 0.05° for such FFCO2-NEE comparisons. Although 

the city-wide FFCO2 emissions from ODIAC may differ from other reported emissions (Chen et al., 2020; Oda et al., 2019), 25 

ODIAC is widely used in many urban studies and provides sufficient insights to FFCO2 emissions from a global perspective.  

 

To further translate CO2 fluxes into changes in column-averaged CO2 concentrations, or XCO2 (Sect. 3.3), we made use of an 

atmospheric transport model—i.e., the column version of the Stochastic Time-Inverted Lagrangian Transport (X-STILT, Wu 

et al., 2018) model. We carried out four case studies by examining summertime OCO-2 tracks over Boston, Indianapolis, Salt 30 

Lake City, and Rome. Those 4 cities are chosen based on satellite data availability/quality and various vegetation coverages. 

Specifically, thousands of air parcels are released in STILT (Fasoli et al., 2018; Lin et al., 2003) from the same atmospheric 

columns as the OCO-2 soundings and driven by meteorological fields, i.e., the 3-km High Resolution Rapid Refresh (HRRR) 
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for US cities and 0.5° GDAS for non-US cities (Rolph et al. 2017). The X-STILT model returns hourly surface influence 

matrices or “column footprints” [ppm / (µmol m-2 s-1)] that incorporates the averaging kernel and pressure weighting profiles 

from OCO-2. The hourly footprints indicate the influence of each upwind gridcell onto downwind satellite soundings within 

each hour interval. The coupling between column footprints and surface fluxes, e.g., hourly SMUrF-based NEE or ODIAC-

based FFCO2 emissions, reveals 1) the spatially-explicit XCO2 contribution [ppm] due to biogenic/anthropogenic fluxes and 5 

2) the overall XCO2 anomalies (XCO2.bio, XCO2.ff) at each receptor if aforementioned spatial contributions are summed up. 

For more details of ODIAC and X-STILT, please refer to Oda et al. (2018) and Wu et al. (2018), respectively.  

3 Results  

We start with modeled biogenic and anthropogenic fluxes at the regional and urban scales (Sect. 3.1) and their comparisons 

against EC observations and urbanVPRM over natural biomes and urban areas (Sect. 3.2). For the purpose of this paper gridded 10 

fluxes were produced from Jan 1, 2017 to Dec 31, 2018 only for the following populated/vegetated regions: CONUS, western 

Europe, east Asia, south America, central Africa, and eastern Australia.  

3.1 Biogenic and anthropogenic CO2 fluxes at the regional and city scale 

To reveal the role of biospheric fluxes in the context of anthropogenic emissions, we summed up NEE from SMUrF and FFCO2 

emissions from ODIAC for each season over CONUS, western Europe and east Asia (Fig. 6abc). SMUrF reveals the spatial 15 

contrasts and seasonal variations in NEE fluxes, as informed by the use of SIF, land cover types, and temperature fields. Places 

with strong seasonal amplitude are found to be rural regions covered by crops and dense forests, e.g., eastern US, northeastern 

and southern China, and spotty locations over Europe (green shading areas in Fig. 6abc). After adding FFCO2 emissions, the 

sum of NEE and FFCO2 remain positive over east Asia even in summer months (“brownish” spots in Fig. 6c).  

 20 

We next zoom into fluxes at the city-scale. SMUrF captures the increasing biospheric activities from urban cores to their rural 

surroundings inferred by Gross Ecosystem Exchange (GEE = -GPP), Reco, and NEE components (eight zoomed-in panels in 

Fig. 6), as cities are usually associated with less vegetation coverage than their rural counterparts. The urban-rural difference 

in GEE over Salt Lake City, Boston, and Seoul is relatively small, in contrast to cities like Guangzhou and Tokyo. Since 

modeled Reco is partially driven by SIF-based GPP, the spatial variations of GEE and Reco appear alike to some extent. Even 25 

though GPP can be high over JJA 2018, summertime mean NEE remains small at urban cores, with values ranging from –1 to 

–2 𝜇mol m-2 s-1. For Boston, spatial distribution of GEE and Reco derived from SMUrF (Fig. 6) resemble what were reported 

using urbanVPRM (Fig. 2C in Hardiman et al., 2017). Reco from SMUrF exceed the ODIAC-based FFCO2 emission over 

residential and rural areas away from the urban cores (Fig. 6), which coincides with Decina et al. (2016) that reported elevated 

rate of soil respiration approaching FFCO2 emission in the residential area and forest to the west of the urban core. Yet, when 30 

it comes to interpreting observed CO2 concentrations, it is the net flux that should better be compared against FFCO2. In short, 
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biogenic fluxes have the potential to dominate the overall carbon flux exchange over residential/rural areas, while FFCO2 is 

the main controller within urban cores.  

 

We further extend the analysis to 40 cities across multiple continents to see how CO2 fluxes vary between 1) urban vs. adjacent 

rural areas, 2) different cities, 3) the FF vs. NEE components, and 4) across seasons. Specifically, FFCO2 and NEE fluxes are 5 

averaged over “urban” and “rural” grid cells within a 2° × 2° region around city centers. Here “urban” grids are simply defined 

as the “urban and build-up settlements” according to MCD12Q1, while “rural” grids contain all the natural counterparts (e.g., 

forests, grasslands, croplands) except for water, ice, and barren lands. In particular, we are interested in the seasonal variation 

(Sect. 3.1.1) and mean summertime diurnal cycle (Sect. 3.1.2) of these “urban” and “rural” fluxes. The diurnal cycles of FFCO2 

are calculated using hourly scaling factors from Temporal Improvements for Modeling Emissions by Scaling (TIMES, Nassar 10 

et al., 2013) on top of monthly mean ODIAC-derived emissions. Note that emission temporal patterns provided by TIMES are 

climatological, based on a U.S gridded inventory by Gurney et al (2009), and thus do not change in response to local 

environmental conditions, such as air temperature.  

3.1.1 Seasonal variation  

Stronger net biospheric uptake during growing seasons and larger seasonal amplitude in NEE are linked to rural grids than to 15 

urban grids as expected (Fig. 7a vs. 7b). Among the selected 40 cities, top “wet”, biologically active cities include Boston, 

Baltimore-DC, New York, Taipei, London, Paris, and Rio de Janeiro. By contrast, a few “drier” cities stand out, with the 

spatially-average NEE over urban grids close to zero, such as Los Angeles, Phoenix, and Madrid (Fig. 7a). Besides NEE 

magnitude, cities reach their maximum net uptake at different times — e.g., June/July for most cities in eastern US and east 

Asia (except for Taipei); a slight earlier peak for most cities in western US, western Europe, and Taipei; and January for cities 20 

in southern hemisphere. For instance, minimum NEE is found in late May to June within and around London (Fig. 7a5), which 

is consistent with the seasonality of the posterior NEE fluxes reported for UK from 2013 to 2014 (White et al., 2019).  

 

Since FFCO2 emission fluctuates less across seasons than NEE, we compare the magnitude of the seasonal amplitude in NEE 

relative to the annual mean FFCO2 emission (shown as numbers below city names in Fig. 7). Such comparison helps inform 25 

the potential interference from the biosphere over cities when interpreting long-term CO2 observations, albeit without 

considering the atmospheric transport and that the one single number for FFCO2 can be affected by large point source emissions. 

As expected, most spatially-average FFCO2 emissions over urban grids are stronger than the seasonal amplitude in NEE (Fig. 

7a). Exceptions include Pyongyang and cities in central Africa whose seasonal NEE amplitudes approach their annual mean 

FFCO2 emissions, e.g., 2.0 vs. 2.5 𝜇mol m-2 s-1 for Lagos. Things can get more complex if one tries to interpret FFCO2 signals 30 

from year-long observations over rural areas. Annual mean FFCO2 emissions for rural grids seldom exceed 2 𝜇mol m-2 s-1, 

whereas seasonal amplitudes in the 4-day mean NEE often exceed 4 𝜇mol m-2 s-1 (Fig. 7b) with a few exceptions in east Asia.   
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3.1.2 Diurnal cycle 

In regard to the magnitude of hourly fluxes, FFCO2 emissions is negligible for rural grids (Fig. 8b). Intensive FFCO2 emissions 

ranging from 20 to 60 𝜇mol m-2 s-1 dominate the total CO2 fluxes even during noon hours for east Asian cities (Fig. 8a3-4). 

The urban biosphere over a few cities in eastern US and Europe may take up a considerable amount of CO2, approaching or 

even exceeding FFCO2 emissions during noon hours in summer months. For instance, the peak value in summertime average 5 

NEE and FFCO2 fluxes over Boston is about –16 𝜇mol m-2 s-1 and 10 𝜇mol m-2 s-1 at the hourly scale, respectively (Fig. 8a1).  

 

In regard to the timing of hourly fluxes, NEE in most mid-latitude cities start to dip below zero at 7 or 8 am local time (Fig. 

8a), slightly later than the typical summertime sunrise hour of ~6 am, with a lag associated with the time it takes for GPP to 

offset Reco. NEE reaches its minimum at different hours spanning from 11 am to 1 pm among cities and rises back to zero at 10 

or before 6 pm. On the contrary, FFCO2 emissions start to rise largely due to morning traffic, stay elevated during daytime, 

and gradually declined between 8-9 pm. As for Boston, SMUrF reported similar NEE magnitude compared to urbanVPRM 

but with an hour delay where NEE becomes negative (Supplementary Fig. S9 vs. Figure 3B3 in Hardiman et al., 2017), likely 

due to discrepancies in the hourly data that drive the hourly GPP fluxes.  

3.2 Hourly flux comparisons  15 

In this section, we will see how robust the modeled fluxes are at the hourly scale (Sect. 3.2.1 – 3.2.2) and how CO2 fluxes 

impact the CO2 concentrations downstream after considering atmospheric transport (Sect. 3.3). Specifically, simulated hourly 

mean NEE fluxes are extracted from the final gridded output fields and compared against measured NEE at EC sites from 

FLUXNET and INFLUX, which differ from the model-data comparison using directly computed daily fluxes in Sect. 2.5.  

3.2.1 SMUrF vs. FLUXNET and INFLUX  20 

We first evaluate modeled NEE against 67 EC tower sites from FLUXNET2015 in North America and Europe from 2010 to 

2014 (Fig. 9). The correlation coefficient between simulated and measured hourly NEE ranges from 0.66 to 0.79 for most 

biome types, except for open shrubland likely due to limited amounts of data. Higher random and systematic uncertainties are 

associated with these hourly flux comparisons than direct daily validations shown in Sect. 2.5 (Fig. 5), given larger flux 

magnitude along with errors propagated from GPP, Reco and hourly downscaling. The mean bias of hourly NEE ranges from 25 

–1.51 𝜇mol m-2 s-1 for grassland to +1.11 𝜇mol m-2 s-1 for closed shrubland. Croplands are associated with the highest RMSE, 

which stem from their large flux magnitudes and inter-site variations in GPP-CSIF relationships (Supplementary Fig. S1). 

The potential underestimation in 4-day average GPP over irrigated maize sites (e.g., US-Ne* as mentioned in Sect. 2.5) appears 

to be propagated into the NEE estimate (Supplementary Fig. S10a). Yet, if all sites with the same biome are treated together, 

the timing and magnitude of the 3-month mean diurnal cycle of NEE from SMUrF resemble those from FLUXNET 30 
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(Supplementary Fig. S10b). Since each 0.05° model grid is possibly comprised of various biome types, areal fractions of the 

specific biome indicated by each EC site over the 0.05° model grid is provided as a reference in Supplementary Fig. S11.  

 

More importantly, we carried out independent NEE comparisons that leveraged four valuable EC sites from the INFLUX 

network over Indianapolis (Fig. 10a, Sect. 2.1.5). In 2018, observations at site #3 were affected by corn; while observations 5 

at site #2 were primarily influenced by soybean, although site #2 was surrounded by mixed crops of soybean and corn. As a 

result, site #3 shows a stronger observed uptake from mid-June to mid-July than site #2 (Figs. 10c), because corn is often 

associated with higher light saturation points and lower light compensation points, leading to higher light use efficiency and 

GPP than soybean. Although C3:C4 fractional contribution was incorporated into the calculation of 𝛼 (Sect. 2.2.1), SMUrF is 

unable to differentiate NEE at two adjacent crop sites found essentially in the same 0.05° model grid. The simulated NEE may 10 

agree better with the average observed NEE of two crop sites. Hourly measured NEE at crop sites range from –64.4 to +28.1 

𝜇mol m-2 s-1 while simulated values span from –66.7 to +12.1	𝜇mol m-2 s-1 with mean bias of –0.59 𝜇mol m-2 s-1 and RMSE of 

5.98 𝜇mol m-2 s-1 over the entire observed window (Fig. 10c). Uncertainties/bias in the modeled hourly NEE based on these 

two crop sites outside Indianapolis are in proximity to those based on 11 FLUXNET crop sites (Fig. 10b vs. Fig. 9). Lastly, 

we focus on flux comparisons within Indianapolis. NEE fluxes at sites #1 and #4 exhibit a seasonally attenuated pattern but 15 

stronger biospheric activities in Nov and Dec compared to the crop sites (Fig. 10c). The correlation coefficient of hourly NEE 

fluxes between model and observations is 0.75. Modeled mean diurnal cycles over JJA 2018 coincide with those from 

observations at urban vegetation sites (Fig. 10d). Spatial distribution of summertime average NEE from SMUrF can be found 

in Supplementary Fig. S12.  

3.2.2 SMUrF vs. UrbanVPRM for Los Angeles 20 

The comparisons of SMUrF to dozens of EC sites have yet to offer much insight into the spatial distribution of urban CO2 

fluxes. Therefore, we further compare SMUrF against urbanVPRM simulation (Sect. 2.1.5) at 30-m grid spacing over Los 

Angeles from July to Sept 2017. SMUrF and urbanVPRM agree with respect to the spatial distribution of estimated GEE 

fluxes, e.g., stronger uptakes over mountainous and residential areas to the northeast of Pasadena and San Bernardino and 

nearly zero uptake over the Moreno Valley to the south of Riverside and the LA basin (Fig. 11a). SMUrF simulates a stronger 25 

biospheric uptake than urbanVPRM across LA over JAS in 2017 (1st column in Fig. 11a).  

 

Both models incorporated observed GPP from EC sites for tuning their parameters but are driven with different spatial proxies 

(SIF vs. EVI and LSWI) with different model formulations. As one of the key improvements, urbanVPRM revises the initial 

VPRM-based Reco by incorporating impervious surface areas (ISA), which in turns modify the air temperature over urban cores 30 

due to urban heat island (TUHI) effect and affect estimated GPP, autotrophic and heterotrophic respirations. For example, RH 

can be reduced while RA and GPP may be increased given enhanced TUHI over higher ISA regions in urbanVPRM. Regardless, 

TUHI-revised Reco in urbanVPRM still follows a simple function of air temperature. ISA is implicitly contained in SIF although 
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not explicitly considered in SMUrF. Reco in SMUrF is driven not only by air temperatures but also soil temperatures and GPP. 

Thus, Reco in SMUrF appears to be more correlated spatially with its GPP. An overall higher Reco and more positive NEE is 

associated with SMUrF compared to urbanVPRM over LA (3rd column in Fig. 11a), attributed to methodological discrepancies 

in producing Reco. Similarly, the 3-month mean diurnal cycles of hourly NEE extracted from a few grids indicate stronger daily 

amplitudes according to SMUrF (Fig. 11b). Both models suggest Pasadena, towards the northern end of LA basin, is associated 5 

with a slightly stronger diurnal amplitude than downtown LA, with discrepancies in the hourly NEE during noon hours likely 

because of differences in the data products from which PAR or SWrad are derived (e.g., cloud coverage and spatial resolution).  

 

Despite the opposing signs between urbanVPRM and SMUrF modeled NEE over the LA basin, the overall biological 

activity (either net positive or negative) remains small, particularly when FFCO2 emissions are compared. As a quick 10 

analysis, we defined “downtown LA” as a rectangle with the following lat/long boundaries: 118.5°W–118°W and 33.9°N – 

34.1°N and removed one gridcell with intensive FFCO2 emissions from consideration (likely due to point sources, Fig. 11c). 

The average FFCO2 over JAS 2017 within downtown LA is ~12.1 𝜇mol m-2 s-1, while differences in NEE between two 

biogenic models remain small, at ~0.41	𝜇mol m-2 s-1.  

3.3 Urban-rural gradient in XCO2.ff and XCO2.bio  15 

After presenting the hourly NEE evaluations and urban-rural contrast around 40 cities, we examined the imprint of urban-rural 

NEE contrasts on CO2 concentrations. As described in Sect. 2.6, we analyzed OCO-2 XCO2 observations over a few cities and 

accounted for the atmospheric transport between upwind carbon sources/sinks and downwind satellite soundings as reflected 

by X-STILT’s column footprints (Fig. 12a). Only places with non-zero footprints and non-zero fluxes contribute to downwind 

XCO2 anomalies, which can be visualized by the spatial contribution of XCO2.ff enhancements and XCO2.bio anomalies in Fig. 20 

12cd. The sum of those spatially-explicit XCO2 contributions serves as the total anthropogenic or biogenic XCO2 anomalies 

per receptor (Fig. 12b).   

 

Boston provides the main case study here as its anthropogenic and biogenic fluxes have been extensively studied by previous 

studies (Decina et al., 2016; Hardiman et al., 2017; Sargent et al., 2018), notwithstanding the small number of qualified OCO-25 

2 tracks. On July 7, 2018, the northeasterly wind transported air from Boston to downwind satellite soundings with an overpass 

time of ~1700 UTC or 1300 LT (Fig. 12a). Over the near-field area immediately around satellite soundings, most biogenic 

contributions stayed negative due to daytime photosynthetic uptake (green colors in Fig. 12d) where strong surface influences 

are found (Fig. 12a). During the few hours prior to 1300 LT, air parcels within the planetary boundary layer began to encounter 

net biogenic release away from the receptors, leading to slightly positive biogenic contributions in XCO2 (light-yellow colors 30 

in Fig. 12d). Yet, strong negative near-field anomalies prevail over the slightly positive far-field anomalies, resulting in total 

negative XCO2.bio at the receptors spanning from –2 to –0.3 ppm (green dots in Fig. 12b). The convolution between footprints 
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and FFCO2 emissions is simpler, always yielding positive enhancements (Fig. 12c), especially over soundings from 41.7 ° to 

42.3° N with XCO2.ff enhancements of up to 0.6 ppm (orange dots in Fig. 12b).  

 

We then take a closer look at the modeled XCO2 anomalies along latitude (Fig. 12b). XCO2 anomalies to the south of the 

urban peak are close to zero due to minimal influences from either FFCO2 or NEE. Moving northward, soundings started to 5 

experience intensive biogenic activities that lead to XCO2.bio anomalies of up to –2 ppm. Due to a less active urban biosphere 

than its surrounding vegetation, a rise in XCO2.bio has been spotted centered at ~41.9° N relative to the adjacent latitude bands 

centered at ~41.7 or 42.2° N. That being said, the urban-rural gradient in XCO2.bio anomalies (hereinafter “∆XCO2.bio”) can 

exceed 0.5 ppm, which is comparable to the maximum XCO2.ff of 0.6 ppm. We will discuss the implication of this urban-rural 

bio-gradient ∆XCO2.bio in the context of the total measured XCO2 in Sect. 4.1 (Fig. 12e).  10 

 

Clearly, ∆XCO2.bio can vary with locations and time of day or year when measurements were taken. We studied a few more 

OCO-2 tracks near Indianapolis, Salt Lake City, and Rome given their different surrounding vegetation types (Fig. 13). These 

summertime tracks were picked given their richness in screened soundings (quality flag = 0) that facilitates the X-STILT 

modeling. Although the OCO-2 track is adjacent to Indianapolis at 1800UTC on July 13, 2018, upwind regions are located to 15 

the east of the soundings and away Indianapolis leading to minimal XCO2.ff anomalies and strong biospheric uptake with 

XCO2.bio below –2 ppm (Fig. 13ab). Strong influence with the surface land is concentrated within the Salt Lake Valley on June 

25, 2018, leading to a maximum XCO2.ff of 0.5 ppm and XCO2.bio with comparable magnitude but negative signs (Fig. 13ef). 

For Rome, strong footprints to the southwest of the city center interact with positive NEE, giving rise to XCO2.bio anomalies 

of up to 1.5 ppm over 42°– 42.5°N where XCO2.ff are equally significant (Fig. 13j). To sum up, XCO2.bio anomalies can be 20 

associated with either sign and an absolute magnitude of up to 2.5 ppm during growing seasons, as seen in cases of Indianapolis 

and Boston. The urban-rural bio-gradient ∆XCO2.bio is smaller, with maximum values ranging from 0.6 to 1.0 ppm among our 

limited cases (2nd column in Fig. 13). Based on the limited cases, XCO2.bio anomalies are normally less negative (more positive) 

within the urban-enhanced region, serving as a peak that coincides with the XCO2.ff peak. More cities and satellite tracks, 

accompanied by comprehensive error analyses should be examined in the future to verify these statements.  25 

4 Discussion and summary  

We now discuss some applications and limitations of SMUrF, and in particular, examine how an urban-rural gradient in 

XCO2.bio may alter the interpretation of XCO2 observations during the growing seasons. 

4.1 Implications on background XCO2 determination 

As the extraction of urban emissions from column measurements can be sensitive to the background definition (e.g., Wu et 30 

al., 2018), we illustrate the impact of urban-rural gradient in XCO2.bio during the growing season in the context of 
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background determinations. Let us consider the background XCO2 (XCO2.bg) defined as the average of observations over 

region unaffected by urban emissions. Observed enhancements are then calculated as levels of XCO2 elevated above 

XCO2.bg. This constant XCO2.bg reasonably represents the XCO2 portion unaffected by urban emissions during non-growing 

seasons for most places (Wu et al., 2018). However, this background definition might implicitly neglect the variation in 

biospheric XCO2 anomalies between the urban-enhanced versus the background region. Again, it is the gradient in XCO2.bio, 5 

not its absolute level, along satellite tracks that modify the background value.   

 

The goal, then, becomes to create a latitude-dependent background—XCO2.bg (lat) in Eq. 3—that integrates the adjustment of 

urban-rural biospheric gradient (∆XCO2.bio). To quantify the ∆XCO2.bio correction term, we average XCO2.bio within the 

background latitude band (XCO2.bio.bg) and subtract it from the latitude-varying XCO2.bio. The correction term is then added 10 

to the constant background (XCO2.bg.const) to yield a latitudinally varying, bio-adjusted background:  

XCO2.bg (lat) = XCO2.bg.const + ∆XCO2.bio (lat)  

                                                                 = XCO2.bg.const + XCO2.bio (lat) – XCO2.bio.bg.                (3) 

Recall that XCO2.bio (lat) is the modeled biospheric anomalies using SMUrF and X-STILT (Sects. 2.6 and 3.3). 

 15 

To facilitate visualization and understanding of ∆XCO2.bio and bio-adjusted background, let us return to the Boston case (Fig. 

12). Following the “overpass-specific approach” proposed in Wu et al. (2018), we estimated the urban plume (black curve in 

Supplementary Fig. S13a) and defined the background latitude range of 42.26°– 42.76° N (light green ribbon in Fig. 12e). 

The constant background is 403.37 ppm (dark green line in Fig. 12e) with an uncertainty of 1.03 ppm containing both 

retrieval errors and observational noise (Supplementary Fig. S13b). The mean XCO2.ff and XCO2.bio anomalies within the 20 

background region are 0.23 ppm and –1.41 ppm, respectively. After integrating the bio-gradient ∆XCO2.bio, a new bio-

adjusted background varies along latitude (light green line in Fig. 12e). If modeled XCO2.ff is added to the bio-adjusted 

background, the resultant total XCO2 better reproduces the latitudinal variations of the measured mean values (Fig. 12e). 

Both the observed XCO2 and modeled XCO2 with the ∆XCO2.bio correction term exhibit dips in XCO2 on both sides outside 

the urban peak, which is missing from the model result using the constant background (orange line in Fig. 12e).  25 

 

A more comprehensive error analysis of various modeled and observed errors is needed to draw further quantitative 

conclusions from the model-data XCO2 comparison. For instance, modeled XCO2 appears to extend wider latitudinally with 

a lower amplitude and a small latitude shift of ~0.1° compared to observed XCO2 (purple line versus black triangles in Fig 

12e) likely due to bias in wind speed and direction. Nonetheless, neglecting the latitudinal/spatial gradient in biogenic XCO2 30 

anomalies given gradients in NEE can affect the extracted urban signal and inferred FFCO2 emissions.  
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4.2 Limitation and future improvement 

This study aims at offering a model representation of biogenic CO2 fluxes to help improve the CO2 flux partitioning over cities 

worldwide. SMUrF takes advantage of SIF to estimate GPP from urban to rural areas and incorporates multiple predictors to 

estimate Reco using neural network approach. Here we identify several model limitations and room for future improvements.  

 5 

The adoption of SIF has dramatically benefited the GPP calculation over urban areas around the globe, as non-vegetated 

surfaces within the satellite footprint do not contribute to observed signals. However, the main caveat lies in the assumption 

of linear GPP-SIF relationship and one set of constant 𝛼 values across all seasons used in SMUrFv1. Previous research 

(Magney et al., 2020; Miao et al., 2018; Wohlfahrt et al., 2018; Yang et al., 2018) revealed divergence of the empirical linear 

GPP-SIF relation at sub-diurnal and leaf scales, and under certain environmental conditions (low light, or high light & stress), 10 

owing to competing fluorescence, photochemical, and non-photochemical pathways for the absorbed light (Magney et al., 

2020). For example, Yang et al. (2018) suggest considering additional environmental and biophysical factors related to the 

modeling of light use efficiency, e.g., relative humidity, cloudiness, and growth stage of crops, to improve SIF-based GPP 

estimates. Although multiple studies have shown dependence of the linear slope on PFT (e.g., Guanter et al., 2012; Sun et al., 

2017; Turner et al., 2021), further research is needed to understand the scale dependence of the GPP-SIF relation, and determine 15 

if an inflection point for linearity exists. Given noise/uncertainty in the CSIF product and EC tower data across multiple 

continents, we apply a simple linear regression fit and let the uncertainty analysis incorporate deviations from the linear 

assumption. Future iterations of SMUrF can test alternative statistical fits with physical fundamentals or expand the GPP-SIF 

slopes across seasons, and new urban land cover maps (e.g., Coleman et al., 2020).   

 20 

Mixed pixels are difficult to account for in heterogenous urban environments if without much information on the local 

biosphere. As a general solution that can be widely applied to cities around the world, we derived and utilized the relationship 

between relative tree fractions and AGB. This relationship is a simplification proposed from high-resolution land cover data 

over Los Angeles. Fortunately, recent work using high resolution airborne and satellite imagery demonstrates that urban land 

cover mapping capabilities are improving (e.g., Coleman et al., 2020). Other advanced space sensors provide SIF retrieval 25 

with a broader coverage over cities, land surface temperatures, biomass, and canopy structures of forests at an unprecedented 

spatiotemporal resolution (Stavros et al., 2017). Examples of such satellite sensors include OCO-3 (Eldering et al., 2019), the 

ECOsystem Spaceborne Thermal Radiometer Experiment ECOSTRESS (Fisher et al., 2020) and the Global Ecosystem 

Dynamics Investigation LIDAR (GEDI, Duncanson et al., 2020), all onboard the International Space Station. These cutting-

edge and future data streams may improve the approximation of tree types and fraction over cities and flux estimates in SMUrF.  30 

 

SMUrF parameters can be fined tuned for more localized applications, such as using higher resolution shortwave radiation or 

PAR data with higher accuracy in cloud cover estimates. Further, the reference temperature used in this work (30°	C) can be a 
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bit higher than that (20°	C) used in the calculation of maintenance respiration and (25°C) in the calculation of heterotrophic 

respiration in CLM. The Q10 parameter (here = 1.5) also varies significantly in space and time. Moreover, a few secondary-

order ecological and environmental variables may affect biogenic fluxes. For example, we have tried adding soil moisture as 

an explanatory variable into the Reco training system, but the improvement in model performance is not that evident.  

 5 

More challenging is the shortcoming that current flux estimates in SMUrF over cities still rely on relationships derived from 

observations over natural biomes. Urban trees are found to possess different characteristics from natural trees (Smith et al., 

2019), which pose a difficult task for biospheric models without more dedicated observations and mechanistic understanding 

of the urban environment. Anthropogenic moisture input (i.e., urban irrigation) has been found to effectively influence urban 

biogenic fluxes, particularly over (semi)arid residential areas (Johnson and Belitz, 2012; Vahmani and Hogue, 2014; Miller et 10 

al., 2021). Although we currently rely on SIF to pick up possible irrigation effect on GPP, it would be interesting to explore 

the linkage between water and carbon fluxes in future analyses.  

 

Because atmospheric CO2 concentrations measured from satellites are mainly influenced by the anthropogenic and biogenic 

carbon fluxes a few hours to days ahead of the overpass time, this work focused on presenting and evaluating the diurnal and 15 

seasonal CO2 fluxes. Biogenic CO2 fluxes at other moments, e.g., their interannual variations and trend, may require further 

investigations. We hope to examine more cities and different times of the day in future studies to better quantify the relative 

biogenic and anthropogenic contributions to XCO2 anomalies. Incorporating uncertainties in biogenic fluxes and resultant 

XCO2.bio is needed for future top-down studies with aims of quantifying urban signals especially over growing seasons.  

 20 

Lastly, we summarize the potential applications of SMUrF as follows. 

1) Improve the separation between biogenic and anthropogenic CO2 fluxes for urban studies. Regardless of the exact 

approach adopted for background definition, researchers can combine atmospheric transport models with fluxes from 

SMUrF to get estimates of the CO2 anomalies due to biogenic flux exchanges, as shown in Sect. 4.1.  

2) Fill-in the urban gap and assist regional flux inversions. The state-of-art terrestrial models that go into flux inversions 25 

usually include global models with relatively coarse resolution (e.g., 4° by 5°) with possible downscaling approaches. At 

the other end of the spectrum are highly localized models at fine resolution but sometimes requiring customization for 

individual cities. SIF-based fluxes from SMUrF may help bridge between the continental scale and the urban scale, with 

reasonable fine resolution and regional to global coverage.  

3) Understand how urbanization modifies the planet and environment. SMUrF offers a quick solution to the biogenic fluxes 30 

within urban areas and their rural surroundings, which provide insights on how biogenic CO2 fluxes vary among cities 

with different urban planning and emissions.  
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Data and code availability 

The source codes of SMUrF with the latest changes are stored at the GitHub repository on https://github.com/wde0924/SMUrF. 

The exact version of the SMUrF model used in this work is archived on Zenodo (Wu et al., 2020b). SMUrF modeled output 

can be accessed from the Oak Ridge National Lab DAAC, including the 1) 4-day mean CSIF-based GPP and uncertainty, 2) 

daily mean NN-based Reco, and 3) the final hourly GPP, Reco, and NEE fluxes. Because running the model for the entire globe 5 

incurs significant computational cost, we only shared the flux results for the following eight regions: western CONUS [125 W 

– 95 W, 25 N – 50 N]; eastern CONUS [95 W – 65 W, 25 N – 50 N]; western Europe [11W – 20 E, 35 N – 60 N]; eastern 

China [100 E – 125E, 20 N – 50 N]; eastern Asia [125 E – 150 E, 30 N – 55 N]; eastern Australia [130 E – 155 E, 40 S – 10 

S], south America [65 W – 40 W, 40 S – 10 S], and central Africa [10 W – 20 E, 10 S – 15 N].  

 10 

Instructions for running SMUrF: The user should start with main scripts of main_script_*.r in sequence for computing gridded 

GPP, Reco, and NEE, since the calculation of Reco using main_script_Reco.r relies on GPP generated using main_script_GPP.r. 

Model-related subroutines written in R/3.6.1 are stored in SMUrF/r/src with model-required dependences in SMUrF/data. For 

most of the cases, the user does not need to modify these subroutines. Model developments are ongoing and please contact the 

corresponding author if one would like to obtain model outputs for other regions/cities.  15 

 

Required input data products for driving SMUrF (data citation; parameter name in the model script).  

1) Clear-sky SIF provided by CSIF (Zhang et al., 2018; csif.cpath) 

2) AGB from GlobBiomass (Santoro et al. 2018; agb.path) 

3) MCD12Q1 v006 (Friedl and Sulla-Menashe, 2019; lc.path), accessed from the Application for Extracting 20 

and Exploring Analysis Ready Samples (AρρEEARS). See README.md on GitHub repository for info on how to 

download the exact format that SMUrF requires 

4) Hourly air temperature and shortwave radiation downwards from ERA5 reanalysis (Copernicus Climate Change 

Service Information, 2017; TA* and SSRD*) 

 25 

Other important data products used in this paper (not prerequisites for driving SMUrF) include:  

1) high-resolution 60 cm NAIP-based urban land cover classification product (Coleman, 2020) from Mendeley Data,  

2) ODIAC emission data product available from the Global Environmental Database hosted by the Center for Global 

Environmental Research at the National Institute for Environmental Studies (Oda and Maksyutov, 2015),  

3) EC measurements from FLUXNET2015 (Pastorello et al., 2017).  30 
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Appendix A. Comparison of CSIF with TROPOMI-based downscaled SIF and vegetation fraction from WUDAPT 

We carried out two tests to verify the accuracy and capability of CSIF. Firstly, CSIF is compared against a newly developed 

SIF product from TROPOMI over the Contiguous United States (CONUS) from June to August in 2018 (Turner et al. 2020, 

2021). This downscaled TROPOMI-based SIF product is initially available at 500 m and then averaged to 0.05° for the 

comparison. Due to the discrepancies in the reported SIF retrieval wavebands between OCO-2 (757 and 771 nm) and 5 

TROPOMI (740 nm), the OCO-2 based CSIF (757 nm) is scaled by an empirical scaling factor of 1.56 (Köhler et al., 2018) to 

yield comparison with TROPOMI SIF at the far-red SIF peak of 740 nm. Note that this scaling factor of 1.56 is only applied 

here for model comparisons and not for flux calculations. OCO-2 based CSIF and TROPOMI-based SIF both see high 

biological activities over the eastern CONUS and agree well spatially (Supplementary Fig. S2). Model-model mismatch can 

be attributed to their different approaches and adopted observations. For example, CSIF uses broadband reflectances as 10 

indicators whereas downscaled TROPOMI SIF product benefits from TROPOMI’s wider and denser spatial coverage. 

Nevertheless, CSIF-based 𝛼 values (mostly > 20 (µmol m−2 s−1) (mWm−2 sr−1 nm−1)−1) are higher than TROPOMI-based 𝛼 

ranging from 13.5 to 18 (µmol m−2 s−1) (mWm−2 sr−1 nm−1)−1 reported in Turner et al. (2020) and Turner et al. (2021), which 

potentially compensate for the SIF mismatch.  

 15 

We also relate CSIF to vegetated and impervious fractions with a spatial resolution of 10 km from the World Urban Database 

and Access Portal Tools (WUDAPT) project (Ching et al., 2018) for a few available US cities. WUDAPT is “an international 

community-generated urban canopy information and modeling infrastructure to facilitate urban-focused climate, weather, air 

quality, and energy-use modeling application studies” (Ching et al., 2018). The Local Climate Zones (LCZ) provided by 

WUDAPT contain 10 specific classifications for the urban areas and 7 natural types with characterizations of surface 20 

property/structure (e.g., building and tree height and density) and surface cover (pervious vs. impervious) (Stewart and Oke, 

2012). Each LCZ classification is associated with a range of fractions for impervious land, building, and vegetation, such as 

40 – 60 % of impervious percentage for compact high rise (Ching et al., 2018). We calculated the mean impervious and 

vegetated fractions for every LCZ and projected those fractions to CSIF’s grids. Consequently, spatial gradient of CSIF 

coincides with that of vegetated fractions estimated from WUDAPT, as suggested by the increasing trend moving away from 25 

urban cores (Supplementary Fig. S3). Thus, CSIF nicely reveals the urban-rural contrast in biological activities.  

 

Since CSIF nicely mimic the urban-rural gradient, additional information about vegetated/impervious fractions was not 

necessary in the calculation of 𝛼 for every 500 m urban grid. For instance, if half of the 0.05° urban grid cell is covered by 

impervious land with the rest half covered by DBFs, SIF of this grid cell would already be lower than SIF of a grid cell fully 30 

covered by DBFs. Thus, instead of calculating a weighted mean 𝛼 using slopes and land fractions of DBF and impervious land 

(whose 𝛼 = 0), we only need to assign the 𝛼 of DBF to this particular 500 m urban grid. Otherwise, the resultant urban GPP 

(= CSIF * 𝛼) could be underestimated by “double-counting” of impervious fraction in both SIF and 𝛼. 
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Appendix B. Technical note on Reco prediction 

As introduced in Sect. 2.3, we have tested three ways to predict Reco by applying 

M1) one NN model trained using data points with all biomes to 0.05° grids, except for water, ice, and barren land, without 

considering sub-gridcell variations in land cover types, 

M2) one NN model with biome and month and season of the year as additional categorical variables (with one-hot encoding), 5 

M3) multiple biome-specific NN models to 500 m grids with different biomes and aggregating predicted Reco to 0.05°.  

 

Technically speaking, we tried both the built-in R package Neuralnet (Fritsch et al., 2016) as well as the R interface for Keras 

(Falbel et al., 2019) that is a high-level neural networks API based on backend including TensorFlow to build NN models. 

Although M1 benefits from larger amount of sample data and shorter processing time in predicting Reco without matching NN 10 

models with land cover types at 500 m, M2 approach is physically more meaningful as the temperature dependence of 

respiration may vary among different vegetation species. In particular, being able to resolve sub-gridcell variations and 

different vegetation fractions (processed during GPP estimates, Sect. 2.2.2) facilitates a more reasonable Reco calculation over 

urban areas. Note that modeled Tair and Tsoil have been bilinearly interpolated from their initial grid spacings onto the required 

grid spacing. In the ends, we used the last M3 approach given its better performance.  15 

 

Before training neural network models, we removed a few flux sites with relatively large RMSE values between modeled 

versus observed GPP to avoid erroneous information being transformed into the training process of Reco (Supplementary Fig. 

S14). All explanatory and response variables have been linearly normalized to values between [0, 1] based on their maximum 

and minimum values before training. Adjusting the raw data to a common scale may dramatically speed up the training process 20 

and avoid the situation where the predicting variable appears to be more sensitive to one of the response variables. To determine 

the hyper-parameters that work the best on our data and help avoid under-/over-fitting situation, we carried out a 5-fold cross-

validation (Supplementary Fig. S15). That being said, 80 % of the data serves as the training set with the remaining 20 % as 

the validation set. The 5-fold cross validation can be viewed as repeated holdouts and the average errors will be calculated 

after five different holdouts. The main hyper-parameter tested here is the number of neurons (8, 16, 32, or 64 neurons per 25 

layer) for a two-layer model. The overall RMSE and loss function between predicted and observed Reco on the validating set 

turn out to be similar among different numbers of neurons. In addition, loss functions on the training and validating sets appear 

to be similar, implying no strong sign of overfitting.  

Author contributions. DW and JCL designed the study and DW is responsible for model scripts. JCL and HD offered 

constructive insights regarding the construction and development of SMUrF. JCL, TO and EAK contributed to the design of 30 
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 300 
Figure 1. A demonstration of SMUrF (flow chart) and description of input data products and observations 
summarized in the table below. The temporal coverage in the table indicates the years used in this study.  

 

 

Product Name Spatial Info Temporal Info Usage 
MODIS MCD12Q1V6 IGBP 500 m, global Annual mean, 2010-2018 Provide biome types 

CSIF 0.05o, global 4-day mean, 2000-2018 Estimate 4-day mean GPP 

FLUXNET2015 Global sites Daily data from 2010-2014 Calculate GPP-SIF slopes and train Reco 

MAPSPAMV1 (physical crop areas) 10 km, global Annual mean for 2010 Estimate global C3/C4 crop ratios 

GlobBiomass (above ground biomass) 100 m, global Annual mean for 2010 Estimate tree fractions in cities 

NAIP-based land cover classification 0.6 m, LA  For deriving AGB-tree fraction relationship 

ERA5 
air and soil temperature (2T, STL1) 

0.25o, global 
Daily mean, 2010-2018 Predict Reco for the entire globe 

shortwave radiation (SSRD) Hourly mean, 2010-2018 Hourly downscaling 

Daymet (air temperature) 1 km, CONUS Hourly mean, 2010-2018 
Predict Reco for CONUS 

NLDAS (soil temperature) 0.125o, CONUS Hourly mean, 2010-2018 

SMURF 0.05o Hourly mean, 2010-2018 Provide biospheric fluxes for cities 
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Figure 2. Spatial distribution of the estimated C3:C4 ratio [%] (a-b) using physical areas of 42 crop species from 
MapSPAMv1 and weighted mean GPP-CSIF slopes [(𝜇mol m-2 s-1) / (mW m-2 nm-1 sr-1] for croplands (c). 305 

a) 

b) 

c) 
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Figure 3. a) Power law relationships fitted between the above ground biomass (AGB) and raw relative tree fractions 
(purple line) as well as fits using binned AGB and mean/median relative tree fractions per AGB bin (green/blue 
lines). The statistical fit in purple is chosen to predict relative tree fractions within cities. b) Spatial distributions of 310 
calculated relative tree fractions (%) from a high-resolution NAIP-based land cover classification product (Coleman 
et al., 2020) (top panel), Vegetation Continuous Fields from MOD44B v6 product (middle panel), and our 
approximation (bottom panel) using AGB and the statistical fit illustrated in panel a).   
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Figure 4. Estimated relative deciduous broadleaf forest (DBF, 1st row) and non-tree fractions (fnon-tree, 2nd row) at 315 
500 m and GPP-SIF slopes after urban gap-fills (3rd row) for Los Angeles (a), Chicago (b), and Boston (c). 
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 320 
 
Figure 5. Comparisons between directly computed fluxes from SMUrF and observed fluxes from FLUXNET during 
2010 – 2014 as density plots with 50 bins. All fluxes have units of 𝜇mol m-2 s-1. a-b) 4-day mean observed GPP and 
directly computed SIF-based GPP at 89 global EC sites (a) and 78 non-crop sites (b). c-d) An evaluation of the daily 
mean observed Reco and predicted Reco on the testing set (i.e., 20% of all data) using observed Tair + Tsoil + GPP from 325 
FLUXNET (c) OR Tair + Tsoil from ERA5 and SIF-based GPP (d) for 89 global EC sites.  
 
e-g) Similar to panels c-d, but model-data Reco comparison ONLY for US EC sites and modeled Reco is calculated 
using Daymet Tair, NLDAS Tsoil, and SIF-based GPP (g). Although GPP and Reco were trained and predicted 
separately per biome, model-data pairs from all biomes are collected for visualization purpose. For each panel, 330 
numbers of data points in each of the 50 bins are displayed in log10 scales as yellow-blue colours and error statistics 
including mean bias, correlation coefficient, and RMSE are printed. 1:1 and OLS-based regression lines are displayed 
in solid and dashed lines. RMSEs derived from these direct validations were further used for assigning uncertainties at 
500 m grid cell (Sect. 2.5).  
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 335 
Figure 6. The sums of seasonal mean SMUrF-based NEE and ODIAC-based FFCO2 [𝜇mole m-2 s-1] for CONUS (a), 
western Europe (b), and East Asia (c) at 0.05º for 2018. Spatial distributions of the average GEE (= -GPP), Reco, NEE, 
and FFCO2 from ODIAC over JJA 2018 are provided for 8 cities (hereinafter zoomed-in panels). As an optional step, 
these fluxes can further be spatially downscaled to 1 km using MOD44B (Fig. S7).  
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Figure 7. A multi-city comparison of the spatially average NEE fluxes [𝜇mol m-2 s-1] over urban (a) and rural (b) grid 
cells within a 2° × 2° area around the urban center for 2017 – 2018. We present the 4-day mean (in circles) and monthly 
mean (smoothed splines) NEE for 40 selected cities in CONUS, western Europe, east Asia, eastern Australia, south 
America, and central Africa. Light grey ribbons indicate the typical north hemispheric summer months (June-Aug, JJA). 345 
The numbers below city names denote the spatially average fossil fuel CO2 emissions derived from ODIAC over the 
same grid cells as NEE.  
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a) Urban grids within a 2º x 2º area
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London 
 1.1

Paris 
 0.68

Milan 
 0.95

Berlin 
 0.42

Madrid 
 0.34
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Rio de
Janeiro 

 0.32

Sao
Paulo 

 0.5

Santa Cruz
(Bolivia) 
 0.049

Buenos
Aires 
 0.37

Brasilia 
 0.13
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SF 
 0.63

Dallas 
 0.91

SLC 
 0.26

LA 
 0.64

Phoenix 
 0.37
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Osaka 
 1.7

Tokyo 
 2.1

Seoul 
 2.8

Busan 
 6.4

Pyongyang 
 0.078
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Figure 8. A multi-city comparison of the average diurnal cycles of SMUrF-derived NEE fluxes (triangles and solid lines) 
and ODIAC-TIMES based FFCO2 (solid dots) [𝜇mol m-2 s-1] over JJA 2018 over the urban (a) and rural (b) grid cells 
within a 2° × 2° area around each urban center. *** Note that the y-scales of positive and negative fluxes are different 
for panel a) to better reveal the NEE fluxes, i.e., 0 to 60 𝜇mol m-2 s-1 for positive fluxes and -20 to 0 𝜇mol m-2 s-1 for 355 
negative fluxes. Light grey ribbons indicate the negative flux ranges from -10 to 0 𝜇mol m-2 s-1 while light-yellow ribbons 
indicate the positive flux ranges from 0 to +10 𝜇mol m-2 s-1. City names are labelled on the bottom of each panel. 
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Figure 9. Hourly flux comparisons between modeled NEE against measured NEE from FLUXNET are presented in 360 
density plot for each biome. The number of EC sites per biome (n) and several error statistics including the mean bias, 
correlation coefficient (r), and root-mean-square error (RMSE) are printed on the bottom right corner of each panel.  
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Figure 10. NEE flux evaluation based on four EC towers from the INFLUX network around Indianapolis (a). Model-data 365 
flux comparisons at the hourly scale [𝝁mol m-2 s-1] from August 2017 to December 2018 are shown as density plot (b) 
and time series (c). Error statistics in hourly NEE including the mean bias, correlation coefficient (r), and root-mean-
square error (RMSE) are printed on the bottom right corner of panel b). d) Mean diurnal cycle of observed NEE (black 
triangles) and modeled NEE (coloured circles) over JJA for two cropland sites (sites #2 and #3) and the entire year of 
2018 for urban vegetation sites (sites #1 and #4). For panel c and d, Model fluxes are shown in solid lines or circles with 370 
four colours indicating different sites, whereas measured fluxes are shown in black dashed lines or triangles. 
Supplementary information on the spatial map of modeled NEE and monthly mean NEE comparisons can be found in 
Fig. S12.  
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Figure 11. a) Spatial maps of mean GEE, Reco, and NEE fluxes [µmol m-2 s-1] from SMUrF and urbanVPRM over the 
greater Los Angeles region from July to September (JAS) in 2017. b) Mean diurnal cycles of NEE fluxes over JAS 
2017 between two models. c) Map of mean FFCO2 [µmol m-2 s-1] at 0.05° aggregated from 1 km ODIAC product over 
JAS 2017. Main cities have been labelled on the maps including Los Angeles, Pasadena, Irvine, Riverside, and San 
Bernardino.  380 
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Figure 12. Demonstration of the application of SMUrF in the context of column CO2 measurements for an OCO-2 385 
overpass on 1700UTC 7th July 2018 to the west of Boston. The time-integrated column footprints [ppm / (µmol m-2 s-1)] 
originated from dozens of receptor locations have been integrated along the latitude (a). The wind was blowing from 
the urban center of Boston onto the satellite swath. c-d) Spatially-explicit XCO2 contributions from ODIAC-based 
FFCO2 and SMUrF-based NEE (XCO2.ff and XCO2.bio in ppm). Note that spatial footprint (panel a) and the spatial 
contribution of XCO2.ff (panel c) are plotted in log10 scale with small values < 10-6 ppm / (µmol m-2 s-1) displayed in light 390 
grey. The upwind contributions with respect to a column receptor are summed up, which arrive at the total modeled 
XCO2.ff or XCO2.bio anomalies per receptor (orange or green dots in panel b). Light orange and green ribbons indicate 
the urban-enhanced and background latitude range, following the approach in Wu et al. (2018) (also demonstrated in 
Fig S13).  
 395 
e) An example of incorporating ∆XCO2.bio into the background estimates. The screened observed XCO2 (QF = 0; gray 
triangles) are averaged in bins to match the locations of X-STILT receptors (black triangles). The dark and light green 
lines imply the constant and the bio-adjusted XCO2 background. Differences between two XCO2.bg indicate the 
∆XCO2.bio, which is calculated by subtracting the mean XCO2.bio within the rural range from all the simulated XCO2.bio 
along the swath. The FFCO2 enhancements are further added to the two different background values to arrive at the 400 
total modeled XCO2 (orange and purple lines).  
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Figure 13. Similar to Figure 12a-d, but for three different OCO-2 tracks, including 1800UTC 13th July 2018 to the 
east of Indianapolis (2018071318; 1st row, a-d), 2000UTC 25th June 2018 right over Salt Lake City (2018062520; 
2nd row, e-h), and 1200UTC 15th June 2017 near Rome, Italy (2017061512; 3rd row, i-l). Meteorological fields that 
drove those simulations are 3km HRRR for US cities and 0.5degree GDAS fields for Rome.  10 
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