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Abstract.

The search for a long-term benchmark for land-surface models (LSM) has brought tree-ring data to the attention of the land-

surface community as they record
::::
have

:::::::
recorded

:
growth well before human-induced environmental changes became important.

The most comprehensive archive of publicly shared tree-ring data is the International Tree-ring Data Bank (ITRDB). Many

records in the ITRDB, however, have been collected with a view on
::
of maximizing an environmental target signal (e.g. cli-5

mate), which has resulted in a biased representation of the productivity of forested sites and landscapes and thus limits
:::
has

:::
thus

:::::::
limited its use as a data source for benchmarking

:::::
model

:::::::::
evaluation. The aim of this study is to examine

::::::
propose

::::
and

:::::::
examine

::
an

:::::::::
improved

:::::::::
conceptual

:::::::::
framework

:::
of

:
when and how ITRDB data can, despite its

::::
their sampling biases, be used

as century-long benchmarks for
:::
data

:::
for

:::::::::
evaluating

:
LSMs. Combining advances in modelling and data processing resulted in

four complementary benchmarks - reflecting
:::
for

:::::::::
evaluating

:::
size

::::::
related

::::::::
diameter

::::::
growth,

::::::::
diameter

:::::::::
increment

::
of

::::::
mature

:::::
trees,10

:::::::
diameter

:::::::::
increment

::
of

::::::
young

:::::
trees,

:::
and

::::
the

:::::::
response

:::
of

:::
tree

:::::::
growth

::
to

:::::::
extreme

:::::::
events.

:::::
These

::::::::::
benchmarks

::::::
reflect

:
different

usage of the information contained in the ITRDB- each ,
::::

and
::::
each

:::
of

::::
them

::
is
:
described by two performance metrics rooted

in statistics . Each of the
:::
such

:::
as

::::::
RMSE

:::
and

:::::
linear

::::::::::
regression.

:::
The

:
four proposed benchmarks was verified by calculating it

twice
::::
were

:::::::
verified

::
at

::
11

:::::
sites

::
by

::::::::::
calculating

::::
them: (1) based on an independent European tree-ring network of biomass plots

that were sampled in a locally representative way and are thus not biased by
::
for

::::::
which

::::::::
sampling

:::
was

::::::::
designed

::
to

:::::::::
overcome15

::
the

:
big-tree tree selection

:::::::
selection

::::
bias

:::
to

:::::
better

::::::::
represent

:::::
stand

:::::::
biomass, and (2) following sub-sampling of this European

biomass network by only considering the 15% biggest trees
:
to

:::::::::
reproduce

:::
the

:::::::
big-tree

::::::::
selection

::::
bias

::::::
present

::
in
::::

the
::::::
ITRDB.

This study showed that the ITRDB data can be used with
::
in

:::::
about

:
95% confidence to benchmark annual radial growth during

extreme climate years. In about 70% of the test cases, using ITRDB data would result in the same conclusions as using the
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European biomass network when the model is benchmarked against the annual radial growth of
:::::
during

:::::::
extreme

::::::
climate

::::::
years.20

:::
The

:::::::
ITRDB

::::
data

:::
can

:::
be

::::
used

::::
with

:::::
70%

:::::::::
confidence

::
of

::::::::::::
benchmarked

::::::
against

:::
the

::::::
annual

:::::
radial

::::::
growth

:::
of mature trees or the

size-related trend in annual radial growth. Care should be taken when using the ITRDB data to benchmark the annual radial

growth of young trees, as only 50% of the test cases were consistent with the results from the European biomass network.

Although the proposed benchmarks are unlikely to be exact, they may advance the field of land surface modelling by providing

a much-needed large-scale constraint on changes in the simulated maximum tree diameter and annual growth increment for the25

transition from pre-industrial to present-day environmental conditions over the past century. Hence, the proposed benchmarks

open up new ways of harnessing the ITRDB archive, but at the same time, illustrate ways in which tree-ring width observations

may be collected and processed to provide long-term validation tests for land surface models.

Running head: Tree-ring records as century-long benchmarks30

Key words: forest growth, tree-ring width, diameter growth, climate sensitivity, size-dependent growth, climate change
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1 Introduction

Earth system models integrate numerical models
:::::::::
submodels of atmospheric circulation, ocean dynamics and biogeochemistry,

sea ice dynamics, and biophysical and biogeochemical processes at the land-surface. Climate projections made by Earth system35

models have been the corner-stone of the last five
::
all Assessment Reports of the Intergovernmental Panel on Climate Change (?)

and as such have made a tremendous impact on global environmental policy (?). The 50 credibility of projections of the future

climate from any Earth system model in part relies on the ability of each of its four submodels to accurately reproduce the past

(?). Although long-term changes that date back to pre-industrial conditions (?) have been documented for vegetation distri-

bution through pollen based reconstructions (?), land-surface models (LSMs) currently lack a long-term benchmark for forest40

ecosystem functioning. The absence of long-term benchmarks is thought to contribute substantial uncertainty to
::::::::::
substantially

::
to

::::::::::
uncertainties

:::
in simulated future global carbon stocks in soil and vegetation (??) and as such to climate projections (Fig.

1a
:::
S1a).

Tree-ring records provide annual information on historical tree growth and physiology in relation to environmental conditions,

including the era
:::::
during

:::
the

::::
time

:
before human activities started to affect the atmospheric CO2 CO2 concentration (??). Even45

though trees grown in the absence of a clear annual rhythm of vegetative and dormant seasons may not develop distinct tree

rings, as observed for many species from the humid tropics, tree-ring records have been proposed as a large-scale and long-term

benchmark for the land surface component of Earth system models (Fig. 1b
::::
S1b; See section 6 for more details) (?????).

Until now, tree-ring records have often been collected to reconstruct past climate and hydrological variability from sites where

trees grow near the colder or drier fringes of their distribution (??). The most comprehensive archive of publicly shared tree-ring50

data is the International Tree-ring Data Bank (ITRDB), with more than 4,000 locations from 226 species across most forested

biomes (Fig. S1
::
S2) (??). However, a shortage of site metadata and the prevailing geographical, species and tree selection

sampling biases resulting from targeting climate-sensitive trees has limited the use of the ITRDB archive to infer long-term

changes in forest growth (????). Compared to tree-ring records that were collected for the purpose of benchmarking LSMs,

such as the European tree-ring network of biomass plots (hereafter called “European biomass network”; ?) that is available55

through the database of the BACI project (?), the aforementioned issues may limit the information content of the ITRDB

records. This loss in
:::::::::
incomplete information content should, however, be balanced against the associated benefits in terms of

time gain and resource savings when re-using the large ITRDB dataset.

When
::
If tree rings are to be used as benchmarks for LSMs, the models must demonstrate skillful simulation

:::::::::
simulations

:
of

tree-ring width (TRW). In the past decades, the major physiological and ecological processes that are responsible for annual60

tree-ring growth became sufficiently well-understood to be formalized in mathematical models with different levels of details.

The first TRW models (?) described processes at the cell level: cell division, cell enlargement, and cell wall thickening. Later,

the carbon and water balance of trees was added (?) as well as climatic influences
:
a
::::::::::::::
parameterization

::
of

::::
the

::::::::
influences

:::
of
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::::::
climate on cambial activity (?). These models were capable of reproducing short-term radial growth at the tree level. Further

developments introduced a notion of turgor and hormone regulation for cell growth (?????).65

At the same time, the spatial scale of models simulating wood formation based on cell dynamics was extended to the stand

level by simplifying process representation . In one such model
:::
the

::::::::::::
representation

::
of

:::::::::
processes.

::
In

::::
these

:::::::
models, photosynthate

availability, air temperature and soil water content were used to constrain wood cell growth and successfully reproduced

observations (???). Further simplifications were proposed by simulating the radial growth of trees based solely on carbon

allocation (??) rather than cell dynamics, the latter being computationally too expensive for large scale vegetation models70

(???). Hence, a variety of approaches is now available to describe TRW growth in forest models, dynamic vegetation models

and LSMs, but to the best of our knowledge there is yet no land-surface component of any Earth system model with such

capability.

This study articulates an improved conceptual framework for benchmarking simulated radial growth against ITRDB tree-

ring data, addressing limitations in the models, the data and the methods to compare models and data. The aims are to: (1)75

use current understanding of tree-ring growth to derive the minimal requirements for benchmarking LSMs against tree-ring

records archived in the ITRDB; (2) review potential issues of using the ITRDB to benchmark LSMs; (3) propose solutions

for a meaningful comparison of LSMs against ITRDB records; and (4) verify the proposed solutions by benchmarking a LSM

using a dataset
::::
data

::::
from

:
a
:::::::::

European
:::::::
biomass

:::::::
network

:::
(?) that is not prone to sampling biases related to palaeoclimatological

::::::::::::
dendroclimatic research. Dependencies between these aims and the workflow of this study are detailed in Fig. 2.

:::
??.80

2 Background: model requirements, data limitations and benchmarks

2.1 Minimal requirements for land-surface models to mechanistically simulate TRW

The linear aggregate conceptual
::::::::
conceptual

:::::
linear

:::::::::
aggregate model of tree growth (?) considers that the observed TRW at year t

(in mm) consists of five additive growth contributions (Fig. 3)
:::
??,

:::
left

:::::::
column)

:::
and

::
as

::::
such

::::::::
provides

:
a
:::::::::
framework

:::
for

:::::::::
simulating

:::::::
tree-ring

::::::
widths

::::
with

:::::::::::::::
(semi)mechanistic

:::::
model

::::::::::
approaches

::::
(Fig.

:::
??):85

(i) Size-dependent growth is the dominant signal in raw tree-ring measurements (?). Conceptuallyit can be understood by

considering ,
:

an almost constant volume of wood due to a more or less constant primary production (?) being added to the

trunks year after year (?). The annual diameter increment of the trees will decrease
::::::::
decreases as the trunk grows wider because

a given wood volume has to be distributed over an increasing surface area as both the circumference and height of the stem

are increasing. In reality, however, self-thinning reduces
::::
tends

::
to
::::::
reduce

:
stand density and competition for resources, implying90

that the remaining trees can
:
.
:::
The

:::::
trees

:::
left

:::
can

::::
thus increase their crown volume and thus increase their primary production (?)

which largely compensates for the size-dependent decrease in TRW and contributes to the observed almost constant TRW of

4



tall trees. Several of the common allocation schemes used in LSMs account for size- dependent growth and stand self-thinning

(??).

(ii) Climate-dependent growth reflects the sensitivity of tree growth to radiation, temperature,
:::::::::
phenology, and water avail-95

ability (?) and is accounted for in LSMs, as it represents the core purpose of this type of models. LSMs often rely on the

Farquhar model for the radiation and temperature dependency of photosynthesis (?), the McCree - de Wit - Penning de Vries

- Thornley approach for the temperature dependence of respiration (?), and .
:::::
They account for a decoupling of photosynthesis

and growth by the use of a labile carbon pool (???). Plant water availability is accounted for
:::::::::
represented

:
through either simple

transfer functions or more recently by accounting for the hydraulic architecture of the simulated trees (??).100

(iii) Endogenous disturbances refer to within-stand resource competition and are being increasingly simulated in LSMs

albeit often by empirical approaches (???). From a benchmarking point of view, simulating individuals of different size or

cohorts within a single forest is essential to reproduce the sampling biases present in the ITRDB (see section 2.2 and 2.3

below).

:::
(iv) Chronic exogenous disturbances such as increasing atmospheric CO2 CO2 concentration (?) and N-deposition (?) are105

well-developed as they are among the main purposes of using LSMs. The effect of CO2 CO2 fertilization on photosynthesis

is accounted for in the photosynthetic submodel whereas nitrogen dynamics are accounted for through static or dynamic

stoichiometric approaches (??).

(iv) Although abrupt disturbances such as fires, pests and storms are increasingly being simulated by LSMs (??) and they leave

marks in TRW (??), e.g., fire scars and missing rings, these functionalities are at present
::::
they

:::
are of limited use for bench-110

marking against TRW data. Abrupt disturbances are often simulated as stand-replacing disturbances and will, therefore, not

be reflected in the simulated TRWs. Furthermore, the
:::
The

:
timing of such events largely depends on the simulated diagnostics,

for example, fuel wood build-up, insect population dynamics, and soil moisture, which could strongly deviate from the ob-

served timing in decadal to century long simulation periods. Thus simulated stand demographics , rather than secular change,

might
::::::
should be the basis for benchmarking against observations

:::::
rather

::::
than

::::::
secular

:::::::
changes

::::
such

::
as

:::::::::
infrequent

:::::::::::
disturbances115

::::::::
described

:::::
above.

(v) The final term in the aggregate tree-growth model constitutes all processes and interactions between processes not 145

previously accounted for in the LSM, and will make up the model error.

This aggregate tree-growth model provides the conceptual basis for tree-ring standardization and climate signal extraction

methods used in dendrochronology (??), which
:
.
:::::
These

::::::::
methods

:
rely on the assumptions that the sampled trees capture120

the relevant common growth variability of the stand and that
::::
(e.g.,

:::::::
growth

::::::::
responses

:::
to

::::::
climate

:::::::::
variability

::::
and

::::::::
resource

:::::::::::
competition),

:::
and

:
the contribution of each major driver can be statistically identified as either signal or noise. Nevertheless,

alternative ecological models
:::::::::
approaches

:::::
based

:::
on

:::::::
Liebig’s

::::
Law

::
of

:::
the

::::::::
minimum

::::
(?) have been proposed to attribute TRW to
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its major drivers(?). In practice, observed TRW records cannot always be fully decomposed in the absence of metadata because

several drivers might not leave a unique fingerprint in growth. However, size effect and climate sensitivity have a much larger125

contribution to TRW than the other processes (?).

In addition to accurate process representation, the model
:::::
LSMs will need to be driven by historical climate, atmospheric CO2

con- centrations CO2 ::::::::::::
concentrations and N-deposition. In general, commonly-used century-long climate reanalyses such as

NCEP (?), 20CR (?), and CERA-20C (?) are based on the assimilation of instrumental observations in climate simulations and

are thus independent from climate estimates derived from tree rings or other proxy data. Nevertheless, random and systematic130

error
::::
errors

:
in the reanalyses increase as data availability decrease

::::::::
decreases, particularly in remote areas with a low density

and temporal depth of meteorological stations. Given that local climate effects may have contributed to the TRW, it might

be desirable to bias-correct the
:::::
correct

::::
the

:::
bias

:::
in reanalysis with present day site-specific climate observations where they

exist (?). When LSMs are forced by actual climate observations, reproducing the observed climate sensitivity in tree rings

would both facilitate and add credibility to the land-surface simulation – if forcing, LSM and TRW models are all realistic and135

unbiased.

Given the above, LSMs that intend to use TRWs as a benchmark should at the minimum simulate: (1) dynamic plant phenology,

(2) size-dependent growth, (3) differently-sized trees within a stand, and (4) responses to chronic exogenous environmental

changes (Fig. 3
::
??). Whereas responses to chronic exogenous environmental changes are the reason LSMs exist and are there-

fore to some extent accounted for by all current LSMs, size-dependent growth and size differentiation within a 170 stand are at140

present only accounted for in few LSMs, for example, CLM (ED) (?), ORCHIDEE (?), and LPJ-GUESS (?). The ORCHIDEE

model (revision 5698) meets the aforementioned minimum requirements and therefore will be used in this study.

2.2 Challenges of using ITRDB data as a long-term benchmark

A typical record in the ITRDB consists of TRW measurements of increment cores from tens of individual trees from the same

site and species. Each record may have different starting and ending dates, and thus length (Fig. 4
::
?? a and b). If a core reaches145

the centre
::::
pith of the trunk(i.e., pith), ,

:
annual tree diameter can be reconstructed (?). Even then diameter reconstruction may

come with some uncertainty because trunks are not perfectly round. If the core does not contain the centre of the trunk
:::
pith,

which is often the case for large trees,
:::
the

::::
lack

::
of

::::::::::
information

::::::
about

:::
the

:
rings near the pith will be missed adding

::::
adds

uncertainty to the diameter and age reconstruction (?). In this case, diameter increment can
:::::
could still be reconstructed (by

subtracting the measured TRW
::::
from

:::
the

::::::::
diameter

::
of

:::
the

::::
tree) if trunk diameter at the time of sampling is

:::
was known, but this150

metadata is rarely recorded in dendroclimatic collections and it is not stored in the ITRDB.

Despite of its known biases, the ITRDB can still be used to extract information useful for LSMs. The predominant sampling

design in the ITRDB targets the presumably oldest trees, which should give the longest time series and are therefore most useful

to reconstruct the climate variability prior to instrumental records. The ITRDB is thus likely to overrepresent
::::::::::::
over-represent
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large trees (??) relative to the population demographics at the time of sampling. This big-tree selection bias makes the ITRDB155

unsuitable to upscale growth of individual trees to larger spatial domains, i.e., stand, forest or the region (??) but does not affect

the value of the ITRDB archive for documenting individual tree growth as long as tree size and dominance effects are explicitly

considered. Although the model- data comparison cannot -without additional data- correct for the big-tree selection bias in the

ITRDB,
:::
this

::::
bias

:::
can

:::
be

::::::::::::
accommodated

:::::::
through

:
models that simulate multiple tree diameter classes may accommodate this

bias by comparing the largest simulated diameter class with the observed ITRDB tree-ring records (Fig.4
::::::::
illustrated

:::
by

:::
the160

::::
black

::::::
dotted

:::
and

::::::
highest

::::
blue

:::::
lines

::
in

:::
Fig.

:::
??a).

Another bias related to the ITRDB sampling design comes from the fact that the growth rate of trees within a cohort differs

between individuals (??) resulting in slowly
:::
slow

:
and fast-growing trees within the same cohort (Fig. 4b

::::::::
illustrated

:::
by

:::
the

::::
grey

::::
lines

::
in

::::
Fig.

:::
??b). Slow-growing trees tend to live longer than fast-growing trees in the same cohort (??). Records of TRW

:::::
Owing

:::
to

::::::::::
survivorship

:::::
being

::::::
biased

:::::::
towards

:::::::::::
slow-growing

::::::::::
individuals

:::
(?),

:::::
TRW

:::::::
records are thus likely to underestimate the165

mean tree growth of a stand in long-passed centuries as fast-growing trees would have died off before the samples were taken

(?). Another challenge of using ITRDB data comes from the difference between the observed and simulated forest structure.

Tree-ring datasets are composed by cores of individuals from different cohorts (Fig. 4b
:::
??b). Comparing these data against

simulations requires the model to be individual-based or to align TRW records by age (Fig. 4a
:::
??c).

Given the above,
::
for

::::
sites

:::
for

:::::
which

:::
the

::::::::
sampling

:::::::
protocol

::
is

::::::
poorly

::::::::
described

::
or

:::
not

:::::::::
rigorously

:::::::
enforced

:
only part of the infor-170

mation contained in TRW records can be used for benchmarkingif their sampling protocol is poorly described or not rigorously

enforced. A model-data comparison cannot correct for these biases but we propose to enhance the consistency between mod-

elled and observed tree-rings for a stand under study by making use of
::::::::::
site-specific virtual trees. ’Virture tree’ is "not physically present as such but made by software to appear to be so from the point of view of a program or user"

(?) !!!!!!!

Virtual trees will, however, also require careful post-processing of the ITRDB data to produce an intercomparison between175

analogous simulations and observations . Later in this study we propose four different benchmarks based on the ITRDB data

, three of which make use of a virtual tree. Nevertheless, each of these benchmarks addresses a different aspect of TRW , and

therefore uses a different definition for its virtual tree:

(i) The average virtual tree of a stand aligned by tree age is calculated as the time series for
::::::
Virtual

::::
trees

:::
are

::::::
created

:::::::::
cautiously

::::
from

:::::::::::
observations

::
by

:::::::::
combining

::::
data

:::::
from

:::::::
different

::::::::::
individuals

::
to

:::::
obtain

::
a
::::
time

:::::
series

:::
of

::::
TRW

:::::
with

:
a
:::::::
desired

:::::::
property

::::
(see180

::::::
section

:::
2.3

:::
for

::::::
details

::
on

:::
the

:::::::
desired

::::::::::
properties).

:::
By

::::::::
definition,

::::::
virtual

:::::
trees

::::
were

::::
not

:::::::
observed

::::
and

::::::::
therefore

:::
not

::::::
present

:::
as

::::
such

::
in

:::
the

:::::::
ITRDB

:::::::::::
observations.

:::::
Since

:::
for

:
a
::::::
single

::::
site, the average ring width after aligning the age of the individual trees

(Fig. 4a). Age-aligned TRWs are widely used to calculate a statistic known as the mean regional curve of the sampled stand (?)

. This assumes that common drivers regardless of time, exceed the signal from local and individual differences in tree growth

(see subsection 2.3 (i)).185
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(ii) The average virtual tree of a stand aligned by calendar year is calculated by ordering individual tree-ring series by calendar

year (Fig. 4b)and for each year the average observed diameter is calculated. Alignment by calendar year thus reflects the real

temporal evolution of the stand. This virtual tree can be used to cope with the challenge from difference in forest structure

between the simulation and the observation by compiling a representative and comparable tree with the simulated tree (see

subsection 2.3 (ii)).190

(iii) The largest virtual tree of a stand is calculated after aligning individual trees by their age (Fig. 4c). The recommendation to

remove the age trend from
::::::::::
observations

:::::::
consists

::
of

:::::::
samples

::::
from

:::::::
multiple

:::::::::
individual

::::
trees

:::::::::
(individual

:::::
trees

:::
are

:::::
shown

:::
by

::::
grey

::::
lines

::
in

::::
Fig.

:::
??),

:::::::::::
constructing

:
a
:::::
single

::::::
virtual

:::
tree

:::::::::
facilitates

:::::::::
data-model

:::::::::::
comparisons.

:::::::::
Moreover,

:::::::
varying

:::
the

:::
way

:::
the

:
tree-ring

records (?) confirms the assumption underling the alignment by age, i. e., that size dependent age exceeds the growth trends

due to long-term environmental changes. Subsequently, the age-aligned TRWs can be used to compile a virtual fast-growing195

tree which has the maximum observed diameter of all treesfor a given tree age. The virtual fast-growing tree thus gives a better

idea of the true mean tree growth in old stands. (see subsection
::
are

:::::::
aligned

::::::::
(compare

::::
Figs.

:::
??

::
b

:::
and

::
c;

::::::
details

:::
are

::
in

:::::::
Section

2.3(iii)).
:
)
::::::
altered

:::
the

::::::::
properties

::::
and

:::::::
intended

:::
use

::
of

:::
the

::::::
virtual

:::::
trees.

The proposed data-model comparison thus largely relies on the concept of virtual treesto account ,
:::::
since

:::::
these

:::::
virtual

::::
trees

::::
can

::::::
account

:::::
better

:
for known sampling biases of the ITRDB

:::::::
datasets,

:::::::
different

::::::
aspect

::
of

:::::
TRW as well as for the model definition200

of a forest stand
:
to
::::::::
facilitate

:::::::::
comparing

::::::::::
simulations

:::
and

:::::::::::
observations. The proposed definitions and uses of virtual trees which

were partly customized to ORCHIDEE r5698, are evaluated in section 4.1. Except for LSMs with an individual tree-based

stand definition (?), benchmarking other models against ITRDB data will also have to consider the use of virtual trees and may

have to adjust the proposed definitions to the peculiarities of each model
::
the

:::::
LSM

:::::
under

:::::::::
evaluation.

2.3 Benchmarks for comparing observed and simulated tree-ring widths205

If a LSM explicitly accounts for the main factors contributing
:::::::::
contributors

:
to TRW, i.e., size effects and climate sensitivity (?),

meaningful benchmarking against specific aspects of the observations becomes feasible in spite of the aforementioned biases

in the ITRDB. Our technical framework considers four complementary aspects of the observations: (i) the size-related trend

in tree-rings; (ii) diameter increment of mature trees; (iii) diameter increment of young trees; and (iv) extreme growth events.

Each of these aspects formed the basis of a benchmark (Table 1
::
S1):210

(i) Size related diameter growth.
::::
Size

::::::
related

::::::::
diameter

:::::::
growth. The size-related

::::::
growth trend in diameter increment can

be assessed by calculating the average virtual tree for a stand aligned by tree age (Fig
::::::::
examples

::::::
shown

::
in

::::
Fig.

:::
??a

::::
and

::::
Fig.

::
??

:
a
::::

and
::
b). 5 a , b)and subtracting its TRWs

::::::::::
Age-aligned

::::::
TRWs

:::
are

::::::
widely

::::
used

:::
to

:::::::
calculate

::
a
::::::
statistic

::::::
known

:::
as

:::
the

:::::
mean

:::::::
regional

::::
curve

:::
of

::
the

::::::::
sampled

::::
stand

:::
(?)

:
.
:::::::
Aligning

:::
by

:::
age

:::::::
assumes

:::
that

::::::::::
size-related

::::::
growth

::
is

:::
the

::::::::
dominant

:::::
driver

::
of

::::
tree

::::::
growth

:::::::
(Section

::::
2.1).

::::::::::::
Subsequently,

:::
the

::::::
average

::::::
virtual

:::
tree

::
is
:::::::::
subtracted

:
from the simulated TRWs of the largest diameter class (Fig.215

5c). Subsequently
::::
??).

::::
Next, a linear regression is used to quantify the temporal trend in the residuals (Fig. 5d

:::::::
examples

::::::
shown
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::
in

:::
Fig.

::::
??d). If the simulations and observations have similar size-related trends, the temporal trend in the residuals will be

close to zero. Furthermore, the root mean square error (RMSE) between the simulations and observations is calculated and

normalized by the length of time series used to calculate the difference in observed and simulated growth trends. A skilled

model is expected to simultaneously show no trend in the residuals and a low RMSE across many sites.220

(ii) Diameter increment of mature trees.
::::::::
Diameter

:::::::::
increment

:::
of

:::::::
mature

:::::
trees. In LSMs that account for within-stand

competition, larger trees will consistently grow faster than smaller trees due to the way competition is formalized (??). In

reality, growing conditions can suddenly become favourable
::::::::
favorable for trees that have previously been suppressed, resulting

in fluctuating growth rates .
:::
(see

::::::::
dark-grey

:::::
lines

::
in

::::
Fig.

::::
??b).

:
This discrepancy between simulated and observed competition

can be accounted for in the benchmark by using the observations to compile a virtual treeof the
:
.
:::
For

::::
this

::::::::::
benchmark

:::
the225

::::::
average

::::::
virtual

::::
tree

::
of

::
a
:
stand aligned by calendar year , taking the average tree diameter of all samples to construct the

virtual tree
:
is

::::
used

::::
and

::::::::
calculated

:::
by

::::::::
ordering

::::::::
individual

::::::::
tree-ring

:::::
series

:::
by

:::::::
calendar

::::
year

:
(Fig. 6

:::
??b

:::
and

::::
Fig.

:::
??a and b) .

Under the assumption
::
and

::::::::::
calculating

:::
the

:::::::
average

:::::::
diameter

:::
for

:::::
each

::::
year.

:::::::::
Alignment

:::
by

:::::::
calendar

:::::
year

::::
thus

::::::
reflects

:::
the

::::
real

:::::::
temporal

::::::::
evolution

::
of

:::
the

::::::
stand.

:::::::::
Following

:::
the

::::::
big-tree

::::::::
selection

::::
bias

:::::::
(Section

::::
2.2)

::
it

:::
can

::
be

::::::::
assumed

:
that the observed trees

are representative of the biggest trees from a given site
:
.
::::::
Hence, the virtual tree can be compared with the biggest diameter230

class from the model. Given that for the last
:::
The

::::::::::
survivorship

::::
bias

::
of

::::::::::::
slow-growing

:::::::::
individuals

:::
has

:::
the

::::::::
strongest

::::::
impact

:::::
when

:::::::
assessing

:::::
TRW

::
in

:::::::
century

:::
old

::::
trees

:::::::
(Section

::::
2.2).

::::::
When

::::::::
analyzing

:::::
recent

:
decades both the quick and slowly growing trees are

still alive and could have been sampled,
::::::::
therefore, only the growth in recent decades of the virtual tree are

:::::
should

::
be

:
compared

to the simulations (Fig. 6
::
??

:
c and d).

::::
This

::::::
virtual

:::
tree

::::
was

::::
thus

::::
used

::
to

:::::
better

::::
cope

::::
with

:::::::::
differences

::
in
:::::::::
simulated

:::
and

::::::::
observed

:::::
forest

::::::::
structure. The RMSE and trend of the residuals between the virtual tree and the largest diameter class simulated are235

calculated (Fig. 6d
:::
??d). A skilled model is expected to simultaneously show no trend in the residuals and a low RMSE across

many sites.

(iii) Diameter
::::::::
Diameter

:::::::::
increment

::
of

::::::
young

:::::
trees.

:::
The

::::::::
diameter increment of young trees . As mentioned above, the

size-related trend in diameter increment can be assessed by calculating the largest virtual tree of the stand. The maximum age

of a virtual tree equals the shortest observed individual TRW record for the stand, as it represents the age intersection between240

the TRW records for all individuals in the stand.
:::::
largest

::::::
virtual

:::
tree

:::
of

:
a
:::::
stand

::
is

:::::::::
calculated

::::
after

:::::::
aligning

:::::::::
individual

::::
trees

:::
by

::::
their

:::
age

:::::
(Fig.

:::
??c

::::
and

::::
Fig.

::
??

::
a
:::
and

:::
b).

::::
The

::::::::::::::
recommendation

::
to
:::::::

remove
:::
the

::::
age

::::
trend

:::::
from

::::::::
tree-ring

::::::
records

::::
(?)

:::::::
confirms

::
the

::::::::::
assumption

::::::::::
underlying

:::
the

:::::::::
alignment

::
by

::::
age,

::::
i.e.,

::::
that

::::::::::::
size-dependent

::::
age

:::::::
exceeds

:::
the

:::::::
growth

:::::
trends

::::
due

::
to

:::::::::
long-term

:::::::::::
environmental

::::::::
changes.

::::::::::::
Subsequently,

:::
the

:::::::::
age-aligned

::::::
TRWs

:::
can

:::
be

::::
used

::
to

:::::::
compile

:
a
::::::
virtual

:::::::::::
fast-growing

:::
tree

::::::
which

:::
has

:::
the

::::::::
maximum

::::::::
observed

::::::::
diameter

::
of

:::
all

::::
trees

:::
for

::
a

:::::
given

:::
tree

::::
age

::::
(See

:::
the

:::::::::
difference

::
in

:::
the

::::::
weight

:::
of

::::
dark

::::
grey

:::::
lines

::
to

::::::
virtual245

::::
trees

::
in

::::::
Fig.??

:
b
::::

and
:::
c). The largest virtual tree is thus clearly biased towards higher observed diameters, compensating for

the loss of observed high diameters in field sampling due to the fact that the old fast-growing trees died well before sampling

took place (Fig. 7
::
?? a and b). The

::::::
virtual

::::::::::
fast-growing

::::
tree

::::
thus

::::
gives

::
a
:::::
better

::::
idea

::
of

:::
the

::::
true

::::
mean

::::::
young

:::
tree

:::::::
growth

::
in

:::
old

:::::
stands.

::::
The

:
first three decades of growth of the virtual tree are then compared to the simulated growth of the largest diameter

class (Fig. 7
::
??

:
c and d) by calculating the RMSE and trend of the residuals (Fig. 7d

:::
??d). The 30-year threshold is somewhat250
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arbitrary but reflects the observation that most of the selected time series show fast changes in tree growth at the first 30 years.

When benchmarking against other TRW data, this threshold could be adjusted to better fit the observed growth dynamics for

other tree species and/or other regions. A skilled model is expected to simultaneously show no trend in the residuals and a low

RMSE across many sites. By using different approaches to evaluate the growth of young (this benchmark) and mature trees

(the previous benchmark) the comparison accounts for the observation that the drivers of ring growth change as the trees grow255

taller (?).

(iv) Extreme growth events.
:::::::
Extreme

:::::::
growth

::::::
events. Even a perfect LSM cannot be expected to reproduce all year-to-

year variation due to uncertainties in forcing data , such as the reconstructed climate
:::
like

:::
the

:::::::
climate

::::::
analysis

:
and N-deposition

drivers. Nevertheless, well-constrained reanalysis-based climate reconstructions can be expected to contain extreme events,

and hence a skilled model driven by well- constrained
::::::::::::::
well-constrained reconstructions should reproduce the statistics of the260

most extreme events. In this benchmark, extreme growth is defined as the first and last quartiles in TRW ordered by calendar

year(i. e., not aligning establishment years).
:
. Since year-to- year variation of the simulation is more reliable after 1951 because

:::::::::
CRUNCEP,

:
the climate reconstructions used to drive the data rely

::
for

:::
this

::::::
study,

:::::
relies more on observations rather than on a

climate reanalysis as is the case for the years before 1950, this benchmark only uses TRW data that represent tree growth after

1951. As all selected stands were already 50 years or older in 1950 and TRW were thus past their juvenile dynamic growth265

phases
::::
trees

:::::
were

:::
not

:::::::
juvenile

::::::::
anymore, detrending was not required. Subsequently, individual tree records from the same

site were averaged to obtain a single time series per site (Fig. 8a
:::
??a). The model skill to reproduce the absolute ring-width

amplitude regardless of timing was tested by comparing the observed and simulated 25th and 75th percentiles of TRWs for

the largest diameter class, which is the diameter class showing the strongest climate sensitivity (Fig. 8
::
??

:
e and f). Since other

benchmarks test for model’s capability to simulate absolute TRW, these benchmarks focus on the difference between high and270

low growth years. The mean TRW of the simulations or observations was subtracted to remove the effect of differences in,

respectively simulated or observed TRWs. Additionally, model skill for reproducing the timing of individual extreme growth

events was tested by comparing the simulated TRW for the exact years during which extreme growth was observed (?, Fig.7

a-d). The amplitude and value of TRWs can affect the calculation, which is not the aim of the test; thus, TRWs were normalized

by the standard deviation of the selected trees. For both the amplitude and timing of growth extremes
:::::::
extreme, the similarity275

between simulations and observations was calculated as the RMSE with the error being the distance from the 1:1 line (Fig. 8

::
??

:
c-f). A skilled model is expected to simultaneously show low RMSE for both the amplitude and timing of extreme years

across many sites.
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3 Materials and Methods

3.1 The land-surface model ORCHIDEE280

ORCHIDEE (??) is the land-surface model of the IPSL (Institute Pierre Simon Laplace) Earth system model (?). Hence, by

design, it can be coupled to an atmospheric general global circulation model or become a component in a fully coupled Earth

system model. In a coupled setup, the atmospheric conditions affect the land-surface and the land-surface, in turn, affects the

atmospheric conditions. However, when a study focuses on changes in the land-surface rather than on the interactions with

climate, it can also be run as a stand-alone land-surface model. In both configurations the model receives as input atmospheric285

conditions such as precipitation, air temperature, air humidity, winds, incoming solar radiation, and CO2CO2; this combination

of inputs is known as the climate forcing. Both configurations can cover any area ranging from global to regional domains and

even down to a single grid point for the stand-alone case.

Although ORCHIDEE does not enforce a spatial or temporal resolution, the model does use a predefined spatial grid and

equidistant time steps. The spatial resolution is an implicit user setting that is determined by the resolution of the climate290

forcing. Although the temporal resolution is not fixed, the processes were formalized at given time steps: half-hourly (i.e. pho-

tosynthesis and energy budget), daily (i.e. net primary production), and annually (i.e. vegetation dynamics). Hence, meaningful

simulations have a temporal resolution between 1 minute and 1 hour for the energy balance, water balance, and photosynthesis

calculations.

ORCHIDEE builds on the concept of meta-classes to describe vegetation distribution. By default, it distinguishes 13 meta-295

classes (one for bare soil, eight for forests, two for grasslands, and two for croplands). Each meta-class can be subdivided

into an unlimited number of plant functional types (PFTs). When simulations make use of species-specific parameters and age

classes, several PFTs belonging to a single meta-class will be defined. Biogeochemical and biophysical variables are calculated

for each PFT or groups of PFTs (e.g. all tree PFTs in a pixel drawn from the same description of soil hydrology, known as a

soil water column).300

ORCHIDEE is not an individual-based model but instead it currently represents forest stand complexity and stand dynamics

with diameter and age classes. Each class contains a number of individuals that represent the mean state of the class. Therefore,

each diameter class contains a single modelled tree that is replicated multiple times and distributed at random throughout the

PFT area. At the start of a simulation, each PFT contains a user-defined number of stem diameter classes. This number is held

constant throughout the simulation, whereas the diameter boundaries of the classes are adjusted to accommodate for temporal305

evolution in the stand structure. By using flexible class boundaries with a fixed number of diameter classes, different forest

structures can be simulated. An even-aged forest, for example, is simulated with a small diameter range between the smallest

and largest classes. All classes will then effectively belong to the same stratum. An uneven-aged forest is simulated by applying

a large range between the diameter classes. Different diameter classes will therefore effectively represent different strata. The
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limitations of this approach become apparent when the TRW data and simulation are compared by calendar year as the model310

does not track individual trees. Although the dimensions of each model tree itself are well-defined, the amount of radiation it

receives (and therefore the amount of carbon produced) is determined by the statistical distribution of all model trees in that

grid cell.

Vegetation structure is then used for the calculation of the biophysical and biogeochemical processes of the model such as

photosynthesis, plant hydraulic stress, and radiative transfer model. The r5698 version of ORCHIDEE, which is the version315

used in this study, combines the dynamic nitrogen cycle of ORCHIDEE r4999 (??) and the explicit canopy representation

of ORCHIDEE r4262 (???). It is one of the branches of the ORCHIDEE model and it was further developed from ? and ?

(Text S1), parameterized, and tested to simulate TRW series, in order to meet the aforementioned minimum requirements of

simulating the carbon, water, energy, and nitrogen cycle, while accounting for size-dependent allocation for three diameter

classes within a forest stand.320

In this study we use a data product for the climate forcing from a merged and homogenized gridded dataset developed for

modelling purposes over the 20th century, i.e., CRU-NCEP (?), the gridded nitrogen deposition product from CCMI (?), and

a gridded nitrogen fertilization product for N2O (?) such that observed TRWs for the past century can be used to evaluate the

skill of the LSM ORCHIDEE r5698 to simulate radial tree growth. A detailed overview of earlier developments (???) that

resulted in the emerging capability of ORCHIDEE r5698 to match the aggregate tree growth model (Fig. 3
::
??) is given in the325

supplementary material (Text S1).

3.2 Reference data of productivity-oriented TRW sampling

The European biomass network contains TRW samples from “fixed-plot sampling”. The database was established within

multiple research projects and made publicly available through the EU Horizon-2020 project BACI (?). It archives at present

48 datasets covering temperate and semi boreal climates (Fig. S1
:::
S2) and being collected from a variety of research efforts in330

Eurasia (?). All trees larger than 5.6 cm in diameter at breast height had to be sampled in a 10 to 40 m radius plot, depending on

stand density, to be archived in the BACI database (?). The European biomass network is, therefore, considered to be free from

the big-tree selection bias that has plagued the ITRDB, although other known biases (e.g. slow-grower survivorship bias; (?))

may still be present. The records from the European biomass network are thus suited to evaluate the validity of using virtual

trees constructed from ITRDB records to cope with the aforementioned sampling biases.335

3.3 Simulation set-up

We selected sites from the European biomass network based on the following criteria: (1) the site had to be dominated by

a single species for enhanced compatibility with ORCHIDEE, which is monospecific by design; and (2) stand age should
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exceed 50 years as a requirement to apply all four proposed benchmarks (Section 2.3). The benchmarks were applied to a

common evergreen and a common deciduous species. Hence, within the filtered sites, only sites dominated by Picea Abies or340

Fagus Sylvatica were retained, resulting in 12 sites out of the total of 48 sites. CIM, a site dominated by Fagus Sylvatica, was

removed from the selection (decreasing the final number of sites to 11) because only one tree out of 61 trees was aged over

100 years, resulting in a diameter distribution that is not at all compatible with the default diameter distribution of the model.

The details of the selected sites are in Table S2
:::
S3.

For the simulations, the LSM ORCHIDEE r5698 was used. This model version accounts for the aforementioned minimum345

requirements for LSMs to mechanistically simulate TRW (section 2.1). ORCHIDEE r5698 was run for 11 individual pixels,

each containing one of the selected sites. An observation-based time series of atmospheric CO2 CO2 concentrations was used

(?) and forest management followed the reported management status of the site (Table S2
::
S3). During model development, three

global (e.g., the number of diameter classes) as well as two PFT-specific parameters (e.g. recruitment success) were manually

adjusted to jointly reproduce the TRW data of 10 ITRDB sites (aust112, cana106, chin037, finl055, fran4, id007, japa011,350

mo009, nepa003, spai055, and turk027) for which the match between observations and simulations was assessed visually. All

runs in this study used the default parameter values except for the five parameters that were manually tuned.

In this study, every simulation started from a 300-year long spinup required to bring the simulation to equilibrium with respect

to the slow carbon and nitrogen pools in the soil. The spinup was concluded with a clear cut such that the start year and the

length of each simulation matched the observed stand age. The model configuration distinguished five diameter classes. The355

smallest diameter class contained 15% of the total number of trees, the intermediate diameter classes contained 21, 27, 21%,

and the largest diameter class represented 15% of the total number of trees. A more detailed description of the ORCHIDEE

model is given in the Supplementary Information (Text S2).

3.4 Verification of the benchmark

The European biomass network data were used to verify, whether the big-tree selection bias that is present in the ITRDB data360

invalidates its use for benchmarking LSMs. The verification checked whether changes in parameter values or model process

representation that would be required to make the model output better match the ITRDB data, would also result in a better

match between the model output and the all tree data. If this would be the case, benchmarking LSMs against ITRDB data

would result in model changes that would enhance the model’s capability to simulate tree growth thus justifying the conclusion

that despite the known biases, ITRDB data can be used for LSM benchmarking.365

The verification, therefore, used the data from the European biomass network in two different ways: 1) all trees in the European

biomass network dataset were used (hereafter called “all-tree data”) to calculate the four proposed benchmarks at the site level.

The results of these benchmarks were used as the reference in the verification, and 2) only big trees were sub- sampled

::::::::::
sub-sampled

:
from the data (hereafter called “big-tree data”) and all four benchmarks were calculated against this sub-sample
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of data. Big trees were defined as the top 15% of the trees based on their diameter, and the 15% threshold was taken to match370

the diameter distribution in ORCHIDEE, where by definition the largest diameter class contains 15% of the trees.

The verification required three additional steps (Fig. 9
::
??): 1) The simulated TRW from the largest diameter class were trans-

formed by modifiers (see below) to minimize the two metrics of each benchmark.
::::
The

:::::::
different

::::::::::
benchmarks

::::
may

:::
use

::::::::
different

::::::
metrics,

::::
i.e.,

:::
the

:::::::
RMSE

:::
and

:::::
slope

:::
of

:::
the

::::::::
residuals

:::::
were

::::
used

:::
as

:::
the

:::::::
metrics

:::
for

::::::::::::
benchmarking

::::::::::
size-related

::::::
growth

::::::
trend,

::::::
growth

::
of

::::::
mature

:::::
trees,

::::
and

::::::
growth

::
of

::::::
young

:::::
trees,

:::::::
whereas

:::::::
extreme

:::::::
growth

:::
and

:::::
TRW

:::::::::
amplitude

::::
were

:::::
used

::
as

:::
the

:::::::
metrics375

::
for

::::::::::::
benchmarking

:::::::
extreme

:::::::
growths

::::::
(Table

:::
S1); 2) the same modifiers were then applied to all simulated diameter classesboth

metrics for
:
,
:::
and

:
all four benchmarks.

:::::::
Hence,

:::
for

::::
each

:::::::::
benchmark

:::
its

:::
two

:::::::
metrics were calculated using the all-tree data, and

3) the actual verification tested whether for a given metric and a given benchmark the modifier improved
:::::::::
simulations for the

big-tree sample as well as
:::
and

::
for

:
the all-tree data. Improvement of a specific metric of a benchmark was quantified by sub-

tracting the pre-modified
::::::
original

:
value for that metric from its post-modified value for the

:::::::
modified

:::::
value

:::
for

:
all-tree data.380

A negative value thus indicated an improvement. If this was the case, the benchmarks of the big-tree and all-tree data were

said to be consistent, implying that using this benchmark in combination with the ITRDB data would reveal the same model

shortcomings as benchmarking ORCHIDEE against TRW data from all-tree networks. Across the 11 sites and for each of the

four proposed benchmarks, sites where the test improved for both datasets were counted to estimate the confidence in using

ITRDB in benchmarking LSMs.385

Since this study aims to propose benchmarks making use of the ITRDB study rather than improving the ORCHIDEE model,

the modifiers were applied to the model output directly. This approach has the advantage to remain conceptual by staying

away from the need to optimize specific model parameters or rewrite or add processes in the model code. Different modifiers

were used to accommodate the differences between the metrics: 1) the RMSE or amplitude of a benchmark was minimized

by multiplying the simulated TRW with a modifier (Fig. 9
::
??), 2) the slope of the residuals of a benchmark was minimized by390

subtracting a trend-modifier from the simulated growth trend and 3) the years of the simulated TRW were rearranged such that

they match the ranked order of observed extreme TRWs.

4 Results

4.1 Verification of the concept behind benchmarking ITRDB

The verification was applied at 11 sites. Given that each benchmark consists of two metrics, each of the four proposed bench-395

mark generated 22 test cases. Across the four benchmarks 88 test cases were thus available (Fig. 10
::
??). Despite its simplicity,

the use of modifiers was found to be robust as it improved all metrics of the four proposed benchmarks at each of the eleven

sites when benchmarking against the big-tree data. Applying the same modifiers to the all-tree data improved the match be-

tween the simulations and observations in 72% of the test cases (63 out of the 88 test cases; Table 2
::
??). This overall number
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hides large differences between tree species and individual benchmarks. The verification appeared to be more successful for400

beech with an overall confidence level of 84% (27 out of 32 test cases) compared to spruce with a 64% (36 out of 56 test cases)

confidence level. The performance differences between the individual benchmarks are detailed in the remainder of this section.

When benchmarking the size trend, big-tree data can be used with 72% (16 out of 22) confidence for benchmarking LSMs.

Given the reasoning underlying the verification, this suggests that for 72% of the cases the conclusions would be similar

irrespective of whether ORCHIDEE is benchmarked against the big-tree data rather than the all-tree data. Some sites such as405

DEO and DVN showed marginal positive difference suggesting that simulations with ORCHIDEE r5698 matched the observed

size-related growth trend reasonably well, leaving limited room for improvements. One site, SCH showed a positive difference

because it contained two slowly growing trees which lived roughly 40 years longer than the rest of trees but whose diameter

was too small to be contained in the big-tree sample (Fig. S2
::
S3). Except for this site, the size-related trend in tree growth can

be derived from either the big-tree or the all-tree data.410

For the mature trees benchmark, big-tree data can be used with 68% (15 out of the 22) confidence for benchmarking against

LSMs. Two of the
::
At

::
5

:::
out

::
of

:::
11

::::
sites,

:::
the

::::::
all-tree

::::
data

::::
and

:::
the

:::::::
big-tree

:::
data

:::::
yield

:::::::
different

:::::::
results.

::::
Two sites (HD2 and TIC)

for which the
:::
for

::::
both

::::::
metrics

:::::::::::::
inconsistencies

:::::::
between

:::
the

:::::::
big-tree

:::
and

:
all-tree data results in different benchmarking results

from the big-tree data
::::
were

:::::::
observed, have 36% to 44% of small trees in their size distribution, compared to an average 28%

at the other nine sites. The proportion of small trees in the observation was estimated by counting trees in the smallest bin415

when trees are divided into 5
:::
five size classes similar to the model. On the other hand, ZOF had

:::
The

:::
site

:::::::
labelled

::
as

:::::
ZOF

:::
has

a bimodal size distribution , which has
:::
with

:
the biggest number of trees in the 1st and 4th bins

:::::::
diameter

::::
class

:
(35% and 32%

respectively). The default size distribution in ORCHIDEE has 15% of its trees in the smallest-sized class, and 21% in the 4th

sized-class. At sites
::
two

:::::
other

:::::
sites, DEO and SOB, the average simulation matched well with the average diameter trend as

shown by the calculated slope of residuals: 0.08 and 0.09 (Fig. S3 a). However, the growth rate for big trees was higher in420

the observations (0.95 and 0.50 for the slope of residuals) since the difference in big trees and small trees are bigger in the

observations (Fig. S3 b).
::
S4

:::
b),

::::::
despite

:::
the

:::::::
average

:::::::::
simulation

:::::::
matched

::::
well

::::
with

:::
the

:::::::
average

::::::::
diameter

::::
trend

::
as
::::::

shown
:::
by

:::
the

::::::::
calculated

:::::
slope

::
of

::::::::
residuals:

:::::
0.08

:::
and

::::
0.09

::::
(Fig.

:::
S4

:::
a). These results suggest that the mature trees benchmark is sensitive to

the stand structure.

With 50% (11 out of 22) confidence in using the big-tree data in benchmarking LSMs, this
:::::
young

:::::
trees benchmark appears to425

be the most demanding in terms of its data. At sites DEO, HD2, and SOB, inconsistencies between benchmarking the big-tree

data and the all-tree data stemmed from: (1) the average simulations and observations being similar, with RMSE around 10 mm

and; (2) the difference between big trees and small trees growths being larger in the observations (Fig. S4
::
S5). The site labelled

as SCH contained two extremely fast-growing young trees resulting in a very fast-growing virtual tree in the optimized model

output (Fig. S5
::
S6). For SOR the difficulties may have come from the model itself more specifically

::::
from difficulties with the430

carbon allocation (Fig. S6
::
S7). These results suggest that a variety of issues decreases the confidence in using big-tree data for

benchmarking.
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For the extreme growth benchmark, big-tree data can be used with 95% (21 out of the 22) confidence for benchmarking

470 LSMs. The observed consistency between benchmarking the big-tree data and the all-tree data suggests that extreme

growth happens in the same years, irrespective of which dataset is being used. The site (DVN) showed the smallest RMSE435

for amplitude when it is calculated with the all-tree data (0.02) but the site has the biggest ratio of big-trees to all-trees for

amplitudes compared to simulation (1.30, Fig. S7
::
S8). In other words, if the simulation is adjusted to the big trees in the

observation, since the difference between sub-sampled big-tree and all-tree is larger in the observations, the average simulation

becomes bigger than the average observation as shown in Fig. S3 and S4
:::
and

::
S5. This result suggests that the extreme growth

benchmark is the least demanding benchmark in terms of the sampling-design.440

5 Discussion

5.1 Benchmarking LSM against tree-ring width

The wealth of approaches available for modelling tree-ring growth has been largely overlooked by the global land-surface com-

munity. Until now, benchmarking LSMs against ring-width records still relies mostly on interannual variation in the simulated

net primary productivity as a proxy for TRW (????). Although such an indirect approach is valid to certain extent to benchmark445

the capability of LSMs to simulate interannual variability, the observations will need to be detrended to remove the size-related

growth signal, adding considerable uncertainty to the benchmark (????). Moving beyond the net primary production proxy

by explicitly simulating stem radial growth and TRW enriches the benchmark since correcting for potentially confounding

factors including climate responses, forest structure, age and size trends (??), as well as sampling biases (?), can be performed.

Whereas previous studies had to rely on a single qualitative benchmark, i.e., interannual variability, our method shows that450

at least four benchmarks, each of them defined by two metrics, are available for models that meet the minimal requirements

to simulate TRW determined by Cook’s conceptual model of aggregate tree growth (Fig. 3
::
??). Given that tree-ring width is

largely explained by phenology (?), tree size (?), climate sensitivity (?), and atmospheric CO2 CO2 concentrations (?), LSMs

that intend to use it as a benchmark should at least simulate tree phenology, size-dependent growth, differently-sized trees

within a stand, and responses to changes in temperature, precipitation and atmospheric CO2 CO2 concentrations (??).455

Irrespective of the model approach, the largest archive of tree-ring records that is freely available to the land-surface com-

munity, i.e., the ITRDB, is prone to sampling biases (??). Although it may be difficult to correct the data for these biases,

we propose two solutions for comparing LSM output to biased observations. Simulating a size-structured population of trees

enables comparing the observations relative to a benchmark for a tall simulated tree, which compensates for the tendency of

dendroclimatic sampling to select the oldest trees in a stand (which often turn out to be the larger trees). Although the ITRDB460

does not contain the site metadata that would be required to make this comparison exact, i.e., the diameter and true age dis-

tribution of the sampled stand, it protects against comparing extreme samples to mean simulations. The second solution relies
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on the observation that the variation due to size-related growth by far exceeds the variation due to environmental changes and

helps to constrain the survivor bias which is derived from the growth of young fast-growing trees that died a long time ago and

are therefore absent from records made from present day sampling of old growth forests (?). The benchmarks proposed here465

provide a tool to start using TRWs as a much-needed large-scale constraint on the maximum tree diameter and annual growth

for the transition from pre-industrial to present-day environmental conditions.

Combining these two solutions with targeted processes resulted in four benchmarks, each of them defined by two complemen-

tary metrics (Table 1
::
S1):

(i) The size-trend benchmark targets the long-term trend in TRW. This trend contains information about ontogenetic470

growth during establishment and endogenous competition from canopy closure (?). Although this trend is removed in many

dendrochronological studies to amplify the climate signal contained in TRW (?), we suggest to test the skill of the model in

reproducing it because it is important to constrain biomass production. Benchmarking a suitable LSM against observed size-

related trends in TRW may help to develop, evaluate or parameterize allometric relationships and changes in stand density.

(ii) The mature trees benchmark tests the capability of the model in simulating annual growth of mature forest. Since this475

benchmarks aligns the observations by calendar year, it may reflect the effects of long-term environmental changes if there

were any and the record is long enough as to experience them (??). As a skilled LSM is expected to reproduce plant responses

to the long-term environmental changes, this benchmark could be used to develop, evaluate and parameterize the processes that

simulate endogenous disturbances and plant responses to, e.g., increasing atmospheric CO2 CO2 concentrations, atmospheric

N deposition and warming.480

(iii) Tree growth during stand establishment can be tested with the young trees benchmark. The growth of establishing

trees differs from that of mature canopy trees, and this difference has been accounted for by using separate benchmarks for

young and mature stands. This benchmark could be used to develop, evaluate or parameterize allometric growth of young trees

as well as tree mortality prior to canopy closure.

(iv) The extreme growth benchmark tests the occurrence and range of extreme growth events. Previously, interannual485

variability in TRW has been used to evaluate the climate sensitivity of LSMs. Inter-annual variability has a limitation because

we cannot expect the model to simulate the timing
::::::
neither

::
of

::::::::::
endogenous

::::
nor

:
of either endogenous nor every exogenous

disturbance such as fire, pest and disease outbreak or dead
::::
death

:
of big trees leading to sudden growth releases in adjacent

trees. Following this reasoning, it was decided to benchmark only 25% and 75% extreme growth. This benchmark could be

used to develop, evaluate or parameterize the plant water stress and the temperature dependency of plant growth in the model.490

The metrics of the first three benchmarks are RSME and slope. RMSE examines if the model reproduces the absolute values of

TRWs. However, even though a model might reproduce well the value of TRWs, it is still expected to simulate the long- term

trend in TRW that comes from climate changes or endogenous competition. This latter aspect is quantified by the slope-metric.

17



For the large-scale models such as a LSM and for sites with little high-quality site information, correctly simulating growth

trends should be prioritized over matching the endpoints in tree diameter.
:::::
Since

:::
the

:::
last

:::::::::
benchmark

:::
for

:::::::
extreme

::::::
growth

::::::
events495

:::
was

:::
not

::::::::
intended

::
to

:::
test

:::
the

:::::::::
capability

::
of

:::::
LSMs

:::
to

:::::::
simulate

::::::
growth

::::::
trends,

:::
the

:::::
slope

::
of

::::::::
residuals

::::
was

:::
not

::::::::
included.

::
A

::::::
skilled

:::::
model

::
is

:::::::
expected

::
to
::::::::
simulate

:::
not

::::
only

:::
the

:::::
timing

::
of

:::::::
extreme

::::::
growth

:::
but

::::
also

:::
the

:::::::::
magnitude

::
of

::
it,

:::
the

:::::::::
benchmark

::::::::
therefore

::::
was

:::::::
designed

::
to

::::::::
evaluated

::::
both

:::::
using

:::::::
RMSE.

5.2 Verification of the benchmarks

Even when the ITRDB data with a big-tree bias are used, the model improvements and parameter adjustments should improve500

the growth of all simulated trees, not only the big-trees contained in the ITRDB data. Our verification approach estimated the

level of confidence for each benchmark. This level confidence quantified the number of cases where improving the model or

adjusting its parameters based on benchmarking against big-trees would result in improving the model performance for all

trees.

The results of the verification test show that the four proposed benchmarks are independent in terms of their information content505

and that combining them would result in a rich and rather refined description that may reveal some of the remaining model

deficiencies. The conclusion is supported by the verification (Table 2
::
??) where, except at site GIU, each site showed different

weaknesses and strengths. The novel benchmarks proposed here thus provide new targets for evaluating LSMs’ performance

as each of the eight metrics could be used in the objective function of any data assimilation technique (?) to rigorously account

for the information contained in TRW records .510

If the ITRDB is to be used, the number of benchmarks and the circumstances that can be used with confidence becomes more

limited. The verification results (Table 2
::
??) show that if the output of ORCHIDEE is benchmarked against data with a big-tree

bias as the ITRDB, there is 70% confidence that the benchmark will come to the same conclusions as whether a data free from

the big-tree selection bias would have been used. This level of confidence, i.e., 70%, is sufficient to support benchmarking a

LSM against tens to hundreds of ITRDB sites at the same time. The same level of confidence is likely too low to benchmark515

a LSM (or an ecosystem model) against a single ITRDB data series as there is a 30% chance that parameter tuning or model

improvements following the benchmarking will not improve the model. Given the spatial extent of European biomass network,

the levels of confidence represent temperate and hemi-boreal forests (Fig. S1
::
S2) and the validity of the use of the ITRDB data

from boreal and tropical forest will need to be verified when suitable data become available.

Higher chances for
:::::
Across

:::::::
species,

::::::::::::
benchmarking

::::::
against

:::::::
extreme

::::::
events,

::::::
mature

:::::
trees,

::::
and

:::
the

:::::::::
size-related

:::::
trend

::::::::
appeared

::
to520

::
be

:::
the

::::
least

::::::::::
demanding

::
in

:::::
terms

::
of

:::
the

:::::
biases

:::::::
present

::
in

:::
the

::::
data

::::
used

:::
for

::::::::::::
benchmarking,

::::::::
implying

::::
that

::::::::::::
benchmarking

::::::
against

:::::
young

::::
trees

::::
will

::::::
benefit

:::::
most

::::
from

:::::
using

::::
data

::::
free

::::
from

:::
the

:::::::
big-tree

::::::::
selection

::::
bias.

:::::::
Higher

:::::::
chances

::
to

:::::::
improve

:::::::::::
ORCHIDEE

::::
when

:
beech (87%) compared to spruce (64%)

::
as

::
a

:::::::::
benchmark

:
suggest that the validity of the assumptions underlying the use

of ITRDB data , partly depend
:::::
partly

:::::::
depends on tree species. In this study, the variety in species was too limited to generalize
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this results
:::::
result in terms of plant functional types. Across species, benchmarking against extreme events, mature trees, and525

the size-related trend appeared to be the least demanding in terms of the biases present in the data used for benchmarking.

Benchmarking against young trees will benefit most from using data free from the big-tree selection bias.

The validity of benchmarking TRW of young trees against ITRDB data is questionable for sites were the default diameter

distribution of ORCHIDEE poorly describes the observed diameter distribution (FigS2 to S4.
:::
S3

::
to

::
S5). This finding limits the

use of the ITRDB data for the young tree benchmarks. Because the true diameter distribution is not contained in this database,530

it is neither possible to select only ITRDB sites for which the actual diameter distribution matches the ORCHIDEE’s distri-

bution nor to adjust the diameter distribution in ORCHIDEE to the observed distribution. Matching observed and simulated

distributions appears to be essential when benchmarking the growth of young trees. The same finding suggests, however, that

forest inventory data for which the diameter distribution is known but only a few big trees were cored would be a reliable data

source for benchmarking LSM.535

Benchmarking, even against ITRDB data is useful, irrespective of the proposed benchmark when the simulated TRWs differ

substantially from the observed TRWs. For example, at the GIU site, where the simulated TRW is much smaller than the

observed (Fig. S8
::
S9

:
a), the simulation could be improved for all metrics of all four benchmarks despite the difference in

simulated and observed stand structure (Fig. S8
::
S9

:
b). However, as shown above, inconsistencies between benchmarking the

big-tree data and the all-tree data start to appear when the simulated TRWs are better approaching the observations (Fig. S 2-540

5
::
S3

::
to

:::
S6). This implies that: 1) ITRDB can be used as a first approximation to benchmark the growth of young and mature

trees in LSMs, 2) as the model improves, the need for unbiased datasets will increase as biases in stand structure and growth

rates could hamper the use of especially these benchmarks.

6 Outlook

Tree-ring records could complement well-established but short-term benchmarks for LSMs (?), such as forest inventory data545

(??), FLUXNET sites
::::
eddy

:::::::::
covariance

::::::::::::
measurements (??), Free Air CO2 CO2 Enrichment experiments (?) and satellite obser-

vations of vegetation activity (??). The value of tree-ring records can be further enriched by: (i) developing new and unbiased

networks to complement the ITRDB, such as the European biomass network, (ii) adding their stable isotope ratios as bench-

marks (??) and (iii) combining their use with high-frequency but short- term eddy covariance measurements (??), experimental

data from plant growth under pre-industrial CO2 CO2 concentrations (?), and proxies of atmospheric composition (?).550

7
::::
Code

::::
and

::::
data

::::::::::
availability
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::
In

:::
line

::::
with

:::::
GMD

:::::::::::
requirements,

:::
the

::::::
model

::::
code

:::
has

::::
been

:::::::
archived

:::
and

:::::
made

:::::::::
accessible:

:::::::::::::::::::::::::::::::::
https://doi.org/10.14768/20200228001.1.

:::
The

::::::
scripts

:::::::
required

:::
for

::::::::::
reproducing

::::
the

::::::
figures,

:::
the

:::::::::::
ORCHIDEE

::::::::::
simulations

:::
and

:::::::::::
intermediate

::::::
results

:::
are

::::::::
available

::
at https:

//github.com/j-jeong/J.Jeong_GMD_2020.
:::::
BACI

::::::
dataset

::
is
:::::
freely

::::::::
available

::
in

::::::
online:

:
http://www.baci-h202i0.eu/

:::
but

:::::::
requires

:::::::::
registration

:::
by

:::::
email.

:
555
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Benchmark Metrics Targeted process understanding Solutions for meaningful model comparison with ITRDB Figure

Size dependent growth RMSE Slope of the residuals

Long-term size-related growth Within-stand competition575

Select the biggest tree of the simulation Construct an average virtual tree aligned by tree age Fig. 5

Diameter increment of mature trees RMSE Slope of the residuals

Long-term tree growth after establishment Within-stand competition

Select the biggest tree of the simulation Construct an average virtual tree aligned by calendar year Fig. 6

Diameter increment of young trees RMSE Slope of the residuals580

Short-term (i.e. 30-year) tree growth during establishment Size-related growth

Select the biggest tree of the simulation Construct a fast-growing virtual tree Fig.7

Extreme growth Extreme events Amplitude

Yearly climate sensitivity

Select the biggest tree of the simulation Define extreme growth using 25% smallest and 75% largest observations Fig.8585

11.1

21



Table 1. Verification of the benchmarks and their metrics. Each cell represents the result from a single site. The values show the difference

for each metric before and after optimization. Bold cells show the cases where the optimization for the all-tree data was consistent with the

optimisation result of the big-tree data.

Benchmark
Size dependent

growth
Diameter increment

of mature trees
Diameter increment

of young trees
Extreme growth

Metrics RMSE
(mm)

Slope of
residuals
(mm/yr)

RMSE
(mm)

Slope of
residuals
(mm/yr)

RMSE
(mm)

Slope of
residuals
(mm/yr)

Ampli-
tude
(mm)

Extreme
growth
(scaled)

Picea

abies

DEO
(-0.005)

DEO

(0.000)

DEO
(-75.97)

DEO

(0.78)

DEO

(8.11)

DEO

(1.47)

DEO
(-0.04)

DEO

(-0.60)

DVN
(-0.182)

DVN

(0.000)

DEO
(-161.69)

DVN
(-0.70)

DVN
(-11.68)

DVN
(-0.43)

DVN

(0.02)

DVN
(-0.77)

GIU
(-0.600)

GIU
(-0.007)

GIU
(-131.25)

GIU
(-0.68)

GIU
(-39.70)

GIU
(-1.30)

GIU
(-0.32)

GIU
(-0.96)

HD2

(0.009)

HD2
(-0.002)

HD2

(15.60)

HD2

(0.53)

HD2

(1.95)

HD2

(0.56)

HD2
(-0.04)

HD2
(-0.97)

SCH

(0.029)

SCH
(-0.004)

SCH
(-182.46)

SCH
(-0.96)

SCH

(57.56)

SCH

(5.49)

SCH
(-0.15)

SCH
(-1.29)

SOB
(-0.0008)

SOB
(-0.001)

SOB
(-20.22)

SOB

(0.50)

SOB

(9.32)

SOB

(1.29)

SOB
(-0.08)

SOB
(-1.54)

TIC
(-0.151)

TIC
(-0.001)

TIC

(24.47)

TIC

(1.52)

TIC
(-10.33)

TIC
(-0.27)

TIC
(-0.19)

TIC
(-1.63)

Fagus

sylvatica

CAN
(-0.046)

CAN
(-0.003)

CAN
(-74.03)

CAN
(-1.27)

CAN
(-5.81)

CAN

(0.16)

CAN
(-0.07)

CAN
(-1.17)

SOR

(0.007)

SOR
(-0.004)

SOR
(-116.26)

SOR
(-1.62)

SOR

(2.69)

SOR
(-1.13)

SOR
(-0.04)

SOR
(-1.00)

TER
(-0.06)

TER
(-0.000)

TER
(-3.73)

TER
(-0.08)

TER
(-15.93)

TER

(0.26)

TER
(-0.07)

TER
(-0.99)

ZOF
(-0.183)

ZOF
(-0.000)

ZOF
(-42.72)

ZOF

(0.02)

ZOF
(-11.98)

ZOF
(-0.05)

ZOF
(-0.17)

ZOF
(-1.11)
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Figure 1. Workflow of the
:::
this study and

::
the

:
dependencies between the different sections

:
of

:::
the

::::::::
manuscript. Each colour represents a different

aim of the study. The arrow shows how
::
that

:
the outcomes of the first three aims are

::::
have

::
to

::
be combined to achieve

::::
verity the final aim, i.e.,

verify the proposed benchmarks.

Characteristics of the proposed benchmarks. These benchmarks were designed to better constrain physiological and ecological

processes in land-surface models. Given their intended use with ITRDB data, the benchmarks had to propose solutions for

well-known issues of the ITRDB (Table S2).Conceptual illustration of the expected reduction in model uncertainty

following the use of tree-ring width records to benchmark land-surface models. Note that the anticipated uncertainty590

reduction assumes that a large part of the model uncertainty comes from the model formulation and its parameters rather than

from the initial conditions and drivers. (a) Observational constraints (grey vertical bars) from short-term benchmarks such as

forest inventory data, FACE experiments, and FLUXNET data, have been used to parameterize and evaluate the response of

ecosystems to environmental changes (light-grey coloured area). When used in projecting the present-day to future carbon pools

and fluxes, uncertainty in ecosystem response to climate change is propagated through the model resulting in unacceptably595

large uncertainties (light-grey hatched area). (b) Tree-ring records going back to pre-industrial times (black vertical bars) are

expected to better constrain the response of ecosystems to environmental changes (dark-grey coloured area) which should

result in smaller uncertainties when used to project future ecosystem responses (dark-grey hatched area).
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Figure 2. Main drivers of the linear aggregate conceptual model of tree-ring growth and the equivalent processes in land-surface

models. The dotted lines connect the related components. Note that both the aggregation and the land-surface model come with errors,

uncertainties and unaccounted processes which are not explicitly modelled.
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Figure 3. Solutions and virtual trees to account for challenges to use ITRDB datasets when evaluating land-surface models against

ITRDB tree-ring data.
:::::::
Example

::
of

:::
the

::::::::
solutions

::::::::
including

:
a
::::::
virtual

::::
tree,

::
to

:::::::
account

:::
for

::::::::
challenges

:::
to

:::
use

::::::
ITRDB

:::::::
datasets

:::::
when

::::::::
evaluating

::::::::::
land-surface

::::::
models

::::::
against

::::::
ITRDB

:::::::
tree-ring

:::::
data. (a) Data-model comparison may overcome the big-tree selection bias by

comparing only the simulated biggest diameter class (bold blue line) for evaluation rather than all diameter classes (thin blue lines), with

the compiled
::::::
average virtual tree (black dotted line). Grey lines represent individual trees from observations. (b) The observed tree-ring

records are a mixture of relatively slowly-growing trees (light-grey lines) and fast-growing trees (dark-grey lines). Fast-growing trees don’t

attain the same age as slowly-growing trees because they tend to die earlier. Without
::::
Using

:::
all

::::
trees

::::::
without further consideration this

::
in

::
the

:::::::::
calculation

::
of

::
the

:::::::
average

:::::
virtual

:::
tree

:::::
(black

:::::
dotted

::::
line)

:
would lead to underestimating tree growth at the time of stand establishment

and thus result
::::::
resulting

:
in a flawed test when compared against

:::::::::
comparison

:::
with

:::
the simulated tree growth (blue line

::::
lines)as the virtual tree

(black dotted line) is much smaller during stand establishment. (c) Aligning
:::::::
However,

::::::
aligning

:
observations by the age of individual trees

:::::
before

:::::::
compiling

::::::::
maximum

:::::
virtual

::::
tree

:::::
(black

:::::
dotted

:::
line)

::::::
results

:
in
::

a
:::
very

:::::::
different

:::::
virtual

:::
tree

::::::::
compared

::
to

:::
Fig

::
3b.

::::
The

::::::::
maximum

:::::
virtual

:::
tree better reconstructs tree growth during stand establishment, facilitating data-model comparison. Note the change in the label of the X-axis

between panels (b) and (c). Observations taken from a French oak
:::
pine

:
forest

::
in

:::::::
Germany

:
archived as germ214 (?) (Table S2

::
S3)

:
,
:::
and

:::
the

:::::
model

:::::::
outcome

::
is

::
the

:::::::::
simulation

::
for

:::::::
observed

::::
sites

::::
from

:::::::::
ORCHIDEE

:::::
r5698.

25



Figure 4. Example of the major steps for calculating the metrics of the benchmark for the size-related trend in diameter increment.

The size-related trend in diameter increment can be assessed by calculating a time series for the average ring width after aligning the age

of the individual trees (a, b). Observations are shown as grey lines and simulation as blue lines. The biggest class is presented by the bold

line. The black dotted lines represent the virtual tree based on the observations. The TRWs of this virtual tree are then subtracted from the

simulated TRWs of the largest diameter class . (c)
:
. Subsequently, a linear regression is used to quantify the temporal trend in the residuals

(d). The green line denotes the model residuals and the green dotted line is the linear regression of the model residuals. Furthermore, the root

mean square error (RMSE) between the simulations and observations is calculated (b
:
;
:::::
RMSE

::::::
between

::::
blue

:::
line

:::
and

:::::
black

:::::
dotted

:::
line) and

normalized by the length of time series to calculate the difference in observed and simulated growth trends. Observations and simulation are

from
::::
Pinus

:::::::
sylvestris site

:
in

::::::
Finland

:::::::
archived

::
as finl052 (?). For this example, calculated RMSE

::
(b) is 0.39 (mm), and the slope of residuals

::
(d)

:
is -0.002 (mm/yr).
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Figure 5. Example of the major steps in calculating the metrics of the benchmark for the diameter increment in mature trees.

Individual tree records are ordered by calendar year and for each year the average observed diameter is calculated (a). Observations are 685

shown as grey lines and simulation as blue lines. The biggest class is presented by the bold
:::
blue line. Black dotted lines represent the yearly

average of observations. Note that X-axis in Fig. 6
::
??

:
is different from Fig. 5.

::
??.

:
Under the assumption that the observed trees are the

biggest trees from a given site, the virtual tree is compared with the biggest diameter class from the model (b) and the RMSE is calculated (
:
,

c). Given that for the most recent decades both the fast and slow growing trees are still alive and could have been sampled, only the recent

decades
:::
(ten

:::::::
decades,

:
in
::::

this
:::::::
example) of the virtual tree growth are compared to the simulations

::
(d). The RMSE (grey

:
d;
:::::
black arrows) and

trend of the residuals between the virtual tree and the largest diameter class simulated are calculated (e, f). The x-axes of e, f zooms in on the

selected period. The green line denotes the residuals and the green dotted line is the linear regression of the model residuals. Observations

and simulation are from
::::
Pinus

:::::::
sylvestris site

:
in

:::::::
Scotland

:::::::
archived

::
as brit021 (?). In this case, RMSE

::
(d)

:
and the slope of residuals

::
(f) were

calculated as 33.65 (mm) and 0.68 (mm/yr), respectively.
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Figure 6. Example of the major steps in calculating the metrics of the benchmark for diameter increment in young trees. After

aligning the TRW records of the individual trees by their age, a virtual tree is constructed by taking the maximum observed diameter of

all trees for each year (a). Observations are shown as grey lines and simulation as blue lines. The biggest class is presented by the bold

line. Black dotted lines represent the yearly maximum of the observations. The growth of the virtual tree is then compared to the simulated

growth of the largest diameter class (b) by calculating the RMSE (c) and trend of the residuals (e, f). The x-axes of e, f zooms in on the

selected period, and the green line denotes the model residuals and the green dotted line is the linear regression of the model residuals. These

calculations are limited to the first decades of the time series (d) to compensate for the bias caused by the fact that the old fast-growing trees

died well before sampling took place. By using different approaches to evaluate the growth of young (this benchmark) and mature trees (the

previous benchmark) the comparison accounts for the observation that the drivers of ring growth change when the trees grow taller (Cook,

1985). Observations and simulation are from
::::
Pinus

:::::::
sylvestris site

:
in
:::::::

Scotland
:::::::
archived

::
as brit021 (?). The calculated RMSE

::
(d) was 21.86

(mm) and the slope of residuals
::
(f) was 0.88 (mm/yr) for this example.
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Figure 7. Example of the major steps in calculating the metrics of the benchmark for extreme growth events. In this benchmark,

extreme growth is defined as the first and last quartiles in TRW ordered by calendar year and averaged over the individual trees records (a).

Red shaded area and ticks represent observations exceeding the 75 percentile and blue shaded area and ticks represents observation below the

25 percentile (a). The TRW simulated for the largest diameter class are then extracted for the years identified in a (b). Both observations and

simulations were normalized to remove the difference in the range of values between configurations. These normalized values correspond to

the X and Y axis in (c) and (d) for observation and simulation, respectively. Subsequently, the similarity between simulations and observations

was tested by calculating the distance from the 1:1 line (shown in green in d), which is equivalent to the RMSE for years with extreme growth

(d). An additional metric is calculated in a similar way but by using both the 25% and 75% extreme values of the simulation and observation

regardless of the year (e, f). This test identifies if the simulation can reproduce the amplitude of TRW. The observations and simulations were

not normalized to assess the absolute amplitude. Possible uncertainties from using reconstructed climate forcing, were avoided by limiting

the calculations of both metrics to the past five decades for which climate observations are available. Observations and simulation are from

::::
Pinus

:::::::
sylvestris site

:
in
:::::
Spain

::::::
archived

::
as
:

spai006 (?). In this test case, RMSE for extreme years
::
(d) was 0.57 (mm) and RMSE for extreme

growth
::::::::

(amplitude;
:
f)
:

was 0.03 (scaled).
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Figure 8. Schematic representation of the verification process for the RMSE-metric. Before the verification, two types of datasets were

prepared: big-tree data (limited to the 15% biggest trees) and all-tree data. In this example, the simulated TRW was multiplied with a verified

modifier such that it minimized the RMSE between the simulated and observed TRW for the 15% biggest trees (see section 3.4 for details).

The same multiplier was then applied to the all-tree data and the RMSE was calculated. Finally the decrease or increase in RMSE with the

multiplier was compared to the RMSE obtained without the multiplier. The other two modifiers which are detailed in section 3.4 follow a

similar approach.
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Details of the four benchmarks for four out of the 11 sites selected from the European biomass network. Each column denotes a

single site. The DEO and DVN represent Norway spruce forests. The CAN and SOR sites are Beech forest. Each row denotes a different

benchmark. The first row corresponds to the benchmark explained in Fig. 5 (d), the second row to Fig. 6 (f), the third row to Fig. 7(f), and

the fourth and fifth rows to Fig. 8 (d) and (f), respectively.

Figure 9.
:::::
Details

::
of

:::
the

::::
four

::::::::::
benchmarks

:::
for

::::
four

:::
out

::
of
:::

the
:::

11
::::
sites

::::::
selected

:::::
from

:::
the

::::::::
European

:::::::
biomass

:::::::
network.

::::
Each

::::::
column

:::::
denotes

::
a
:::::
single

:::
site.

:::
The

:::::
DEO

:::
and

::::
DVN

:::::::
represent

:::::::
Norway

:::::
spruce

::::::
forests.

:::
The

::::
CAN

:::
and

::::
SOR

::::
sites

:::
are

:::::
Beech

:::::
forest.

::::
Each

:::
row

::::::
denotes

::
a

::::::
different

:::::::::
benchmark.

:::
The

::::
first

:::
row

:::::::::
corresponds

::
to

::
the

:::::::::
benchmark

:::::::
explained

::
in

:::
Fig.

:::
??

:
d,
:::
the

::::::
second

:::
row

::
to

:::
Fig.

::
??

::
f,

::
the

::::
third

:::
row

::
to

:::
Fig.

:::
??

:
f,
:::
and

:::
the

:::::
fourth

:::
and

:::
fifth

::::
rows

::
to

:::
Fig.

::
??

::
d
:::
and

:
f,
::::::::::
respectively.
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Characteristics of the proposed benchmarks. These benchmarks were designed to better constrain physiological and ecological

processes in land-surface models. Given their intended use with ITRDB data, the benchmarks had to propose solutions for600

well-known issues of the ITRDB (Table S2).
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