
CLASSIC v1.0: the open-source community successor to the
Canadian Land Surface Scheme (CLASS) and the Canadian
Terrestrial Ecosystem Model (CTEM) - Part 2: Global
Benchmarking
Christian Seiler1, Joe R. Melton1, Vivek K. Arora2, and Libo Wang3

1Climate Processes Section, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
2Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change
Canada, Victoria, BC, Canada
3Climate Processes Section, Climate Research Division, Environment and Climate Change Canada, North York, ON, Canada

Correspondence: Christian Seiler (christian.seiler@canada.ca)

Abstract. The Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) is an open source community

model designed to address research questions that explore the role of the land surface in the global climate system. Here we

evaluate how well CLASSIC reproduces the energy, water, and carbon cycle when forced with quasi-observed meteorological

data. Model skill scores summarize how well model output agrees with observation-based reference data across multiple

statistical metrics. A lack of agreement may be due to deficiencies in the model, its forcing data, and/or reference data. To5

address uncertainties in the forcing we evaluate an ensemble of CLASSIC runs that is based on three meteorological data

sets. To account for observational uncertainty, we compute benchmark skill scores that quantify the level of agreement among

independent reference data sets. The benchmark scores demonstrate what score values a model may realistically achieve given

the uncertainties in the observations. Our results show that uncertainties associated with the forcing and observations are

considerably large. For instance, for 10 out of 19 variables assessed in this study, the sign of the bias changes depending10

on what forcing and reference data are used. Benchmark scores are much lower than expected, implying large observational

uncertainties. Model and benchmark score values are mostly similar, indicating that CLASSIC performs well when considering

observational uncertainty. Future model development should address (i) a positive albedo bias and resulting shortwave radiation

bias in parts of the Northern Hemisphere (NH) extratropics and Tibetan plateau, (ii) an out-of-phase seasonal gross primary

productivity cycle in the humid tropics of South America and Africa, (iii) a lacking spatial correlation of annual mean net15

ecosystem exchange with site-level measurements, (iv) an underestimation of fractional area burnt and corresponding emissions

in the boreal forests, (v) a negative soil organic carbon bias in high latitudes, and (vi) a time lag in seasonal leaf area index

maxima in parts of the NH extratropics. Our results will serve as a baseline for guiding and monitoring future CLASSIC

development.
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1 Introduction

The land surface interacts with the atmosphere through fluxes of momentum, radiation, heat, and mass, the latter including25

water, trace gases, and aerosols. Land surface models (LSMs) have been developed to simulate these fluxes in global climate

models. Early LSMs consisted of simple aerodynamic bulk transfer formulas with prescribed surface parameters that are

uniform across continents (Manabe, 1969). Major advancements in LSM development have occurred since then, including the

incorporation of (i) vegetation effects on the surface energy balance (Dickinson, 1984), (ii) vegetation phenology (Sellers et al.,

1996), (iii) ecological processes (Foley et al., 1996), and (iv) nutrient cycles (Goll et al., 2012).30

The Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC; v 1.0; Melton et al. 2020) is a state-of-

the-art land surface model primarily developed by Environment and Climate Change Canada. CLASSIC is the open-source

community model successor to the CLASS-CTEM modeling framework, which consists of the Canadian Land Surface Scheme

(CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM). CLASS and CTEM simulate physical and biogeochemical

land surface processes, respectively, and together they form the land component of the Canadian Earth System Model (Swart35

et al., 2019).

Assessing model performance provides invaluable guidance for future model development. Strategies for LSM evalua-

tion have been developed in a number of collaborative research projects, such as the Project for Intercomparison of Land

Surface Parameterization Schemes (PILPS) (Henderson-Sellers et al., 1993), the Global Land-Atmosphere Coupling Experi-

ment (GLACE) (Koster et al., 2006), the Protocol for the Analysis of Land Surface Models (PALS), the Land Surface Model40

Benchmarking Evaluation Project (PLUMBER) (Best et al., 2015), and the International Land Model Benchmarking (ILAMB)

project (Collier et al., 2018). The ILAMB approach summarizes model performance across multiple statistical metrics using

a dimensionless skill score that ranges from zero to unity, where larger values imply better performance (see section 2 for

details).

The ILAMB framework has been adopted by the Global Carbon Project to evaluate the performance of LSMs used for45

estimating global carbon budgets (Friedlingstein et al., 2019). The project assessed 15 LSMs with respect to gross primary

productivity (GPP), ecosystem respiration, net ecosystem exchange (NEE), biomass, soil carbon, leaf area index (LAI), evapo-

transpiration, and runoff. For CLASS-CTEM, which was one of the 15 models, performance was considerably weaker for LAI

and NEE than for other variables. While a low LAI score was also found for most other LSMs, the NEE score was below the

multi-model mean value. The variables for which CLASS-CTEM performed best and worst with respect to the multi-model50

mean were GPP and biomass, respectively. However, skill scores must be interpreted with caution. For instance, low score
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values may actually reflect uncertainties in model inputs and/or reference data rather than deficiencies in the model. A robust

analysis should, therefore, account for uncertainties associated with the forcing and reference data.

Lawrence et al. (2019) applied ILAMB to quantify how model development affected model performance for the Community

Land Model (CLM). While the authors found a general improvement from CLM version 4 to version 5, they also identified55

variables where model performance would improve or worsen, depending on the choice of reference data. A second source

of uncertainty identified by the authors was related to the choice of meteorological forcing. Driving CLM with three different

data sets (GSWP3, CRUNCEPv7, and WATCH/WFDEI) showed that model performance was generally better when forcing

CLM with the Global Soil Wetness Project forcing data set (GSWP3), and that the uncertainty associated with the forcing is

too large to be neglected (Bonan et al., 2019).60

A first evaluation of CLASSIC has been presented by Melton et al. (2020), who ran the model for 31 FLUXNET sites using

locally observed meteorological data and vegetation composition. Model outputs were compared against observed net surface

radiation (RNS), latent heat flux (HFLS), sensible heat flux (HFSS), GPP, ecosystem respiration (RECO), and NEE. Results

showed that CLASSIC reproduced the RNS, HFLS, HFSS, GPP, and RECO observations reasonably well. Reproducing NEE

fluxes proved to be more challenging. While for some sites modeled NEE fluxes were in good agreement with measurements65

(e.g. site FI-Hyy, Figure S22 and S23 in Melton et al. 2020), for most sites NEE differed considerably from observations.

Assessing the annual mean NEE value for each station showed that modeled and observed annual mean values were not

correlated across stations. The poor model performance for NEE may be related to the fact that the model does not account for

the disturbance history nor the climate history of a given site. A comparison between results presented in the present study and

Melton et al. (2020) is provided in the Discussion section.70

This present paper provides a comprehensive assessment of model performance on a global scale. Our assessment is based on

ILAMB’s statistical framework, which we implemented in a new R package referred to as the Automated Model Benchmarking

R package (AMBER) (Seiler, 2020). The development of AMBER allowed us to tailor the ILAMB approach to CLASSIC

model output. The resulting benefits include (i) a seamless data ingestion that does not require any pre-processing, (ii) the

ability to evaluate CLASSIC in different simulation modes (i.e. global runs on a regular grid, regional runs on a rotated grid, and75

site-level runs), (iii) full control on how the statistical framework is implemented, and (iv) the addition of new functionalities.

Our analysis pays special attention to how model performance is affected by uncertainties in the forcing and reference data.

The remaining paper is organized as follows. Section 2 describes the forcing data, reference data, model structure, and

benchmarking approach. Section 3 assesses model performance for an ensemble of three model runs that differ in their meteo-

rological forcing. For most variables, each ensemble member is compared against more than one observation-based reference80

data set. For each variable we assess global, zonal, and seasonal biases, as well as root-mean-square-errors, time lags in sea-

sonal peaks, inter-annual variability, spatial patterns, and corresponding skill scores. Furthermore, we compare model skill

scores against benchmark scores, which are based on reference data only, to assess the extent to which score values are affected

by observational uncertainty. Section 4 elaborates on our principal findings with a particular focus on LAI and NEE, and the

importance of in situ measurements.85
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2 Methods

2.1 Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)

CLASSIC is the open-source community model successor to the CLASS-CTEM modeling framework, which consists of the

Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM). CLASS and CTEM are

two fully integrated model components that simulate physical and biogeochemical land surface processes, respectively. A brief90

outline of these two components is provided next. CLASSIC’s physical component (CLASS) divides the land surface into four

possible subareas, namely bare ground, ground covered by snow, ground covered by canopy, and snow covered by canopy. The

model solves the energy balance for the canopy layer and underlying ground, separately. The canopy consists of a single layer

and is for the results presented here composed of four plant functional types (PFTs), namely needleleaf trees, broadleaf trees,

grasses, and crops. The model output evaluated here is from the offline mode in which we use 20 soil layers ranging from 1095

layers of 0.1 m thickness, gradually increasing to a 30 m thick layer for a total ground depth of over 61 m. Water fluxes are

calculated for soil layers within the permeable soil depth of the ground column, but not the underlying bedrock layers, whereas

temperatures are calculated for both soil and bedrock layers. Also calculated are the temperature, mass, albedo, and density of

the single layer snow pack, the temperature and interception and storage of rain and snow on the vegetation canopy, and the

temperature and depth of ponded water on the ground surface.100

CLASSIC’s biogeochemical component (CTEM) is a dynamic vegetation model coupled to CLASS. CLASS provides

CTEM physical land surface information, including soil moisture, soil temperature and net radiation. CTEM uses this in-

formation to simulate photosynthesis in response to atmospheric CO2 concentration. CTEM considers three live vegetation

components (leaves, stem, and roots) and two dead carbon pools (litter and soil). These five carbon pools are tracked, in the

default CLASSIC configuration used here, for nine PFTs that map directly onto the four PFTs used by CLASS. Needleleaf105

trees are divided into their deciduous and evergreen types, broadleaf trees are divided into cold and drought deciduous and ev-

ergreen types, and crops and grasses are divided based on their photosynthetic pathways into C3 and C4 versions. In this study,

the spatial distribution of PFTs has been prescribed to reduce the number of possible causes for model biases. The prognostic

carbon masses of leaf, stem, and root simulated by CTEM are used to calculate the structural vegetation characteristics required

by CLASS. The main processes simulated by CTEM include photosynthesis, canopy conductance, tissue turnover, allocation110

of carbon, and phenology (Arora and Boer, 2005b); dynamic root distribution (Arora and Boer, 2003); maintenance, growth

and heterotrophic respiration (Melton et al., 2015); wild fires (Arora and Boer, 2005a; Arora and Melton, 2018); competition

for space between PFTs (Arora and Boer, 2006; Melton and Arora, 2016), and land use change (Arora and Boer, 2010). For the

purpose of this study, CLASSIC’s recently added nitrogen cycle has been turned off (Asaadi and Arora, 2021). A more detailed

description of the model and its history is documented in Melton et al. (2020). Details on a the computation of radiation fluxes,115

surface albedo, heat fluxes, LAI, GPP, ecosystem respiration, and biomass are provided in the Appendix.
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2.2 Meteorological forcing

Meteorological inputs required by CLASSIC include surface downwelling shortwave (SW) and longwave (LW) radiation, near-

surface air temperature, precipitation, near-surface specific humidity, surface pressure, and near-surface horizontal wind speed.

Model outputs are potentially sensitive to uncertainties in the meteorological forcing. To account for this uncertainty, we drive120

CLASSIC with three different quasi-observed meteorological data sets, namely the Climate Research Unit - National Centers

for Environmental Prediction version 8 (CRUNCEP; 1901-2016; Viovy 2018), the Climate Research Unit - Japanese 55-year

Reanalysis version 2.0 (CRUJRAv2; 1901-2017; Harris et al. 2014; Kobayashi et al. 2015), and the Global Soil Wetness Project

Phase 3 (GSWP3) - WFDE5 over land merged with ERA5 over the ocean (W5E5) (GSWP3W5E5; 1901-2016; ISIMIP). All

meteorological forcings are disaggregated from 6-hourly to half-hourly time steps, following the methodology by Melton and125

Arora (2016).

Zonal mean values suggest that all three forcings are relatively consistent (Figure A1). The corresponding global mean

values for CRUJRAv2, GSWP3W5E5, and CRUNCEP are 182, 178, and 183 W m−2 for downwelling SW radiation, 304, 309,

and 300 W m−2 for downwelling LW radiation, 10◦C for near-surface air temperature (all three forcings), 59, 64, and 60 mm

per month precipitation, 6.9, 7.4, and 6.9 ×10−3 kg kg−1 for specific humidity, 947, 948, and 950 hPa surface pressure, and130

2.6, 3.3, and 2.6 m s−1 horizontal wind speed, respectively. With the exception of surface pressure, the data from CRUJRAv2

and GSWP3W5E5 tend to be more similar compared to CRUNCEP.

2.3 Simulation protocol

Our simulations are based on the trends in the land carbon cycle project (TRENDY) simulation protocol with time-varying CO2,

climate, and land use (S3) (Friedlingstein et al., 2019). The protocol consists of a spin up for the year 1700 and two transient135

runs for the periods 1701-1900 and 1901-2016, respectively. The spin up uses a constant atmospheric CO2 concentration of

276.59 ppm, climate data from the early decades of the 20th century (i.e. 1901-1920), and a land use map with constant crops

and pasture distribution. The first transient run uses the same climate as for the spin up, but time-varying CO2 concentrations

and land use for the 1701-1900 period. The second transient run uses time-varying CO2, climate, and land use for the 1901-

2017 period.140

2.4 Reference data

Model outputs are evaluated against in situ observations and globally gridded observation-based reference data (Table 1).

The reference database cover 19 variables that form part of the energy, water, and carbon cycle. While most data sets consist

of monthly mean values, some are assessed on an annual time scale (streamflow) or present a snap shot in time (vegetation

biomass, organic soil carbon mass, and in situ LAI measurements provided by the Oak Ridge National Laboratory). All gridded145

reference data are spatially interpolated to the spatial resolution of a CLASSIC gridcell (2.8125◦ × 2.8125◦). In situ observa-

tions that fall into in the same model grid cell are averaged prior to the comparison against model output. In most cases, the

evaluation is based on the grid cell value, which reflects the average conditions across all land cover types located in a grid
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cell. For above ground biomass, however, a comparison between the grid cell value and forest inventory data is not ideal, as

the latter provides biomass estimates for trees only. We, therefore, only consider biomass simulated for trees when evaluating150

model results against forest inventory data. Details on each reference data set are provided next.

2.4.1 In situ observations

The FLUXNET2015 database includes 204 eddy covariance sites with measurements overlapping during the years 1997 and

2014 (Pastorello et al., 2017) (Table 1). The corresponding variables include net surface radiation (RNS), latent heat flux

(HFLS), sensible heat flux (HFSS), soil heat flux (HFG) (Figure 1a-d), gross primary productivity (GPP), ecosystem respiration155

(RECO), and net ecosystem exchange (NEE) (Figure 2 a-c).

Stream flow gauge records are provided by the Global Runoff Data Centre (GRDC) for the world’s 50 largest basins (Dai

and Trenberth, 2002) (Figure 1e). Measurements were made some time between 1980 and 2010, depending on the basin.

Mortimer et al. (2020) compiled manual gravimetric measurements of snow water equivalent (SNW) collected from 3271

sites located between 42◦ and 83◦N for the 1970-2017 period (Figure 1f).160

Above ground biomass (AGB) measurements were provided by the Forest Observation System (FOS) who compiled mea-

surements from 274 permanent research plots (Schepaschenko et al., 2019) (Figure 2d). Measurements are based on allometric

relations, and were made between 1999 and 2018, depending on the inventory plot.

Leaf area index (LAI) observations are taken from the Committee on Earth Observation Satellites (CEOS) (Garrigues et al.,

2008) and the Oak Ridge National Laboratory (ORNL) (Iio and Ito, 2014) (Figure 2 e and f). The CEOS database consists of165

141 sites with measurements during the 1999-2017 period. The values are based on a transfer function that upscales ground

LAI measurements to a moderate resolution grid cell using high spatial resolution surface reflectances. The ORNL data set

contains a total of 2653 measurements compiled from literature that was published between 1932 and 2012. The values present

site-specific maximum ground LAI measurements.

2.4.2 Globally gridded reference data170

The Moderate Resolution Imaging Spectroradiometer (MODIS) provides globally gridded data sets for white-sky surface

albedo (2000-2014), GPP (2000-2016), and LAI (2000-2017). The white-sky albedo (MCD43C3 v006) integrates the Bidirec-

tional Reflectance Distribution Function (BRDF) over all viewing and irradiance directions. The resulting albedo values are

properties of the surface that do not depend on the state of the atmosphere (Strahler et al., 1999). Only data with quality flags

of less than 3 and solar zenith angles of less than 70◦ were considered. Evaluating MODIS V6 surface albedo against in situ175

measurements shows that biases for the high quality data (full inversion) range from -0.0061 in needleleaf forests to 0.0023 in

desserts (Wang et al., 2018).

MODIS-based GPP is provided by Zhang et al. (2017) for the period 2000-2017. The data set estimates GPP as the prod-

uct of light absorption by chlorophyll and the efficiency that converts the absorbed energy to carbon fixed by plants through

photosynthesis. The required inputs include a range of MODIS products (surface temperature, land surface water index, en-180
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hanced vegetation index, and land cover classification), as well as air temperature and radiation fluxes from NCEP Reanalysis

II (Kanamitsu et al., 2002).

MODIS LAI (MOD15A2H, collection 6; Myneni et al. 2015) is based on the inversion of a three dimensional canopy

radiative transfer model that simulates surface reflectance from canopy structural characteristics (Knyazikhin et al., 1998). The

inversion approach causes LAI to be very sensitive to uncertainties in surface reflectance. Those uncertainties may occur due185

to calibration errors, residual atmospheric and cloud contamination, background underneath the canopy, topography, view-

illumination geometry effects, and reflectance saturation in dense canopies (Garrigues et al., 2008). MODIS LAI uncertainties

of annual mean values range from 23% to 38% across biomes, with a global mean value of 27% for MODIS LAI Collection 5

(Fang et al., 2012).

A second set of globally gridded LAI was provided by Claverie et al. (2016) for the period 1982-2010. This data set is190

based on an artificial neural network (ANN) that relates LAI to surface reflectance from the Advanced Very High Resolution

Radiometer (AVHRR). The ANN was calibrated with LAI from MODIS (MCD15A2) and in situ LAI measurements from

BELMANIP2 (445 sites; Baret et al. 2006). The performance of the algorithm was assessed against in situ observations from

the DIRECT database (113; Garrigues et al. 2008).

The Clouds and the Earth’s Radiant Energy System (CERES) provides globally gridded SW and LW radiation fluxes at the195

surface under all-sky conditions for the period 2000-2012 (Kato et al., 2013). The data set is based on a radiative transfer model

that uses satellite-retrieved surface, cloud, and aerosol properties as inputs. The values of these inputs are adjusted within their

uncertainty ranges to obtain irradiance values at the top-of-the-atmosphere that are consistent with observations.

The Global Energy and Water Exchanges Surface Radiation Budget (GEWEXSRB) release 3.0 (Stackhouse et al., 2011)

provides globally gridded SW and LW radiation fluxes at the surface under all-sky conditions for the period 1984-2007. The200

data set is based on a radiative transfer model developed by Pinker and Laszlo (1992), which is driven with satellite observations

(cloud parameters and ozone fields) and reanalysis data (Stackhouse et al., 2011). The algorithm scales spectral surface albedos

of 12 surface types in such a way that the resulting clear-sky composite broadband top-of-the-atmosphere albedo is consistent

with observations from the International Satellite Cloud Climatology Project (Zhang et al., 2019). Surface fluxes have been

evaluated against ground-based measurements from sources that include the Baseline Surface Radiation Network and the205

Global Energy Balance Archive.

The GOSIF data provided by Li and Xiao (2019) are based on linear correlations between solar-induced chlorophyll fluo-

rescence (SIF) soundings from the Orbiting Carbon Observatory-2 (OCO-2) and GPP measurements from 91 eddy covariance

measurements sites from FLUXNET.

The FluxCom data set is an ensemble of globally gridded energy fluxes (HFLS, HFSS, RNS from 2001-2013) and carbon210

fluxes (GPP, NEE, and RECO from 1980-2013). Using a range of machine learning methods, FluxCom upscales FLUXNET ob-

servations, where remote sensing data and meterological data serve as global predictors. The former includes land surface tem-

perature (LST; MOD11A226), land cover (MCD12Q127), fraction of absorbed photosynthetically active radiation by a canopy

(fPAR; MOD15A228), and BRDF-corrected reflectances (MCD43B429) from MODIS. Meterological data employed by Flux-

Com were taken from the WATCH Forcing Data ERA Interim (WFDEI), Global Soil Wetness Project 3 (GSWP), CRUN-215
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CEPv837, Global Precipitation Climatology Project (GPCP), and Clouds and the Earth’s Radiant Energy System (CERES).

The FluxCom values used in the present study are the median values computed over the FluxCom ensembles.

The Conserving Land-Atmosphere Synthesis Suite (CLASSr) provides globally gridded estimates of net surface radiation,

latent heat flux, sensible heat flux, soil heat flux, and runoff for the 2003-2009 period (Hobeichi et al., 2019). Each variable

presents a weighted mean computed from multiple data products that are, to some extent, observation-based. The data are220

observationally constrained with in situ measurements, and each term is adjusted to allow for energy and water balance closure.

Net surface radiation, latent heat flux, and sensible heat flux are based on blending data from remote sensing, reanalysis, and

land surface models. Soil heat flux estimates are based on reanalysis and land surface models, and runoff is derived from

land surface models and hydrological models. The original acronym for the Conserving Land-Atmosphere Synthesis Suite

is CLASS. However, in this present paper we use the acronym CLASSr instead to avoid confusion with the Canadian Land225

Surface Scheme acronym.

Globally gridded soil moisture estimates provided by Liu et al. (2011) are based on the retrieval characteristics of passive

(AMSR-E) and active (ASCAT) microwave satellite data. Remotely sensed estimates are rescaled using the Noah land surface

model (Niu et al., 2011) and evaluated with in situ measurements from the International Soil Moisture Network (Dorigo et al.,

2011). Values represent conditions of the first 10 cm of the top soil layer.230

Gridded estimates of snow water equivalent for the Northern Hemisphere (NH) are provided by Mudryk (2020). The blended

data set is derived from four sources, including a satellite passive microwave radiometer data set (GlobSnow GS3; Takala et al.

2011), reanalysis data (MERRA2; Gelaro et al. 2017), a temperature index model by Brown et al. (2003), and a physical snow

pack model referred to as Crocus (Brun et al., 2013). The present study evaluates model output against the blended product,

referred to as ECCC, as well as its four sources.235

Global maps of monthly burned area were taken from the the fourth generation of the Global Fire Emissions Database

(GFED4; Giglio et al. 2010). The data are based on the 500 m Collection 5.1 MODIS direct broadcast (DB) burned area

product (MCD64A1) using the MODIS DB burned-area mapping algorithm by Giglio et al. (2009). The data set has been

evaluated against high-resolution Landsat imagery for locations in Southern Africa, Siberia, Central Asia, Alaska, and the

western conterminous United States.240

A second data set of monthly burnt area is provided by the Fire Disturbance Project of the European Space Agency’s Climate

Change Initiative programme (Chuvieco et al., 2018). This data set was generated from the MODIS red and near-infrared

reflectances (MOD09GQ and MCD14ML, both from collection 6) and thermal anomaly data (MCD14ML). The employed

algorithm identifies those grid cells where the presence of wild fires is most evident and then searches for wild fires in close

proximity to those grid cells.245

CarbonTracker (CT2019) is an inversion model that attempts to reproduce observed atmospheric CO2 concentrations by

adjusting CO2 fluxes at the surface. The initial state of terrestrial fluxes are obtained from the Carnegie-Ames Stanford Ap-

proach (CASA) biogeochemical model (Potter et al., 1993). Fluxes associated with biomass burning are taken from GFED4S.

Observations consists of air samples from 460 sites provided by the GLOBALVIEW+ data product version 5.0 (Masarie et al.,

2014). While CT2019 is continuously updated, the period considered in this study ranges from 2000 to 2017.250
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Globally gridded above-ground biomass estimates are provided by GEOCARBON, which is based on a boreal forest biomass

map by Santoro et al. (2015) and two pan-tropical biomass maps from Avitabile et al. (2016) and Saatchi et al. (2011). The

GEOCARBON map covers only areas that are dominated by trees in the Global Land Cover 2000 map (GLC2000; Bartholome

and Belward 2005). The boreal biomass estimates are based on radar imagery provided by the Envisat Advanced Synthetic

Aperture Radar (ASAR). The pan-tropical biomass maps are based on Light Detection and Ranging (LiDAR) observations that255

were calibrated with in situ measurements of tree allometry. Baccini et al. (2012) upscaled data using a random forest machine

learning algorithm and satellite imagery, including the MODIS Nadir BRDF-Adjusted Reflectance (NBAR), MODIS land

surface temperature, and shuttle radar topography mission (SRTM) digital elevation data. Saatchi et al. (2011) upscaled in situ

measurements using a machine learning algorithm (maximum entropy approach) and satellite imagery, including the MODIS

normalized difference vegetation index (NDVI) and leaf area index (LAI) products, global quick scatterometer (QSCAT), and260

SRTM digital elevation data. Note that we also used the Saatchi et al. (2011) data on its own to evaluate vegetation carbon in

the tropics.

The Harmonized World Soil Database (HWSD) provided by the Food Agriculture Organization (FAO) combines existing

regional and national updates of soil information worldwide with the information contained by the FAO Soil Map of the World

(Wieder, 2014). The data were processed by Todd-Brown et al. (2013) who computed soil carbon stocks from bulk densities265

and organic carbon concentrations given in the HWSD for the top 1 m of soil at a 0.5◦× 0.5◦ resolution.

2.5 Automated Model Benchmarking R package (AMBER)

The Automated Model Benchmarking R package (AMBER; version 1.1.0) quantifies model performance using a skill score

system originally developed by Collier et al. (2018). The method employs five scores that assess the model’s bias (Sbias),

root-mean-square-error (Srmse), seasonality (Sphase), inter-annual variability (Siav), and spatial distribution (Sdist). The main270

steps for computing a score usually include (i) computing a dimensionless statistical metric, (ii) scaling this metric onto a unit

interval, and (iii) computing a spatial mean. All scores are dimensionless and range from zero to one, where increasing values

imply better performance. These properties allow us to average skill scores across different statistical metrics in order to obtain

an overall score for each variable (Soverall).

Figure 3 provides an overview of our experimental set-up. As a first step we create a small model ensemble by driving275

CLASSIC with three different meteorological data sets. The purpose of the ensemble is to determine the sensitivity of model

performance to uncertainties in the meteorological forcing. Next we evaluate each ensemble member using AMBER. The

resulting model scores express how well model and reference data agree. A low score, however, does not necessarily imply

poor model performance, as the lack of agreement may also be due to uncertainties in the forcing data and/or reference data.

To assess to what extent model scores are affected by observational uncertainties, we also run AMBER with reference data280

only. The resulting benchmark scores quantify the level of agreement among different reference data sets. Comparing model

scores against benchmark scores then shows how well CLASSIC performs relative to the performance of a reference data set.

The remaining part of this section documents the details of the skill scores employed by AMBER.
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2.5.1 Bias score (Sbias)

The bias is defined as the difference between the time-mean values of model and reference data:285

bias(λ,φ) = vmod(λ,φ)− vref (λ,φ), (1)

where vmod(λ,φ) and vmod(λ,φ) are the mean values in time (t) of a variable v as a function of longitude λ and latitude φ for

model and reference data, respectively. Nondimensionalization is achieved by dividing the bias by the standard deviation of

the reference data (σref ):

εbias(λ,φ) = |bias(λ,φ)|/σref (λ,φ). (2)290

Note that εbias is always positive, as it uses the absolute value of the bias. For evaluations against stream flow measurements

the bias is divided by the annual mean rather than the standard deviation of the reference data. This is because we assess

streamflow on an annual rather than monthly basis, implying that the corresponding standard deviation is small. The same

approach is applied to soil carbon and biomass, whose reference data provide a static snap shot in time. In both of these cases,

εbias(λ,φ) becomes:295

εbias(λ,φ) = |bias(λ,φ)|/vref (λ,φ). (3)

A bias score that scales from zero to one is calculated next:

sbias(λ,φ) = e−εbias(λ,φ). (4)

While small relative errors yield score values close to one, large relative errors cause score values to approach zero (Figure 4a).

Taking the mean of sbias across all latitudes and longitudes, denoted by a double bar over a variable, leads to the scalar score:300

Sbias = sbias(λ,φ). (5)

2.5.2 Root-mean-square-error score (Srmse)

While the bias assesses the difference between time-mean values, the root-mean-square-error (rmse) is concerned with the

residuals of the modeled and observed time series:

rmse(λ,φ) =

√√√√√ 1

tf − t0

tf∫
t0

(vmod(t,λ,φ)− vref (t,λ,φ))2dt, (6)305

where t0 and tf are the initial and final time step, respectively (Figure A2 a and c). A similar metric is the centralized rmse

(crmse), which is based on the residuals of the anomalies:

crmse(λ,φ) =

√√√√√ 1

tf − t0

tf∫
t0

[(vmod(t,λ,φ)− vmod(λ,φ))− (vref (t,λ,φ)− vref (λ,φ))]2dt. (7)
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The crmse, therefore, assesses residuals that have been bias-corrected (FigureA2 c and e). Since we already assessed the

model’s bias through Sbias, it is convenient to assess the residuals using crmse rather than rmse. In a similar fashion to the310

bias, we then compute a relative error:

εrmse(λ,φ) = crmse(λ,φ)/σref (λ,φ), (8)

scale this error onto a unit interval (Figure 4a):

srmse(λ,φ) = e−εrmse(λ,φ), (9)

and compute the spatial mean:315

Srmse = srmse. (10)

2.5.3 Phase score (Sphase)

The skill score Sphase assesses how well the model reproduces the seasonality of a variable by computing the time difference

(θ(λ,φ)) between modeled and observed maxima of the climatological mean cycle:

θ(λ,φ) = max(cmod(t,λ,φ))−max(cref (t,λ,φ)), (11)320

where cmod and cref are the climatological mean cycle of the model and reference data, respectively (Figure A2b). This time

difference is then scaled from zero to one based on the consideration that the maximum possible time difference is six months

(Figure 4b):

sphase(λ,φ) =
1

2

[
1 + cos

(
2πθ(λ,φ)

365

)]
. (12)

The spatial mean of sphase then leads to the scalar score:325

Sphase = sphase. (13)

2.5.4 Inter-annual variability score (Siav)

The skill score Siav quantifies how well the model reproduces patterns of inter-annual variability. This score is based on data

where the seasonal cycle (cmod and cref ) has been removed (Figure A2 d and f):

iavmod(λ,φ) =

√√√√√ 1

tf − t0

tf∫
t0

(vmod(t,λ,φ)− cmod(t,λ,φ))2dt, (14)330

iavref (λ,φ) =

√√√√√ 1

tf − t0

tf∫
t0

(vref (t,λ,φ)− cref (t,λ,φ))2dt. (15)
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The relative error, nondimensionalization, and spatial mean are computed next (Figure 4a):

εiav = |(iavmod(λ,φ)− iavref (λ,φ))|/iavref (λ,φ), (16)

335

siav(λ,φ) = e−εiav(λ,φ), (17)

Siav = siav. (18)

2.5.5 Spatial distribution score (Sdist)

The spatial distribution score Sdist assesses how well the model reproduces the spatial pattern of a variable. The score considers340

the correlation coefficientR and the relative standard deviation σ between vmod(λ,φ) and vref (λ,φ). The score Sdist increases

from zero to one, the closer R and σ approach a value of one (Figure 4c). No spatial integration is required as this calculation

yields a single value:

Sdist = 2(1 +R)

(
σ+

1

σ

)−2
, (19)

where σ is the ratio between the standard deviation of the model and reference data:345

σ = σvmod
/σvref . (20)

2.5.6 Overall score (Soverall)

As a final step, scores are averaged to obtain an overall score:

Soverall =
Sbias + 2Srmse +Sphase +Siav +Sdist

1 + 2 + 1 + 1 + 1
. (21)

Note that Srmse is weighted by a factor of two, which emphasizes its importance.350

3 Results

We start our evaluation with a qualitative overview of how the choice of meteorological forcing (CRUJRAv2, GSWP3W5E5,

CRUNCEP) and reference data affect global mean biases. Our results show that for 10 out of 19 variables assessed in this

study, the sign of the bias changes depending on what forcing and reference data are used (Table 2). Assuming that global

values are reasonably accurate if (i) the sign of the bias varies depending on the choice of forcing and/or reference, or (ii) the355

global mean bias is reasonably small (≤ 5%), we can divide our variables into four groups. The first group includes variables

that show accurate global mean values for both gridded and in situ reference data. This includes the variables net surface
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radiation, sensible heat flux, snow water equivalent, and runoff (Table 2). The second group consists of variables that lack

in situ observations, but show accurate values when assessed against gridded reference data. This involves the variables net

LW radiation, soil moisture, fractional area burnt, net SW radiation, and vegetation carbon in the tropics. The third group360

includes variables that show accurate values for either globally gridded data (latent heat flux, GPP, NEE) or in situ reference

data (ecosystem respiration, above ground biomass, and LAI). For this group of variables it will be important to assess the

differences between evaluations based on gridded and in situ data in more detail. The fourth group includes variables with

systematic biases across all evaluations, which includes surface albedo, emissions from wild fires, soil carbon, and soil heat

flux. The following sections evaluate biases and other statistical metrics for each variable in detail.365

3.1 Net surface radiation

Net surface radiation (RNS) biases range from positive to negative values, depending on the choice of forcing (CRUJRAv2,

GSWP3W5E5, CRUNCEP) and reference data (CERES, CLASSr, FluxCom, GEWEXSRB, and FLUXNET). For instance,

global mean biases range from -15% (-12.07 W m−2) when forcing CLASSIC with CRUNCEP and evaluating results against

CERES (2000-2012), to +19% (+12.24 W m−2) for CRUJRAv2 and CLASSr (2003-2009) (Figure 5). Evaluating model output370

against in situ measurements by FLUXNET yields mean biases that range from -8% (-6.39 W m−2 for CRUNCEP) to +2%

(+1.99 W m−2 for CRUJRAv2) (Figure 5 and 1a).

Zonal mean values in net surface radiation are in close agreement with the corresponding reference values, with biases that

range from -20 W m−2 to +20 W m−2 (Figure 6). The same figure shows that net surface radiation biases in the NH extratropics

are negative when evaluating CLASSIC against CERES, FluxCom, and GEWEXSRB, and positive when choosing CLASSr as375

a reference data set. Considering all three model runs and four gridded reference data sets shows that for most grid cells annual

mean biases can be both negative and positive, depending on which model run is compared against which reference data (Figure

7a). The strongest annual mean bias is located in the Tibetan plateau with values below -30 W m−2. Hovmoeller diagrams show

that CLASSIC captures the observed seasonality well across all latitudes (Figure 8). Monthly biases range from negative to

positive values across most latitudes and months, depending on the choice of meteorological forcing and reference data. This380

suggests that model values are reasonably accurate across space and time when considering the uncertainties associated with

the forcing and all four globally gridded reference data.

Other statistical metrics confirm that CLASSIC reproduces net surface radiation reasonably well. The relative measure

of the centralized root-mean-square error (εcrmse) ranges from 0.30 to 0.49 (unitless), which is lower than for most other

variables (Figure 5). Differences in the timing of modeled and observed seasonal peaks (θ) are less than one month. Modeled385

inter-annual variability is lower compared to CERES, CLASSr, GEWEXSRB, and FLUXNET, and larger than FluxCom (not

shown). The relative inter-annual variability error (εiav) is reasonably small (0.30 to 0.76, unitless). CLASSIC reproduces the

spatial variability of annual mean values well, where the ratio of model and reference standard deviation in space (σ) is close

to unity (1.00 to 1.19). Also, the spatial correlation coefficients (R) range from 0.86 to 0.97. Averaging the resulting scores

across all three ensemble members shows that Soverall ranges from 0.74 to 0.80 (unitless), depending on the reference data390
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(Figure 9a). The choice of meteorological forcing affects scores by less than 0.1 (Figure 9b). Scores tend to be larger when

forcing CLASSIC with GSWP3W5E5 (Figure 9c).

3.2 Net shortwave and longwave radiation

Results for net SW radiation (RSS) and LW radiation (RLS) are mainly consistent with findings for net surface radiation

described above. Net SW and LW radiation values produced by CLASSIC are reasonably accurate when considering uncer-395

tainties associated with meteorological forcing and reference data (CERES and GEWEXSRB). Global mean biases for net

SW radiation range from -1% (-1.65 W m−2) to -4% (-5.99 W m−2) (Figure 5). For net LW radiation, global mean biases

range from -17% (-10.42 W m−2) to +6% (+4.32 W m−2). CLASSIC captures the zonal mean values and seasonal patterns

of both variables well (Figure 6, A4, and A5). However, CLASSIC also shows a systematic negative SW radiation bias in the

NH extratropics from December to May (up to -40 W m−2) (Figure A4), which is consistent with a surface albedo bias as400

discussed further below. Results for other statistical metrics and corresponding scores are similar to the ones described for net

surface radiation. For net SW radiation, εcrmse range between 0.22 and 0.38 (unitless), θ ranges from 0.38 to 0.56 months, εiav

ranges from 0.11 to 0.53 (unitless), σ ranges from 0.94 to 1.13 (unitless), and R ranges from 0.92 to 0.98 (Figure 5). For net

LW radiation, values in εcrmse and θ are considerably larger than for net SW radiation, where εcrmse ranges from 0.51 to 0.65

(unitless) and θ ranges from 0.63 to 0.76 months. The overall scores are higher for net SW radiation (Soverall ≈ 0.80) than405

for net LW radiation (Soverall = 0.72) (Figure 9). The choice of the forcing has a considerable impact on how well the model

captures the interannual variability of both, net SW and LW radiation. The difference between the maximum and minimum

interannual variability score (Siav) ranges from 0.10 to 0.21, depending on the reference data (Figure 9b). For net LW radiation,

the choice of the forcing has also a considerable impact on the bias score (∆Sbias: 0.17-0.2). CLASSIC performs best when

forcing the model with GSWP3W5E5 (Figure 9c).410

3.3 Albedo

Surface albedo (ALBS) shows a positive global mean bias across all three ensemble members and reference data sets (CERES,

GEWEXSRB, and MODIS), ranging from +18% to +42% (+0.04 to +0.09, unitless) (Figure 5). This bias occurs mainly in the

NH extratropics, with increasing values towards higher latitudes (+0.2; Figure 6 and 7b). The strongest annual mean bias is

located in the Tibetan plateau with values above 0.3. In the NH extratropics, the bias is most evident during the cold season415

(+0.4 between 60◦N and 80◦N from December to January) (Figure A6). Larger biases (+0.5) are present north of 80◦N, but this

involves only few grid cells. The timing of the bias suggests a possible relation with snow and/or the large solar zenith angle.

The performance with respect to other statistical metrics tends to be lower than for net SW radiation. Values for εcrmse range

between 0.98 and 1.12 (unitless), θ ranges from 1.67 to 2.18 months, εiav ranges from 0.38 to 0.48 (unitless), σ ranges from

1.12 to 2.04 (unitless), and R ranges from 0.77 to 0.91 (Figure 5). The corresponding overall score Soverall ranges between420

0.48 and 0.59, depending on the reference data (Figure 9). The Soverall values are not very sensitive to the choice of forcing

(∆Soverall = 0.01).
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3.4 Heat fluxes

CLASSIC reproduces the partitioning of net surface radiation into sensible (HFSS), latent (HFLS), and soil heat flux (HFG)

reasonably well. Global mean values in sensible heat flux simulated by CLASSIC are likely to be reasonable, with biases that425

range from negative to positive values, depending on the meteorological forcing (-23% to +35%, -8.33 W m−2 to +10.82 W

m−2) (Figure 5 and 10). Driving CLASSIC with CRUNCEP causes biases to be negative for all three reference data sets, while

the opposite is true when running the model with CRUJRAv2. For latent heat flux, the sign of the bias is consistent across all

ensemble members, with negative biases when compared against FluxCom (-12% to -18%, -5.35 W m−2 to -8.32 W m−2)

and FLUXNET (-7% to -13%, -3.16 W m−2 to -5.83 W m−2) and reasonably small positive biases when evaluated against430

CLASSr (+5% to +11%, +1.55 W m−2 to +3.67 W m−2). Biases in soil heat flux are negative across all ensemble members

and both reference data sets (CLASSr and FLUXNET) (-32% to -90%). However, it must be noted that the corresponding

absolute values are small (-0.14 W m−2 to -1.31 W m−2), implying that the impact of annual mean soil heat flux biases on

the surface energy balance is minor. The relative partitioning of net surface radiation into sensible and latent heat flux is well

reproduced, with reasonably small positive and negative biases, depending on the meteorological forcing (Figure 10b). A more435

detailed assessment of each heat flux is provided next.

CLASSIC reproduces the zonal mean patterns of sensible and latent heat flux well, with zonal mean biases of about ± 20 W

m−2 (Figure 11). For sensible heat flux, zonal mean biases range from positive to negative values across all latitudes, depending

on the meteorological forcing (Figure 11 and A7a). For latent heat flux, biases are primarily positive when compared against

CLASSr and negative for FluxCom, regardless of the forcing (Figure 11 and A7b). Zonal mean patterns of soil heat flux data440

from CLASSr are not well captured, with biases that become increasingly negative towards higher latitudes (-4 W m−2 in the

Arctic) (Figure 11 and A8a).

CLASSIC captures the seasonal cycle of all three heat fluxes reasonably well (Figure A9, A10, and A11). The negative latent

heat flux biases are stronger during the warm season in both hemispheres. For soil heat fluxes, CLASSIC tends towards a more

intense seasonal cycle in the extratropics, with positive biases in the warm and negative biases in the cold season.445

Values of εrmse are similar among sensible and latent heat flux (0.45 to 0.77, unitless) and larger for soil heat flux (0.85

to 0.97) (Figure 5). For all three heat fluxes, time lags in seasonal peaks are close to one month. The inter-annual variability

of sensible and latent fluxes tends to be smaller compared to the CLASSr reference data set and larger compared to FluxCom

(not shown), implying that model values lie within the uncertainty of the reference data. The corresponding εiav values range

from 0.25 to 2.42 (unitless), where the larger values are obtained when evaluating CLASSIC against FluxCom (Figure 5). For450

soil heat flux, modeled interannual variability is very similar to the corresponding reference values (not shown), leading to low

values of εiav (0.28 to 0.36). Values of σ and R are reasonable for sensible heat flux (σ: 0.74 to 1.26, R: 0.78 to 0.89) and

latent heat flux (σ: 0.94 to 1.08, R: 0.84 to 0.97), and poor for soil heat flux (σ: 0.15 to 0.17, R: 0.04 to 0.21). Consistently,

the corresponding Soverall values are larger for latent and sensible heat flux (0.64 to 0.73) and lower for soil heat flux (0.53)

(Figure 9). From all three heat fluxes, sensible heat flux is most sensitive to the choice of forcing, with ∆Soverall equal to 0.04455

when driving the model with GSWP3W5E5.
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3.5 Soil moisture

Global mean values in soil moisture (MRSLL) of the top 10 cm are very close to the corresponding reference values from

ESA (1979-2017), with biases ranging from -1% (-0.28 kg m−2, CRUNCEP) to +5% (about +1 kg m−2, CRUJRAv2 and

GSWP3W5E5) (Figure 5). Zonal mean values are well reproduced with a tendency towards a positive bias north of 60◦N (+10460

kg m−2) (Figure 11). This bias is caused by clusters of grid cells located in different parts of the Acric (Figure A8b). The

positive bias is present in all ensemble members and occurs from June to September (Figure A12). Other statistical metrics

confirm that the performance does not differ largely among ensemble members (Figure 9). Values of εrmse and time lags of

seasonal peaks (θ) are larger compared to most other variables (εrmse ≤ 1.5, θ ≈ 1.5 months). The spatial variability is larger

than in the reference data (σ ≈ 1.44, unitless) and correlation coefficients are relatively low (R≈ 0.62). The corresponding465

overall score is 0.52 and is not very sensitive to the choice of forcing (∆Soverall = 0.01) (Figure 9).

3.6 Runoff and streamflow

Global mean runoff (MRRO) biases range from +1% (<0.005 kg m−2 day−1, CRUNCEP) to +34% (0.22 kg m−2 day−1,

GSWP3W5E5) when evaluated against CLASSr (2003-2009) (Figure 5). This difference is consistent with the larger precipita-

tion values found for the GSWP3W5E5 forcing. CLASSIC reproduces the zonal mean pattern of gridded reference runoff from470

CLASSr well, with mainly positive biases when forcing CLASSIC with GSWP3W5E5 (Figure 11). Smaller, including nega-

tive zonal mean biases occur when forcing CLASSIC with CRUNCEP. Consistently, the sign of the bias varies for many grid

cells depending on the forcing (Figure A13a). Furthermore, the sign of the bias varies for most latitudes and months (Figure

A14), suggesting that modeled runoff is within the uncertainty range of the meteorological forcing. CLASSIC reproduces the

spatial patterns of runoff reasonably well, with σ values between 1.04 and 1.14 and R values between 0.87 and 0.88 (Figure 5).475

The timing of the seasonal peaks, however, differ by more than two months and εrmse values exceed one when using CLASSr

as reference data. The overall scores averaged over the three ensemble members is 0.53, with a better score when driving

CLASSIC with CRUNCEP and worse when using GSWP3W5E5 as a forcing data set (Figure 9).

Summing up the annual runoff from all grid cells located within each of the world’s 50 largest river basins and comparing

those values against annual mean stream flow at the corresponding river mouths yields biases that range between -14% (-0.11480

kg m−2 day−1, CRUNCEP, GRDC) to +20% (+0.16 kg m−2 day−1, GSWP3W5E5, GRDC). For most basins, the sign of the

bias remains constant regardless of the forcing (Figure 1e for CRUJRAv2 as an example). CLASSIC reproduces the spatial

patterns of streamflow reasonably well, with σ values close to 1 and R values ranging between 0.87 and 0.92 (Figure 5).

The overall scores averaged over the three ensemble members is 0.69. Performance is better when driving CLASSIC with

CRUNCEP and worse when using GSWP3W5E5 as a forcing data set (Figure 9).485

3.7 Snow water equivalent

Global mean snow water equivalent (SNW) biases range from -14% (-0.49 cm, CRUNCEP-driven run evaluated against

MERRA2) to +70% (+1.88 cm, GSWP3W5E5-driven run evaluated against Crocus) for the 1981-2017 period (Figure 5).
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Evaluating CLASSIC against in situ measurements compiled by Mortimer et al. (2020) shows that the mean bias can be neg-

ative (-10%, -0.88 cm, CRUNCEP) or positive (+23%, +2.07 cm, GSWP3W5E5), depending on the forcing (Figure 5 and490

1f). The larger snow water equivalent values in GSWP3W5E5-driven results are consistent with the larger precipitation values

found for this forcing. For most evaluations, CLASSIC reproduces zonal mean values well when driven with CRUJRAv2 or

CRUNCEP (Figure 11). The sign of the bias ranges from positive to negative values for most grid cells (Figure A13b). Positive

biases tend to be larger in Eastern Canada, Northern Scandinavia and Northern Siberia, and during NH spring (Figure A15b).

Other statistical metrics confirm that CLASSIC’s ability to reproduce snow water equivalent tends to be weaker when driven495

with GSWP3W5E5 (εrmse: 0.55 to 0.91, θ: 0.38 to 0.77, εiav: 0.19 to 0.61, σ: 0.68 to 1.68, and R: 0.54 to 0.87) (Figure 5).

The corresponding Soverall values range from 0.62 to 0.69, with lower scores when driving CLASSIC with GSWP3W5E5 and

higher scores when using CRUJRAv2 (Figure 9). Site-level based score values are similar to grid-level score values, with an

overall score of 0.66.

3.8 Gross primary productivity500

Globally accumulated annual mean values of GPP computed from different reference data are of similar magnitude, with 115

Pg C yr−1 for FluxCom (1980-2013), 121 Pg C yr−1 for MODIS (2000-2016), and 130 Pg C yr−1 for GOSIF (2000-2017)

(Table 3). The corresponding model biases are reasonably small, with negative values when comparing CLASSIC against

GOSIF (-2% to -10%), and positive values when evaluating against MODIS (<+1% to +10%) or FluxCom (+4% to +14%). An

assessment with eddy covariance data shows that biases range from -6% to -10% (Figure 5). CLASSIC captures zonal mean505

GPP patterns well with no systematic bias pattern among evaluations (Figure 12). Annual mean biases range from negative

to positive for most grid cells, depending on the forcing and reference data (Figure A16a). Hovmoeller diagrams show that

CLASSIC captures the seasonal GPP cycle well across all latitudes, with no systematic biases (Figure A17). A more regional

assessment, however, shows that the seasonal GPP cycle is out-of-phase in parts of the humid tropics of South America and

Africa (not shown). Values in εrmse are for all evaluations less than one, and time lags of seasonal peaks are about one month510

on average (Figure 5). CLASSIC reproduces the inter-annual variability of GPP well when compared against FLUXNET,

GOSIF, and MODIS (εiav < 0.6). Larger εiav values are found when evaluating the model against FluxCom. However, it must

be noted that interannual variability patterns from FluxCom are not reliable (Jung et al., 2019b). Spatial patterns of GPP are

well captured, with values of σ close to one and correlation coefficients around 0.91. The corresponding overall scores range

from 0.58 (FluxCom) to 0.67 (MODIS), with larger scores when forcing CLASSIC with CRUJRAv2 (Figure 9).515

3.9 Ecosystem respiration

Annual mean biases of ecosystem respiration (RECO) are reasonably small across FLUXNET sites, with mean biases ranging

from +5% to +12%, depending on the forcing (Figure 5). Looking at the spatial distribution of FLUXNET sites suggests that

the positive biases are more evident in the NH extratropics rather than in the tropics (Figure 2b). Larger biases are present when

comparing CLASSIC with FluxCom, however, those values are not reliable as FluxCom underestimates ecosystem respiration520

in the tropics (Jung et al., 2019b). Other statistical metrics derived from FLUXNET data suggest that CLASSIC reproduces
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ecosystem respiration reasonably well (εrmse ≈ 0.75, θ < 1, εiav ≈ 0.66, σ ≈ 1.0, R≈ 0.69) (Figure 5). The corresponding

overall score equals 0.64 (Figure 9). This score value is insensitive to the choice of forcing.

3.10 Net ecosystem exchange

Globally accumulated annual mean NEE computed from CT2019 equals -4.2 Pg C yr−1 for the period 2000-2016 (Table 3).525

The corresponding value from FluxCom is -24.9 Pg C yr−1 for the period 1980-2013, which is unrealistic, and due to an

underestimation of ecosystem respiration in the tropics (Jung et al., 2019b). CLASSIC’s estimate of annual mean NEE ranges

from -4.2 to -4.6 Pg C yr−1 (2000-2016), which corresponds to a bias of about -1% to -10% when compared against CT2019,

depending on the meteorological forcing. However, much larger biases apply when evaluating CLASSIC against FLUXNET

(+88%; Figure 2c and 5).530

Zonal mean NEE patterns resemble values from CT2019 to a certain degree (Figure 12). The strength of the carbon sink is

modeled to be stronger in the tropics (-0.15 g C m−2 day−1) and weaker in the extratropics (+0.10 g C m−2 day−1) compared

to CT2019. FLUXNET data confirm the tendency towards a positive bias, i.e. weaker sink, in the NH extratropics (Figure 2c).

In the tropics, however, the sign of the bias is mixed, and the number of sites is too small to confirm whether or not CLASSIC

overestimates the strength of the carbon sink at low latitudes.535

Hovmoeller diagrams suggest that CLASSIC reproduces the general pattern of the seasonal NEE cycle in the extratropics,

where the strength of the carbon sink is strongest during the warm period (Figure A18). Other statistical metrics suggest a

considerable mismatch between model and reference NEE (εrmse > 1, θ > 1, and R< 0.2). The corresponding overall scores

are 0.47 for FLUXNET and 0.53 for CT2019 (Figure 9).

3.11 Area burnt and resulting emissions540

Wild fires are estimated to burn an area of about 4.6 × 106 km2 yr−1 (ESACCI from 2001-2017 and GFED4S from 2001-

2015), causing emissions of about 2.9 Pg C yr−1 (CT2019, 2000-2017) (Table 3, where BURNT refers to area burnt and FIRE

refers to the associated emissions). CLASSIC reproduces the spatial extent of wild fires well considering the uncertainty of the

meteorological forcing, with biases ranging from -28% when forcing CLASSIC with CRUJRAv2, to +14% for GSWP3W5E5.

The larger fractional area burnt values in GSWP3W5E5 are not related to precipitation, as GSWP3W5E5 is the wettest of the545

three forcing data sets across all latitudes and seasons. Instead, GSWP3W5E5 has larger values in near-surface windspeeds

compared to the other forcing data sets, which increase the probability of wild fires. Model values for emissions from wild fires

tend to be lower than observed, with biases ranging from -37% (CRUJRAv2) to -7% (GSWP3W5E5).

CLASSIC reproduces the zonal mean pattern of both variables well, with values that are largest at 10◦S and 10◦N (Figure

12). The sign of the zonal mean bias is consistent between both variables. Biases tend to be negative in the humid parts550

of the tropics and positive in the drier parts of the tropics (Figure 12 and A19). CLASSIC reproduces the seasonality of

both variables well, with lower values when the solar zenith angle in the tropics is small (Figure A20 and A21), which is

indicative for the position of the intertropical convergence zone. While biases are most evident in the tropics, the model

also underestimates fractional area burnt and associated emissions in the boreal forests. Other statistical metrics suggest that
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considerable differences between model and reference values remain (εrmse = 1.0, θ > 2 months, εiav ≈ 1, and R≤ 0.51)555

(Figure 5). The resulting overall scores for fractional area burnt and emissions from fires are 0.51 and 0.47, respectively

(Figure 9). These score values are not very sensitive to the choice of forcing (∆Soveral ≤ 0.01).

3.12 Vegetation biomass

Reference values from GEOCARBON estimate globally accumulated above-ground living biomass (AGB) with 214.5 Pg C.

The corresponding values from CLASSIC range from 364.9 Pg C (+70%) to 442.3 Pg C (+106%) (Table 3). The bias is560

largest between 20◦N and 40◦N, in particular in the Eastern US and in East Asia (Figure 12 and A22a). Comparing CLASSIC

against vegetation carbon (i.e. above and below ground living biomass, CVEG) for the tropics provided by Saatchi et al. (2011)

suggests smaller biases (+2% for CRUNCEP to +33% for CRUJRAv2) (Figure 5, 12, and A22b). Spatial correlations are weak,

with R≤ 0.62 for above ground biomass and R≤ 0.71 for vegetation carbon (Figure 5). The corresponding overall scores are

0.55 (∆Soverall = 0.01) for above ground biomass and 0.68 (∆Soverall = 0.05) for vegetation carbon in the tropics (Figure 9).565

To investigate differences between CLASSIC and GEOCARBON in greater detail we evaluate model and reference above

ground biomass values against forest inventory data (FOS). The comparison shows a larger negative bias for GEOCARBON

(-50%) and a smaller negative bias for CLASSIC (-3% for CRUJRAv2 to -21% for CRUNCEP) (Figure 5 and 2d). This

finding suggests that GEOCARBON may be subject to considerable uncertainties, which may contribute to the large bias

when evaluating CLASSIC against GEOCARBON. More forest inventory data are required to reach a conclusive result, as the570

current spatial coverage of inventory plots provided by FOS is modest. Evaluating CLASSIC against FOS yields an overall

score of 0.64 (Figure 9).

3.13 Soil carbon

The global stock of soil carbon (CSOIL) is estimated with 1198 Pg C (HWSD). The corresponding values from CLASSIC

range from about 956 Pg C (-20%, CRUNCEP) to 1109 Pg C (-8%, CRUJRAv2) (Table 3). CLASSIC reproduces the zonal575

mean patterns of soil carbon well, with a tendency for negative biases in the Arctic (-10 kgC m−2) (Figure 12). Some of this

bias is related to a small number of grid cells at high latitudes with particularly large biases (-40 kgC m−2) (Figure A23a).

The larger values in the reference data may be related to the presence of permafrost and peatland, which are currently not

represented in CLASSIC. The spatial variability of soil carbon is well reproduced (σ ≈ 0.92), but the spatial correlation is

rather weak (R≈ 0.5) (Figure 5). The corresponding overall score is 0.68 (∆Soverall = 0.01) (Figure 9).580

3.14 Leaf area index

Evaluating CLASSIC with gridded LAI data from AVHRR (1982-2010) and MODIS (2000-2009) suggests large positive

global mean biases that range from +31% (+0.42 m−2 m−2) to +59% (+0.88 m−2 m−2), depending on the forcing and reference

data (Figure 5). While CLASSIC reproduces the general pattern of zonal mean LAI reasonably well, the model has a positive

bias across most latitudes (Figure 12). However, biases have a local minimum at the equator, especially when using MODIS as585
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a reference. All six evaluations tend towards positive biases in forested regions of the NH extratropics and the drier parts of the

tropics (Figure A23b). In the more humid tropics of the Amazon and Congo basin, biases range from negative to positive values,

depending on the forcing and reference data. Hovmoeller diagrams show that the positive bias in the NH extratropics occurs

mainly during the cold season, suggesting a possible relation with snow, leaf shedding, and/or the larger solar zenith angle

(Figure A24). For most of the remaining months and latitudes, LAI biases range from positive to negative biases, suggesting590

that modeled values are reasonably accurate when considering the uncertainty of the meteorological forcing and reference data.

Other statistical metrics suggest further differences between model and reference LAI. Values of εrmse are larger than

for most other variables (0.99 to 1.31) and time lags in seasonal peaks range between one and two months (Figure 5). The

spatial variability of LAI is considerably larger for model data than gridded reference data (σ ranges from 1.27 to 1.66),

and the correlation coefficients are reasonable, but not impressive (0.7 to 0.8). The corresponding overall scores are 0.49595

(∆Soverall = 0.01) and 0.53 (∆Soverall = 0.03) when evaluating CLASSIC against gridded LAI reference data from MODIS

and AVHRR, respectively (Figure 9).

To investigate the apparent LAI bias further we evaluate model and reference LAI values with in situ measurements of

maximum LAI provided by ORNL. The comparisons show larger negative biases for MODIS (-37%) and AVHRR (-33%), and

smaller negative biases for CLASSIC (-19% to -24%) (Figure 5 and 2f for CLASSIC only). This suggests that (i) it is unlikely600

that CLASSIC overestimates maximum LAI, and (ii) the large positive LAI bias discussed above may in part be due to an

underestimation of LAI by the gridded reference data set. Furthermore, evaluating CLASSIC against in situ LAI observations

from CEOS shows mean biases that range from +1% to +22% (Figure 5 and 2e). The corresponding values for MODIS and

AVHRR are -6% and -4%, respectively (not shown). Given these findings, we conclude that the large positive LAI found for

CLASSIC when evaluated against AVHRR and MODIS must be interpreted with caution. One possible reason for lower LAI605

in satellite-based reference data at high-latitudes is the problems associated with LAI retrievals during winter months when the

sun is low and the surface is snow covered.

3.15 Benchmark scores derived from reference data only

Benchmark scores are produced by comparing two independent reference data sets (Figure 3). This exercise fulfills three

purposes. First, benchmark scores quantify observational uncertainty, where lower values imply larger uncertainties. Second,610

we can evaluate the quality of gridded products using in situ measurements. Third, comparing model scores against benchmark

scores shows how well CLASSIC performs relative to the performance of a reference data set. The comparison of two reference

data sets is limited to the time period for which both data sets overlap.

Our results demonstrate that most benchmarks are considerably low, suggesting that observational uncertainties are large.

For most variables, model skill scores are very similar to benchmark skill scores, implying that CLASSIC performs similarly to615

a reference data set. In some cases, CLASSIC even outperforms gridded reference data sets when evaluating gridded reference

data and model output against in situ measurements. The remaining section discusses these findings in more detail.

Contrary to our expectations, most benchmark scores are far below unity (Figure 13). Only two variables show Soverall

values equal or larger than 0.8 (net surface radiation and net SW radiation). The largest uncertainties are found for NEE, with
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Soverall = 0.49 when comparing CT2019 against FLUXNET. Even lower score values are found when evaluating FluxCom620

NEE against FLUXNET due to the known limitations of the FluxCom data set discussed in section 2.4.2.

Comparing gridded reference data against in situ measurements shows subtle differences in how well gridded products

perform for the same variable. For net surface radiation, Soverall values range from 0.79 for CLASSr to 0.83 for CERES when

evaluated against FLUXNET. For latent heat flux, CLASSr (Soverall = 0.71) performs slightly better than FluxCom (Soverall =

0.68). For sensible heat flux, CLASSr and FluxCom perform equally well (Soverall = 0.69). For snow water equivalent, the625

blended multi-reference mean data (ECCC; Soverall = 0.66) performs very similarly to the individual reference data (Soverall:

0.64 to 0.66) when evaluated against in situ measurements provided by Mortimer et al. (2020). For GPP, the Soverall values

are largest for GOSIF (0.66), followed by MODIS (0.65) and FluxCom (0.63) when evaluated against FLUXNET. In the case

of NEE, Soverall values are larger for FluxCom (0.56) than for CT2019 (0.49). However, it must be noted that the majority of

FLUXNET sites are located in the NH extratropics, implying that corresponding scores reflect the performance in primarily630

non-tropical regions. For LAI, the Soverall values are 0.61 for MODIS and 0.60 for AVHRR when evaluated against in situ

measurements from ORNL and 0.74 (MODIS) and 0.77 (AVHRR) when compared against data from CEOS.

In most cases, model skill score values are very similar to the corresponding benchmark score values. For instance, evaluating

CERES net surface radiation against FLUXNET yields Soverall = 0.83. The corresponding mean score value from all three

CLASSIC ensemble members is 0.80. For a number of cases, the CLASSIC ensemble performs just as good as independent635

reference data sets. For instance, Soverall values for LW radiation are both 0.8 when evaluating either GEWEXSRB against

CERES or the CLASSIC ensemble against CERES. In three cases (fractional area burnt, LAI, and snow water equivalent)

model scores and benchmark scores differ by more than 0.1, which is discussed next.

The Soverall benchmark score for fractional area burnt is 0.62 (GFED4S versus ESACCI) and the corresponding model

skill score is 0.51 (CLASSIC ensemble versus ESACCI). The score difference is driven by deficiencies in reproducing spatial640

patterns (∆Sdist =−0.27). For LAI, the Soverall benchmark score is 0.75 (AVHRR versus MODIS) and the Soverall model

score is 0.49 (CLASSIC ensemble versus MODIS). This difference is primarily driven by lower model skill scores in Sbias

and Srmse. However, in section 3.14 we conclude that LAI biases derived from gridded reference data must be interpreted

with caution. Comparing LAI benchmark scores derived from in situ measurements (AVHRR versus ORNL, Soverall = 0.60)

shows much greater similarity with the corresponding model skill scores (CLASSIC ensemble versus ORNL, Soverall = 0.63).645

Similar results apply when conducting the same analysis with LAI from MODIS rather than AVHRR.

For snow water equivalent, the Soverall benchmark skill score exceeds the corresponding model skill score by 0.11 when

evaluating Crocus and the CLASSIC ensemble against GS3. However, using in situ measurements yields benchmark and

model skill scores that are more similar. For instance, evaluating the snow water equivalent reference ensemble ECCC and the

CLASSIC ensemble against data from Mortimer et al. (2020) yield identical Soverall values (0.66).650

For some variables, CLASSIC even outperforms gridded reference data when evaluated against in situ observations. This

applies to net surface radiation from CLASSr, latent heat flux from FluxCom, snow water equivalent from Crocus, GS3, and

MERRA2, GPP from FluxCom and MODIS, and LAI from MODIS and AVHRR.
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To rank model performance by variable, we compute the average model-benchmark score difference across all evaluations

for each variable. Following this approach, model performance increases as follows, where the average model-benchmark score655

differences are provided in parenthesis: fractional area burned (-0.12), runoff (-0.1), soil heat flux (-0.09), LAI (-0.07), net SW

radiation (-0.06), NEE (-0.05), above-ground biomass (-0.03), GPP (-0.03), surface albedo (-0.02), snow water equivalent

(-0.01), net surface radiation (-0.01), sensible heat flux (-0.01), net LW radiation (0.01), latent heat flux (0.03), ecosystem

respiration (0.03). This ranking excludes the FluxCom NEE evaluation against CT2019 due to the unrealistic FluxCom NEE

values in the tropics. To conclude, comparing model skill scores against benchmark scores derived from reference data suggests660

that model performance is reasonably good when considering the uncertainties associated with the reference data.

4 Discussion

We begin our discussion by comparing our findings with the skill scores presented for CLASS-CTEM by Friedlingstein et al.

(2019). While our results are largely consistent, we can now provide more insights that facilitate the interpretation of those

scores. Our findings show that the poor performance of LAI is mainly due to a large positive bias that occurs in the NH665

extratropics during the cold season. An evaluation against in-situ LAI measurements show that biases can be positive, negative,

or close-to-zero, depending on the respective forcing and in situ reference data set. Furthermore, CLASSIC performs very

similar to MODIS and AVHRR when comparing all three data sets against in situ LAI measurements. Also, evaluating MODIS

against AVHRR yields an overall score of 0.75, which implies a considerable mismatch between both reference data sets.

Given the uncertainties in remotely-sensed LAI retrievals discussed in section 2.4.2, it is very well possible that the mismatch670

between modeled and gridded reference LAI is, at least to some extent, due to deficiencies in remotely-sensed LAI.

The NEE scores presented in Friedlingstein et al. (2019) are based on in-situ observations and empirically up-scaled eddy

covariance measurements by Jung et al. (2009). The latter presents an earlier version of the FluxCom data set employed in this

study. Either data set has a much stronger carbon sink in the tropics compared to results from inversion models (Jung et al.,

2019b). Potential reasons for this mismatch include (i) a sampling bias towards ecosystems with a large carbon sink, (ii) missing675

predictor variables related to disturbance and site-history, and (iii) biases of eddy covariance NEE measurements, possibly due

to night-time advection of carbon dioxide under tall tropical forest canopies (Jung et al., 2019b). Furthermore, the inter-

annual variability of FluxCom data is considerably lower compared to results from inversion methods. Evaluating FluxCom

and CLASSIC against the inversion model results from CT2019 shows that the model outperforms FluxCom. Furthermore,

the NEE skill scores of CT2019 and CLASSIC are similar when assessing both data sets against FLUXNET (0.49 and 0.47,680

respectively). We conclude that the low NEE score presented in Friedlingstein et al. (2019) is mainly a sign of observational

uncertainties rather than model deficiencies.

The overall score (Soverall) values documented in this study are similar to the ones reported by Melton et al. (2020). The

values are 0.66 (0.69) for GPP, 0.71 (0.66) for HFLS, 0.68 (0.66) for HFSS, 0.47 (0.44) for NEE, 0.64 (0.65) for RECO, and

0.8 (0.82) for RNS, where values in parenthesis correspond to results from Melton et al. (2020). The fact that both approaches685

yield similar results suggests that a comparison of global model output and eddy covariance data at the grid cell level provides
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meaningful results. This finding implies that the low scores for NEE documented here are not due to the fact that we used

global rather than site-specific model inputs. However, it must be noted that interpreting the differences between both studies is

challenging, given that our evaluation is based on 204 sites, while Melton et al. (2020) used 31 sites. Furthermore, our approach

averages observations across sites that are located within the same model grid cell and cover the same time period.690

Our benchmarking approach is subject to limitations, which are discussed next. Evaluating CLASSIC against eddy covari-

ance measurements has numerous short-comings. First, eddy covariance measurements from FLUXNET lack energy balance

closure, where sensible and latent heat fluxes are about 20% lower compared to the available energy (Wilson et al., 2002).

Second, FLUXNET data are subject to gaps, which often occur when conditions are unsuitable for making measurements.

Third, eddy covariance measurements have a much smaller foot print size (Schmid, 1994) compared to our grid cell size of695

2.8125◦×2.8125◦. The spatial mismatch implies that the measurements are not necessarily representative for the area covered

by the grid cell. Considerable differences between measured and modeled values are, therefore, expected. Another limitation

of our benchmarking Finally, the periods of evaluation differ among reference data sets. For instance, LAI data from MODIS

and AVHRR cover the periods 2000-2017 and 1982-2010, respectively.

Three variables assessed in this study were evaluated against one reference data set only, namely soil moisture, CO2 emis-700

sions from fires, and soil carbon. It remains, therefore, unclear to what extent model performance for those three variables is

affected by observational uncertainty. Future evaluations will, therefore, consider additional reference data sets, including soil

carbon from the World Soil Information Service (Batjes et al., 2017), as well as additional in situ measurements for surface

radiation provided by the Baseline Surface Radiation Network (Driemel et al., 2018). Future developments of AMBER could

introduce a new score that quantifies how well a model reproduces the sensitivity of ecosystems to climate extremes, which are705

shown to affect terrestrial ecosystems in profound ways (Reichstein et al., 2013).

5 Conclusions

This study assesses the energy, water, and carbon cycle simulated by CLASSIC, using a wide range of in situ measurements

and globally gridded reference data. We account for uncertainties in the meteorological forcing by evaluating an ensemble of

three model runs that are produced with different forcing data sets. Uncertainties in the reference data are accounted for by710

comparing model scores against benchmark scores, which are based on reference data only. The method has been implemented

in a new R package referred to as AMBER, which is publicly available at the Comprehensive R Archive Network (https:

//CRAN.R-project.org/package=amber).

The main deficiencies that should be addressed in future model development are the (i) positive albedo bias and resulting

SW radiation bias in parts of the NH extratropics and Tibetan plateau, (ii) out-of-phase seasonal GPP cycle in the humid715

tropics of South America and Africa, (iii) lacking spatial correlation of annual mean NEE measured by FLUXNET sites, (iv)

underestimation of fractional area burnt and corresponding emissions in the boreal forests, (v) negative soil organic carbon

bias in high latitudes, and (vi) time lag in seasonal LAI maxima in the NH extratropics. Recent model development has

started addressing some of those issues already, including the improvement of LAI seasonality through the incorporation of

23

 https://CRAN.R-project.org/package=amber
 https://CRAN.R-project.org/package=amber
 https://CRAN.R-project.org/package=amber


non-structural carbohydrates, which will form part of the next model version release (Asaadi et al., 2018). Further research is720

required to separate the impact of observational uncertainties on biases in LAI and above-ground biomass. For LAI, we propose

to add additional observation-based reference data sets and reduce the spatial coverage to high-quality grid cells that have not

been gap filled. For biomass we propose to extend our current forest inventory database to achieve greater spatial coverage.

The complexity of LSMs and increasing availability of global earth observations demand for comprehensive methods of

model evaluation. Such methods must account for uncertainties associated with model inputs and observation-based reference725

data to yield robust results. Future research could explore the question why meteorological forcing data sets used in this study

differ and how this uncertainty could be reduced. A centralized and updated reference database that includes spatially explicit

information of uncertainties would also be highly valuable.

Our results show that model performance is very sensitive to the choice of meteorological forcing and reference data,

confirming recent findings presented in Lawrence et al. (2019) and Bonan et al. (2019). For instance, for about half of all730

variables assessed in this study, the sign of the bias changes depending on what forcing and reference data are used. Comparing

model and benchmark scores confirms that CLASSIC performance is strongly affected by observational uncertainty. Taking

this uncertainty into account shows that CLASSIC performs very well across a wide range of variables. Our results will serve

as a baseline for guiding and monitoring future CLASSIC development.

Code and data availability. The data, scripts, code, dependencies, and instructions required for reproducing the results presented in this735

paper can be downloaded from http://doi.org/10.5281/zenodo.4596546. AMBER (version 1.0.3) and its documentation are also available

through the Comprehensive R Archive Network (CRAN; https://CRAN.R-project.org/package=amber). The full set of Figures produced

by AMBER for this study can be accessed at https://cseiler.shinyapps.io/ShinyAmber. The CLASSIC code and its software container are

available at https://doi.org/10.5281/zenodo.3522407.

Appendix A740

The computation of GPP is based on the parameterizations by Farquhar et al. (1980), Collatz et al. (1991) and Collatz et al.

(1992), with some minor adjustments documented in Arora and Boer (2003). The gross leaf photosynthesis rate (Go) is limited

by the availability of photosynthetically active radiation (PAR) (Je), Rubisco (Jc), and by the transport capacity (Js) (Melton

and Arora, 2016). To compute GPP, Go is first downregulated in response to nutrient availability and then multiplied with the

fraction of photosynthetically active radiation fPAR:745

fPAR =
1

kn
(1− exp(−knΛ)) , (A1)

where kn is the extinction coefficient that describes the nitrogen and time-mean PAR profile along the depth of the canopy and

Λ is the leaf area index (Arora et al., 2009). Λ is computed as the product of specific leaf area (SLA) and leaf biomass (CL),

where

SLA= 25.0Υ−0.5L (A2)750
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and ΥL being a PFT-specific leaf life span measured in years.

Ecosystem respiration is the sum of autotrophic (Ra) and heterotrophic respiration (Rh). Autotrophic respiration is the sum

of maintenance (Rm) and growth respiration (Rg). Maintenance respiration is divided into respiration associated with the

maintenance of leaves (RmL), stems (RmS), and roots (RmR). Leaf maintenance respiration is scaled from the leaf to the

canopy level using fPAR, and growth respiration (Rg) is estimated as a fraction of GPP. Heterotrophic respiration is the sum755

of respiration from litter and soil carbon, and is affected by soil temperature and soil moisture.

The reflectivity of plant surfaces varies considerably within the shortwave spectrum, with higher absorptivity in the visible

range due to photosynthesis and lower absorptivity in the near-infrared (IR) range. CLASSIC, therefore, computes surface

albedo for the visible and near-IR spectrum separately. Both approaches are identical, except for the use of different constants

that affect the background albedos for soil, vegetation, and snow, as well as canopy transmissivities. The surface albedo for760

the visible spectrum is the sum of the visible albedos of (i) bare ground (αvs,g), (ii) open snow (αvs,sn), (iii) vegetation over

bare ground (αvs,cn), and (iv) vegetation over snow (αvs,cs), multiplied with the corresponding subarea fractional coverage

(fg , fgs, fc, and fcs, respectively; Figure A25):

αvs = fc αvs,cn + fg αvs,g + fcs αvs,cs + fgs αvs,sn. (A3)

The visible albedo of bare ground (αvs,g) ranges from the visible albedo of wet soil (αg,w,v) to the visible albedo of dry soil765

(αg,d,v), depending on the soil moisture content in the first soil layer (θl,1). The visible albedo of open snow (αvs,sn) depends

on the all-wave albedo of the snow pack (αsno). The visible albedo of vegetation over bare ground (αvs,cn) is the product of the

total vegetation albedo of a PFT over bare soil (αsn,n) and its corresponding fractional coverage (fcan). The former depends

on the canopy albedo (αvs,cx), the visible albedo of ground under vegetation canopy (αvs,gc), the sky view factor (χ), and the

visible transmissivity of the vegetation (τvs):770

αvs,n = (1−χ)αvs,cx +χτvsαvs,gc. (A4)

The visible albedo of ground under vegetation canopy (αvs,gc) is set equal to the visible albedo of bare ground (αvs,g) computed

above. The canopy albedo αvs,cx is a function of the fractional coverage of canopy by frozen water (fsnowc) and the average

background visible albedo of snow covered vegetation (αvs,wc):

αvs,cx = fsnow,c αvs,wc + (1.0− fsnow,c) αvs,c. (A5)775

The visible transmissivity of the vegetation (τvs) follows Beer’s law of radiation transfer:

τvs = exp(−κ Λpai), (A6)

where κ is the canopy extinction coefficient, which depends on the cloud fraction, the solar zenith angle, and PFT-specific

constants. The sky view factor (χ) expresses the degree of closure of a canopy, and is a function of a PFT-specific constant (c)

and the plant area index (Λpai), which is the sum of Λ and stem area index:780

χ= exp(c Λpai). (A7)
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The same approach described for computing αvs,cn applies to the visible albedo of vegetation over snow (αvs,cs), except that

the terms fcanαvs,n and αvs,gc are replaced with the corresponding terms for canopy over snow, i.e. fcansαvs,s and αvs,sc.

The visible and near-IR albedos and canopy transmissivities obtained above are now used to compute the net SW radiation for

the canopy (K∗,c) and underlying ground (or snow) (K∗,g):785

K∗,g = τ̂vsK
↓
vs (1−αvs,g) + τ̂nirK

↓
nir (1−αnir,g) and K∗,c =K↓vs (1−αvs,c) +K↓nir (1−αnir,c)−K∗,g, (A8)

where K↓ is the downwelling SW radiation, carets denote values that are averaged over multiple PFTs, and the suffix nir

indicates that the respective variable applies to the near-IR spectrum (Figure A26). The net SW radiation is then the sum of

K∗g , K∗c, and the SW radiation transmitted into snow, if present (Qtrans).

The net LW radiation for the canopy (L∗,g) and underlying ground (or snow) (L∗,c) follow the Stefan-Boltzmann law:790

L∗,g = (1− χ̂)σT̄ 4
c + χ̂L↓−σT (0)4 and L∗,c = (1− χ̂)

(
L↓+σT (0)4− 2σT̄ 4

c

)
, (A9)

where L↓ is the downwelling LW radiation, σ is the Stefan-Boltzmann constant, T̄c is the effective canopy temperature, and

T (0) is the temperature of the underlying ground (Figure A26).

The sensible heat flux from the ground (QH,g) and canopy QH,c are given as:

QH,g = ρacp(T (0)pot−Ta,c)/ra,g and QH,c = ρacp(T̄c−Ta,c)/rb, (A10)795

where ρa is the air density, cp is the specific heat capacity, T (0)pot is the potential air temperature at the ground, Ta,c is the

canopy air temperature, ra,g is the surface resistance, and rb is the leaf boundary resistance. Air density is a function of air

temperature and pressure as defined in the ideal gas law. The resistances ra,g and rb are defined as:

1

ra,g
= 1.9× 10−3(T (0)v −Tac,v)1/3 and 1

rb
= v0.5ac

∑
fiγiΛ

0.5
i /0.75[1− exp(−0.75Λ0.5

i )], (A11)

where T (0)v is the virtual potential temperature of the surface, Tac,v is the virtual temperature of the air in the canopy space,800

vac is the wind speed in the canopy air space, fi is the fractional coverage of each vegetation type i over the subarea in question,

and γi is a vegetation-dependent parameter that incorporates the effects of leaf dimension and sheltering.

The latent heat flux from the ground (QE,g) and canopy (QE,c) are:

QE,g = Lvρa(q(0)− qa,c)/ra,g and QE,c = Lvρa(qc− qa,c)/(rb + rc) , (A12)

where Lv is the latent heat of vaporization, q(0) is the specific humidity at surface, qa,c is the specific humidity of air within805

vegetation canopy space, qc is the saturated specific humidity at canopy temperature, and rc is the stomatal resistance to

transpiration. In the absence of water stress, the unstressed rc is a function of K↓, Λ, and κ. If soil moisture is limiting

transpiration, rc depends on air temperature, vapor pressure deficit, and a soil moisture suction coefficient.

The soil heat flux (G(0)) is estimated from the vertical soil temperature gradient and the thermal conductivity of the first three

soil layers:810

G(0) =−λt
∂T

∂z
. (A13)
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The same approach is applied in the presence of snow, where λt is replaced with the thermal conductivity of snow (λs) and T

becomes the snow temperature (Ts). The latter depends on the snow heat capacity, which is a function of snow water content.

The surface and canopy energy balance are then expressed as:

K∗,g +L∗,g −QH,g −QE,g −G(0) = 0 and K∗,c +L∗,c−QH,c +QH,g −QE,c−∆QS,c) = 0, (A14)815

where ∆QS,c represents the change of energy storage in the canopy. In practice, the terms on the left-hand side don’t necessar-

ily add up to zero. CLASSIC attempts to approximate a zero net balance by slightly adjusting T (0) until the absolute residual

of the surface energy balance is less than 5.0 W m−2 , or until the absolute value of the iteration step most recently used is less

than 0.01 K.
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Table 1. Observation-based reference data used for model evaluation. Meanings of acronyms are provided in the Methods section.

Source Variables Approach (n sites) Period Reference

In situ measurements

FLUXNET2015 RNS, HFLS, HFSS, HFG eddy covariance (204) 1997-2014 Pastorello et al. (2017)

GPP, RECO, NEE

GRDC MRRO gauge records (50) 1980-2010 Dai and Trenberth (2002)

Mortimer SNW gravimetry (3271) 1970-2017 Mortimer et al. (2020)

CEOS LAI transfer function (141) 1999-2017 Garrigues et al. (2008)

ORNL DAAC LAI maximum LAI (2653) 1932-2011 Iio and Ito (2014)

FOS AGB allometry (274) 1999-2018 Schepaschenko et al. (2019)

Globally gridded data sets

MODIS ALBS BRDF 2000-2014 Strahler et al. (1999)

GPP light use efficiency model 2000-2016 Zhang et al. (2017)

LAI radiative transfer model 2000-2017 Myneni et al. (2002)

AVHRR LAI artificial neural network 1982-2010 Claverie et al. (2016)

CERES ALBS, RSS, RLS, RNS radiative transfer model 2000-2012 Kato et al. (2013)

GEWEXSRB ALBS, RSS, RLS, RNS radiative transfer model 1984-2007 Stackhouse et al. (2011)

GOSIF GPP statistical model 2000-2017 Li and Xiao (2019)

FluxCom RNS, HFLS, HFSS machine learning 2001-2013 Jung et al. (2019a)

FluxCom GPP, RECO, NEE machine learning 1980-2013 Jung et al. (2019b)

CLASSr RNS, HFLS, HFSS, HFG, MRRO blended product 2003-2009 Hobeichi et al. (2019)

ESA MRSLL land surface model 1979-2017 Liu et al. (2011)

ECCC SNW blended product 1981-2017 Mudryk (2020)

Brown SNW temperature index model 1981-2017 Brown et al. (2003)

Crocus SNW snow pack model 1981-2017 Brun et al. (2013)

GS3 SNW passive microwave 1981-2017 Takala et al. (2011)

MERRA2 SNW reanalysis 1981-2017 Gelaro et al. (2017)

GFED4S BURNT burned-area mapping 2001-2015 Giglio et al. (2010)

ESACCI BURNT burned-area mapping 2001-2017 Chuvieco et al. (2018)

CT2019 NEE, FIRE inversion model 2000-2017 Jacobson et al. (2020)

GEOCARBON AGB machine learning NA Avitabile et al. (2016),

Santoro et al. (2015)

Saatchi CVEG machine learning 2000 Saatchi et al. (2011)

HWSD CSOIL soil inventory NA Wieder (2014)

Todd-Brown et al. (2013)
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Table 2. Qualitative assessment of global mean biases. Variables for which positive and negative mean biases are found are denoted with

±. Biases that have a consistent sign across all evaluations but are smaller than ±5% are marked with ≤ 5%. Larger systematic biases are

marked with + or −. Numbers provided for each in situ reference data refer to the number of grid cells involved.

Variable Acronym Grid In situ Gridded reference data In situ reference data (n)

Net surface radiation RNS ± ± CERES, CLASSr, FluxCom, GEWEXSRB FLUXNET(73)

Sensible heat flux HFSS ± ± CLASSr, FluxCom FLUXNET (65)

Snow water equivalent SNW ± ± Brown, Crocus, GS3, MERRA2 Mortimer (363)

Runoff MRRO ≤ 5% ± CLASSr GRDC (50 basins)

Net LW radiation RLS ± CERES, GEWEXSRB

Soil moisture MRSLL ± ESA

Fractional area burnt BURNT ± ESACCI, GFED4S

Net SW radiation RSS ≤ 5% CERES, GEWEXSRB

Vegetation carbon in the tropics CVEG ≤ 5% Saatchi

Latent heat flux HFLS ± − CLASSr, FluxCom FLUXNET (65)

Gross primary productivity GPP ± − FluxCom, GOSIF, MODIS FLUXNET (89)

Net ecosystem exchange NEE ≤ 5% + FluxCom, CT2019 FLUXNET (91)

Ecosystem respiration RECO + ≤ 5% FluxCom FLUXNET (88)

Above ground biomass AGB − ≤ 5% GEOCARBON FOS (56)

Leaf area index LAI + ± AVHRR, MODIS CEOS (36), ORNL (330)

Surface albedo ALBS + CERES, GEWEXSRB, MODIS

Emissions from wild fires FIRE − CT2019

Soil carbon CSOIL − HWSD

Soil heat flux HFG − − CLASSr FLUXNET (60)
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Table 3. Globally summed mean values and corresponding biases

Variable Ref. ID Model ID Ref. Model Bias Bias (%) Unit Period

GPP FluxCom CLASSIC.CRUJRAv2 115.41 131.11 15.70 13.60 PgC yr−1 1980-2013

GPP FluxCom CLASSIC.GSWP3W5E5 115.31 124.23 8.92 7.74 PgC yr−1 1980-2013

GPP FluxCom CLASSIC.CRUNCEP 115.39 119.87 4.48 3.88 PgC yr−1 1980-2013

GPP GOSIF CLASSIC.CRUJRAv2 130.01 127.84 -2.17 -1.67 PgC yr−1 2000-2017

GPP GOSIF CLASSIC.GSWP3W5E5 129.61 120.02 -9.59 -7.40 PgC yr−1 2000-2016

GPP GOSIF CLASSIC.CRUNCEP 129.73 116.60 -13.13 -10.12 PgC yr−1 2000-2016

GPP MODIS CLASSIC.CRUJRAv2 121.47 133.07 11.60 9.55 PgC yr−1 2000-2016

GPP MODIS CLASSIC.GSWP3W5E5 121.33 125.29 3.96 3.26 PgC yr−1 2000-2016

GPP MODIS CLASSIC.CRUNCEP 121.46 121.74 0.28 0.23 PgC yr−1 2000-2016

NEE CT2019 CLASSIC.CRUJRAv2 -4.15 -4.19 -0.04 -0.96 PgC yr−1 2000-2017

NEE CT2019 CLASSIC.GSWP3W5E5 -4.18 -4.36 -0.18 -4.31 PgC yr−1 2000-2016

NEE CT2019 CLASSIC.CRUNCEP -4.19 -4.60 -0.41 -9.79 PgC yr−1 2000-2016

NEE FluxCom CLASSIC.CRUJRAv2 -24.88 -3.54 21.34 85.77 PgC yr−1 1980-2013

NEE FluxCom CLASSIC.GSWP3W5E5 -24.85 -3.87 20.98 84.43 PgC yr−1 1980-2013

NEE FluxCom CLASSIC.CRUNCEP -24.88 -4.13 20.75 83.40 PgC yr−1 1980-2013

FIRE CT2019 CLASSIC.CRUJRAv2 2.88 1.82 -1.06 -36.81 PgC yr−1 2000-2017

FIRE CT2019 CLASSIC.GSWP3W5E5 2.90 2.70 -0.20 -6.90 PgC yr−1 2000-2016

FIRE CT2019 CLASSIC.CRUNCEP 2.90 2.16 -0.74 -25.52 PgC yr−1 2000-2016

BURNT ESACCI CLASSIC.CRUJRAv2 4.61 3.31 -1.30 -28.20 106 km2 yr−1 2001-2017

BURNT ESACCI CLASSIC.GSWP3W5E5 4.62 5.27 0.65 14.07 106 km2 yr−1 2001-2016

BURNT ESACCI CLASSIC.CRUNCEP 4.62 4.05 -0.57 -12.34 106 km2 yr−1 2001-2016

BURNT GFED4S CLASSIC.CRUJRAv2 4.56 3.32 -1.24 -27.19 106 km2 yr−1 2001-2015

BURNT GFED4S CLASSIC.GSWP3W5E5 4.56 5.29 0.73 16.01 106 km2 yr−1 2001-2015

BURNT GFED4S CLASSIC.CRUNCEP 4.56 4.06 -0.50 -10.96 106 km2 yr−1 2001-2015

AGB GEOCARBON CLASSIC.CRUJRAv2 214.53 442.25 227.72 106.15 PgC 1980-2017

AGB GEOCARBON CLASSIC.GSWP3W5E5 214.50 384.31 169.81 79.17 PgC 1980-2017

AGB GEOCARBON CLASSIC.CRUNCEP 214.53 364.94 150.41 70.11 PgC 1980-2017

CSOIL HWSD CLASSIC.CRUJRAv2 1199.32 1108.79 -90.53 -7.55 PgC 1980-2017

CSOIL HWSD CLASSIC.GSWP3W5E5 1198.49 1023.48 -175.01 -14.60 PgC 1980-2017

CSOIL HWSD CLASSIC.CRUNCEP 1198.26 955.57 -242.69 -20.25 PgC 1980-2017
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(a) Net surface radiation
Bias RNS CLASSIC.CRUJRAv2 vs FLUXNET from 1991−01 to 2014−12
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(b) Latent heat flux
Bias HFLS CLASSIC.CRUJRAv2 vs FLUXNET from 1996−01 to 2014−12
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(c) Sensible heat flux
Bias HFSS CLASSIC.CRUJRAv2 vs FLUXNET from 1996−01 to 2014−12
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(d) Soil heat flux
Bias HFG CLASSIC.CRUJRAv2 vs FLUXNET from 1996−01 to 2014−12
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(e) Streamflow
Bias MRRO CLASSIC.CRUJRAv2 vs GRDC from 1980−01 to 2010−12
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(f) Snow water equivalent
Bias SNW CLASSIC.CRUJRAv2 vs Mortimer from 1970−01 to 2017−12
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Figure 1. Biases when comparing CLASSIC forced with CRUJRAv2 against in situ measurements of (a) net surface radiation, (b) latent heat

flux, (c) sensible heat flux, (d) soil heat flux, (e) streamflow, and (f) snow water equivalent. Measurements located in the same model grid

cell were merged. Upward and downward pointing triangles indicate positive and negative biases, respectively.
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(a) Gross primary productivity
Bias GPP CLASSIC.CRUJRAv2 vs FLUXNET from 1991−01 to 2014−12

−150 −100 −50 0 50 100 150

−60

−40

−20

0

20

40

60

80

−5
−4
−3
−2
−1
0
1
2
3
4
5

gC
 m

−
2  d

ay
−

1

(b) Ecosystem respiration
Bias RECO CLASSIC.CRUJRAv2 vs FLUXNET from 1991−01 to 2014−12
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(c) Net ecosystem exchange
Bias NEE CLASSIC.CRUJRAv2 vs FLUXNET from 1991−01 to 2014−12
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(d) Above ground living biomass

Bias AGB CLASSIC.CRUJRAv2 vs FOS from 1980−01 to 2017−12
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(e) Leaf area index
Bias LAI CLASSIC.CRUJRAv2 vs CEOS from 1999−08 to 2017−07
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(f) Leaf area index
Bias LAI CLASSIC.CRUJRAv2 vs ORNL from 1980−01 to 2017−12
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Figure 2. Same as Figure 1 but for (a) gross primary productivity, (b) ecosystem respiration, (c) net ecosystem exchange, (d) above-ground

biomass, (e) leaf area index, and (f) maximum leaf area index.
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Different Meteorological Forcing Data Sets
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Figure 3. Experimental set-up, where yellow boxes refer to data, green boxes to algorithms, and blue boxes to analysis output.
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Figure 4. Score functions for (a) bias, root-mean-square-error, and inter-annual variability, (b) seasonality, and (c) spatial distribution
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Figure 5. Global mean values of statistical metrics defined in section 2. The color ranges span the minimum and maximum for each metric.

The physical units of the mean and absolute bias are given by the vertical axis on the right-hand-side.
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Figure 6. (a) Zonal mean values and (b) corresponding biases for variables related to the radiation cycle.
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(a) Net Surface Radiation (evaluation ensemble bias, N = 12)
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(b) Albedo (evaluation ensemble bias, N = 9)
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Figure 7. Model ensemble mean values and respective biases for (a) net surface radiation and (b) surface albedo. The mean, minimum, and

maximum ensemble bias refer to the mean, minimum, and maximum values across all evaluations, respectively. For instance, a minimum

bias that is negative implies that at least one evaluation yields a negative bias.
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Figure 8. Net surface radiation computed from three model runs (CLASSIC driven with CRUJRAv2, GSWP3W5E5, and CRUNCEP) and

four reference data sets (CERES, CLASSr, FluxCom, and GEWEXSRB). The top, center, and bottom row provide ensemble mean, minimum,

and maximum values for (a) CLASSIC, (b) reference data, and (c) corresponding biases. The mean, minimum, and maximum ensemble bias

refer to the mean, minimum, and maximum values across all evaluations, respectively. For instance, a minimum bias that is negative implies

that at least one evaluation yields a negative bias.
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Figure 9. (a) Mean ensemble score, (b) maximum score difference among ensemble members, and ensemble member with the (c) largest and

(d) lowest score. Ensemble member IDs refer to model runs conducted with data from (1) CRUJRAv2, (2) GSWP3W5E5, and (3) CRUNCEP.
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Figure 10. (a) Annual mean values of soil heat flux (HFG), latent heat flux (HFLS), sensible heat flux (HFSS), and net surface radiation

(RNS) for the three CLASSIC ensemble members and for the reference data CLASSr, FluxCom, and FLUXNET. Subplot (b) shows the

corresponding fractions with respect to net surface radiation.
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Figure 11. (a) Zonal mean values and (b) corresponding biases for heat fluxes and variables related to the water cycle.
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Figure 12. (a) Zonal mean values and (b) corresponding biases for variables related to the carbon cycle.
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Figure 13. (a) Benchmark scores computed from reference data only, (c) mean model ensemble skill scores, and (b) corresponding score

difference.
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Figure A1. (a) Zonal mean values of meteorological forcing data and (b) corresponding difference between the individual forcing and the

mean of the three forcings, where rsds and rlds are the surface downwelling SW and LW radiation, respectively, tas is the near-surface air

temperature, pr is the precipitation, huss is the near-surface specific humidity, ps is the surface pressure, and sfcWind is the near-surface wind

speed.
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Figure A2. The left-hand column shows monthly values of (a) modeled (black) and observed (red) gross primary productivity, (c) residuals,

and (e) residuals of the anomalies. The right-hand column gives the corresponding model values for the (b) climatological mean seasonal

cycle, (d) monthly variability, and (f) monthly variability of anomalies. The data corresponds to CLASSIC model output for the location of

an eddy covariance measurement site in the Netherlands (NL-Loo).
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(a) Net SW Radiation (evaluation ensemble bias, N = 6)
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(b) Net LW Radiation (evaluation ensemble bias, N = 6)
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Figure A3. Same as Figure 7 but for (a) net SW radiation and (b) net LW radiation.
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Mean

(a)  RSS  Model Ensemble (N =  6 )
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Figure A4. Same as in Figure 8 but for net SW radiation.
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(a)  RLS  Model Ensemble (N =  6 )
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Figure A5. Same as in Figure 8 but for net LW radiation.
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Mean

(a)  ALBS  Model Ensemble (N =  9 )
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Figure A6. Same as in Figure 8 but for surface albedo.
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(a) Latent Heat Flux (evaluation ensemble bias, N = 6)
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(b) Sensible Heat Flux (evaluation ensemble bias, N = 6)
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Figure A7. Same as Figure 7 but for (a) latent heat flux and (b) sensible heat flux.
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(a) Soil Heat Flux (evaluation ensemble bias, N = 3)
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(b) Soil Mositure (evaluation ensemble bias, N = 3)
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Figure A8. Same as Figure 7 but for (a) soil heat flux and (b) soil moisture in the top 10 cm.
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(a)  HFSS  Model Ensemble (N =  6 )
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Figure A9. Same as in Figure 8 but for sensible heat flux.
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(a)  HFLS  Model Ensemble (N =  6 )

−60

−40

−20

0

20

40

60

80 Mean

(b)  HFLS  Reference Ensemble (N =  2 )

Mean

(c)  HFLS Mean Ensemble Bias (N =  12 )

−10
0
10
20
30
40
50
60
70
80
90
100
110

W
 m

−
2

Min

D
eg

re
es

 L
at

itu
de

−60

−40

−20

0

20

40

60

80 Min Min

Max

−60

−40

−20

0

20

40

60

80

J F M A M J J A S O N D

Max

J F M A M J J A S O N D

Max

−50
−40
−30
−20
−10
0
10
20
30
40
50

W
 m

−
2

J F M A M J J A S O N D

Figure A10. Same as in Figure 8 but for latent heat flux.
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(a)  HFG  Model Ensemble (N =  3 )
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Figure A11. Same as in Figure 8 but for soil heat flux.

61



Mean

(a)  MRSLL  Model Ensemble (N =  3 )
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Figure A12. Same as in Figure 8 but for soil mositure.
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(a) Runoff (evaluation ensemble bias, N = 3)
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(b) Snow Water Equivalent (evaluation ensemble bias, N = 12)
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Figure A13. Same as Figure 7 but for (a) runoff and (b) snow water equivalent.
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(a)  MRRO  Model Ensemble (N =  3 )
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Figure A14. Same as in Figure 8 but for runoff.
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(a)  SNW  Model Ensemble (N =  12 )
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Figure A15. Same as in Figure 8 but for snow water equivalent.
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(a) Gross Primary Productivity (evaluation ensemble bias, N = 9)
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(b) Net Ecosystem Exchange (evaluation ensemble bias, N = 3)
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Figure A16. Same as Figure 7 but for (a) gross primary productivity and (b) net ecosystem exchange.
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Figure A17. Same as in Figure 8 but for gross primary productivity.
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(a)  NEE  Model Ensemble (N =  3 )
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Figure A18. Same as in Figure 8 but for net ecosystem exchange.

68



(a) Fractional Area Burnt (evaluation ensemble bias, N = 6)
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(b) Emissions from Fires (evaluation ensemble bias, N = 3)
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Figure A19. Same as Figure 7 but for (a) fractional area burnt and (b) emissions from wild fires.
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(a)  BURNT  Model Ensemble (N =  6 )
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Figure A20. Same as in Figure 8 but for fractional area burnt.
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(a)  FIRE  Model Ensemble (N =  3 )
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Figure A21. Same as in Figure 8 but for emissions from wild fires.
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(a) Aboveground Living Biomass (evaluation ensemble bias, N = 3)
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(b) Vegetation Carbon (evaluation ensemble bias, N = 3)
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Figure A22. Same as Figure 7 but for (a) above-ground living biomass and (b) vegetation carbon in the tropics.
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(a) Soil Carbon (evaluation ensemble bias, N = 3)
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(b) Leaf Area Index (evaluation ensemble bias, N = 6)
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Figure A23. Same as Figure 7 but for (a) soil organic carbon mass and (b) leaf area index.
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(a)  LAI  Model Ensemble (N =  6 )
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Figure A24. Same as in Figure 8 but for leaf area index.
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Figure A25. Contributions from the bare ground (brown), canopy (green), and snow (white) to the total visible albedo of the land surface.

All variables are defined in the Appendix.
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Figure A26. Longwave and shortwave radiation fluxes between the ground (brown), canopy (green), and overlying atmosphere. The meaning

of each arrow is given at its tail. All variables are defined in the Appendix.
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