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Abstract. Fire constitutes a key process in the Earth system (ES) being driven by climate as well as affecting the climate by changing 

atmospheric composition and impacting the terrestrial carbon cycle. However, studies on the effects of fires on atmospheric composition, 10 

radiative forcing and climate have been limited to date, as the current generation of ES models (ESMs) do not include fully atmosphere-

composition-vegetation coupled fires feedbacks. The aim of this work is the to developement and evaluateion of a fully coupled fire-

composition-climate ES model. For this, the INteractive Fires and Emissions algoRithm for Natural envirOnments (INFERNO) fire 

model is coupled to the atmosphere-only configuration of the UK’s Earth System Model (UKESM1). This fire-atmosphere interaction 

through atmospheric chemistry and aerosols allows for fire emissions to influence radiation, clouds, and generally weather, which can 15 

consequently influence the meteorological drivers of fire. Additionally, INFERNO is updated based on recent developments in the literature 

to improve the representation of human/economic factors in the anthropogenic ignition and suppression of fire. This work presents an 

assessment of the effects of interactive fire coupling on atmospheric composition and climate compared to the standard UKESM1 

configuration that uses prescribed fire emissions. Results show a similar performance when using the fire-atmosphere coupling (the “online” 

version of the model) when compared to the offline UKESM1 that uses prescribed fire. The model can reproduce observed present day 20 

global fire emissions of carbon monoxide (CO) and aerosols, despite underestimating the global average burnt area. However, at a regional 

scale there is an overestimation of fire emissions over Africa due to the misrepresentation of the underlying vegetation types and an 

underestimation over Equatorial Asia due to a lack of representation of peat fires. Despite this, comparing model results with observations 

of CO column mixing ratio and aerosol optical depth show that the fire-atmosphere coupled configuration has a similar performance when 

compared to UKESM1. In fact, including the interactive biomass burning emissions improves the interannual 𝐶𝑂 atmospheric column 25 

variability and consequently its seasonality over the main biomass burning regions – Africa and South America. Similarly, for aerosols, the 

AOD results broadly agree with MODIS and AERONET observations. 

1 Introduction 

Fires can exert a substantial forcing of on the Earth's climate by affecting different components of the Earth System (ES) such 

as the biosphere, atmosphere and cryosphere (Bowman et al., 2009; Daniau et al., 2013). Changes in vegetation cover caused 30 

by the fire modifies the regional to local scale surface albedo, soil water holding capacity and surface evaporation, resulting in 

complex interactions and feedbacks within the climate system (Li et al., 2017; Myhre, 2005). In addition, fire emissions 
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contribute to the global budgets of greenhouse gases (methane, ozone) and aerosol particles (black carbon organic carbon) 

(Lasslop et al., 2019; Voulgarakis and Field, 2015), resulting in direct and indirect effects on solar irradiation as well as changes 

in the land surface by means of black carbon deposition, which, in turn, leads to modifications of the surface albedo of bright 35 

ice and snow surfaces (Ramanathan and Carmichael, 2008; Thomas et al., 2017). Moreover, climate variability and climate 

change can also impact on fire frequency and other aspects of fire behaviour. Among others, Gillett et al. (2004) and Westerling 

et al. (2006) presented evidence that climate change has contributed to an increase in fire frequency in North America and 

Eurasia. However, a long-term increase in the length of the fire season or in weather conditions conducive to wildfires does 

not necessarily lead to an increase in burned area, as this is also limited by the available fuel (Doerr and Santín, 2016). These 40 

previous studies rely on statistical models of fire danger and burned area forced with several different climate projections and 

do not account for the composition-climate feedback effects and interactions caused by fire emissions, changes in vegetation 

productivity and structure or fire-vegetation-climate interactions (Rabin et al., 2017). Thus, the effort towards being able to 

represent fire within the ES framework is of great importance, particularly since fire as a process is highly coupled within the 

ES and responds to both natural and anthropogenic changes. Comprehensive model representations of the ES should therefore 45 

include the effects of fires on the climate and the effects of climate on fires (Rabin et al., 2017). In addition, it is important to 

consider not only past and present climate and different future climate scenarios, but also scenarios of demographic changes 

since human population size, distribution and economic activity play a role in the occurrence of fires and amount of burnt area 

but have so far received less attention. 

Recent studies have contributed to the understanding and quantification of various aspects of the effects of fires on climate. 50 

Some of these studies have focused on specific impacts and/or fire events (e.g. López-Saldaña et al. (2015), Samset et al. 

(2014), Baker et al. (2016), Bali et al. (2017), Dintwe et al. (2017) and Li et al. (2017)) while others have looked at fire 

emissions (e.g. Voulgarakis & Field (2015) , Baker et al. (2016) and (Lasslop et al., 2019)) or fires that occur within a particular 

ecosystem or region (e.g. Hirota et al. (2011), Athanasopoulou et al. (2014), Rogers et al. (2015) and Dintwe et al. (2017)). On 

the other hand, global scale assessments highlight the complexity and uncertainties of these impacts, particularly those from 55 

aerosols, as well as the difficulty in performing a comprehensive analysis at a global scale accounting for all relevant levels of 

interactions (Huang et al., 2016; Unger and Yue, 2014). As such, the total radiative effect of fires remains fundamentally 

uncertain making climate-fire feedbacks relevant in the context of climate change research (Carslaw et al., 2010; Unger and 

Yue, 2014; Ward et al., 2012). 

Despite the importance of climate-fire feedbacks and the large impacts of fire on the ES and its net radiative forcing there is 60 

still a large knowledge gap in this subject. As has been pointed out by the Intergovernmental Panel on Climate (IPCC) Fifth 

Assessment Report (Settele et al., 2015), this together with the varying projections of future climate leads to large uncertainties 

in the direction of regional changes in future fire regimes. Still, the work from Ward et al. (2012) provides a notable global 

overview of the most important effects while maintaining a consistent method of analysis across the ES by providing a model-

based analysis that examines how the radiative forcing has changed since pre-industrial times while also providing an estimate 65 

on how much it may change in the future. In their study, the authors compared a set of experiments with fires emissions with 
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a no-fire emissions scenario and found that fires have an overall net negative global radiative forcing of approximately -1.02 

W m-2 across the study periods, centred around 1850 to 2000 and 1850 to 2100. The authors also found that the masking of 

fire aerosol impacts on clouds by anthropogenic aerosols between 1850 and 2000 decreases the magnitude by 0.6 W m-2 of the 

fire radiative forcing for that historical period. According to Kloster et al. (2012) and Pechony and Shindell (2010), for the 70 

2000-2100 period, global emissions from fires will be primarily dependent on the climate forcing. Ward et al. (2012) has also 

shown that even though models may have an overall similar net change in radiative forcing over time, this net forcing can be 

driven by different sources - background anthropogenic and natural (e.g. dust, sea salt, etc.) emissions or biomass burning 

emissions - which balance each other to obtain the same net result. Therefore, the choice of model also proves to be a source 

of uncertainty in the existing published results. Voulgarakis et al. (2015) have shown that fires play a large and even dominant 75 

role in driving the interannual variability of key trace gases and aerosols that influence air quality and climate. For example, 

fires are almost entirely responsible for the interannual variability of carbon monoxide and carbonaceous aerosols, with a major 

role also in hydroxyl radical (OH) interannual variability. 

The large uncertainties in net radiative forcing of fires are predominantly caused by the uncertainties in the total fire emissions, 

their spatial variability, model representation of aerosol-cloud interactions, the dynamical simulated development of land use 80 

cover and future atmospheric composition.  Fires are also the largest source of carbonaceous aerosol globally accounting for 

55 to 60 % of the of primary OC and BC aerosol emissions and are the dominant source of aerosol emissions for the central 

Africa and the Amazonian basin regions (Andreae and Rosenfeld, 2008; Mahowald et al., 2011; Ward et al., 2012). 

Furthermore, there remain knowledge gaps and a need for improvement in model estimates of the distribution of fires (Kloster 

et al., 2012). Some progress has already been made in recent years by developing global fire emission inventories, which are 85 

essential for both model development and validation (Vongruang et al., 2017; Van Der Werf et al., 2017). Equally crucial is 

having a robust representation of fires within land surface models which has been found to be inaccurate to varying degrees. 

For example, very few fire models include the representation of peatland fires, which have been estimated to represent an 

average emission source of ~100 to 200 Tg C per year, for the period between (1997–2009), 10 % of the global total carbon 

fire emissions (~2.0 Pg C per year) (Van Der Werf et al., 2010), and dominate global fire emissions variability (Voulgarakis 90 

et al., 2015; Van Der Werf et al., 2010). Over the last decade, fire modelling has seen important advances led mainly by the 

interest of the research community to incorporate these into Earth System Models (ESMs) with the aim of studying fire-

climate-composition interactions in a fully coupled fashion.  

The goal of this work is to develop and evaluate of a fully coupled fire-climate-composition ES model. For this, we have built 

on the work developed by of Mangeon et al. (2016) on the INteractive Fires and Emissions algoRithm for Natural 95 

envirOnments (INFERNO) and have coupled this fire model to the atmosphereic-only configuration component of the UK’s 

Earth System Model, version 1 (UKESM1; Sellar et al., 2019). This fire-atmosphere interaction through atmospheric chemistry 

and aerosols allows for fire emissions to affect radiation and clouds, thus feeding back to weather/climate and the 

meteorological drivers of fires themselves. This new fire-atmosphere interaction replaces the prescribed transient monthly 
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varying biomass burning emissions in UKESM1. As a result, through atmospheric chemistry and aerosols, the interactive fire 100 

emissions can affect radiation and clouds, thereby affecting weather/climate and the meteorological drives of fires themselves. 

The INFERNO model, as described by Mangeon et al. (2016), excludes any representation of socio-economic factors that 

influence both fire ignition and suppression. Several studies have used the Gross Domestic Product (GDP) as a proxy to 

represent the role of socio-economic factors on managing influencing fires (Aldersley et al., 2011; Bistinas et al., 2014; 

Hantson et al., 2016). However, GDP does not account for socio-economic policies and factors that can also impact the 105 

management of fire (Ganteaume et al., 2013; Pausas and Keeley, 2014; Pezzatti et al., 2013). With this in mind INFERNO 

was updated to improve the representation of population dynamics and economic activity in the for anthropogenic ignition and 

suppression of fire. This work presents an assessment and evaluation of the effects of interactive fires on atmospheric 

composition and climate compared to the standard UKESM1 configuration, which so far only has used prescribed fire 

emissions. 110 

2 Methods and Data 

2.1 Fire model – INFERNO 

The INFERNO model developed by Mangeon et al. (2016) is the integrated fire model for the Joint UK Land Environment 

Simulator (JULES; Best et al. (2011), Clark et al. (2011)) which serves as the land surface component of UKESM1. INFERNO 

uses an approach based on the work of Pechony and Shindell (2009) adapted to allow interaction within an ESM framework. 115 

More precisely, water vapour pressure deficit is used as one of the main indicators of biomass flammability in the model, while 

an inverse exponential relationship is used to relate flammability to soil moisture. In INFERNO, fire ignitions can be caused 

by cloud to ground lightning strikes, and anthropogenic ignitions in the following 3 ways. Derived from a multi-year annual 

mean; 2) assumes assuming constant human ignitions but with varying cloud-to-ground lightning strikes, which always strike 

to start a fire and therefore accounts for natural variability in fire ignitions, which can be simulated interactively with an ESM 120 

or prescribed from observations; 3) uses using varying human ignitions together with natural ignitions as described in the 

second mode. 

The burnt area for a Plant Functional Type (PFT), (𝐵𝐴𝑃𝐹𝑇) (fraction s-1), is given by Eq. (1): 

 𝐵𝐴𝑃𝐹𝑇 = 𝐼𝑇 𝐹𝑃𝐹𝑇 𝐵𝐴𝑃𝐹𝑇 (1) 

 

where IT represents the fire ignitions (ignitions m−2 s−1), including natural and human ignitions as well as fire suppression by 125 

humans, 𝐹𝑃𝐹𝑇  is the flammability per Plant Functional Type (PFT) dependent on the 1.5 m temperature, 1.5 m relative humidity 

and fuel density as defined in Εq (4) through (6) from Mangeon et al. (2016), and 𝐵𝐴𝑃𝐹𝑇  (m2 ignition-1) is the scaled average 

burnt area per ignition for each PFT, which decouples the fire spread stage from local meteorology and topography, processes 
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which are not typically resolved in coarse grids, such as the those often used in ESMs. The values used here are an adaptation 

of those reported by Andela et al. (2018) to the model PFT setup as shown in  130 

Table 1. 

The Emitted Carbon per PFT, ECPFT (kg C m-2 s-1), (Eq. (2) is calculated based on the burnt area and combustion completeness, 

accounting for the wetness of fuel. INFERNO also represents emissions for trace gases: carbon dioxide (𝐶𝑂2), carbon 

monoxide (𝐶𝑂), methane (𝐶𝐻4), nitrogen oxide (𝑁𝑂𝑥), sulphur dioxide (𝑆𝑂2), ethane (𝐶2𝐻6), propane (𝐶3𝐻8), formaldehyde 

(𝐻𝐶𝐻𝑂), Acetaldehyde (𝑀𝑒𝐶𝐻𝑂), acetone (𝑀𝑒2𝐶𝑂), ammonia (𝑁𝐻3), dimethyl sulphide (𝐷𝑀𝑆) ; and aerosols: organic 135 

carbon (𝑂𝐶) and black carbon (𝐵𝐶). These emissions are estimated based on INFERNO’s emitted carbon estimate (Eq. (2) by 

using the emission factors based on the work by Andreae (2019) as shown in  

Table 1. 

 𝐸𝐶𝑃𝐹𝑇 = 𝐵𝐴𝑃𝐹𝑇 ∑ [𝐶𝐶𝑚𝑖𝑛,𝑖  +  (𝐶𝐶𝑚𝑎𝑥,𝑖  −  𝐶𝐶𝑚𝑖𝑛,𝑖) (1 − θ)]

𝑖

𝑙𝑒𝑎𝑓,𝑠𝑡𝑒𝑚

 𝐶𝑖 (2) 

 

𝐶𝐶𝑚𝑖𝑛  and 𝐶𝐶𝑚𝑎𝑥  are the minimum and maximum combustion completeness for both leaves (𝐶𝐶𝑚𝑖𝑛 = 0.8 and 𝐶𝐶𝑚𝑎𝑥 = 0.9) 140 

and stems (𝐶𝐶𝑚𝑖𝑛 = 0.2 and 𝐶𝐶𝑚𝑎𝑥 = 0.4), 𝐶𝑖 is the carbon stored in each PFT leaves or stem and θ the unfrozen soil moisture 

as a fraction of saturation.  

INFERNO fire ignitions are split into Natural Ignitions (𝐼𝑁 ) (ignition m2 s-1) from cloud-to-ground lightning (externally 

provided to INFERNO) and Anthropogenic Ignitions (𝐼𝐴) (ignition m2 s-1) which are dependent on population density (𝑃𝐷) 

(people m-2) as described in Eq. ((3). Moreover, it is assumed that humans are also responsible for suppressing fires which is 145 

accounted for through a suppression function dependent on human population density given by Eq. ((4). Originally, Eq. ((3) 

and ((4) were developed to include only information on population density. We now include a Human Development Index 

(HDI) term (1 − 𝐻𝐷𝐼) in these equations that represents socio-economic factors impacting fire ignition and suppression. HDI 

is calculated based on three indicators designed to capture the income, health, and education dimensions of human 

development. For areas where there is more effort in human development improvements, it is assumed that fire ignition is 150 

decreased, and fire suppression is increased. 

HDI data was obtained from the Gridded global datasets for Gross Domestic Product and Human Development Index (Kummu 

et al., 2018). The anthropogenic ignitions (𝐼𝐴) (ignition m2 s-1) is represented by Eq. ((3), the fraction of fires not suppressed 

by humans (𝑓𝑁𝑆) by Eq. ((4) and the total ignitions (𝐼𝑇) are represented by Eq. ((5).  

 𝐼𝐴 = 𝑘(𝑃𝐷) 𝑃𝐷 𝛼 × (1 − HDI) (3) 

 155 

 𝑓𝑁𝑆 = 7.7(0.05 + 0.9 × 𝑒−0.05 𝑃𝐷) × (1 − HDI) (4) 
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𝐼𝑇 = (𝐼𝑁 + 𝐼𝐴)

𝑓𝑁𝑆

8.64 × 1010
 (5) 

 

Where 𝑘(𝑃𝐷) = 6.8 × 𝑃𝐷 − 0.6 is a function that represents the varying anthropogenic influence on ignitions in rural versus 

urban environments, the parameter α =  0.03 represents the number of potential ignition sources per person per month per 

km2, 𝐼𝑁 represents the natural ignitions due to lightning and HDI the Human Development Index. 160 

Furthermore, it should be highlighted that in this configuration of INFERNO, there are no interactions between fire and 

vegetation and it does not include a peat burning capability. 

2.2 UK Earth System Model (UKESM1) 

This study uses the atmospheric and land components of the UK’s Earth System Model UKESM1 (Sellar et al., 2019, 2020) 

following the protocol set by the Atmospheric Model Intercomparison Project (AMIP, Eyring et al. 2016). The model 165 

resolution used in this configuration is N96L85. This is equivalent to a horizontal resolution of 135 km in the mid-latitudes 

and 85 terrain-following vertical levels ranging up to an altitude of 85 km above sea level. The science configuration of the 

atmosphere component is based on the Global Atmosphere 7.1 (GA7.1) and the Global Land 7.0 (GL7.0) as described by 

Walters et al. (2019) used in the configuration of the Hadley Centre Global Environment Model version 3 (HadGEM3; Hewitt 

et al. (2011)) coupled to the terrestrial carbon/nitrogen cycles (Sellar et al., 2019) and interactive stratosphere-troposphere 170 

chemistry  (Archibald et al., 2020) from the UK Chemistry and Aerosol (UKCA; Morgenstern et al. (2009); O’Connor et al. 

(2014)) model. The framework also includes the UKCA prognostic aerosol GLOMAP-mode scheme (Carslaw et al., 2010; 

Mulcahy et al., 2019) where secondary aerosol formation is determined by interactive oxidants from the UKCA stratosphere-

troposphere chemistry scheme (Archibald et al., 2020). 

As per the AMIP protocol, sea surface temperature and sea-ice are taken from the unmodified dataset of (Durack and Taylor, 175 

2017) and horizontally interpolated to the model resolution. In this model setup, the dynamic vegetation model (TRIFFID, 

Cox (2001)) is deactivated and replaced by prescribed vegetation properties from a coupled historical simulation with the same 

base model, as shown in Figure 1, preserving consistency in the forcing due to land use change between the UKESM1 coupled 

and AMIP experiments. In a similar fashion, seawater concentrations of dimethyl sulphide (DMS) and chlorophyll-a monthly 

climatologies are taken from the coupled historical experiment and are used by the atmosphere model top calculates fluxes of 180 

DMS and primary marine organic aerosol (Mulcahy et al., 2019). 

External forcing datasets for biomass burning aerosol and trace gas emissions follow those stipulated under the coordination 

of the CMIP6 protocol (Van Marle et al., 2017). These are a combination of satellite observations from 1997 with various 

proxies and modelling results from six fire models which have participated in the Fire Model Intercomparison Project (Rabin 

et al., 2017) aimed at providing a dataset of biomass burning emissions for use in CMIP6. UKESM1 uses emissions of primary 185 

carbonaceous aerosol – black carbon (BC) and organic carbon (OC) – as well as DMS, which acts as a precursor to sulphate 

aerosol. In terms of gas-phase biomass burning emissions, UKESM1 uses lumped emissions of ethene (C2H4) and ethane 



7 

 

(C2H6) as C2H6, and emissions of, propane (C3H8), formaldehyde (HCHO), acetone ((CH3)2CO), acetaldehyde (CH3CHO), 

carbon monoxide (CO), and nitric oxide (NO). Aerosol emissions of BC and OC from biomass burning are spread evenly in 

the vertical over the first 20 model levels – corresponding to the lowest 3 km – and are treated with a geometric mean diameter 190 

of 150 nm, while all other biomass burning trace gas species are injected into the model’s lowest layer and mixed 

simultaneously by the boundary layer mixing scheme. A biomass burning emissions scaling factor of 2 is applied to biomass 

burning aerosols, following the evaluation work of Johnson et al. (2016), which improves the agreement between observed 

and simulated aerosol optical depth (AOD) across the three evaluated wave lengths (440, 550, 700 nm) when compared to 

observations. This AOD bias is also evident in the comparison of previously published top-down and bottom-up estimates and 195 

using a scaling factor correction is a practice widely used in the modelling community due to current model deficiencies 

(Kaiser et al., 2012). 

Annual anthropogenic emissions of reactive gases are prescribed to the model and are taken from the Community Emissions 

Data System (CEDS, Hoesly et al. 2018) as prepared for use in CMIP6. Both biomass burning and anthropogenic emissions 

datasets are re-gridded from their native resolution to N96L85 while conserving global annual totals and seasonal cycles. 200 

A set of natural emissions of other species which are not simulated by UKESM1, are prescribed through precomputed fluxes. 

This includes emissions of, oceanic emissions of CO, C2H6 (including C2H4 lumping), and C3H8 (including propene (C3H6) 

lumping) from POET (Granier et al., 2005) and correspond to the annual cycle inventory for the year 1990 (12 monthly fluxes). 

Biogenic emissions of CO, HCHO, MeOH, C3H6 and C3H8, as well as CH3CHO and MeCHO are taken from the MACCity-

MEGAN emissions inventory (Sindelarova et al., 2014) and are provided to the model based on the years 2001– 2010 monthly 205 

mean climatology. Soil emissions of NOx are distributed according to Yienger and Levy (1995) and scaled to give a global 

annual total of 12.0 Tg NO yr−1, perpetually applied to all years. 

Further details on the UKESM1 model setup can be found in Sellar et al. (2020) and further details (e.g. lightning NOx 

emissions, lower boundary conditions, interactive BVOC emissions) and an evaluation of the performance of the UKCA 

chemistry and aerosol schemes in UKESM1 are available in (Archibald et al., 2020) and Mulcahy et al. (2019). 210 

2.3 Fire – composition – atmosphere coupling  

JULES is the land surface model used in UKESM1, and a coupling interface is in place for the exchange of variables and 

drivers between the atmosphere and land components. For this work, the interface was extended to allow the coupling of the 

required atmospheric variables from the atmospheric model to INFERNO through JULES. The atmospheric model provides 

to INFERNO the surface pressure, 1.5 m temperature, 1.5 m specific humidity and precipitation at every model timestep. 215 

Temporal variations of lightning can have a large impact on the simulation of burned area (Felsberg et al., 2018). With this in 

mind, and to maintain consistency between fire lighting ignitions, the state of the atmosphere and atmospheric composition, 

the cloud to ground lightning used simulated by in UKESM1 is passed down to INFERNO. The lighting parametrization used 

follows the work of Price and Rind (1994) which makes use of parametrized lightning flash frequency of 3.44 ×  10−5𝐻4.9 

per min over land, and 6.4 ×  10−4𝐻1.73 per min over ocean (where 𝐻 is the cloud depth in km), along with a Cloud-Cloud 220 
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and Cloud-Ground flash ratio based on the grid-cell latitude. The cloud depth is determined using the convective cloud base 

and top levels diagnostics from the convection scheme. 

Conversely, in order to allow for fire-climate interactions through atmospheric chemistry and aerosols, the coupling framework 

was extended to pass INFERNO-derived emissions to the UKCA chemistry and aerosol model of 𝐶𝑂, 𝑁𝑂𝑥 , 𝐶2𝐻6 , 𝐶3𝐻8 , 

𝐻𝐶𝐻𝑂 , 𝑀𝑒𝐶𝐻𝑂 , 𝑀𝑒2𝐶𝑂 , 𝑁𝐻3 , 𝐷𝑀𝑆 , 𝑂𝐶  and 𝐵𝐶  at every model timestep. As described by Archibald et al. (2020), in 225 

UKESM1 biomass burning emissions of  𝐶2𝐻6 and 𝐶3𝐻8 include emissions of 𝐶2𝐻4 and 𝐶3𝐻6, respectively. In this interactive 

fire emissions framework, we do not consider this emission aggregation and considering the small contribution of biomass 

burning to these species (15.7 % for 𝐶2𝐻6 𝑎𝑛𝑑 13.6 % 𝑓𝑜𝑟 𝐶3𝐻8), we do not consider this to have a large impact in the 

modelled results.  

Aerosol emissions are distributed vertically following an exponential increasing function (emission increasing with height) 230 

from the first model level to a fixed top of plume height defined as the 20th model level (~3 km). This approach is a 

simplification based on the work of Rémy et al. (2017).  In this configuration of INFERNO, there are no interactions between 

fire and vegetation such that the results from the fire model are considered as potential – e.g. potential average burnt area and 

emissions. This new fire-atmosphere interaction replaces the prescribed transient monthly varying biomass burning emissions 

in UKESM1. As a result, through atmospheric chemistry and aerosols, the interactive fire emissions can affect radiation and 235 

clouds, thereby affecting weather/climate and the meteorological drives of fires themselves. 

The model experiments were run for the period 1974 to 2014 and the initial five years (1974-1979) were considered as 

simulation spin-up and discard from the analysis. Observation datasets. 

For the sake of brevity, from here onwards this fire-composition-atmosphere coupled configuration based on UKESM1 is 

referred as UKESM1+INFERNO. 240 

2.4 Burnt area and emissions evaluation 

Burnt area data from the Global Fire Emission Database version 4 (GFED4s) (Giglio et al., 2013) was used to assess the 

performance of the UKESM1+INFERNO in modelling fires and their feedbacks in the ES.  This dataset is provided as a 

gridded product at a 0.25∘ resolution and is derived from a multi-sensor satellite dataset, including satellite dataset based on 

active fire detection, including small fires, based on statistical modelling, as detailed in (Randerson et al., 2012). 245 

The base basis regions as defined in the GFED4s dataset (Figure 2), were applied to the modelled data as required in order to 

perform a regional assessment of the INFERNO results. From here after, these regions will be named according to the acronyms 

as defined in Figure 2. 

To evaluate the fire emissions from INFERNO within the global ESM, the data from Global Fire Assimilation System (GFAS) 

was were used. GFAS calculates biomass burning emissions by assimilating satellite observations of fire radiative power (FRP) 250 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra (Kaiser et al., 2012). Combustion rates 

in GFAS are calculated with land cover-specific conversion factors which have been derived from a linear regression analysis 

between the FRP of GFAS and the dry matter combustion rate of GFED (Heil et al., 2010). Emissions for 40 gas-phase and 
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aerosol trace species are then calculated by applying emission factors based on the works of M. O. Andreae and Merlet (2001), 

Christian et al. (2003) and Akagi et al. (2011). Daily emissions are available on a global 0.5° × 0.5° grid from 2003 to the 255 

present day. 

2.5 Aerosol optical depth (AOD) and extinction coefficient evaluation 

Both ground-based measurements and satellite retrievals of AOD are used to evaluate the model performance. Ground-based 

measurements from the Aerosol Robotic Network (AERONET) provides quality assured measurements of aerosol optical 

properties across the globe (Holben et al., 1998, 2001). For this study, the monthly AOD at 440 nm is used from the version 2 260 

level 2.0 product for stations that have at least a five-year overlapping period with the model simulations. AOD evaluation is 

complemented with data from satellite retrievals. The MODIS aerosol product provides daily observations of the AOD with a 

global coverage. We used the collection of the level 3 V6V6.1 MODIS monthly data of AOD at 550 nm  for the period from 

January 2003 to December 2012, which is produced from daily means blending the Dark Target and Deep Blue algorithms 

(Hsu et al., 2004; Sayer et al., 2014) and provided as gridded data at a 1 spatial resolution.  265 

To evaluate the vertical profile of aerosol, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 

lidar level 3 aerosol extinction coefficient profiles product at 532 nm were used. This product reports monthly mean profiles 

of aerosol optical properties and is quality screened prior to averaging on a uniform spatial grid with a meridional and zonal 

resolution of 2 and 5 respectively and a vertical resolution of 60 m. For comparison with model results, the focus is on clear 

sky averages (Tackett et al., 2018). 270 

2.6 Carbon monoxide 

Evaluation of the gas-phase biomass burning emissions is focused on carbon monoxide (CO), the most abundant chemically 

active pollutant emitted by fires (van der Werf et al., 2010). For this, model results are evaluated against observations from the 

Tropospheric Emission Spectrometer (TES-AURA), which have been used before to evaluate CO in previous versions of 

UKCA (O’Connor et al., 2014; Telford et al., 2013; Voulgarakis et al., 2011). We have used the TES-AURA-Lite version 007 275 

data (Beer et al., 2001; Bowman et al., 2006) covering the 5-year period between 2007–2012 where there were fewer data 

gaps. To compare model results with TES-AURA observations, the hourly CO model output has been interpolated onto the 14 

TES-AURA-Lite pressure levels, as well as satellite swath location. Furthermore, the TES-AURA sampling and averaging 

kernels and a-priori apriori profiles were also applied to the model data. Both TES-AURA and modelled processed data are 

then monthly averaged into a 1° ×  1° resolution grid. Only the vertical region where TES-AURA is more sensitive to CO 280 

was used – average over the vertical column between 700 and 300 hPa. 
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3 Results 

In this section the results of the implementation of the fire-composition-atmosphere coupling in UKESM1+INFERNO are 

analysed. When comparing datasets (model or observed) with different grid resolutions, the higher resolution dataset is re-

gridded to the lowest resolution grid using a first order conservative area-weighted re-gridding method. Statistical significance 285 

of the differences presented here were examined using a t-student test (Wilks, 2011) with a 95% confidence level. 

3.1 Burnt area 

Figure 3 shows the annual mean burnt area fraction (1997 - 2010) for a) UKESM1+INFERNO and b) GFEDv4. The overall 

global geographical pattern of the annual average burnt area fraction is well reproduced by the model with a global pattern 

correlation of 55.3 % when compared with GFEDv4. The model represents the observed pattern in the major fire regions: 290 

South America, Africa and Eurasia. On the other hand, the model underestimates the northern Australia fires and boreal 

regions. Although the burnt area fraction over Africa is well represented, there is a large (50%) underestimation of the fires 

over Africa, in the northern Africa region (NHAF). This underestimation can be attributed to the Saharan bare soil extending 

too far south, causing a lack of grassland in the Sahel region, which is a result of precipitation deficits associated with errors 

in the position and intensity of monsoon systems (Sellar et al., 2019; Williams et al., 2018). In addition, there is an 295 

overestimation of tree fraction in savanna biomes, such as the southern Africa region (SHAF) and the southern edge of the 

Amazon forest region (SHSA). The differences in the defined specified scaled average burnt areas for these biomes – smaller 

for trees than grasses – causes an underestimation of fire size in these regions. This overestimation of the tree fraction is 

attributed to the lack of fire disturbance in the fully coupled UKESM1 configuration, the inclusion of which could potentially 

improve vegetation structure in these regions (Burton et al., 2019). 300 

These biases found for the different regions have an impact on the modelled global fire variability behaviour. Although there 

is a global underestimation of the annual average burnt area of approximately 250 Mha (Figure 4 a)), the model is able to 

capture the negative trend found in the observations (Figure 4 b)). In terms of seasonality, the model produces a bi-modal 

pattern in the fire activity, as observed in GFEDv4, which peaks around both austral and boreal late summer season. 

Although, there is a global underestimation contributing to the interannual variability of burnt area, it is important to stress 305 

that the biases found in NHAF and SHAF contribute to most of the biases found in the global burnt area climatology. for the 

period between November and January a difference of 0.08 % for NHAF and July to September a difference of 0.075 % for 

SHAF, representing an absolute bias greater than 300 %, as can be seen in Figure 5.  A November to January difference of 45 

Mha for the NHAF region combined with a July to September difference of 30 Mha results in an absolute bias of greater than 

300 %, as can be seen in Figure 5. 310 
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3.2 Biomass burning emissions 

In order to develop a full fire-composition-climate ES model, it is paramount to evaluate the ability of the INFERNO – 

UKESM1 coupling with regards to providing realistic emissions of chemistry and aerosol species. Currently this coupling 

framework provides trace gases emissions of 𝐶𝑂 , 𝑁𝑂𝑥 , 𝐶2𝐻6 , 𝐶3𝐻8 , 𝐻𝐶𝐻𝑂 , 𝐷𝑀𝑆 , 𝑁𝐻3  and 𝐷𝑀𝑆 , as well as aerosol 

emissions of 𝑂𝐶 and 𝐵𝐶. These emissions are estimated based on INFERNO emitted carbon by using PFT-specific emission 315 

factors. For this reason, the different species present similar broad characteristics. With this in mind and considering the 

observed datasets available and used to assess the model performance, we will focus on the analysis of 𝐶𝑂, 𝑂𝐶 and 𝐵𝐶. 

As seen for the burnt area results, the overall global pattern for annual average biomass burning emissions is, in general, well 

reproduced by the model (Figure 6). The main regions of biomass burning emissions, Africa and South America, are captured 

in the global spatial pattern. However, there is a large overestimation of the biomass burning emissions, despite 320 

underestimation of area burned, in the southern edge of NHAF, SHAF as well as the eastern side of SHSA for all the species 

(difference > 300 %). Furthermore, in the SHAF region the emissions extend further south into the midlatitudes. These 

overestimations can be attributed to the overestimation of the tree fraction in these regions leading to a greater content of 

carbon available for combustion. On the other hand, the model underestimates the emissions for the boreal regions (emissions 

close to zero in the model). These biases result in smaller values of global pattern correlation for biomass burning emitted 325 

species of 36.7 % for 𝐶𝑂, 38.4 % for 𝑂𝐶 and 53.2 % for 𝐵𝐶 when compared with GFAS. UKESM1+INFERNO shows a good 

climatological performance (no large bias (Figure 6)) for Equatorial Asia (EQAS). However, it fails to reproduce specific large 

fire events (that are infrequent) associated with peatland fires that represent a substantial amount of the global biomass burning 

emissions (not shown). We do not expect the model to be able to capture such emission events, as the current land surface 

model does not include a peatland land class and therefore, we do not include a peat burning capability. However, it should be 330 

noted that although we have a negative bias relative to the observations, the observations themselves may be biased due to the 

lack efficiency in detecting low temperature smouldering peat fires in MODIS products used by GFED4s and GFAS. 

The biomass burning emission (kg m−2) annual mean time series and climatology (Figure 7) shows that there are large biases 

in the annual mean time series for all the emissions. When compared to GFAS, 𝐶𝑂 shows a root mean squared error (RMSE) 

of 349.53 mg m−2 and a correlation of 74.79 %, whereas 𝑂𝐶  shows a RMSE of 10.08 mg m−2 and 𝐵𝐶  a RMSE of 1.08 335 

mg m−2. Both simulated OC and BC show non-significant correlation (when tested with a 95 % confidence level) of 56.06 

and 49.41%, respectively. Despite this, there is a good agreement between the model results and the GFAS observations  to 

their observations with regards to the interannual variability and climatology, with the model capturing the negative emission 

trends in the 1997-2010 period and being able to reproduce the observed seasonal cycle - higher emissions of CO, OC, and 

BC during the period from June to October (in Figure 7 b), d) and f), respectively). Despite the non-significant correlation 340 

between the interannual time series, there is good qualitative agreement for both interannual and seasonal variability. This is 

partly due to the compensation of regional biases and partly due to the burnt area bias. The low correlations obtained for OC 

and BC interannual timeseries are mainly due to the overestimation of the negative trend by the model. 
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3.2.1 Sensitivity to land surface 

In order to better understand the impact of the overestimation of tree fraction in savanna biomes, sensitivity experiments were 345 

performed where the dominant tree PFT is replaced with an equal quantity of the dominant grass PFT. We focus on a region 

over SHAF, characterised by a savanna biome, but where in UKESM1 is dominated by broad leaf evergreen tropical trees (~ 

70 % of total PFT fraction) – latitudes between 3.0 and 29.0S and longitudes between 7.0 and 42.0E. 

Two sensitivity experiments were performed where, for this specific region, the broad leaf evergreen tropical trees are replaced 

by C4 grasses and run for the period 1980 – 1985: 350 

• T2G10 – 10 % of trees are changed to grass 

• T2G50 – 50 % of trees are changed to grass (this experiment has the closest representation of the observed land 

surface) 

In the SHAF region, which includes the area where the PFTs were changed, there is 12.17 and 79.83 % increase of the burnt 

area for a 10 and 50 % change in the tree cover into grasses respectively (T2G10 and T2G50, Table 2). Thus, regionally the 355 

modelled burnt area is hypersensitive to a change of the underlying vegetation (the change in burnt area is greater than the 

change in vegetation cover fraction). In contrast, for the case of biomass burning emissions, there is much less sensitivity to a 

change in the vegetation cover. In this case, for a 10 % change of the dominant tree to the dominant grass PFT (T2G10) there 

were no statistically significant changes to emissions. However, a statistically significant decrease of ~14-25% is found for 

T2G50, showing that, although biomass burning emissions are hyposensitive to a change of the underlying vegetation, when 360 

there is a larger change to the underlying vegetation, this can result in significant changes. 

This sensitivity to the underlying vegetation can also have a significant impact at the global scale for both burnt area 

(statistically significant increase of 5.05 and 19.00 % for T2G10 and T2G50 respectively) and biomass burning emissions 

(significant decrease of 5.26 and 8.33 % for OC and BC in T2G50 respectively). The change applied to the vegetation causes 

significant changes in both burnt area and biomass burning emissions not only locally but also for regions away from the area 365 

where the vegetation was changed, through changes in atmospheric dynamics at a global scale (Figure 8). However, further 

work is required to assert if these changes are mainly associated with the change to the land cover or the fire-atmosphere-

composition feedbacks.. Moreover, it is also possible to see that the areas affected are dependent on the degree of change in 

the vegetation. On one hand, T2G10 shows significant increases in both burnt area and biomass burning emissions for central 

TENA, CEAS, NHSA and a decrease in western and central EURO. On the other hand, T2G50 shows significant increase on 370 

both burnt area and biomass burning emissions in western TENA, east and central CEAS and a decrease in SEAS, central 

EURO and AUST. These results show that the model is not only significantly sensitive to the underlying land surface 

vegetation, but also that there is a non-linear feedback of these changes at a global scale. This strongly indicates that a realistic 

representation of the vegetation distribution could significantly improve the model performance when compared to 

observations.  375 
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3.3 Carbon Monoxide atmospheric column 

When analysing the 𝐶𝑂 mean column mixing ratio averaged between 700 and 300 hPa (Figure 9) it is possible to see that, the 

atmospheric column of 𝐶𝑂 is dominated by the hot spots of biomass burning over South America and Africa and anthropogenic 

emissions in the northernnorthern hemisphere, with a strong north-south hemispheric gradient due to the short life time of 𝐶𝑂 

– approximaty 30 days – compared to the timescale of inter-hemispheric mixing.  380 

When comparing the model results to TES-AURA, it can be seen that there is an underestimation of the column 𝐶𝑂 in the 

northern hemisphere. This underestimation happens both in UKESM1 (Figure 9 c)) and UKESM1+INFERNO (Figure 9 d)). 

As documented by Archibald et al. (2020), these negative biases can be attributed to insufficient secondary production of 𝐶𝑂 

from non-methane volatile organic compounds oxidation and strong loss through hydroxyl radicals  (𝑂𝐻) in the northern 

hemisphere. Archibald et al. (2020) also showed that, for UKESM1, there is a positive bias associated with regions where 𝐶𝑂 385 

emissions are dominated by agricultural (eastern CEAS region) and forest fires in central Africa (NHAF and SHASF) and the 

north-western part of South America (NHSA). In UKESM1+INFERNO, the bias found in the 𝐶𝑂 column is similar to the ones 

found in UKESM1. However, the overestimation of biomass burning emissions of 𝐶𝑂 in the southern edge of NHAF and 

SHAF, previously described in Sect. 03.1, is reflected in a higher column 𝐶𝑂 positive bias in UKESM1+INFERNO when 

compared with TES-AURA for these regions. For South America (NHSA and SHSA regions), UKESM1+INFERNO shows 390 

an improvement in the western and central parts of NHSA, but an increase of the negative bias in the southern and eastern part 

of SHSA. 

A comparison of the monthly mean time series and monthly mean climatology between TES-AURA, UKESM1 and 

UKESM1+INFERNO, for the main fire regions – NHAF, SHAF, NHASA and SHASA – is shown in Figure 10 and provides 

information on inter-annual variability and the climatology of the regions that dominate the differences in the 𝐶𝑂 atmospheric 395 

column between UKESM1 and UKESM1+INFERNO. In most of these regions UKESM1+INFERNO tend to provide an 

improvement on the modelled volume mixing ratio of 𝐶𝑂, for NHAF (Figure 10 a) and b)), reducing the negative bias and 

RMSE of UKESM1 from -17.27 to -3.33 and 19.03 to 11.78 ppb, respectively. However, both configurations show a similar 

correlation of 96.28 in UKESM1 and 95.92% in UKESM1+INFERNO. These improvements are mostly associated with the 

decreases of the 𝐶𝑂 atmospheric column between May and August for UKESM1+INFERNO, and the improvement of the 400 

variability over this region. As can be seen in Figure 10 c), SHAF is the region with the largest changes when comparing 

UKESM1 and UKESM1+INFERNO. When compared to TES-AURA there is a significant worsening of the bias caused by 

the higher emissions over this region – from -8.46 to 20.70 ppb for UKESM1 and UKESM1+INFERNO, respectively. In 

addition, the RMSE is also increased from 19.03 ppb in UKESM1 to 28.88 ppb in UKESM1+INFERNO. Despite this, both 

configurations show similar high correlations with TES-AURA (94.89 and 94.89 % for UKESM1 and UKESM1+INFERNO 405 

respectively). These results show that, despite the large bias caused by the vegetation errors for this region, the 

UKESM1+INFERNO configuration captures the observed variability of 𝐶𝑂, representing the two peaks in 𝐶𝑂 that occur in 

April and August. This can be seen both in monthly mean time series, as well as in the climatology for SHAF (Figure 10 d)).  
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With regards to South America, there is an improvement in the NHSA region (Figure 10 e) and f)), with UKESM1+INFERNO 

presenting lower values of RMSE and bias then UKESM1 when compared to TES-AURA – RMSE reduction from 11.81 to 410 

9.02 ppb and bias from -7.53 to -0.28 ppb – and the correlation presenting similar values 96.13 % for UKESM1 and 96.68 % 

for UKESM1+INFERNO. Even so, as depicted in Figure 10 f), for this region, UKESM1+INFERNO produces a more 

pronounced bimodal seasonality of 𝐶𝑂 atmospheric column peaking in late April and October, consistent with observations, 

but underestimates the magnitude especially for October, failing to represent years when concentrations are kept high during 

the summer months. It is worth noting that these results may be affected by the advection of 𝐶𝑂 from the SHAF region. In the 415 

SHSA region (Figure 10 g) and h)) UKESM1+INFERNO does not perform as well as UKESM1. Despite a good correlation 

with TES-AURA (91.94 %) the peak in 𝐶𝑂 volume mixing ratio tends to extend for longer throughout the year (from May to 

November) which results in a larger positive bias (8.55 ppb in UKESM1+INFERNO and -2.22 ppb in UKESM1). The results 

of the statistical comparison of the monthly mean time series, between the UKESM1 and UKESM1+INFERNO configurations 

with TES-AURA, is summarized in Table 3. 420 

3.4 Aerosols 

Aerosols have a large effect on the Earth's radiative budget and climate; they can scatter and absorb radiation, as well as change 

cloud proprieties leading to changes in cloud cover and precipitation (Ward et al., 2012). As shown by Liousse et al. (1996), 

biomass burning is the primary source of natural carbonaceous aerosols in the ES (OC and BC), making them a major influence 

in controlling the ES variability in regions where fire activity is dominant. To evaluate the model’s ability to reproduce the 425 

observed distribution and variability of aerosols, we compare the model to aerosol products from three instruments: MODIS 

and AEROET for AOD and CALIPSO for the vertical profile of the aerosol extinction coefficient. The focus is on the global 

distribution, seasonality and inter-annual variability of the major fire regions – NHAF, SHAF, NHSA and SHSA. 

Mulcahy et al. (2019) provides a comprehensive model evaluation of aerosols in UKESM1 using prescribed fire emissions. In 

their study, the authors showed that the model performs well when compared to observations, capturing the global spatial 430 

distributions of AOD and cloud droplet number concentrations. The authors also report regional biases, including an 

overestimation of droplet number concentrations in the marine stratocumulus cloud regimes and an underestimation of aerosol 

optical depth in dust-dominated regions – Figure 11 c). 

This section focuses on the evaluation of UKESM1+INFERNO. When compared to MODIS, the annual mean of aerosol 

optical depth simulated by UKESM1+INFERNO (Figure 11) has a realistic global spatial pattern. The global RMSE is 0.07, 435 

the bias is -0.07 and the global pattern correlation between the two model simulations is 79.7 %. Focusing on the main fire 

regions, the UKESM1+INFERNO tends to overestimate the AOD over Africa (both NHAF and SHAF), as well as SHSA and 

underestimate it in SHNA. Looking at the monthly mean timeseries and climatology of monthly means for AOD at 550 nm 

(Figure 12), overall for the NHAF region (Figure 12 a) and b)), the UKESM1 and UKESM1+INFERNO results are dominated 

by a negative bias when compared to MODIS. This is found to be associated with the dust aerosol bias, as described in Mulcahy 440 

et al. (2019). Nonetheless, the southern edge of this region is dominated by fire emissions and both model configurations tend 
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to overestimate the AOD, with an increase of the bias for UKESM1+INFERNO. Comparing the timeseries for this region 

(Figure 12 a)), the higher biomass burning emissions of 𝑂𝐶 and 𝐵𝐶 in UKESM1+INFERNO compensates for the lack of dust 

emissions which results in a smaller bias and larger RMSE for UKESM1+INFERNO when compared to UKESM1 (bias of -

0.06 from -0.10 and RMSE of 0.14 from 0.12). The pattern correlation of mean monthly values in UKESM1+INFERNO is 445 

also improved, when we compare to UKESM1 (from 21.02 % to 37.2 %). On the other hand, the AOD in the SHAF region 

(Figure 12 c) and d)) is dominated by biomass burning emissions and, as seen for 𝐶𝑂 , UKESM1+INFERNO tends to 

overestimate the biomass burning emissions due to the overestimation of tree fraction in this region. This leads to more 𝑂𝐶 

and 𝐵𝐶 emissions. When comparing the time series between the two model configurations and MODIS (Figure 12 c)), there 

is change of signal, as well as an increase in the bias (from -0.003 in UKESM1 to 0.056 in UKESM1+INFERNO) and RMSE 450 

(from 0.05 for UKESM1 to 0.11 UKESM1+INFERNO). In terms of spatial correlation (Figure 11), both models are highly 

correlated with MODIS observations, with UKESM1 having a higher correlation coefficient (84.3 %) than UKESM1 (71.9 

%).  

For both regions in South America, both model configurations present a very similar behaviour. In NHSA (Figure 12 e) and 

f)), both models reproduce well the AOD seasonal cycle (Figure 12 f)), despite a constant bias that is present throughout the 455 

whole period. The interannual variability in both configurations is similar with UKESM1+INFERNO performing slightly 

better compared to UKESM1, with a RMSE of 0.06 and a bias of -0.05 for UKESM1 and an RMSE of 0.05 and a bias of -0.03 

for UKESM1+INFERNO. However, UKESM1+INFERNO, does not reproduce some specific observed fire events that happen 

outside the normal fire season which are prescribed in UKESM1. Nonetheless UKESM1+INFERNO has a better correlation 

than UKESM1 when compared to observations (60.5 % cf. 66.0 %). On a similar note, in SHSA (Figure 12 g) and h)) UKESM1 460 

shows a RMSE of 0.05, a bias of -0.02 and a correlation of 88.3 %, while UKESM1+INFERNO shows a RMSE of 0.06, a bias 

of -0.006 and a correlation of 80.9 %. UKESM1+INFERNO does not reproduce the large AOD peaks that occur during the 

period 2004 to 2007, and in 2010 (Figure 12 g) – which are also present for 𝐶𝑂 (Figure 10 g)). These peaks in AOD are 

associated with the Amazonia fire events that generally occur in drought years, which are often related to El Niño events. The 

ability of the model to reproduce these specific events depends on the ability to represent circulation regimes that lead to the 465 

drought but, more importantly, the fire ignitions associated human activities other than deforestation including secondary 

vegetation slash-and-burn and cyclical fire-based pasture cleaning (which are boosted in drought years) which are not 

represented in INFERNO (Aragão et al., 2018; Marengo et al., 2011). 

The AERONET sun-photometers provide a ground-based direct measurement of the attenuation of sunlight due to aerosol. 

This means they are not affected by the same uncertainties as satellite retrievals, associated with the different satellite retrieval 470 

algorithms (e.g. assumptions related to underlying surface properties as in MODIS). Despite some AERONET stations 

providing the most extensive records of AOD observations, the location of these stations is sparse in many of the key regions 

where aerosols are dominated by biomass burning emissions. For this reason, a compromise between a long record and 

including stations within the regions of interest for this analysis was found, and all AERONET sites that have at least a 5-year 

continuous record that overlap with model data were included. 475 
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When comparing modelled AOD results with AERONET (Figure 13), it is possible to see that these agree broadly with the 

analysis previously done for MODIS AOD. However, contrary to MODIS where UKESM1+INFERNO shows a negative bias, 

and possibly related to MODIS retrieval bias over bright surfaces, stations located in NHAF suggest that the model performs 

well during the boreal winter (DJF) (Figure 13 b)) and underestimates the AOD for spring (MAM) (Figure 13 d)). Moreover, 

for this region there is a higher AOD during MAM for UKESM1+INFERNO (Figure 13 d)) than for UKESM1 (Figure 13 c)), 480 

bringing this model configuration closer to the AOD values found for the nearby AERONET station. On a similar note, for the 

SHAF region there is also a better agreement between UKESM1+INFERNO and the AERONET AOD during the SON season 

(Figure 13 h)), with UKESM1 (Figure 13 g)) showing a negative bias relative to the stations found for this region. As seen 

before for South America (both NHSA and SHSA), both model configurations exhibit similar performance and show similar 

biases when comparing to MODIS – an overall underestimation of the AOD over these regions during the biomass burning 485 

season SON. 

Further to the differences introduced by the INFERNO interactive biomass burning emissions in UKESM1+INFERNO 

described previously, a different approach to the one adopted in UKESM1 has been taken regarding the vertical distribution 

of these emissions. For consistency between the approach regarding gas-phase biomass burning emissions, in 

UKESM1+INFERNO these are injected into the model’s lowest layer. However, while in UKESM1 prescribed aerosol 490 

biomass burning emissions are distributed uniformly over the 20 first model levels (~3 km), in UKESM1+INFERNO these 

emissions are distributed following an exponential increasing with height function from the first model level to the 20th model 

level. In order to evaluate the vertical profile of modelled aerosol, the CALIPSO lidar level 3 aerosol extinction coefficient 

profiles product at 532 nm were used. Following the analysis of previous sections, we focused this analysis on the Africa 

(NHAF and SHAF) and South America (NHSA and SHSA) regions. 495 

Over Africa – Figure 14 –  CALISPO (Figure 14 a)) shows larger extinction coefficient in the first kilometre of the atmosphere, 

extending vertically up to 5 km over the tropical regions (5 – 15  in latitude), associated with the vertical transport of aerosols. 

There are two main areas of large extinction coefficient: one associated with dust aerosol emissions from the Sahel region - 

down to ~10 N as well as the southern edge biomass burning emission of NHAF extending further down to 0 N - and a 

second area from -5 N extending south to -25 N associated with the SHAF fire region. When comparing the model to 500 

CALIPSO (Figure 14 c) and d)), it can be seen that both these model configurations show identical differences. On the lower 

levels (for altitudes below 1 km) there are significant large negative biases (> 75 % compared to CALIPSO), except for biomass 

burning area around 0 N where there is a small overestimation (< 10 %). These lower level biases also affect higher levels as 

aerosol are transported vertically. However, for altitudes above 1 km over the regions of the large negative bias there is a 

reduction to 25 – 50 % when compared to CALIPSO. In addition, for latitudes below -25 N the models result show a positive 505 

bias (< 0.05 km-1), extending from 1 to 5 km in the vertical. 

When comparing the extinction coefficient vertical profile of UKESM1+INFERNO to UKESM1 – Figure 14 d) – it can be 

seen that the differences are one order of magnitude smaller than those found when comparing UKESM1+INFERNO to 
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CALIPSO. UKESM1+INFERNO shows larger values of extinction coefficient at higher levels (above 1.5 km) and smaller at 

the lower levels (below 1.5 km) when compared to UKESM1 (Figure 14 c)); this could be both an impact of the different 510 

treatment of emissions in the vertical, as well as due to transport associated with different locations for the biomass burning 

emissions. In addition, and as discussed before, due to the further extension towards south of the SHAF fire region, there is a 

positive bias throughout the vertical levels for latitudes southward of -20 N. 

Similar results can be found when comparing UKESM1+INFERNO to CALIPSO for South America – Figure 15. South 

America aerosol emissions are dominated by biomass burning, especially around tropical regions (-15 to 15 N). There is a 515 

large underestimation of the extinction coefficient for altitudes below 1 km (bias between 25 and 50 % of the observed value). 

However, contrary to what could be seen for Africa, there is a positive bias for altitudes above 1 km (< 0.02 km -1) in this 

region. When comparing UKESM1+INFERNO and UKESM1 – Figure 15 d) - the difference is dominated by a large negative 

bias (~ 25 % of the observed value in CALIPSO, as can be seen in Figure 15 a)) between -25 and -5 N extending from the 

surface to an altitude of 4 km. This difference is consistent with the results found for AOD over this region, with UKESM1 520 

(Figure 15 c)) presenting a higher AOD when compared to UKESM1+INFERNO. This result, together with the differences 

between UKESM1+INFERNO and UKESM1 found for Africa suggest that the influence of the underlying model bias in 

aerosol vertical and spatial distributions is dominant when compared to the influence of the different treatments of the vertical 

distribution of biomass burning aerosols. 

4 Discussion & Conclusions 525 

The goal of this work was the development and evaluation of the implementation of a coupled fire-climate-composition ES 

model. This was built on top of the work developed by Mangeon et al. (2016), coupling the INFERNO fire model to the 

atmosphere-only configuration of version 1 of the UK’s Earth System Model (UKESM1). The fire-atmosphere interactions 

through atmospheric chemistry and aerosols allows for fire emissions to feedback on radiation and clouds, changing weather, 

which can consequently feedback on the atmospheric drivers of fire. This is the basis for the development of a framework that 530 

would allow the impacts of fire variability on atmospheric composition-climate interactions in the past, present and future in 

an ES model context to be quantified. It also provides the possibility of adding further coupling to a dynamic land surface 

vegetation model in order to capture the fire-vegetation-atmospheric composition-climate interactions. 

During the development of this work, it was identified that INFERNO human fire ignitions and fire suppression functions 

excluded the representation of socio-economic factors (aside population) that can affect anthropogenic behaviour regarding 535 

fire ignitions. To address this, we include an HDI term aimed at representing socio-economic factors impacting fire ignition 

and suppression. The HDI is calculated based on three indicators designed to capture the income, health, and education 

dimensions of human development. Therefore, we assume this leads to a representation where if there is more effort in 

improving human development, there is also investment on higher fire suppression by the population. Furthermore, the biomass 

burning emissions factors were updated according to the work of Meinrat O. Andreae (2019) to reflect the state-of-the-art 540 
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knowledge available since the development of INFERNO and emissions for 𝐶2𝐻6, 𝐶3𝐻8, 𝐻𝐶𝐻𝑂, 𝑀𝑒𝐶𝐻𝑂, 𝑀𝑒2𝐶𝑂 and 𝐷𝑀𝑆 

were also added to make the fire-composition coupling consistent between UKESM1 and UKESM1+INFERNO. One of the 

limitations of the current biomass burning emission coupling framework is that the vertical distribution of emissions is not 

dependent on the radiative power of fire events. Instead, all fire events apply the same treatment to distribute these emissions 

vertically in the atmospheric column – surface emissions for gas-phase emissions and a linear increasing profile for aerosol 545 

emissions. Nevertheless, the results presented here suggest that the background bias in aerosols outweighs the differences 

introduced by using a different emission profile (Figure 14 and Figure 15). Moreover, it was shown that INFERNO is highly 

sensitive to the underlying land surface types of the land surface provided to the model. The prescribed land surface types used 

in this configuration of UKESM1+INFERNO overestimates the tree fraction in savanna biomes, such as the southern Africa 

(SHAF) and the southern edge of the Amazon forest (SHSA), which decreased the potential average burnt area and increased 550 

the fuel available for combustion and emissions, causing notable changes to the fire seasonality. This highlights the importance 

of correctly simulating in providing the model with an adequate land cover surface dataset and it suggests that including the 

coupling between fire and vegetation in this framework could significantly improve model results as it would allow fires to 

shape regional land cover. 

The model has a realistic spatial distribution of the average burnt area at a continental scale. However, there is a large 555 

underestimation of the annual average burnt area of approximately 250 Mha due to the underestimation of fires in NHAF and 

SHAF caused by the overestimates in the tree fraction for these regions. This underestimation of burnt areas impacts the 

biomass burning emissions. Despite the overall global pattern for biomass burning emissions being well reproduced by the 

model, there is a large overestimation of the biomass burning emissions for all the emitted species in the southern edge of 

NHAF, SHAF as well as the eastern SHSA side (difference > than 300 %). Furthermore, in the SHAF region, the emissions 560 

extend further south into the midlatitudes. At a global scale, the effects of the underestimation of burnt areas is compensated 

by the increased availability of carbon provided by the overestimation of the tree fraction, resulting in good agreement with 

the observations. 

Comparing UKESM1+INFERNO to TES-AURA satellite 𝐶𝑂 product showed that, despite the overestimation of 𝐶𝑂 over 

NHAF and SHAF due to the bias in the emissions, UKESM1+INFERNO has a similar performance when compared to 565 

UKESM1. In fact, including the interactive biomass burning emissions improves the interannual 𝐶𝑂 atmospheric column 

variability and consequently its seasonality over the main biomass burning regions – Africa and South America. Similarly, for 

aerosols, the AOD results broadly agree with MODIS and AERONET observations. Most of the biases found for aerosols are 

also present in UKESM1 and are not associated with the interactive biomass burning emissions. When comparing 

UKESM1+INFERNO to the observed datasets, and taking into account the background bias found in UKESM1, it can be seen 570 

that there is an overestimation of AOD over the biomass burning regions in Africa and an improvement of the variability and 

seasonality of AOD in South America, with UKESM1+INFERNO presenting better correlation and lower bias than UKESM1 

for SHSA. Nonetheless, UKESM1+INFERNO does not capture the spikes in AOD, or CO observed over SHSA during the 

period 2004 to 2007 and 2010 associated with the Amazonia fire events that generally occur in drought years often related to 
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El Niño events. Capturing these specific events depends on the ability of the model to represent circulation regimes that lead 575 

to the drought during the simulated period, as well as the vegetation flammability and fire ignitions. When analysing the 

vertical profile of aerosol extinction coefficient comparing to CALIPSO data, it was possible to see that there is an 

underestimate of aerosols in the first kilometre of the atmosphere which is present both in UKESM1 and UKESM1+INFERNO. 

This suggests that this is an underlying bias of the UKESM1 configuration – not related to the coupling of biomass burning 

emissions. These results are consistent with the results found for AOD over these regions, where UKESM1 is found to have a 580 

higher AOD when compared to UKESM1+INFERNO. This result, together with the differences between 

UKESM1+INFERNO and UKESM1 found for Africa suggest that the underlying model biases regarding aerosol vertical and 

spatial distributions are dominant when compared to the different treatment of the vertical distribution of the biomass burning 

aerosols. 

Despite the present limitations of the implementation of coupled fire-composition-climate processes in this framework, it is 585 

evident that the UKESM1+INFERNO demonstrates a similar performance in reproducing the distribution of aerosols and CO 

atmospheric column. This shows that UKESM1+INFERNO provides a useful coupling framework that allows an internally 

consistent representation of complex fire-atmospheric composition-climate complex interactions and feedbacks in the Earth 

system.  With further work to improve the existent model errors and bias, such as the coupling the fire feedbacks to vegetation 

and representing peatland regions, UKESM1+INFERNO can provide a useful framework to quantify the impacts of fire 590 

variability on atmospheric composition-climate interactions in past, present and future climates. 

 

Code and data availability: Due to intellectual property right restrictions, we cannot provide either the source code or 

documentation papers for the UM or JULES. Obtaining the UM. The Met Office Unified Model is available for use under 

licence. A number of research organisations and national meteorological services use the UM in collaboration with the Met 595 

Office to undertake basic atmospheric process research, produce forecasts, develop the UM code, and build and evaluate Earth 

system models. For further information on how to apply for a licence, see http://www.metoffice.gov.uk/research/modelling-

systems/unified-model (last access: 3 August 2020). Obtaining JULES. JULES is available under licence free of charge. For 

further information on how to gain permission to use JULES for research purposes, see http://jules-

lsm.github.io/access_req/JULES_access.html (last access: 3 August 2020). 600 

 

Details of the simulations performed: UM–JULES simulations are compiled and run in suites developed using the Rose suite 

engine (http://metomi.github.io/rose/doc/html/index.html, MetOffice, 2020) and scheduled using the cylc workflow engine 

(https://cylc.github.io/, Oliver et al., 2019). Both Rose and cylc are available under v3 of the GNU General Public License 

(GPL). In this framework, the suite contains the information required to extract and build the code as well as configure and 605 

run the simulations. Each suite is labelled with a unique identifier and is held in the same revision-controlled repository service 

in which we hold and develop the model code. This means that these suites are available to any licensed user of both the UM 

and JULES under the following suite id: 

http://www.metoffice.gov.uk/research/modelling-systems/unified-model
http://www.metoffice.gov.uk/research/modelling-systems/unified-model
http://jules-lsm.github.io/access_req/JULES_access.html
http://jules-lsm.github.io/access_req/JULES_access.html
http://metomi.github.io/rose/doc/html/index.html
https://cylc.github.io/
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• UKESM1+INFERNO - u-br451 

• T2G10 - u-br947 610 

• T2G59 – u-bs281 

 UKESM1 AMIP data is available through Earth System Federation and it is available from 

https://doi.org/10.22033/ESGF/CMIP6.5853 (Ridley et al., 2019). 
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Table 1: Biomass burning scaled average burnt areas (km2 fire-1) and emission factors (g kg-1 dry-matter) for species emitted from various plant functional 885 
types based on Andela et al. (2018) and Meinrat O. Andreae (2019). 

SPECIES BROADLEAF TREE NEEDLELEAF TREE C3 C4 SHRUBS 

Deciduous Evergreen Evergreen Deciduous Grass Crop Pasture Grass Crop Pasture Deciduous Evergreen 

Tropical Temperate 

𝑩𝑪 0.51 0.51 0.55 0.43 0.43 0.53 0.42 0.42 0.35 0.42 0.42 0.53 0.53 

𝑪𝑶 104.0 104.0 113.0 121.0 110.0 69.0 76.0 76.0 97.69 108.0 108.0 69.0 69.0 

𝑵𝑶𝒙 2.80 2.80 3.00 1.18 1.68 2.50 2.40 2.40 7.77 7.46 7.46 2.50 2.50 

𝑶𝑪 4.40 4.40 10.9 5.90 5.90 3.40 4.90 4.90 1.09 4.90 4.90 3.40 3.40 

𝑪𝟐𝑯𝟔 0.88 0.88 0.69 0.97 0.97 0.42 0.79 0.79 1.01 1.90 1.90 0.42 0.42 

𝑪𝟑𝑯𝟖 0.53 0.53 0.28 0.29 0.29 0.13 0.17 0.17 0.312 0.408 0.408 0.13 0.13 

𝑯𝑪𝑯𝑶 2.40 2.40 2.04 1.75 1.75 1.23 1.80 1.80 2.95 4.32 4.32 1.23 1.23 

𝑴𝒆𝑪𝑯𝑶 2.26 2.26 1.21 0.81 0.81 0.84 1.80 1.80 2.02 4.32 4.32 0.84 0.84 

𝑴𝒆𝟐𝑪𝑶 0.63 0.63 0.76 1.59 1.59 0.47 0.71 0.71 1.13 1.70 1.70 0.47 0.47 

𝑵𝑯𝟑 1.33 1.33 0.98 2.50 2.50 0.89 0.99 0.99 2.14 2.38 2.38 0.89 0.89 

𝑫𝑴𝑺 0.002 0.002 0.014 0.002 0.002 0.008 0.05 0.05 0.0192 0.12 0.12 0.008 0.008 

Avg. burnt 

area 

5.20 1.40 2.50 5.20 5.20 10.2 1.40 1.40 10.2 1.40 1.40 5.10 5.10 
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Table 2: Total annual average values and relative change (%) compared to UKESM1+INFERNO (period between 1980 – 1985) of 

burnt area (Mha), carbon monoxide (g m-2), organic carbon (g m-2) and for black carbon (g m-2) for UKESM1+INFERNO and the 

different sensitivity experiments, T2G10 and T2G50 – Global and SHAF region. Values in bold show that the difference between a 890 
given experiment and UKESM1+INFERNO is statistically significant with a 95% confidence level.  

 BURNT AREA (Mha) CO (g m-2) OC (g m-2) BC (g m-2) 

GLOBAL 

UKESM1+INFERNO 243.95 25.29 1.14 0.12 

T2G10 256.29 (+5.05 %) 25.90 (+2.41 %) 1.12 (-1.75 %) 0.12 (0.00 %) 

T2G50 290.31 (+19.00 %) 24.68 (-2.41 %) 1.08 (-5.26 %) 0.11 (-8.33 %) 

SHAF 

UKESM1+INFERNO 49.05 8.61 0.36 0.42 

T2G10 55.02 (+12.17 %) 8.45 (-1.85 %) 0.35 (-2.78 %) 0.41 (-2.44 %) 

T2G50 88.21 (+79.83 %) 7.55 (-13.31 %) 0.31 (-15.15 %) 0.36 (-14.28 %) 

 

 

Table 3: Statistical comparison – root mean squared error (RMSE), bias and Pearson correlation coefficient (CORR) – of the 

monthly average time series between UKESM1 and UKESM1+INFERNO  with TES-AURA for the period 2007 – 2012. Values in 895 
bold show that the correlation between a given experiment and TES-AURA is statistically significant with a 95% confidence level. 

  UKESM1 UKESM1+INFERNO 

NHAF 

RMSE (ppb) 19.03 11.78 

Bias (ppb) -17.27 -3.33 

CORR (%) 96.28 95.92 

SHAF 

RMSE (ppb) 16.82 28.88 

Bias (ppb) -8.46 20.70 

CORR (%) 94.89 94.89 

NHSA 

RMSE (ppb) 11.81 9.02 

Bias (ppb) -7.53 -0.28 

CORR (%) 96.13 96.68 

SHSA 

RMSE (ppb) 11.01 17.11 

Bias (ppb) -2.22 8.55 

CORR (%) 96.23 91.94 
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Figure 1: Dominant vegetation Plant Functional Type (PFT) per grid-box for as prescribed in UKESM1UKESM1-AMIP 900 
configuration. 

 

 

Figure 2: Basis regions, as defined in the GFED4s dataset (Giglio et al., 2013). 

 905 
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Figure 3: Burnt area fraction (%) mean annual average (1997 - 2010) for a) GFED4s (left panel) and b) UKESM1+INFERNO (right 

panel). 

 

Figure 4: Burnt area annual mean time series a) and b) anomaly relative to climatology (Mha) and c) burnt area fraction climatology 910 
(%) for UKESM1+INFERNO (solid line) and GFEDv4 (dashed line) with the shaded area representing the standard error around 

the GFEDv4 data. 
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Figure 5: Burnt area fraction climatology (%) for UKESM1+INFERNO (solid line) and GFEDv4 (dashed line) with the shaded area 

representing the standard error around the GFEDv4 data for NHAF (left panel) and SHAF (right panel). 915 

 

Figure 6: Biomass burning emissions (𝒌𝒈 𝒎−𝟐) mean annual average (19972003 - 20101) for 𝑪𝑶 (𝒈 𝒎−𝟐) in a) GFEDv4 GFAS, d) 

UKESM1+INFERNO and g) difference between UKESM1+INFERNO and GFEDv4; 𝑶𝑪  (𝒈 𝒎−𝟐) in b) GFEDv4 GFAS, e) 

UKESM1+INFERNO and h) difference between UKESM1+INFERNO and GFEDv4 and 𝑩𝑪 (𝒈 𝒎−𝟐) in c) GFEDv4 GFAS, f) 

UKESM1+INFERNO and i) difference between UKESM1+INFERNO and GFEDv4 GFAS. Differences are only shown for 920 
statistically significant points with a 95% confidence level. 
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Figure 7: Biomass burning emission (𝐦𝐠𝐦−𝟐) of a) 𝐂𝐎 annual mean time series and b) climatology; c) 𝐎𝐂 annual mean time series 

and d) climatology; e) 𝐁𝐂 annual mean time series and f) climatology for UKESM1+INFERNO (solid line) and GFAS (dashed line) 

with the shaded area representing the standard error around the GFAS data. Annual mean timeseries and seasonal cycle climatology 925 
of biomass burning emissions (𝐦𝐠 𝐦−𝟐) of CO (in a) and b)), OC (in c) and d)), and BC (in e) and f)) for UKESM1+INFERNO 

(solid line) and GFAS (dashed line). The shaded area represents the standard error in the GFAS data. 
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 930 

Figure 8: Total annual average fractional of change (period between 1980 – 1985)  of burnt area (Mha), carbon monoxide, organic 

carbon and for black carbon for the UKESM1+INFERNO and the different sensitivity experiments, T2G10 and T2G50. Stippling 

is shown for points where the difference between a given experiment and UKESM1+INFERNO is statistically significant with a 95% 

confidence level. The green rectangle indicates the area where the prescribed vegetation was changed. 
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 935 

Figure 9: Column volume mixing ratio carbon monoxide (𝐩𝐩𝐦) averaged between 700 and 300 hPa over the period 2007-2012 for 

a) TES-AURA satellite retriveals b) UKESM1+INFERNO c) difference between UKESM1 and TES-AURA and d) difference 

between UKESM1+INFERNO and TES-AURA. 
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Figure 10: Column volume mixing ratio of carbon monoxide (ppm) averaged between 700 and 300 hPa for the period 2007-2012 a) 940 
monthly mean time series and b) monthly mean climatology for NHAF region c) monthly mean time series and d) monthly mean 

climatology for SHAF region e) monthly mean time series and f) climatology for NHSA region and g) monthly mean time series and 

h) monthly mean climatology for SHSA region – UKESM1+INFERNO (solid line), UKESM1 (dotted line) and TES-AURA (dashed 

line). 
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 945 

Figure 11: Aerosol optical depth multi-year-average-annual-mean at 550 nm (2003 – 2012) for a) MODIS, b) UKESM1+INFERNO, 

c) difference between UKESM1 and MODIS and d) difference between UKESM1+INFERNO and MODIS. Differences are only 

shown for statistically significant points with a 95% confidence level. 
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Figure 12: Aerosol optical depth at 550 nm for the period 2003 – 2012 a) monthly mean time series and b) climatology of monthly 950 
means for NHAF region c) monthly mean time series and d) climatology of monthly means for SHAF region e) monthly mean time 

series and f) climatology of monthly means for NHSA region and g) monthly mean time series and h) climatology of monthly means 

for SHSA region – UKESM1+INFERNO (solid line), UKESM1 (dotted line) and MODIS (dashed line). 
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Figure 13: Aerosol optical depth mean seasonal average at 440 nm (1980 – 2014) for the climatological seasons DJF, MAM, JJA and 955 
SON (represented in each row) for UKESM1 (left panels) and UKESM1+INFERNO (right panels). The ground-based aerosol optical 

depth retrievals at various AERONET sites that have at least a 5 year an overlapping period with model data are overlaid in circles 

using the same colour scale. 
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Figure 14: Aerosol extinction coefficient mean (𝐤𝐦−𝟏) annual average vertical cross-section at 532 nm (2006 – 2014) covering the 960 
African continent (extending both NHAF and SHAF regions) for a) CALIPSO, b) UKESM1+INFERNO, c) difference between 

UKESM1+INFERNO and CALIPSO and d) difference between UKESM1+INFERNO and UKESM1. Stapling is shown for points 

where the differences are statistically significant with a 95% confidence level. 
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Figure 15: Aerosol extinction coefficient mean annual average vertical cross-section at 532 nm (2006 – 2014) covering the South 965 
America continent (extending both NHSA and SHSA regions) for a) CALIPSO, b) UKESM1+INFERNO, c) difference between 

UKESM1+INFERNO and CALIPSO and d) difference between UKESM1+INFERNO and UKESM1. Stapling is shown for points 

where the differences are statistically significant with a 95% confidence level. 

 


