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Abstract. Atmospheric boundary layers and other wall-bounded flows are often simulated with the large-eddy simulation

(LES) technique, which relies on subgrid-scale (SGS) models to parameterize the smallest scales. These SGS models often

make strong simplifying assumptions. Also, they tend to interact with the discretization errors introduced by the popular

LES approach where a staggered finite-volume grid acts as an implicit filter. We therefore developed an alternative LES SGS

model based on artificial neural networks (ANNs) for the computational fluid dynamics code MicroHH (v2.0), which can be5

run in direct numerical simulation (DNS) and LES mode. We used a turbulent channel flow (with friction Reynolds number

Reτ = 590) as a test case. The developed SGS model has been designed to require fewer simplifying assumptions, and to

compensate for the instantaneous discretization errors introduced by the staggered finite-volume grid. We trained the ANNs

based on instantaneous flow fields from a direct numerical simulation (DNS) of the selected channel flow. In general, we found

excellent agreement between the ANN predicted SGS fluxes and the SGS fluxes derived from DNS for flow fields not used10

during training (with the correlation coefficient ρ mostly varying between 0.6 and 1.0), showing the potential ANNs may

have to construct highly accurate SGS models. However, we observed an artificial build-up of turbulence kinetic energy at

high wave modes when we directly incorporated our ANN SGS model into a LES simulation of the selected channel flow,

eventually resulting in numeric instability. We hypothesized that error accumulation and aliasing errrors, were both important

contributors to the observed instability. Several obstacles therefore remain before the a priori promise of our ANN LES SGS15

model, can be successfully leveraged in practical applications.

1 Introduction

Large-eddy simulation (LES) is an often used technique to simulate turbulent atmospheric boundary layers (ABLs) and other

wall-bounded geophysical flows with high Reynolds numbers (e.g. rivers). These turbulent flows are challenging to simulate20

because of their strong non-linear dynamics and large ranges in spatial/temporal scales. LES explicitly resolves only the largest,

most energetic, turbulent structures in these flows, while parameterizing the smaller ones with so-called subgrid-scale (SGS)
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models. This allows LES to keep the total computational effort feasible for today’s high-performance computing systems,

but makes the quality of the results strongly dependent on the chosen SGS model. As an SGS model based on physical

principles alone does not exist, the SGS models used today typically rely on simplifying assumptions in combination with25

ad-hoc empirical corrections (Pope, 2001; Sagaut, 2006, e.g). We therefore wonder whether fully data-driven SGS models

based on machine learning techniques, which require fewer simplifying assumptions, can become a viable alternative. Given

the continuous increase in available computational power and recent advancements in applying machine learning to complex

physical problems including turbulent flows, this is a timely question to address (e.g. Carleo et al., 2019; Brunton et al., 2020;

Duraisamy et al., 2019; Kutz, 2017).30

To briefly illustrate the effects simplifying assumptions can have, we take as an example the eddy-viscosity assumption

used in the popular Smagorinsky model (Smagorinsky, 1963; Lilly, 1967) and several other SGS models. Crucially, the eddy-

viscosity assumption introduces an alignment between the Reynolds stress and strain rate tensor that has not been verified

in experimental data (Schmitt, 2007). This makes it impossible to produce both the correct Reynolds stresses and dissipation

rates (Jimenez and Moser, 2000). As a consequence, eddy-viscosity SGS models often require ad-hoc manual corrections35

(e.g. tuning the Smagorinsky coefficient and/or implementing a wall-damping function) or multiple computationally expensive

spatial filtering operations (e.g. scale-dependent dynamical Smagorinsky models (Bou-Zeid et al., 2005)) to achieve satisfactory

results.

Data-driven machine learning techniques are, in contrast, much more flexible regarding their functional form. This is espe-

cially valid for artificial neural networks (ANNs): simple feed-forward ANNs with just one hidden layer are theoretically able40

to represent any continuous function on finite domains (i.e they are universal approximators; Hornik et al. (1989)). This makes

them potentially very suitable for LES SGS modelling, where the ’real’ SGS terms are unknown and highly non-linear.

Currently, in flow and turbulence modelling a wide effort is therefore undertaken to explore the potential for ANNs and other

machine learning techniques (Brunton et al., 2020; Kutz, 2017; Duraisamy et al., 2019). In particular, multiple studies success-

fully modelled turbulence in Reynolds-Averaged Navier-Stokes (RANS) codes with machine learning techniques trained on45

high-fidelity direct numerical simulations (DNS) that resolve all relevant turbulence scales (e.g. Ling et al., 2016a, b; Wang

et al., 2017; Wu et al., 2018; Singh et al., 2017).

Several other efforts in literature experimented with similar approaches in LES SGS modelling (Beck et al., 2019; Cheng

et al., 2019; Gamahara and Hattori, 2017; Maulik et al., 2019; Milano and Koumoutsakos, 2002; Sarghini et al., 2003; Vollant

et al., 2017; Wang et al., 2018; Xie et al., 2019; Yang et al., 2019; Zhou et al., 2019). Most of them used DNS fields as a basis,50

and subsequently applied a downscaling procedure to generate consistent pairs of coarse-grained fields (that are assumed to

represent the fields that a LES code would generate) and the quantity of interest (e.g. the ’true’ subgrid transport or the closure

term itself). These pairs were then typically used to train ANNs in a supervised way. Some studies showed very promising

results with this method, both in a priori tests (where the predicted quantity is directly compared to the ones derived from

DNS) and a posteriori tests (where the trained ANN is directly incorporated as a SGS model into a LES simulation). However,55

these studies focused on test cases that are less complex than wall-bounded geoscientific flows: (in)compressible isotropic
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turbulence (Beck et al., 2019; Vollant et al., 2017; Wang et al., 2018; Zhou et al., 2019; Xie et al., 2019) and Kraichnan

turbulence (Maulik et al., 2019).

There are also studies that attempted similar methods in cases that better represent ABLs. Some of them focused on LES

wall modelling specifically (Milano and Koumoutsakos, 2002; Yang et al., 2019), which is challenging on its own because60

of the many unresolved near-wall motions that the wall model has to take into account. Sarghini et al. (2003) and Gamahara

and Hattori (2017), in turn, focused on SGS modelling in the whole turbulent channel flow. Sarghini et al. (2003) used neural

networks to predict the Smagorinsky coefficient in the Smagorinsky-Bardina SGS model (Bardina et al., 1980) reaching a

computational time saving of about 20%. Gamahara and Hattori (2017) directly predicted the SGS turbulent transport with a

neural network, using DNS during training. They got reasonable a priori results, but did not perform an a posteriori test. Finally,65

another important step towards application of these methods in realistic atmospheric boundary layers was taken by Cheng et al.

(2019). They performed an extensive a priori test for an ANN-based LES SGS model covering a wide range of grid resolutions

and flow stabilities (from neutral channel flow to very unstable convective boundary layers). We emphasize though that, for

successful integration of ANN-based SGS models in practical applications, accurate and numerically stable a posteriori results

are an important requirement. So far however, to the best of our knowledge, the a posteriori performance of ANN-based LES70

SGS models has not been documented in wall-bounded flows.

On top of that, the ANN LES SGS models, together with traditional eddy-viscosity models, do not directly reflect the popular

LES approach where a staggered finite-volume numerical scheme acts as an implicit filter. Eddy-viscosity models are typically

derived based on a generic filtering operation that does not consider the finite discrete nature of the used numerical grid (i.e. it

is usually thought of as an analytical filter like a continuous top-hat filter), while the ANN SGS models so far did not attempt75

to compensate for all the discretization errors arising in simulations with staggered finite-volumes. These discretization errors,

however, can strongly influence the resolved dynamics (e.g. Ghosal, 1996; Chow and Moin, 2003; Giacomini and Giometto,

2020), especially at the smallest resolved scales. Since the ANNs haves access to both the instantaneous DNS flow fields

and corresponding coarse-grained field during training, the instantaneous discretization errors can in principle be taken into

account.80

Within this context, there have been a couple of noteworthy studies (Langford and Moser, 1999; Völker et al., 2002; Zan-

donade et al., 2004) that introduced the framework of perfect and optimal LES. Based on this framework, these studies approx-

imated the full LES closure terms (that account for both the unresolved physics and all instantaneuous discretization errors)

with a data-driven approach based on DNS. The statistical method they used for this purpose though (i.e. stochastic estima-

tion), still made additional assumptions about the functional form of the LES SGS model (e.g. linearity).A recent study by85

Beck et al. (2019) used therefore instead ANNs to approximate, in a similar way as the aforementioned studies, the full LES

closure terms. To construct based on these ANNs an LES SGS model that is numerically stable a posteriori, they combined

the ANNs with eddy-viscosity models. They did not specifically focus on the discretization errrors associated with staggered

finite-volume grids, and did not consider wall-bounded turbulent flows like ABLs.

In the current study, we therefore made a first attempt to construct an ideally functioning ANN SGS model that i) compen-90

sates for the unresolved physics and all the instantaneous discretization errors introduced by implicit filtering with staggered
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finite-volume numerical schemes, ii) requires few simplifying assumptions, iii) works both near walls and in the bulk flow

without the need for a wall model, iv) does not require ad-hoc empirical corrections, and v) produces numerically stable, ac-

curate a posteriori results in wall-bounded flows. As a test case for our attempt we used wall-bounded turbulent channel flow

(Reτ = 590), which can be seen as a simplified neutrally stratified atmospheric boundary layer. We used as a modelling tool95

the DNS and finite-volume LES code MicroHH (v2.0), which is designed for (near-)surface boundary layers and wall-bounded

flows (van Heerwaarden et al., 2017).

In the following sections, we will first explain our methodology in more detail. To this end, we will start with a more detailed

introduction of how we compensate for instantaneous discretization errors into our LES ANN SGS model (Sect. 2), followed

by a description of our turbulent channel flow test case (Sect. 3), training data generation procedure (Sect. 4), ANN design100

(Sect. 5), and ANN training (Sect. 6). After that, we will focus on the performance and behaviour of our LES ANN SGS

model. This includes both an a priori (Sect. 7) and a posteriori test (Sect. 8), together with an additional analysis that gives

some insights into which input variables matter most to our model (Sect. 7.3). Finally, we will summarize our findings and give

our main conclusions (Sect. 9).

2 Subgrid modelling for finite volume LES105

One of our key objectives is to construct an ANN LES SGS model that accounts for the instantaneous discretization errors

introduced by implicit filtering with staggered finite-volume numerical schemes (Sect. 1). To derive such an SGS model, we

used as a starting point the Navier-Stokes momentum conservation equations for a Newtonian, incompressible fluid without

buoyancy effects (which is appropriate for the test case used in this study, see Sect. 3):

∂uj
∂t

=−∂uiuj
∂xi

− 1
ρ0

∂P

∂xj
+ ν

∂2uj
∂xi2

, (1)110

where uj (u,v,w) [m s−1] is the wind velocity along the j-th direction, t [s] the time, xi and xj [m] the positions in the i-th

direction and j-th direction respectively, ρ0 [kg m−3] the density, P [Pa] the pressure, and ν [m2 s−1] the kinematic viscosity.

The governing LES equations are usually derived by applying a generic, unspecified filtering operation G to Eq. 1, which

introduces a subgrid term τij ≡ uiuj −ui uj that has to be modeled (Pope, 2001; Sagaut, 2006). Traditional subgrid models

like Smagorinsky (Smagorinsky, 1963; Lilly, 1967) attempt to model τij associated with G. However, by only considering the115

generic operation G, they cannot directly compensate for the discretization errors arising on a specific finite numerical grid.

Although the impact of the discretization errors can be reduced by adopting an explicit filtering technique (for instance by

increasing the grid resolution compared to the filter width), this is in practice often not done because of the high computational

cost (Sagaut, 2006). It may therefore be beneficial to develop a LES SGS model that directly compensates for the introduced

discretization errors, ideally such that explicit filtering is not required anymore.120

To this end we applied the finite volume filtering operation GF V , to Eq. 1 instead of the generic operation G. GF V is

defined as a 3D top-hat filter sampled on a priori defined finite volume grid, where the finite sampling implicitly imposes an

additional spectral cutoff filter (Langford and Moser, 1999; Zandonade et al., 2004). We used GF V to derive an alternative
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set of LES equations (Eq. 3) that reflects the employed finite volume grid, and removes the need for commutation between the

filtering and spatial differentiation operators (Eq. 3; Denaro (2011)). This allowed us to explicitly include many instantaneous125

discretization errors in the definition τij (Eq. 5), making use of prior knowledge about the employed finite volume grid and

numerical schemes.

Considering for the sake of clarity only equidistant LES grids, following Zandonade et al. (2004) the filtered velocity

associated with GF V , uj , at a certain grid cell with indices (l,m,n) can be written as:

130

uj(l,m,n) =
1

∆x∆y∆z

∫

Ωj(l,m,n)

uj(x,y,z) dx′, (2)

where ∆x,∆y,∆z are the equidistant filter widths in the three spatial directions, Ωj(l,m,n) the grid cube/control volume for

uj at the considered grid cell, and x a vector indicating the position (x,y,z) in the flow domain. Since we focused in this

study on staggered finite-volume grids (Table 1), the location of each control volume Ωj(l,m,n) depends on the j-component

considered (Sect. 4).135

Applying the finite volume filter to Eq. 1, using the divergence theorem to convert the volume integrals to surface integrals,

and combining the advection and viscous stress terms, for a certain grid cell we get an expression similar to that obtained by

Zandonade et al. (2004):

∂uj(l,m,n)
∂t

=− 1
∆x∆y∆z

∫

∂Ωj(l,m,n)

(uiuj − ν
∂uj
∂xi

)ni dx′− 1
∆x∆y∆z

1
ρ0

∫

∂Ωj(l,m,n)

pnj dx′, (3)

where ∂Ωj(l,m,n) is the surface area of the control volume Ωj(l,m,n), and ni, nj the i-th and j-th component respectively of140

the outward pointing normal vector n corresponding to ∂Ωj(l,m,n). Noteworthy is that, by invoking the divergence theorem,

the divergence operator itself is effectively replaced by surface integrals, which removes the need for a commutative filter

(Denaro, 2011) and avoids the truncation errors introduced by the discretization of the divergence operator on the finite grid.

The well-known closure problem does, off course, persist. In fact, none of the terms on the right-hand side of Eq. 3 can be

determined exactly on the available finite LES grid and therefore have to be approximated. As argued however by Langford and145

Moser (2001) and Zandonade et al. (2004), an optimal formulation for the pressure term is impractical and barely more accurate

than traditional finite-volume pressure schemes. We will therefore only consider the discretization errors in the advection and

viscous stress terms. We further note that, in contrast to eddy-viscosity SGS models, the isotropic part of the transport terms

does not have to be incorporated in a modified pressure term.

To approximate the advection and viscous stress terms on the finite LES grid, in this study we used second-order linear150

interpolations (Sect. 4, 8). If we then consider specifically i) the control volume of the u-component, and ii) the transport in

vertical direction, we can rewrite the first term at the right-hand side of Eq. 3 as follows:
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1
∆x∆y∆z

∫

∂Ωin
u (l,m,n)

(
wu− ν ∂u

∂z

)
dx′dy′− 1

∆x∆y∆z

∫

∂Ωout
u (l,m,n)

(
wu− ν ∂u

∂z

)
dx′dy′

=
1

∆z

(
w(l,m,n) +w(l− 1,m,n)

2
u(l,m,n) +u(l,m,n− 1)

2
− ν u(l,m,n)−u(l,m,n− 1)

∆z

−w(l,m,n + 1) +w(l− 1,m,n + 1)
2

u(l,m,n) +u(l,m,n + 1)
2

+ ν
u(l,m,n + 1)−u(l,m,n)

∆z

)
155

+
1

∆z
(
τ inwu(l,m,n)− τoutwu (l,m,n)

)
, (4)

where ∂Ωinu (l,m,n) and ∂Ωoutu (l,m,n) are, respectively, the lower and upper boundaries of the control volume corresponding

to the u-component Ωu(l,m,n), representing two different subsets of the total control volume area ∂Ωu(l,m,n).

τ inwu(l,m,n) and τoutwu (l,m,n), in turn, are unknown terms correcting for the unresolved physics and instantaneous dis-

cretization errors in the finite-volume advection and viscous stress terms at the lower and upper control volume boundaries160

respectively. Following Eq. 4, τ inwu(l,m,n) and τoutwu (l,m,n) are defined as:

τ inwu(l,m,n)≡ 1
∆x∆y

∫

∂Ωin
u (l,m,n)

(
wu− ν ∂u

∂z

)
dx′dy′− w(l,m,n) +w(l− 1,m,n)

2
u(l,m,n) +u(l,m,n− 1)

2

+ ν
u(l,m,n)−u(l,m,n− 1)

∆z
,

τoutwu (l,m,n)≡ 1
∆x∆y

∫

∂Ωout
u (l,m,n)

(
wu− ν ∂u

∂z

)
dx′dy′− w(l,m,n + 1) +w(l− 1,m,n + 1)

2
u(l,m,n) +u(l,m,n + 1)

2

+ ν
u(l,m,n + 1)−u(l,m,n)

∆z
, (5)165

The correction terms for the other control volumes and transport components are defined in a similar manner. In the remainder

of the paper, we will denote the complete correction terms with the shorthand notation τ inij and τoutij . It is these complete terms

we aim to predict with an ANN-based LES SGS model. We chose their definition such that the ANNs can replace traditional

SGS models like Smagorinsky without large changes in the encompassing code (Sect. 8). To fully solve Eq. 3, after training

our ANN SGS model only makes use of information available in actual finite-volume LES: for its inputs, it relies only on the170

resolved flow fields u, v, w and their boundary conditions (Sect. 5).

3 Direct numerical simulation test case

To generate the training data for the ANN, we relied on a DNS of incompressible neutral channel flow (with Friction Reynolds

number Reτ being equal to 590) based on Moser et al. (1999). We used the high-order DNS and finite-volume LES code Mi-

croHH (v2.0) as simulation tool, which has been verified previously for this flow case (van Heerwaarden et al., 2017). A neutral175
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channel flow is a turbulent flow bounded by walls at both the bottom and top of the domain (no-slip boundary conditions), with

a mean flow characterized by a symmetric horizontally averaged vertical profile (Fig. (1)). In the horizontal directions, periodic

boundary conditions were applied and a constant volume-averaged velocity (Uf = 0.11m s−1) was enforced by dynamically

adjusting the pressure gradient.

We stored in total 31 3D flow fields of the wind velocity fields u,v,w at time intervals of 60s after the flow reached steady state.180

This time interval was large enough to ensure that subsequent stored flow fields were (nearly) independent, which is preferable

for the training and testing of the neural networks (Sect. 6). More details about the used simulation set-up and simulation code

can be found in Table 1 and van Heerwaarden et al. (2017).

Table 1. Simulation specifications for direct numerical simulation of incompressible neutral channel flow test case we used to generate the

training data (Sect. 4). Here, δ [m] refers to the channel-half width. Additional details about the employed code (MicroHH v2.0) are given

in van Heerwaarden et al. (2017).

Friction Reynolds number Reτ 590

Boundary conditions horizontal directions (x,y): periodic, vertical direction (z): no-slip

Domain size(x,y,z) 2πδ, πδ, 2δ

Kinematic viscosity ν 1.0 ∗ 10−5 [m2 s−1]

Prescribed volume-averaged velocity Uf 0.11 [m s−1]

Grid resolution (x,y,z) 768, 384, 256 (stretched in vertical)

Employed grid staggered Arakawa C-grid

Spatial discretization fourth-order interpolation scheme

Time discretization three-stage, third-order Runge-Kutta scheme

u(x)
v(y)

w(z)
2δ

2πδ
πδ

Figure 1. Sketch of simulated turbulent channel flow. Here, δ [m] refers to the channel-half width.
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4 Training data generation185

II

III

IVIV

I

Figure 2. Four-step filtering procedure applied to generate the training data used in this study. As an example, the panels show for each step

in the calculation of τ inuu the horizontal cross-sections at a height of 0.109δ for part of the domain. The headers above the panels indicate the

plotted quantities. All the values have been made dimensionless with u−1
τ , uτ−2, and δ−1. Here, δ [m] refers to the channel-half width and

uτ [m s−1] to the friction velocity. More details about the indicated steps can be found in Sect. 4.

We will describe in the following the filtering procedure we applied to generate the training data for our ANNs. Using the

framework outlined in Sect. 2 as a basis, from the 31 stored DNS flow fields (Sect. 3) we calculated consistent pairs of i) low-

resolution flow velocity fields uj (that served as input for the ANN; panel (b) Fig. 2), and ii) correction terms τ inij , τoutij (that

served as the ground truth for the ANN predictions; panel (e) Fig. 2). We used these pairs to train the ANNs in a supervised

manner, allowing the ANN to learn predicting the correction terms based only on the low-resolution flow fields (Sect. 6). This190

filtering procedure involved four different steps in total (Fig. 2), which are described in more detail below:

Step I: Downscale uj (768×384×256) to uj using Eq. 2. As a typical LES resolution, we decided to focus only on one

equidistant lower-resolution grid of 96× 48× 64 (x× y× z) cells. The a priori and a posteriori results of this one res-

olution already showed important strengths and challenges of the proposed approach, especially because it is relatively
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coarse close to the walls.195

Step II: Calculate from uj the exact advection and viscous stress terms (first term right-hand side of definitions given in

Eq. 5). To this end, we integrated uiuj and ν ∂uj

∂xi
from the fine grid over the grid faces of the control volumes Ωj(l,m,n)

(Fig. 3). As a consequence of the employed staggered finite-volume Arakawa C-grid, the location of the control volume

(and thus the corresponding grid face) differed for each component of uj .200

n
m l

w(l,m-1,n)
_

v(l,m-1,n)
_

uu
__

vu
__

vu,τvu
__

_
u(l,m-1,n)

_
v(l,m,n)

w(l,m,n)
_

w(l-1,m,n)
_

_
u(l-1,m,n) _

v(l-1,m,n)

u(l,m,n)
_

uu,τuu
__

Figure 3. Three-dimensional visualization of filtering procedure step II and III for a grid cell with indices (l,m,n) for the staggered,

Arakawa C-grid employed. As an example, a calculation of surface-integrated uu,uv and uu,uv are shown (for the sake of clarity, the

calculation of the corresponding viscous fluxes is not shown). The dotted black line indicates the control volume for u, the solid black lines

the individual grid cells, the shaded planes the areas over which the integrals corresponding to uu,vu were evaluated, and the colored arrows

the interpolations taken to calculate uv and uu.

Step III: Using only the coarse-grained flow fields uj , reconstruct the advection and viscous stress terms with linear

second-order interpolation methods (Fig. 3; second and third term right-hand side of definitions in Eq. 5). This ensured

that we reproduced important interpolation errors made in an actual LES with staggered grids. These errors appeared to

remove a substantial fraction of the turbulent energy remaining after the filtering operation, reflecting their detrimental

impact on the smallest resolved scales (Fig. 4).205
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Step IV: Calculate the correction terms τ inij , τoutij via Eq. 5, which at this stage simply boils down to subtracting the result

of step III from the result of step II.

10
0

10
1

10
2

κδ [−]

10−6

10−5

10−4

10−3

10−2

10−1

100

E
u
−

2
τ

δ−
1

[−
]

DNS

filtered

filtered+interpolated

Figure 4. Example streamwise power spectra of u, taken at a height of 0.109δ (i.e. log-layer). Here, δ [m] refers to the channel-half width.

The power spectral density E on the vertical axis has been normalized by δ−1 and uτ−2, where uτ [m s−1] is the friction velocity. Here,

the black line corresponds to the power spectrum of the DNS field (panel (a) Fig. 2), the red line to the power spectrum remaining after the

finite-volume LES filter (Eq. 2) has been applied (step I filtering procedure; panel (b) Fig. 2), and the blue line the spectrum remaining after

both the finite-volume filter and the interpolations required on the coarse LES grid to calculate τ inuu (step III filtering procedure, panel (d)

Fig. 2).

5 ANN architecture

We used feed-forward, fully-connected ANNs with a single hidden layer and without skip connections, to predict the correction

terms τ inij and τoutij with the resolved flow fields uj as input. These are simple ANNs that facilitate computationally fast210

evaluations and easy implementation. We did not use deeper, more sophisticated ANNs to limit the computational cost involved

in making predictions with the ANN as much as possible. This computational cost is critical for the affordability of an ANN

SGS model in an actual LES simulation (Sect. 8).

To introduce non-linearity in the ANN, we used as an activation function the leaky rectified linear unit (ReLu) function

(Maas et al., 2013) with the constant α set to the common value 0.2. This non-linear activation function, together with the215

linear matrix-vector multiplications and bias parameter addition, defines the entire functional form of the ANN.

Similar to conventional LES SGS models, the ANN should preferably act on a small subdomain of the full grid to facilitate

integration in our simulation code MicroHH, which uses domain decomposition for distributed memory computing. We conse-

quently predicted with the ANN only the τ in/outij -values associated with one grid cell (l,m,n) at a time. As input to the ANN,

we used the locally resolved flow fields uj in a 5×5×5 stencil surrounding the grid cell for which we predict τ in/outij . Similar220
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to Cheng et al. (2019) and Yang et al. (2019), we opted not to make our inputs Galilean/rotational invariant as the walls already

provide an intrinsic coordinate system and velocity reference.

To select appropriate 5×5×5 inputs stencils close to the boundaries of the domain, we made use of the horizontal periodic

boundary conditions and the vertical no-slip conditions. We encoded the no-slip conditions in the input stencils by mirroring

uj over the walls, such that uj linearly interpolated to the wall was 0 m s−1. This may have helped the ANN to distinguish the225

near-wall region from the bulk of the flow, potentially removing the need for separate subgrid and wall models.

Using the 5×5×5 stencils in combination with the employed staggered Arakawa C-grid, an asymmetric bias is introduced in

the ANN input and output variables if no special care is taken. We overcame this issue by combining three separate single-layer

ANNs, where each one corresponded to one of the three control volumes considered (Sect. 4). Here, each received a stencil

with slightly adjusted dimensions, and predicted only the correction terms (τ inij , τ
out
ij ) corresponding to the considered control230

volume (resulting in 6 outputs per ANN; Fig. 5). This ensured symmetry in the inputs and outputs of the ANN (Fig. 6 panel

(a)), and did not increase the computational effort involved in evaluating the ANN after training.

In fact, this allowed us to reduce the number of ANN evaluations in the a posteriori simulation (Sect. 8) by almost a factor

2. Except for close to the walls, evaluating the ANN with a checkerboard-like pattern was sufficient to obtain all the needed

correction terms (Fig. 6 panel (b)). Close to the walls, we did require (sometimes partial) ANN evaluations at every grid cell235

to calculate all needed correction terms: the checkerboard-like pattern does not provide all the correction terms at the edges of

the domain. In the horizontal directions, we could make use of the periodic boundary conditions at the edges of the domain.

Control volume
u 

Control volume
v 

Control volume
w 

u (5x5x5)
v (4x4x5)

w (4x5x4)

u (4x4x5)
v (5x5x5)

w (5x4x4)
Input layer

Hidden layer (nhidden)...nhidden ...nhidden ...nhidden

τuu,up

τvu,up

τwu,up

τuu,down

τvu,down

τwu,down

τuv,up

τvv,up

τwv,up

τuv,down

τvv,down

τwv,down

τuw,up

τvw,up

τww,up

τuw,down

τvw,down

τww,down

Output layer (noutput=3x6)

u (4x5x4)
v (5x4x4)

w (5x5x5)

Figure 5. Architecture of ANN-framework used in this study. We combined three separate ANNs that each correspond to one of the three

considered control volumes. For more information, please refer to Sect. 5.
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Figure 6. Panel a): Example two-dimensional input stencil of u,v that the ANN corresponding to the control volume of u receives, together

with four of its outputs (i.e. τ inuu, τoutuu , τ inuv , τoutuv ). Panel b): Two-dimensional visualization of the way we evaluated the ANN during a

posteriori simulations. By evaluating the ANN in checkerboard-like pattern (i.e. only evaluating the grey-shaded grid cells) and making use

of the periodic boundary conditions, we could calculate all needed correction terms except those close to the walls.

6 ANN training

We trained the employed ANNs (Fig. 5) using the training data (consisting of corresponding local 5× 5× 5 uj fields and240

correction terms τ in/outij ; Sect. 4) we generated from 31 stored flow fields (Sect. 3). With the LES resolution we employed

(64× 48× 96), we could extract 294.912 unique samples from each flow field. Of the 31 stored flow fields, we used 25 for

training (i.e. 7.372.800 samples), 3 for validation during training and tuning of the the hyperparameters (i.e. 884.736 samples),

and also 3 for the a priori test (Sect. 7).

During training, the main objective is usually to minimize the so-called cost or loss function, which can be chosen freely.245

We defined it as the mean squared error (MSE) between the 18 DNS-derived τ in/outij,DNS-components (Sect. 4), and the 18 ANN-

predicted τ in/outij,ANN -components (Sect. 5), combining the results from all three separate ANNs (Sect. 5). By minimizing this

MSE, the ANN should ’learn’ to represent the unresolved physics and instantaneous discretization errors incorporated in

τ
in/out
ij,DNS . We did not add so-called regularization terms to the loss function, which are typically added when the ANN shows

sign of over-fitting (e.g. a much higher loss on the validation set than on the training set). Without regularization, we already250

observed good convergence of both the training and test error without signs of over-fitting for all the ANNs we tested (Fig.7).

We did implement preferential sampling near the walls: during training we selected the five horizontal layers closest to the

bottom and top wall more often than the other horizontal layers (starting from the bottom/top wall towards the center of the

channel, respectively with a factor 10, 8, 6, 4, and 2). Our training data set is unbalanced without this preferential sampling,

as most samples would then originate from the bulk of the flow where the physics are different than close to the walls. The255

preferential sampling restores the balance in the training data set between the physics near the wall and the bulk of the flow,

potentially allowing the ANN to represent both properly without the need for a separate wall model.
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To train our ANNs, we used TensorFlow (v 1.12.0), an open-source machine learning framework (Abadi et al., 2016).

We relied on the backpropagation algorithm (Rumelhart et al., 1986) incorporated within TensorFlow to minimize the loss

function. In short, this algorithm calculates for a group of training samples (i.e. the so-called training batch) the gradient of the260

loss function with respect to all the trainable parameters of the ANN (i.e. the weights and bias parameters). Subsequently, the

chosen training optimizer uses these gradients to adjust the parameters accordingly. The magnitude of these adjustments are

governed by the chosen learning rate η. We chose the popular ADAM optimizer (Kingma and Ba, 2014) with a relatively low

value for η (0.0001) and a relatively large batch size of 1000. As our training data contains a high amount of noise inherent

to turbulence, these parameter choices were in our case needed to stabilize the training results. Furthermore, in line with265

common practice, we normalized all the inputs and ’true’ outputs with their means and standard deviations. This improved the

convergence during training and accelerated learning.

In Table 2 we give an overview of all the hyperparameters and settings we used. The chosen initialization methods for the

weights and bias parameter are standard for the architecture and activation function we selected.

Table 2. Fixed hyperparameters and settings used in the ANNs we trained. Here, # means ’number of’.

# training iterations (epochs) 500.000 (≈ 38 epochs taking into account the preferential sampling)

# hidden layers 1

Batch size 1000

Loss function mean squared error, no regularization

Activation function Leaky ReLu with α= 0.2 (Maas et al., 2013)

Optimizer ADAM with β1 = 0.9, β2 = 0.999, and ε= 1e− 08 (Kingma and Ba, 2014)

Learning rate η 0.0001

Normalization z-score ( value−mean
standard deviation )

Weight/kernel initializer He uniform variance scaling initializer (He et al., 2015)

Bias initializer zeros initializer

270

We performed a more extensive sensitivity analysis with the number of neurons in the hidden layer, nhidden, as it is for our

architecture a good measure of the model complexity. In general we found that increasing nhidden, and thus increasing the

model complexity, improved the reduction of the loss function without showing signs of over-fitting (Fig. 7). However, the

improvement in training loss reduction clearly reduced with increasing model complexity, while a higher model complexity

increases the computational cost of the ANN SGS model. In the next sections we will therefore focus on the results we obtained275

with nhidden = 64, as a reasonable compromise between accuracy and total computational cost.
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Figure 7. Evolution of the loss corresponding to the considered training batches (dotted lines) and the 3 validation flow fields (solid lines)

for a changing number of neurons in the single hidden layer as a function of training iteration. To improve readability and keep the total

computational effort involved in the training feasible, we show here both losses only for every 10.000 iterations instead of every single

iteration.

7 ANN a priori test

To test the performance of the ANN SGS models, we first performed an a priori test by directly comparing the ANN predictions

and DNS-derived correction terms for 3 previously unseen flow fields of u,v,w. In this comparison, we included the subgrid

fluxes τij,Smag predicted with the popular Smagorinsky SGS model (with cs = 0.1). In line with usual practice, we augmented280

the Smagorinsky SGS model with an ad-hoc Van Driest (Van Driest, 1956) wall-damping function (with A= 26) to (partly)

compensate for its known over-dissipative behaviour (e.g. Pope, 2001; Sagaut, 2006).

Furthermore, to facilitate easier comparison with the Smagorinsky model, for the ANN and DNS results we combined the

two separate correction terms τ inij , τ
out
ij . In the remainder of the paper we will denote the resulting combined fields as τij,ANN

and τij,DNS respectively, which each contain the same 9 components as τij,Smag . We did this in accordance with the way how285

we evaluated the ANNs within our CFD-code MicroHH during the a posteriori test (Sect. 5).

We focused in the a priori test particularly on the τwu-component in the log-layer. In channel flow, it is mainly the vertical

gradient of the τwu-component that has to balance the imposed horizontal pressure gradient (e.g. Pope, 2001). τwu is therefore

critical for the quality of the achieved steady state solution and its statistics. The log-layer, in turn, is especially interesting

because of its universal character. In the log-layer, the horizontally averaged profiles of the mean velocity and Reynolds stress290

tensor components becomes partly independent of the Reynolds number when properly scaled with wall units (e.g. Pope,

2001).

Furthermore, to get some more insight into the behaviour of our ANNs, we calculated for every input variable in the 5×5×5

stencils the so-called permutation feature importance (e.g. Fisher et al., 2019; Molnar, 2019; Breiman, 2001) associated with
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predicting τ inwu and τoutwu in the log-layer (Sect. 7.3). The permutation feature importance indicates how important a certain295

input variable is for the prediction quality of the ANN: the higher it is, the more important that variable is for the ANN.

Specifically, the permutation feature importance measures by which factor the prediction error (in our case measured as the

root-mean square error between the DNS-values and ANN predictions) increases when the information contained in that input

variable is destroyed, while the information in the other input variables is retained. We destroyed the information in each input

variable by randomly shuffling it in the corresponding horizontal plane. Besides that, we averaged the calculated permutation300

feature importances over all the 3 testing flow fields and over 10 different random shufflings, to stabilize the results. We

intentionally chose not to shuffle the input variables along different heights. Because of the strong mean vertical gradient in

u, this would possibly introduce an unrealistic bias into the calculated permutation feature importances. We do emphasize that

the permutation feature importances are likely affected by the correlations existing in our input data. The permutation feature

importances we report therefore need to interpreted with caution.305

7.1 Performance

The ANN predictions τwu,ANN (with nhidden = 64) in the log-layer generally show excellent agreement with τwu,DNS (Fig.

8 and 9). Especially the consistency we found in horizontal cross-sections (Fig. 8) is striking given the noisy spatial patterns of

τwu,DNS , which τwu,ANN reproduces quite accurately both qualitatively and quantitatively. In agreement with this, τwu,ANN

also reproduces quite well the distribution and spectrum of τwu,DNS (Fig. 9). The notable high spectral content at high wave310

modes, is mainly caused by the coarsening we applied in the training data generation. The coarsening tends to remove the

local spatial structure present at high resolutions, resulting in strong variability at the smallest resolved spatial scales. We note

that the found correspondence between τwu,ANN and τwu,DNS in the log-layer is in agreement with the result of Cheng et al.

(2019) and Gamahara and Hattori (2017), despite that their training data generation procedure was slightly different from ours

(Sect. 2 and 4).315

From the tails of the distribution and the high wave modes of the spectra however (Fig. 9), it is apparent that τwu,ANN does

still slightly underestimate the extremes at small spatial scales characteristic of τwu,DNS . Probably, these extremes were hard

to predict accurately because of their high stochastic nature and inherent rare occurrence. Yang et al. (2019) identified this

issue in the context of an ANN-based LES wall model, and found that this issue persisted even when the errors were weighted

inversely proportional to their PDF (i.e. giving extreme values larger weights in the loss function).320
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Figure 8. Horizontal cross-sections of τwu in the log-layer (0.09375 z
δ

(55.3125z+)) for a representative flow field not used to train and

validate the ANNs. All values are normalized by the friction velocity uτ and half-channel width δ.

.

Figure 9. Performance of τwu,ANN (with nhidden = 64) in the log-layer (0.09375 z
δ

(55.3125z+)) for a representative flow field not used

to train and validate the ANNs. Panel (a) shows the corresponding scatter-plot between τwu,ANN and τwu,DNS , where the dotted blue

line indicates the 1:1 line. Panel (b) shows the probability density functions, and panel (c) the streamwise spectra averaged in the spanwise

direction. τwu,ANN and τwu,DNS have been normalized by the friction velocity u−2
τ . The power spectral density E on the vertical axis in

panel (c) has been normalized by δ−1 and uτ−2. As a reference, in panel (b) and (c) τwu,smag is shown as well.

Extending our focus from the log-layer to the whole vertical domain, we see that, especially near the walls, τwu,ANN still

had some difficulty to accurately represent the horizontally averaged vertical profile of τwu,DNS (Fig. 10). We note that, in our

training data, for τwu,DNS the horizontally averaged flux was small compared to its point-wise fluctuations. As a result, the

loss associated with τwu,DNS was probably more sensitive to the point-wise fluctuations than the average flux.
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Figure 10. Horizontally averaged vertical profiles of τwu,DNS , τwu,ANN , and τwu,smag at one representative time step not used to train

and validate the ANNs. All values are normalized by the friction velocity u−2
τ and half-channel width δ−1.

Extending our focus further towards all components, we found that in general the ANN correlated well with the DNS subgrid325

fluxes (Table 3; mostly ρ 0.6− 1.0). Looking more closely at the found correlations, we did find that the correlations differed

depending on the channel height. Closer to the walls, the correlations generally slightly decreased compared to the middle of

the channel. We minimized this difference by implementing the preferential sampling discussed before (Sect. 6). Furthermore,

some components (i.e. the isotropic components and the components associated with the u control volume) were clearly better

predicted than others: this was likely related to differences in their magnitude that persisted even after the applied normalization330

(i.e. the same normalization was applied over the entire domain, meaning that some components with strong vertical gradients

still contained more extreme values than components without a clear vertical gradient), and differences in their stochastic

variability and consequent signal-to-noise ratio.

One clear outlier is τwu at the first vertical level (with ρ= 0.358), which appeared to be most difficult to predict. This

component was located at the bottom wall because of the staggered grid orientation, and consequently only the viscous flux335

contributed. As a consequence, the target DNS values and input patterns were different than for other vertical levels and

components, making it hard for the ANN to give accurate predictions. Still, the magnitude of the ANN predictions matched

reasonably well the DNS values (not shown).
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Table 3. Pearson correlation coefficients between ANN predictions (nhidden = 64) and DNS values for 3 test flow fields, for every τij-

component and multiple heights (where the indicated height is of the corresponding staggered grid box center and thus does not necessarily

match the height of the component). Here, the j-index refers to the considered control volume (Sect. 2). Note that the τuw,vw-components

are left out at the first vertical level, as these are due to the staggered grid located exactly at the bottom wall. At the bottom-wall we imposed

a no-slip boundary-condition, meaning that these components are by definition 0.

height τuu τvu τwu τuv τvv τwv τuw τvw τww

all 0.840 0.824 0.769 0.730 0.783 0.718 0.692 0.652 0.778

0.015625δ (9.21875z+) 0.928 0.878 0.358 0.845 0.756 0.668 − − 0.540

0.046875δ (27.65625z+) 0.790 0.838 0.793 0.732 0.716 0.704 0.663 0.605 0.678

0.078125δ (46.09375z+) 0.771 0.818 0.728 0.704 0.736 0.712 0.596 0.632 0.694

0.109375δ (64.53125z+) 0.757 0.808 0.717 0.689 0.744 0.700 0.608 0.607 0.687

0.265625δ (156.71875z+) 0.767 0.806 0.739 0.700 0.751 0.732 0.652 0.646 0.743

0.765625δ 0.842 0.838 0.811 0.769 0.753 0.745 0.762 0.712 0.793

1.234375δ 0.846 0.847 0.818 0.782 0.752 0.708 0.771 0.676 0.796

1.734375δ 0.781 0.815 0.761 0.721 0.756 0.747 0.681 0.700 0.738

1.890625δ 0.762 0.813 0.715 0.701 0.729 0.719 0.619 0.655 0.691

1.921875δ 0.769 0.824 0.713 0.722 0.731 0.703 0.609 0.642 0.678

1.953125δ 0.798 0.843 0.728 0.746 0.734 0.704 0.609 0.640 0.706

1.984375δ 0.933 0.884 0.806 0.830 0.775 0.712 0.674 0.622 0.580

7.2 Comparison Smagorinsky340

Focusing on the horizontally averaged vertical profiles, we found that τwu,smag does not compare well with τwu,DNS (Fig. 10).

Except close to the walls, the Smagorinsky SGS model strongly underestimates the horizontally averaged τwu. We emphasize

that the correspondence close to the walls was only achieved because of the implemented ad-hoc Van Driest wall damping

function (Van Driest, 1956).

Considering the individual grid points, the a priori performance of the Smagorinsky SGS model is in sharp contrast with the345

a priori ANN performance: τij,Smag shows barely any agreement with the DNS values both qualitatively and quantitatively

(Fig. 8 and 9). The poor point-wise a-priori performance of Smagorinsky is not surprising and well-known in literature (e.g.

Clark et al., 1979; McMillan and Ferziger, 1979; Liu et al., 1994). In our case though, the point-wise a-priori performance of

Smagorinsky is worse than usually documented: the found correlations with DNS in our study (mostly ρ= 0.0 for individual

heights and all components, not shown) are lower than reported before (where ρ=∼ 0...0.4; Cheng et al. (2019); Clark et al.350

(1979); McMillan and Ferziger (1979); Liu et al. (1994)). Furthermore, τij,Smag is off by more than one order of magnitude
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and is too smooth (Fig. 8 and 9): in comparison to τij,DNS , the PDF is narrower (Fig. 9 panel b), and the spectral content in

τij,Smag is smaller and skewed towards low wave modes (Fig. 9 panel c).

This exacerbated point-wise a priori performance of the Smagorinsky SGS model is caused by our alternative definition for

τij , which, in contrast to the commonly defined τij , compensates for all the instantaneous discretization effects introduced355

by the staggered finite-volumes in both the advection and viscous flux terms (Sect. 2). As these discretization effects remove

a large part of the variance present in the LES (Figure 4), our τij inherently contains a large amount of variance that is not

represented by Smagorinsky.

All in all, our ANN SGS model is clearly better able to represent τij in an a priori test than the Smagorinsky SGS model. This

shows the promise ANN SGS models like ours could have to construct more accurate SGS models, if their a priori potential360

can be successfully leveraged in a posteriori simulations.

7.3 Permutation feature importance

For τ inwu and τoutwu in the log-layer, the calculated permutation feature importances (shown as an example for u in Fig. 11 and 12)

suggest that the input variables most important to the ANN (with nhidden = 64) are generally located close to the considered

correction term (with the notable exception of the middle column in the u-velocity input stencil).365

Comparing the calculated feature importances corresponding to τ inwu and τoutwu , we see a striking shift in the vertical. For the

u-input stencil the u-velocity input stencil (Fig. 11-12), it is evident that the vertical patterns corresponding to τ inwu and τoutwu

are nearly mirrored versions of each other. Besides that, the most important input variables also seem to be mainly oriented

along the mean flow direction (l). In contrast, the edges in the vertical (n) and span-wise (m) direction mostly have low feature

importances.370

All in all, the observed patterns give interesting indications about which input variables have the most predictive value for

the considered ANN, and could possibly be used to adjust the input stencil accordingly. Specifically, they suggest in our case

that the input stencils can be made smaller in the vertical and span-wise direction without sacrificing their predictive value, and

that an extension along the stream-wise direction may help to increase the predictive value of the input stencils.
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Figure 11. Permutation feature importance of all u-velocities in the local input stencil (with indices (l,m,n)) for predicting τ inwu in the

log-layer (0.09375 z
δ

(55.3125z+)) with nhidden = 64, averaged over 3 flow fields reserved for a priori testing and 10 random shufflings.

The five panels a-e each show one of the five horizontal planes (indicated by their vertical index n) present in the input stencils. τ inwu is located

in the center of the shown horizontal plane, halfway between n= 1 and n= 2.
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Figure 12. Permutation feature importance of all u-velocities in the local input stencil (with indices (l,m,n)) for predicting τoutwu in the

log-layer (0.09375 z
δ

(55.3125z+)) with nhidden = 64, averaged over 3 flow fields reserved for a priori testing and 10 random shufflings.

The five panels a-e each show one of the five horizontal planes (indicated by their vertical index n) present in the input stencils. τoutwu is

located in the center of the shown horizontal plane, halfway between n= 2 and n= 3.

8 ANN a posteriori test375

To test the a posteriori performance of our ANN LES SGS model(with nhidden = 64) in an actual LES simulation, we directly

incorporated it into our CFD code MicroHH (v2.0) (van Heerwaarden et al., 2017). We designed our ANN LES SGS model such

that the integration into our CFD code was relatively straightforward (Sect. 2). Furthermore, we improved the computational

performance of the ANN SGS model by implementing BLAS routines from the Intel(R) Math Kernel Library (version: 2019

update 5 for Linux), which has been optimized for the Intel CPUs we used (i.e. E5-2695 v2 (Ivy Bridge) and E5-2690 v3380

(Haswell)). Still, the computational effort involved in the ANN SGS model was large: an equivalent LES simulation with the

Smagorinsky SGS model was for our set-up about a factor 15 faster, showing that more optimizations are needed for practical

applications.

With the ANN SGS model incorporated in our CFD code, we ran a LES with, similar as in the training and a priori test, an

equidistant grid of 96× 48× 64 cells for the turbulent channel flow test case described in Sect. 3. Here, we used second-order385
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linear interpolation to calculate all the velocity tendencies, which is consistent with our training data generation procedure

(Sect. 2 and 4). Furthermore, we initialized the LES simulation from one of the 3 flow fields reserved for the a priori testing.

We did this to ensure that any possible errors in the initialization phase of the LES (i.e. before steady state is achieved) did not

impact the solution. Still, our LES ran freely from the prescribed initialized steady-state fields, meaning that all the model and

discretization errors made in calculating the channel flow steady state dynamics were included.390

8.1 Performance

Our ANN LES SGS model produced numerically unstable a posteriori results without resorting to artificially introducing

additional variance (for instance via eddy-viscosity models) or imposing strong ad-hoc numerical constraints. This was also

reported by Beck et al. (2019), who showed that their SGS model only became numerically stable when combined with eddy-

viscosity models. Several earlier studies that attempted to replace LES SGS or wall models with ANNs (Maulik et al., 2019;395

Wang et al., 2018; Yang et al., 2019; Zhou et al., 2019; Xie et al., 2019), did show stable a posteriori results, but in some cases

only after imposing strong numerical constraints that dampened backscatter (Maulik et al., 2019; Zhou et al., 2019).

Crucially, for our set-up the instantaneous discretization errors associated with the finite-volume staggered LES grid were

large, removing a large part of the variance present at high wave modes in the DNS (Fig. 4). Since we designed our ANN SGS

model to fully compensate for these instantaneuous discretization errors, our SGS model tended to introduce a large amount400

of variance at the highest resolved wave modes. This is probably less prominent for the ANN SGS models developed in the

aforementioned studies (with the exception of Beck et al. (2019)) and for traditional SGS models like Smagorinsky, which

do not fully compensate for all the instantaneous discretization errors made with staggered finite-volumes. In the a priori test,

we consistently found that the Smagorinsky SGS model, as opposed to our ANN SGS model, strongly underestimated the

small-scale variability of τij,DNS (Sect. 7.1 and 7.2).405

The introduction of additional variance at the highest wave modes by our ANN SGS model, is on its own not necessarily a

problem if the energy transfer from the resolved to the unresolved scales is sufficient. In other words, our ANN SGS model

needs to provide sufficient additional dissipation. However, we found that our ANN SGS model does not satisfy this require-

ment: for all three wind velocity components we observed a gradual pile-up of spectral energy at the smallest wave modes of

the LES, which eventually resulted in numeric instability (shown as an example for the u-component in Fig. 13).410
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Figure 13. Time evolution of stream-wise spectra averaged in the span-wise direction, where the colour brightness indicates the different

time steps. Here, the light blue colours refer to the first time steps, and the dark blue colours to the final time steps. The time steps range from

t=0s to t=27s, with intervals of 3s.

We hypothesize that two issues prevented the ANN SGS model from producing the required dissipation: 1) error accumula-

tion, and 2) aliasing errors.

In the first place, similar to Beck et al. (2019), we hypothesize that high-frequency errors in the ANN predictions accumulated

over time due to strong positive feed-backs between our ANNs and the LES simulation. We stress that ANN SGS models like

ours can never be perfect, and consequently will always introduce errors in an a posteriori simulation that affect, together with415

the full LES dynamics, its own inputs in the next time step. It strongly depends on the characteristics of the SGS model, whether

this can result in positive feedback loops that cause divergence from the physical solution and subsequent numeric instability.

In this regard, eddy-viscosity models like Smagorinsky have an important stabilizing property in steady-state channel flow: as

soon as the energy content starts deviating from the physical solution, the subgrid dissipation is automatically adjusted (via a

change in the gradients serving as input) to compensate for it.420

Such a stabilizing property, however, was clearly lacking in our ANN SGS model. This is not surprising: we designed our

ANN SGS model to compensate for many instantaneous discretization effects, which typically dampen the error accumulation

at high-frequencies. It is well-known that, due to the chaotic nature of turbulence, small errors introduced by the predicted

transports have a tendency to grow over time (e.g. Liu et al., 1994). On top of that, it has been shown before by Nadiga

and Livescu (2007) that ’perfect’ SGS models (that exactly compensate for the unresolved physics, modelling errors, and425

instantaneous discretization errrors), are inherently unstable in implicit-filtering LES due to the presence of multiple different

attractors. These issues were likely exacerbated by the growing need for the ANN to extrapolate beyond its training state once

the simulation started deviating from the physical solution. This extrapolation likely increased the ANN prediction errors,

which would in turn accelerate the divergence from the physical solution.
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In the second place, we hypothesize that, during the a posteriori test, aliasing errors became prominent due to the introduced430

variance at high wave modes. Such aliasing errors are known to introduce instability when not dampened by discretization

errors and/or dealiasing techniques (e.g. Kravchenko and Moin, 1997; Chow and Moin, 2003). The quadratic velocity products

in the non-linear advection term, can in principle introduce wave modes that are not supported by the finite LES grid. The

additional variance could have prevented them from being dampened by the discretization errors, causing them to appear as

spurious resolved wave modes in the finite LES solution. This would increase the amount of dissipation required in the LES435

simulation. These aliasing errors were not accounted for during the ANN training, as it only relied on instantaneous coarse-

grained flow fields that did not contain additional variance.

9 Conclusions and recommendations

In this study, we evaluated and developed a data-driven large-eddy simulation (LES) subgrid-scale (SGS) model based on

artificial neural networks (ANNs) that aims to represent the unresolved physics and instantaneous discretization errors in wall-440

bounded turbulent flows, without requiring simplifying assumptions, a separate wall model, and/or ad-hoc empirical corrections

to achieve numerically stable results in wall-bounded flows. We focused specifically on the widely-used LES approach where

a staggered finite-volume grid acts as an implicit filter, where the discretization errors can strongly interact with the resolved

physics.

We designed our ANN SGS model such that, similar to conventional eddy-viscosity SGS models like Smagorinsky, it445

could be applied locally in the grid domain: the employed ANNs used as input only local 5× 5× 5 stencils of the resolved

wind velocity components (u,v,w). Interestingly, an additional analysis we performed with so-called permutation feature

importances, suggested that our ANNs mostly focused on a small part of the stencils oriented along the mean flow direction.

Hence, the input stencils we used could perhaps be further optimized by selecting smaller stencils that extend along the mean

flow direction.450

Using as a test case turbulent channel flow (with Reτ = 590), we trained the ANNs with individual 3D flow fields obtained

from direct numerical simulation (DNS). By applying an explicit finite-volume filter (i.e. a discrete 3D top-hat filter) on the

high-resolution DNS fields and mimicking the instantaneous discretization errors made in actual LES, we generated millions

of ANN input-output pairs that allowed us to train the ANNs in a supervised manner.

Subsequently, we performed both an a priori and a posteriori test. As an a priori test, we directly compared the ANN455

predictions to the DNS derived values for flow fields unseen during training. We found, in general, excellent agreement for

all heights in the channel: the spatial patterns in the DNS values were well captured, and the correlation coefficients between

the ANN predictions and DNS values were high (mostly between 0.6 and 1.0). The ANNs were thus well able to represent

the unresolved physics and instantaneous discretization errors in the entire flow, based only on the resolved flow fields. This

shows their potential to serve as highly accurate SGS models both in the near-wall region and bulk flow. We do note that the460

ANNs we employed still had a few shortcomings that can possibly be improved upon: the extreme SGS fluxes were slightly

underestimated, and the predicted horizontally averaged vertical profile of τwu deviated close to the walls.
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To test our ANN SGS model a posteriori, we incorporated our trained ANN SGS model directly into a LES of the selected

turbulent channel flow test case. Contrary to the a priori test, the ANN SGS model did not produce satisfactory results. Since our

ANN SGS model, in contrast to traditional SGS models like Smagorinsky, compensated for many instantaneous discretization465

effects by introducing additional variance, the need for additional dissipation increased. The ANN SGS model appeared not to

provide this dissipation sufficiently, causing an artificial build-up of TKE at high wave-modes that eventually destabilized the

solution. We hypothesized that our ANN SGS model did not produce sufficient dissipation because of 1) error accumulation,

and 2) aliasing errors.

We therefore conclude that our ANN SGS model cannot, in its current form, achieve computationally stable results. One way470

forward could be to adjust the training procedure such that it reflects better the a posteriori simulation. A potential elegant way

to achieve this may be the online learning procedure proposed by Rasp (2020), where our ANN SGS model would be directly

trained in an online a posteriori LES simulation. This would require a simultaneously running DNS that is continuously kept

in sync with the LES by constant forcing, such that the ANN can learn directly from the DNS how its predictions should be

adjusted for the full LES dynamics and its own errors.475

A possibly less involved solution may be to manually mimic the online training in the offline setting used in this study,

avoiding the need to dynamically couple a DNS and LES. This may be done by manually adjusting the fully resolved DNS

flow fields at each time step during an offline DNS simulation similar to ours, in such a way that that the offline DNS simulation

more closely resembles an DNS simulation incorporated in an online training procedure. Alternatively, errors expected to be

introduced by an ANN SGS model in an a posteriori LES simulation, could be added to the filtered flow fields u, v, w during480

training. This may help to reduce the sensitivity of the ANN to its own errors, alleviating the need for extrapolation once the a

posteriori LES simulation starts diverging.

Another way forward may be to include more physical constraints and insights in the ANN design and training. It could for

instance be interesting to include energy conservation terms in the loss function used during offline training, as it may allow

the ANNs to better conserve energy after training.485

Besides that, another main approach to achieve computationally stable results would be to relax some of the requirements

we specified, allowing the usage of more commonly applied methods in fluid mechanics to increase dissipation. One option

could be to impose strong numerical constraints that dampen backscatter, as done for instance by Maulik et al. (2019) and

Zhou et al. (2019). Another option could be to implement an additional eddy-viscosity model that can provide the required

additional dissipation, in line with existing so-called mixed models (e.g. Sagaut, 2006). This was successfully done by Beck490

et al. (2019), who achieved accurate and stable a posteriori results with their LES ANN SGS model only when they combined

it with eddy-viscosity models.

Furthermore, another option could be to perform LES with explicit filtering, which would strongly dampen the discretization

errors and provide additional subgrid dissipation (e.g. Chow and Moin, 2003; Sagaut, 2006). This does have the disadvantage

that the total computational effort increases. An additional (potentially expensive) filtering operation would have to be applied,495

and, to retain the same number of degrees of freedom in the resolved flow fields as without explicit filtering, the grid resolution

would have to be increased (e.g. Chow and Moin, 2003; Sagaut, 2006).
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All in all, our developed ANN LES SGS model has, based on its excellent a priori performance, potential to improve the

representation of the unresolved physics and discretization errors in turbulent flows. However, the developed ANN LES SGS

model is in its current form still prone to numeric instability in a posteriori simulations. Hence, several open challenges remain500

before the potential of ANN LES SGS models like ours can be successfully leveraged in practical applications.
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