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Abstract. In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting.

Its design was inspired by the U-Net and SegNet families of deep learning models which were originally designed for binary

segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of five minutes, using

several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data

set covers Germany with a spatial domain of 900×900 km, and has a resolution of 1 km in space and 5 minutes in time.5

Independent verification experiments were carried out on eleven summer precipitation events from 2016 to 2017. In order to

achieve a lead time of one hour, a recursive approach was implemented by using RainNet predictions at five minutes lead time

as model input for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model

based on optical flow served as benchmarks. The latter is available in the rainymotion library, and had previously been shown

to outperform DWD’s operational nowcasting model for the same set of verification events.10

RainNet significantly outperforms the benchmark models at all lead times up to 60 minutes for the routine verification

metrics Mean Absolute Error (MAE) and the Critical Success Index (CSI) at intensity thresholds of 0.125, 1, and 5 mm h−1.

However, Rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15

mm h−1). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a

high level of spatial smoothing introduced by the model. At a lead time of five minutes, an analysis of Power Spectral Density15

confirmed a significant loss of spectral power at length scales of 16 km and below. Obviously, RainNet had learned an optimal

level of smoothing to produce a nowcast at 5 minutes lead time. In that sense, the loss of spectral power at small scales is

informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of five minutes,

however, the increasing level of smoothing is a mere artifact – an analogue to numerical diffusion – that is not a property

of RainNet itself, but of its recursive application. In the context of early warning, the smoothing is particularly unfavourable20

since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options

to address this issue in prospective research, including an adjustment of the loss function for model training, model training

for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we

suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model

code, pretrained weights, and training data are provided in open repositories as an input to such future studies.25
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1 Introduction

The term nowcasting refers to forecasts of precipitation field movement and evolution at high spatiotemporal resolution (1–10

minutes, 100–1000 meters) and short lead times (minutes to a few hours). Nowcasts have become popular not only to a broad

civil community for planning everyday activities; they are particularly relevant as part of early warning systems for heavy

rainfall, and related impacts such as flash floods or landslides. While the recent advances in high-performance computing30

and data assimilation significantly improved numerical weather prediction (NWP) (Bauer et al., 2015), the computational

resources required to forecast precipitation field dynamics at very high spatial and temporal resolution are typically prohibitive

for the frequent update cycles (5–10 minutes) that are required for operational nowcasting systems. Furthermore, the heuristic

extrapolation of precipitation dynamics that are observed by weather radars still outperform NWP forecasts at short lead times

(Lin et al., 2005; Sun et al., 2014). Thus, the development of new nowcasting systems based on parsimonious, but reliable and35

fast techniques, remains an essential trait in both atmospheric and natural hazards research.

There are many nowcasting systems which work operationally all around the world to provide precipitation nowcasts

(Reyniers, 2008; Wilson et al., 1998). These systems, in their core, utilize a two-step procedure that was originally suggested by

Austin and Bellon (1974), consisting of tracking and extrapolation. In the tracking step, a velocity is obtained from a series of

consecutive radar images. In the extrapolation step, that velocity is used to propagate the most recent precipitation observation40

into the future. Various flavors and variations of this fundamental idea have been developed and operationalized over the past

decades, and provide value to users of corresponding products. Still, the fundamental approach to nowcasting has not changed

much over the recent years – a situation that might change with the increasing popularity of deep learning in various scientific

disciplines.

Deep learning refers to machine-learning methods for artificial neural networks with "deep" architectures. Rather than45

relying on engineered features, deep learning derives low-level image features on the lowest layers of a hierarchical network,

and increasingly abstract features on the high-level network layers, as part of the solution of an optimization problem based on

training data (LeCun et al., 2015). Deep learning took its rise from the field of computer science when it started to dramatically

outperform reference methods in image classification (Krizhevsky et al., 2012), machine translation (Sutskever et al., 2014),

followed by speech recognition (LeCun et al., 2015). Three main reasons caused this substantial breakthrough in predictive50

efficacy: the availability of "big data" for model training, the development of activation functions and network architectures

that result in numerically stable gradients across many network layers (Dahl et al., 2013), and the ability to scale the learning

process massively by parallelization on graphics processing units (GPUs). Today, deep learning is rapidly spreading in many

data-rich scientific disciplines, and complements researchers’ toolboxes with efficient predictive models, including the field of

geosciences (Reichstein et al., 2019).55

But while expectations in atmospheric sciences are high (see e.g., Dueben and Bauer, 2018; Gentine et al., 2018), the

investigation of deep learning in radar-based precipitation nowcasting is still in its infancy, and universal solutions are not yet

available. Shi et al. (2015) were the first to introduce deep learning models in the field of radar-based precipitation nowcasting:

they presented a Convolutional Long Short-Term Memory architecture (ConvLSTM) which outperformed the optical flow
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based ROVER nowcasting system in the Hong Kong area. A follow-up study (Shi et al., 2017) introduced new deep learning60

architectures, namely the Trajectory Gated Recurrent Unit (TrajGRU) and the Convolutional Gated Recurrent Unit (ConvGRU),

and demonstrated that these models outperform the ROVER nowcasting system, too. Further studies of Singh et al. (2017) and

Shi et al. (2018) confirmed the potential of deep-learning models for radar-based precipitation nowcasting for different sites

in the US and China. Most recently, Agrawal et al. (2019) introduced a U-net based deep learning model for the prediction of

exceedance of specific rainfall intensity thresholds compared to optical flow and numerical weather prediction models. Hence,65

the exploration of deep learning techniques in radar-based nowcasting has begun, and the potential to overcome the limitations

of standard tracking and extrapolation techniques has become apparent. There is a strong need, though, to further investigate

different architectures, to set up new benchmark experiments, and to understand under which conditions deep learning models

can be a viable option for operational services.

In this paper, we introduce RainNet – a deep neural network which aims at learning representations of spatiotemporal70

precipitation field movement and evolution from a massive open radar data archive to provide skillful precipitation nowcasts.

The present study outlines RainNet’s architecture and its training, and reports on a set of benchmark experiments in which

RainNet competes against a conventional nowcasting model based on optical flow. Based on these experiments, we evaluate the

potential of RainNet for nowcasting, but also its limitations in comparison to conventional radar-based nowcasting techniques.

Based on this evaluation, we attempt to highlight options for future research towards the application of deep learning in the75

field of precipitation nowcasting.

2 Model description

2.1 Network architecture

To investigate the potential of deep neural networks for radar-based precipitation nowcasting, we developed RainNet – a

convolutional deep neural network (Fig. 1). Its architecture was inspired by the U-Net and SegNet families of deep learning80

models for binary segmentation (Badrinarayanan et al., 2017; Ronneberger et al., 2015; Iglovikov and Shvets, 2018). These

models follow an encoder-decoder architecture in which the encoder progressively downscales the spatial resolution using

pooling, followed by convolutional layers; and the decoder progressively upscales the learned patterns to a higher spatial

resolution using upsampling, followed by convolutional layers. There are skip connections (Srivastava et al., 2015) from the

encoder to the decoder in order to ensure semantic connectivity between features on different layers.85

As elementary building blocks, RainNet has 20 convolutional, four max pooling, four upsampling, two dropout layers, and

four skip connections. Convolutional layers aim to generate data-driven spatial features from the corresponding input volume

using several convolutional filters. Each filter is a 3D tensor of learnable weights with a small spatial kernel size (e.g., 3×3, and

the third dimension equal to that of the input volume). A filter convolves through the input volume with a step size parameter

(or stride, stride=1 in this study) and produces a dot product between filter weights and corresponding input volume values. A90

bias parameter is added to this dot product, and the results are transformed using an adequate activation function. The purpose

of the activation function is to add nonlinearities to the convolutional layer output – to enrich it to learn non-linear features.
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Figure 1. Illustration of the RainNet architecture. RainNet is a convolutional deep neural network which follows a standard encoder-decoder

structure with skip connections between its branches. See main text for further explanation.

To increase the efficiency of convolutional layers, it is necessary to optimize their hyperparameters (such as number of filters,

kernel size, and type of activation function). This has been done in a heuristic tuning procedure (not shown). As a result, we

use convolutional layers with up to 1024 filters, kernel sizes of 1×1 and 3×3, and linear or Rectified Linear Unit (ReLU; Nair95

and Hinton, 2010) activation functions.
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Using a max pooling layer has two primary reasons: it achieves an invariance to scale transformations of detected features,

and increases the network’s robustness to noise and clutter (Boureau et al., 2010). The filter of a max pooling layer slides over

the input volume independently for every feature map with some step parameter (or stride) and resizes it spatially using the

maximum (max) operator. In our study, each max pooling layer filter is of size 2×2, applied with a stride of 2. Thus, we take100

the maximum of 4 numbers in the filter region (2×2) which downsamples our input volume by factor 2. In contrast to a max

pooling layer, an upsampling layer is designed for spatial upsampling of the input volume (Long et al., 2015). An upsampling

layer operator slides over the input volume and fills (copies) each input value to a region that is defined by the upsampling

kernel size (2×2 in this study).

Skip connections were proposed by Srivastava et al. (2015) in order to avoid the problem of vanishing gradients for the105

training of very deep neural networks. Today, skip connections are a standard group of methods for any form of information

transfer between different layers in a neural network (Gu et al., 2018). They allow for the most common patterns learned on

the bottom layers to be reused by the top layers in order to maintain a connection between different data representations along

the whole network. Skip connections turned out to be crucial for deep neural network efficiency in recent studies (Iglovikov

and Shvets, 2018). For RainNet, we use skip connections for the transition of learned patterns from the encoder to the decoder110

branch at the different resolutional levels.

One of the prerequisites for U-Net based architectures is that the spatial extent of input data has to be a multiple of 2n+1,

where n is the number of max pooling layers. As a consequence, the spatial extent on different resolutional levels becomes

identical for the decoder and encoder branches. Correspondingly, the radar composite grids were transformed from the native

spatial extent of 900×900 cells to the extent of 928×928 cells using mirror padding.115

RainNet takes four consecutive radar composite grids as separate input channels (t-15, t-10, t-5 minutes, and t, where t is

the time of the nowcast) to produce a nowcast at time t+5 minutes. Each grid contains 928×928 cells with an edge length of 1

km; for each cell, the input value is the logarithmic precipitation depth as retrieved from the radar-based precipitation product.

There are five almost symmetrical resolutional levels for both decoder and encoder which utilize precipitation patterns at the

full spatial input resolution of (x, y), at a quarter resolution (x/2, y/2), at (x/4, y/4), (x/8, y/8), and (x/16, y/16) respectively. To120

increase the robustness and to prevent overfitting of pattern representations at coarse resolutions, we implemented a dropout

regularization technique (Srivastava et al., 2014). Finally, the output layer of resolution (x, y) with a linear activation function

provides the predicted logarithmic precipitation (in mm) in each grid cell for t+5 minutes.

RainNet differs fundamentally from ConvLSTM (Shi et al., 2015), a prior neural-network approach, which accounts for both

spatial and temporal structures in radar data by using stacked convolutional as well as LSTM layers that preserve the spatial125

resolution of the input data alongside all the computational layers. LSTM networks have been observed to be brittle; in several

application domains, convolutional neural networks have turned out to be numerically more stable during training, and make

more accurate predictions than these recurrent neural networks (e.g., Bai et al., 2018; Gehring et al., 2017).

Therefore, RainNet uses a fully convolutional architecture, and does not use LSTM layers to propagate information through

time. In order to make predictions with a larger lead time, we apply RainNet recursively. After predicting the estimated log-130
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precipitation for t+5 minutes, the measured values for t-10, t-5, and t as well as the estimated value for t+5 serve as the next

input volume which yields the estimated log-precipitation for t+10 minutes. The input window is then moved on incrementally.

2.2 Optimization procedure

In total, RainNet has almost 31.4 million parameters. We optimized these parameters using a procedure of which we show one

iteration in Fig. 2: first, we read a sample of input data that consists of radar composite grids at time t-15, t-10, t-5 minutes,135

and t, and a sample of the observed precipitation at time t+5. For both, input and observation, we increase the spatial extent to

928×928 using mirror padding, and transform precipitation depth x (in mm / 5 minutes) as follows (Eq. 1):

xtransformed = ln(xraw +0.01) (1)

Second, RainNet carries out a prediction based on the input data. Third, we calculate a loss function that represents the

deviation between prediction and observation. Previously, Chen et al. (2018) showed that using the logcosh loss function140

is beneficial for the optimization of variational auto-encoders (VAE) in comparison to mean squared error. Accordingly, we

employed the logcosh loss function as follows (Eq. 2):

Loss=

∑n
i=1 ln(cosh(nowi− obsi))

n
(2)

cosh(x) =
1

2
(ex + e−x) (3)

where nowi and obsi are nowcast and observation at the i-th location, respectively; cosh is the hyperbolic cosine function145

(Eq. 3); n is the number of cells in the radar composite grid.

Fourth, we update RainNet’s model parameters to minimize the loss function using backpropagation algorithm where the

Adam optimizer is utilized to compute the gradients (Kingma and Ba, 2015).

We optimized RainNet’s parameters using 10 epochs (one epoch ends when the neural network saw every input data sample

once, then the next epoch begins) with a mini batch of size 2 (one mini batch holds a few input data samples). The optimization150

procedure has converged on the 8th epoch showing saturation of RainNet’s performance on the validation data. The learning

rate of the Adam optimizer had a value of 1e-04, while other parameters had default values from the original paper of Kingma

and Ba (2015).

The entire setup was empirically identified as the most successful in terms of RainNet performance on validation data, while

other configurations with different loss functions (e.g., mean absolute error, mean squared error) and optimization algorithms155

(e.g., stochastic gradient descent) have also converged. The average training time on a single GPU (NVIDIA GTX GeForce

1080Ti, NVIDIA GTX TITAN X, or NVIDIA Tesla P100) varies from 72 to 76 hours.
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Figure 2. Illustration of one iteration step of the RainNet parameters optimization procedure.

We support this paper by a corresponding repository on GitHub (https://github.com/hydrogo/rainnet; Ayzel, 2020a) which

holds the RainNet model architecture written in Python 3 programming language (https://python.org, last access: 28 January

2020) using the Keras deep learning library (Chollet et al., 2015) alongside its parameters (Ayzel, 2020b) which had been160

optimized on the radar data set which is described in the following section.

3 Data and experimental setup

3.1 Radar data

We use the RY product of the German Weather Service (DWD) as input data for training and validating the RainNet model.

The RY product represents a quality-controlled rainfall-depth composite of 17 operational DWD Doppler radars. It has a spatial165

extent of 900×900 km, covers the whole area of Germany, and is available since 2006. The spatial and temporal resolution of

the RY product is 1×1 km and 5 minutes, respectively.

In this study, we use RY data that covers the period from 2006 to 2017. We split the available RY data as follows: while

we use data from 2006 to 2013 to optimize RainNet’s model parameters and data from 2014 to 2015 to validate RainNet

performance, data from 2016 to 2017 is used for model verification (Sect. 3.3). For both optimization and validation periods,170
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we keep only data from May to September and ignore time steps for which the precipitation field (with rainfall intensity more

than 0.125 mm h−1) covers less than 10% of the RY domain. For each subset of the data – for optimization, validation, and

verification –, every time step (or frame) is used once as t0 (forecast time) so that the resulting sequences that are used as

input to a single forecast (t0 - 15 min, ..., t0) overlap in time. The number of resulting sequences amounts to 41988 for the

optimization, 5722 for the validation, and 9626 for the verification (see also Sect 3.3).175

3.2 Reference models

We use a nowcasting models from the rainymotion Python library (Ayzel et al., 2019) as benchmarks against which we evaluate

RainNet. As the first baseline model, we use Eulerian persistence (further referred to as Persistence), which assumes that for

any lead time n (minutes), precipitation at t+n is the same as at forecast time t. Despite its simplicity, it is quite a powerful

model for very short lead times, which also establishes a solid verification efficiency baseline which can be achieved with a180

trivial model without any explicit assumptions. As the second baseline model, we use the Dense model from the rainymotion

library (further referred to as Rainymotion) which is based on optical flow techniques for precipitation field tracking and

the constant-vector advection scheme for precipitation field extrapolation. Ayzel et al. (2019) showed that this model has an

equivalent or even superior performance in comparison to the operational RADVOR model from DWD for a wide range of

rainfall events.185

3.3 Verification experiments and performance evaluation

For benchmarking RainNet’s predictive skill in comparison to the baseline models, Rainymotion and Persistence, we selected

11 events during the summer months of the verification period (2016–2017). These events are selected for covering a range of

event characteristics with different rainfall intensity, spatial coverage, and duration. A detailed account of the events’ properties

was given by Ayzel et al. (2019).190

We use three metrics for model verification: mean absolute error (MAE), critical success index (CSI), and fractions skill

score (FSS). Each metric represents a different category of scores. MAE (Eq. 4) corresponds to the continuous category and

maps the differences between nowcast and observed rainfall intensities; CSI (Eq. 5) is a categorical score which is based on

a standard contingency table for calculating matches between Boolean variables which indicate the exceedance of specific

rainfall intensity thresholds; FSS (Eq. 6) represents neighborhood verification scores and is based on comparing nowcast and195

observed fractional coverage of rainfall intensities exceeding specific thresholds in spatial neighborhoods (windows) of certain

size.

MAE =

∑n
i=1 |nowi− obsi|

n
(4)

CSI =
hits

hits+ false alarms+misses
(5)
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FSS = 1−
∑n

i=1(Pn−Po)
2∑n

i=1P
2
n +

∑n
i=1P

2
o

(6)200

where quantities nowi and obsi are nowcast and observed rainfall rate in the i-th pixel of the corresponding radar image and

n is the number of pixels. Hits, false alarms, and misses are defined by the contingency table and the corresponding threshold

value. Quantities Pn and Po represent the nowcast and observed fractions of rainfall intensities exceeding a specific threshold

for a defined neighborhood size, respectively. MAE is positive and unbounded with a perfect score of 0; both CSI and FSS

can vary from 0 to 1 with a perfect score of 1. We have applied threshold rain rates of 0.125, 1, 5, 10, and 15 mm h−1 for205

calculating the CSI and the FSS. For calculating the FSS we use neighborhood (window) sizes of 1, 5, 10, and 20 km.

The verification metrics we use in this study quantify the models’ performance from different perspectives. The MAE

captures errors in rainfall rate prediction (the less the better), CSI (the higher the better) captures model accuracy – the fraction

of the forecast event that was correctly predicted – but it does not distinguish between the sources of errors. The FSS determines

how the nowcast skill depends on both threshold of rainfall exceedance and spatial scale (Mittermaier and Roberts, 2010).210

In addition to standard verification metrics described above, we calculate the power spectral density (PSD) of nowcasts

and corresponding observations using Welch’s method (Welch, 1967) to investigate the effects of smoothing demonstrated by

different models.

4 Results and discussion

For each event, RainNet was used to compute nowcasts at lead times from 5 to 60 minutes (in 5-minute steps). To predict the215

precipitation at time t+5 minutes (t being forecast time), we used the four latest radar images (at time t-15, t-10, t-5 minutes, and

t) as input. And since RainNet was only trained to predict precipitation at five minutes lead time, predictions beyond t+5 were

made recursively: in order to predict precipitation at t+10, we considered the prediction at t+5 as the latest observation. That

recursive procedure was repeated up to a maximum lead time of 60 minutes. Rainymotion uses the two latest radar composite

grids (t-5, t) in order to retrieve a velocity field, and then to advect the latest radar-based precipitation observation at forecast220

time t to t+5, t+10, ..., and t+60.

Fig. 3 shows the routine verification metrics MAE and CSI for RainNet, Rainymotion, and Persistence, as a function of lead

time. Preliminary analysis had shown the same general pattern of model efficiency for each of the eleven events (Sect. S1 in

the Supplement), which is why we only show the average metrics over all events. The results basically fall into two groups:

The first group includes the MAE and the CSI metrics up to a threshold of 5 mm h−1. For these, RainNet clearly outperforms225

the benchmarks at any lead time (differences between models were tested to be significant with the two-tailored T-test at a

significance level of 5%, results not shown). Persistence is the least skillful, as could be expected for a trivial baseline. The

relative differences between RainNet and Rainymotion are more pronounced for the MAE than for the CSI. For the MAE,

the advance of RainNet over Rainymotion increases with lead time. For the CSI, the superiority of RainNet over Rainymotion
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appears to be highest for intermediate lead times between 20 and 40 minutes. The performance of all models, in terms of CSI,230

decreases with increasing intensity thresholds.

That trend – a decreasing CSI with increasing intensity – continues with the second group of metrics: the CSI for thresholds

of 10 and 15 mm h−1. For both metrics and any of the competing methods at any lead time, the CSI does not exceed a value of

0.31 (obtained by RainNet at five minutes lead time and a threshold of 10 mm h−1). That is below a value of 1/e≈ 0.37 which

had been suggested by Germann and Zawadzki (2002) as a "limit of predictability" (under the assumption that the optimal value235

of the metric is 1 and that it follows an exponential-like decay over lead time). Irrespective of such an – admittedly arbitrary –

predictability threshold, the loss of skill from an intensity threshold of 5 to 10 mm h−1 is remarkable – for all competing models.

Visually more apparent, however, is another property of the second group of metrics, which is that Rainymotion outperforms

RainNet (except for a threshold of 10 mm h−1 at a lead time of 5 and 60 minutes). That becomes most pronounced for the

CSI at 15 mm h−1): while RainNet has a similar CSI value as Rainymotion at a lead time of five minutes, it entirely fails at240

predicting the exceedance of 15 mm h−1) for longer lead times.

In summary, Fig. 3 suggests that RainNet outperforms Rainymotion (as a representative of standard tracking and extrapola-

tion techniques based on optical flow) for low and intermediate rain rates (up to 5 mm h−1). Neither RainNet nor Rainymotion

appear to have much skill at predicting the exceedance of 10 mm h−1, but the loss of skill for high intensities is particularly

remarkable for RainNet which obviously has difficulties in predicting pronounced precipitation features with high intensities.245

In order to better understand the fundamental properties of RainNet predictions in contrast to Rainymotion, we continue

by inspecting a nowcast at three different lead times (5, 30 and 60 minutes), for a verification event at an arbitrarily selected

forecast time (2016-05-29 19:15:00 UTC). The top row of Fig. 4 shows the observed precipitation, the second and third row

show Rainymotion and RainNet predictions. And since it is visually challenging to track the motion pattern at the scale of

900×900 km by eyeball, we illustrate the velocity field as obtained from optical flow which forms the basis for Rainymotion’s250

prediction. While it is certainly difficult to infer the predictive performance of the two models from this figure, another feature

becomes immediately striking: RainNet introduces a spatial smoothing which appears to substantially increase with lead time.

In order to quantify that visual impression, we calculated, for the same example, the power spectral density (PSD) of the

nowcasts and the corresponding observations (bottom row in Fig. 4), using Welch’s method (Welch, 1967). In simple terms,

the PSD represents the prominence of precipitation features at different spatial scales, expressed as the spectral power at255

different wavelengths after a two-dimensional Fast Fourier Transform. The power spectrum itself is not of specific interest

here; it is the loss of power at different length scales, relative to the observation, that is relevant in this context. The loss of

power of Rainymotion nowcasts appears to be constrained to spatial scales below 4 km, and does not seem to depend on lead

time (see also Ayzel et al., 2019). For RainNet, however, a substantial loss of power at length scales below 16 km becomes

apparent at a lead time of 5 minutes. For longer lead times of 30 and 60 minutes, that loss of power grows and propagates to260

scales of up to 32 km. That loss of power over a range of scales corresponds to our visual impression of spatial smoothing.

In order to investigate whether that loss of spectral power at smaller scales is a general property of RainNet predictions,

we computed the PSD for each forecast time in each verification event, in order to obtain an average PSD for observations

and nowcasts, at lead times of 5, 30, and 60 minutes. The corresponding results are shown in Fig. 5. They confirm that the
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Figure 3. Mean Absolute Error (MAE) and Critical Success Index (CSI) for three different intensity thresholds (0.125 mm h−1, 1 mm h−1,

5 mm h−1, 10 mm h−1, 15 mm h−1). The metrics are shown as a function of lead time. All values represent the average of the corresponding

metric over all 11 verification events.
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Figure 4. Precipitation observations as well as Rainymotion and RainNet nowcasts at t=2016-05-29 19:15; top row: observed precipitation

intensity at time t, t+5, t+30 and t+60 minutes; second row: corresponding Rainymotion prediction, together with the underlying velocity

field obtained from optical flow; bottom row: power spectral density plots for observations and nowcasts at lead times 5, 30 and 60 minutes.

behaviour observed in the bottom row of Fig. 4 is, in fact, representative for the entirety of verification events. Precipitation265

fields predicted by RainNet are much smoother than both the observed fields and the Rainymotion nowcasts. At a lead time of

five minutes, RainNet starts to lose power at a scale of 16 km. That loss accumulates over lead time and becomes effective up
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Figure 5. PSD averaged over all verification events and nowcasts, for lead times of 5, 30, and 60 minutes.

to a scale of 32 km at a lead time of 60 minutes. These results confirm qualitative findings of Shi et al. (2015) and Shi et al.

(2018) who described their nowcasts as "smooth" or "fuzzy".

RainNet obviously learned, as the optimal way to minimize the loss function, to introduce a certain level of smoothing for270

the prediction at time t+5 minutes. It might even have learned to systematically "attenuate" high intensity features as a strategy

to minimize the loss function – which would be consistent with the results for the CSI at a threshold of 15 mm h−1, as shown in

Fig. 3. For the sake of simplicity, though, we will refer to the overall effect as "smoothing" in the rest of the paper. According

to the loss of spectral power, the smoothing is still small at a length scale of 16 km, but becomes increasingly effective at

smaller scales from 8 to 2 km. It is important to note that the loss of power below length scales of 16 km at a lead time of five275

minutes is an essential property of RainNet. It reflects the learning outcome, and illustrates how RainNet factors in predictive

uncertainty at five minutes lead time by smoothing over small spatial scales. Conversely, the increasing loss of power and its

propagation to larger scales up to 32 km are not an inherent property of RainNet, but a consequence of its recursive application

in our study context: as the predictions at short lead times serve as model input for predictions at longer lead times, the results

become increasingly smooth. So while the smoothing introduced at five minutes lead time can be interpreted as a direct result280

of the learning procedure, the cumulative smoothing at longer lead time has to be considered rather an artifact, similar to the

effect of "numerical diffusion" in numerically solving the advection equation.

Given this understanding of RainNet’s properties, we used the Fractions Skill Score (FSS) to provide further insight into the

dependency of predictive skill on the spatial scale. To that end, the FSS was obtained by comparing the predicted and observed

fractional coverage of pixels (inside a spatial window / neighbourhood) that exceed a certain intensity threshold (see Eq. 6 in285

Sect. 3.3). Fig. 6 shows the FSS for Rainymotion and RainNet, as an average over all verification events, for spatial window

sizes of 1, 5, 10, and 20 km, and for intensity thresholds of 0.125, 1, 5, 10 and 15 mm h−1. In addition to the color code, the

value of the FSS is given for each combination of window size (scale) and intensity. In case one model is superior to the other,

the correspondingly higher FSS value is highlighted in bold black digits.

Based on the above results and discussion of RainNet’s versus Rainymotion’s predictive properties, the FSS figures are290

plausible, and provide a more formalized approach to express different behaviour of RainNet and Rainymotion in terms of pre-

dictive skill. In general, the skill of both models decreases with decreasing window sizes, increasing lead times, and increasing
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intensity thresholds. RainNet tends to outperform Rainymotion at lower rainfall intensities (up to 5 mm h−1) at the native

grid resolution (i.e. a window size of 1 km). With increasing window sizes and intensity thresholds, Rainymotion becomes the

superior model. At an intensity threshold of 5 mm h−1, Rainymotion outperforms RainNet at window sizes equal or greater295

than 5 km. At intensity thresholds of 10 and 15 mm h−1, Rainymotion is superior at any lead time and window size (except a

window size of 1 km for a threshold of 10 mm h−1).

The dependency of the FSS (or, rather, the difference of FSS values between Rainymotion and RainNet) on spatial scale,

intensity threshold, and lead time, is a direct result of inherent model properties. Rainymotion advects precipitation features,

but preserves their intensity. When we increase the size of the spatial neighbourhood around a pixel, this neighbourhood could,300

at some size, include high intensity precipitation features that Rainymotion has preserved, but slightly misplaced. RainNet’s

loss function, however, only accounts for the native grid at 1 km resolution, so it has no notion of what could be a slight

or "acceptable" displacement error. Instead, RainNet has learned spatial smoothing as an efficient way to factor in spatial

uncertainty and minimize the loss function, resulting into a loss of high intensity features. As discussed above, that effect

becomes increasingly prominent for longer lead times because the effect of smoothing propagates.305

5 Summary and conclusions

In this study, we have presented RainNet, a deep convolutional neural network architecture for radar-based precipitation now-

casting. Its design was inspired by the U-Net and SegNet families of deep learning models for binary segmentation, and

follows an encoder-decoder architecture in which the encoder progressively downscales the spatial resolution using pooling,

followed by convolutional layers; and the decoder progressively upscales the learned patterns to a higher spatial resolution310

using upsampling, followed by convolutional layers.

RainNet was trained to predict precipitation at a lead time of five minutes, using several years of quality-controlled weather

radar composites based on the DWD weather radar network. That data covers Germany with a spatial domain of 900×900

km, and has a resolution of 1 km in space and 5 minutes in time. Independent verification experiments were carried out on

eleven summer precipitation events from 2016 to 2017. In order to achieve a lead time of 60 minutes, a recursive approach was315

implemented by using RainNet predictions at five minutes lead time as model input for longer lead times. In the verification

experiments, Eulerian persistence served as a trivial benchmark. As an additional benchmark, we used a model from the

rainymotion library which had previously been shown to outperform the operational nowcasting model of the German Weather

Service for the same set of verification events.

RainNet significantly outperformed both benchmark models at all lead times up to 60 minutes for the routine verification320

metrics Mean Absolute Error (MAE) and the Critical Success Index (CSI) at intensity thresholds of 0.125, 1, and 5 mm h−1.

Depending on the verification metric, these results would correspond to an extension of the effective lead time in the order of

10–20 minutes by RainNet as compared to Rainymotion. However, Rainymotion turned out to be clearly superior in predicting

the exceedance of higher intensity thresholds (here 10 and 15 mm h−1), as shown by the corresponding CSI analysis.
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Figure 6. Fractions Skill Score (FSS) for Rainymotion (top panel) and RainNet (bottom panel), for 5, 30, and 60 minutes lead time, and

spatial window sizes of 1, 5, 10 and 20 km, and for intensity thresholds of 0.125, 1, 5, 10 and 15 mm h−1. In addition to the color code of the

FSS, we added the numerical FSS values. The FSS value of the model which is significantly superior for a specific combination of window

size, intensity threshold, and lead time is typed in bold black digits, for the inferior model in regular.

RainNet’s limited ability to predict high rainfall intensities could be attributed to a remarkable level of spatial smoothing in325

its predictions. That smoothing becomes increasingly apparent at longer lead times. Yet, it is already prominent at a lead time

of five minutes. That was confirmed by an analysis of Power Spectral Density which showed, at time t+5 minutes, a loss of

spectral power at length scales of 16 km and below. Obviously, RainNet has learned an optimal level of smoothing to produce

a nowcast at 5 minutes lead time. In that sense, the loss of spectral power at small scales is informative, as it reflects the limits

of predictability as a function of spatial scale. Beyond the lead time of five minutes, however, the increasing level of smoothing330

is a mere artifact – an analogue to numerical diffusion – that is not a property of RainNet itself, but of its recursive application:

as we repeatedly use smoothed nowcasts as model inputs, we cumulate the effect of smoothing over time. That certainly is an

undesirable property, and it becomes particularly unfavourable for the prediction of high-intensity precipitation features. As

was shown on the basis of the Fractions Skill Score (FSS), Rainymotion outperforms RainNet already at an intensity of 5 mm

h−1) once we start to evaluate the performance in a spatial neighbourhood around the native grid pixel of 1×1 km size. This335
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is because Rainymotion preserves distinct precipitation features, but tends to misplace them. RainNet, however, tends to lose

such features over longer lead times due to cumulative smoothing effects – more so if it is applied recursively.

From an early warning perspective, that property of RainNet clearly limits its usefulness. There are, however, options to

address that issue in future research:

– The loss function used in the training could be adjusted in order to penalize the loss of power at small spatial scales.340

The loss function explicitly represents our requirements to the model. Verifying the model by other performance metrics

will typically reveal whether these metrics are rather in agreement or in conflict with these requirements. In our case,

the logcosh loss function appears to favour a low MAE, but at the cost of losing distinct precipitation features. In

general, future users need to be aware that, apart from the network design, the optimization itself constitutes the main

difference to "heuristic" tracking-and-extrapolation techniques (such as Rainymotion) which do not use any systematic345

parameter optimization. The training procedure will stubbornly attempt to minimize the loss function, irrespective of

what researchers consider as "physically plausible". For many researchers in the field of nowcasting, that notion might

be in stark contrast to experiences with "conventional" nowcasting techniques which tend to effortlessly produce at least

plausible patterns;

– RainNet should be directly trained to predict precipitation at lead times beyond five minutes. However, preliminary train-350

ing experiments with that learning task had difficulties to converge. We thus recommend to still use recursive predictions

as model input for longer lead times during training, in order to improve convergence. For example, to predict precipita-

tion at time t+10 minutes, RainNet could be trained using precipitation at time t-15, t-10, ..., t minutes as input, but using

the recursive prediction at time t+5 as an additional input layer, too. But while the direct prediction of precipitation at

longer lead times should reduce excessive smoothing as a result of numerical diffusion, we would still expect the level355

of smoothing to increase with lead time, as a result of the predictive uncertainty at small scales;

– As an alternative to predict continuous values of precipitation intensity, RainNet could be trained to predict the ex-

ceedance of specific intensity thresholds instead. That would correspond to a binary segmentation task. It is possible that

the objective of learning the segmentation for low intensities might be in conflict with learning it for high intensities.

That is why the training could be carried out both separately and jointly for disparate thresholds, in order to investigate360

whether there are inherent trade-offs. From an early warning perspective, it makes sense to train RainNet for binary

segmentation based on user defined thresholds that are governed by the context of risk management. The additional

advantage of training RainNet to predict threshold exceedance is that we could use its output directly as a measure of

uncertainty (of that exceedance).

We consider any of those options worth being pursued in order to increase the usefulness of RainNet in an early warning365

context – i.e. to better represent precipitation intensities that exceed hazardous thresholds –, and we would expect the overall

architecture of RainNet to be a helpful starting point.

Yet, the key issue of precipitation prediction – the anticipation of convective initialization as well as the growth and dissipa-

tion of precipitation in the imminent future – still appears to be unresolved. It is an inherent limitation of nowcasting models
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purely based on optical flow: they can extrapolate motion fairly well, but they cannot predict intensity dynamics. Deep learning370

architectures, however, might be able to learn recurrent patterns of growth and dissipation, although it will be challenging to

verify if they actually did. In the context of this study, though, we have to assume that RainNet has rather learned the repre-

sentation of motion patterns instead of rainfall intensity dynamics: for a lead time of five minutes, the effects of motion can

generally be expected to dominate over the effects of intensity dynamics, which will propagate to the learning results. The fact

that we actually could recursively use the RainNet predictions at five minutes lead time in order to predict precipitation at one375

hour lead time also implies that RainNet, in essence, learned to represent motion patterns and optimal smoothing. In that case,

the trained model might even be applicable on data in another region which could be tested in future verification experiments.

Another limitation in successfully learning patterns of intensity growth and dissipation might be the input data itself. While

we do not exclude the possibility that such patterns could be learned from just two-dimensional radar composites, other input

variables might add essential information on imminent atmospheric dynamics – the predisposition of the atmosphere to produce380

or to dissolve precipitation. Such additional data might include 3-dimensional radar volume data, dual-pol radar moments, or

output fields of numerical weather prediction (NWP) models. Formally, the inclusion of NWP fields in a learning framework

could be considered as a different way of assimilation, combining – in a data-driven way – the information content of physical

models and observations.

Our study provides, after Shi et al. (2015, 2017, 2018), another proof-of-concept that convolutional neural networks provide385

a firm basis to compete with conventional nowcasting models based on optical flow (most recently, Google Research has

also reported similar attempts based on a U-Net architecture, see Agrawal et al. (2019)). Yet, this study should rather be

considered as a starting point: to further improve the predictive skill of convolutional neural networks, and to better understand

the properties of their predictions – in a statistical sense, but also in how processes of motion and intensity dynamics are

reflected. To that end, computational complexity and the cost of the training process still have to be considered as inhibitive,390

despite the tremendous progress achieved in the past years: RainNet’s training would require almost a year on a standard

desktop CPU, in contrast to the three days on a modern desktop GPU (although the latter is a challenge to implement for non-

experts). Yet, it is possible to run deep learning models with already optimized (pretrained) weights on a desktop computer.

Thus, it is important not only to make available the code of the network architecture, but also the corresponding weights,

applicable using open source software tools and libraries. We provide all this – code, pretrained weights, as well as training395

and verification data – as an input to future studies on open repositories (Ayzel, 2020a, b, c).

Code and data availability. The RainNet model is free and open source. It is distributed under the MIT software license which allows

unrestricted use. The source code is provided through a GitHub repository https://github.com/hydrogo/rainnet (last access: 30 January 2020);

a snapshot of Rainnet v1.0 is also available at http://doi.org/10.5281/zenodo.3631038 (Ayzel, 2020a); the pretrained RainNet model and

its weights are available at http://doi.org/10.5281/zenodo.3630429 (Ayzel, 2020b). DWD provided the sample data of the RY product; it is400

available at http://doi.org/10.5281/zenodo.3629951 (Ayzel, 2020c).
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