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Abstract. Atmospheric boundary layers and other wall-bounded flows are often simulated with the large-eddy simulation

(LES) technique, which relies on subgrid-scale (SGS) models to parameterize the smallest scales. These SGS models often

make strong simplifying assumptions. Also, they tend to interact with the discretization errors introduced by the popular LES

approach where a staggered finite-volume grid acts as an implicit filter. We therefore developed an alternative LES SGS model

based on artificial neural networks (ANNs) for the computational fluid dynamics code MicroHH (v2.0). We used a turbulent5

channel flow (with friction Reynolds number Reτ = 590) as a test case. The developed SGS model has been designed to

compensate for both the unresolved physics and instantaneous spatial discretization errors introduced by the staggered finite-

volume grid. We trained the ANNs based on instantaneous flow fields from a direct numerical simulation (DNS) of the selected

channel flow. In general, we found excellent agreement between the ANN predicted SGS fluxes and the SGS fluxes derived

from DNS for flow fields not used during training. In addition, we demonstrate that our ANN SGS model generalizes well10

towards other coarse horizontal resolutions, especially when these resolutions are located within the range of the training data.

This shows that ANNs have potential to construct highly accurate SGS models that compensate for spatial discretization errors.

We do highlight and discuss one important challenge still remaining before this potential can be successfully leveraged in actual

LES simulations: we observed an artificial build-up of turbulence kinetic energy when we directly incorporated our ANN SGS

model into a LES simulation of the selected channel flow, eventually resulting in numeric instability. We hypothesize that15

error accumulation and aliasing errors are both important contributors to the observed instability. We finally make several

suggestions for future research that may alleviate the observed instability.

Copyright statement. This article is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction

Large-eddy simulation (LES) is an often used technique to simulate turbulent atmospheric boundary layers (ABLs) and other20

wall-bounded geophysical flows with high Reynolds numbers (e.g. rivers). These turbulent flows are challenging to simulate be-

cause of their strong non-linear dynamics and large ranges of involved spatial and temporal scales. LES explicitly resolves only
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the largest, most energetic turbulent structures in these flows, while parameterizing the smaller ones with so-called subgrid-

scale (SGS) models. This allows LES to keep the total computational effort feasible for today’s high-performance computing

systems, but makes the quality of the results strongly dependent on the chosen SGS model. As an SGS model based on physi-25

cal principles alone does not exist, the SGS models used today typically rely on simplifying assumptions in combination with

ad-hoc empirical corrections (e.g Pope, 2001; Sagaut, 2006).

To briefly illustrate the effects simplifying assumptions can have, we take as an example the eddy-viscosity assumption

used in the popular Smagorinsky model (Smagorinsky, 1963; Lilly, 1967) and several other SGS models. Crucially, the eddy-

viscosity assumption introduces an alignment between the Reynolds stress and strain rate tensor that has not been verified30

in experimental data (Schmitt, 2007). This makes it impossible to produce both the correct Reynolds stresses and dissipation

rates (Jimenez and Moser, 2000). As a consequence, eddy-viscosity SGS models often require ad-hoc manual corrections

(e.g. tuning the Smagorinsky coefficient and/or implementing a wall-damping function) or multiple computationally expensive

spatial filtering operations (e.g. scale-dependent dynamical Smagorinsky models (Bou-Zeid et al., 2005)) to achieve satisfactory

results.35

Data-driven machine learning techniques are, in contrast, much more flexible regarding their functional form, and thus may

potentially help to circumvent the need for many of these simplifying assumptions. This is especially valid for artificial neural

networks (ANNs): simple feed-forward ANNs with just one hidden layer are theoretically able to represent any continuous

function on finite domains (i.e they are universal approximators; Hornik et al. (1989)).

A wide effort is therefore currently underway to explore the potential for ANNs and other machine learning techniques in40

flow and turbulence modelling (Brunton et al., 2020; Kutz, 2017; Duraisamy et al., 2019). In particular, multiple studies suc-

cessfully modelled turbulence in Reynolds-Averaged Navier-Stokes (RANS) codes with machine learning techniques trained

on high-fidelity direct numerical simulations (DNS) that resolve all relevant turbulence scales (e.g. Kaandorp and Dwight,

2020; Ling et al., 2016a, b; Wang et al., 2017; Wu et al., 2018; Singh et al., 2017).

Several other efforts in literature experimented with comparable approaches in both LES SGS modelling (Beck et al., 2019;45

Cheng et al., 2019; Gamahara and Hattori, 2017; Maulik et al., 2019; Milano and Koumoutsakos, 2002; Sarghini et al., 2003;

Vollant et al., 2017; Wang et al., 2018; Xie et al., 2019; Yang et al., 2019; Zhou et al., 2019) and, interestingly, parameter-

izations in climate/ocean modelling (e.g. Bolton and Zanna, 2019; Brenowitz and Bretherton, 2019; Rasp, 2020; Yuval and

O’Gorman, 2020). The studies focusing on LES SGS modelling, similarly used DNS fields as a basis, and subsequently ap-

plied a downscaling procedure to generate consistent pairs of coarse-grained fields (that are assumed to represent the fields50

that a LES code would generate) and the quantity of interest (e.g. the ’true’ subgrid transport or the closure term itself). These

pairs were then typically used to train ANNs in a supervised way. Some studies showed very promising results with this

method, both in so-called a priori, offline tests (where the predicted quantity is directly compared to the ones derived from

DNS) and so-called a posteriori, online tests (where the trained ANN is directly incorporated as a SGS model into a LES

simulation). However, these studies mostly focused on 2d/3d (in)compressible isotropic turbulence (Beck et al., 2019; Guan55

et al., 2021; Maulik et al., 2019; Vollant et al., 2017; Wang et al., 2018; Xie et al., 2019; Zhou et al., 2019), and thus do not

represent wall-bounded geoscientific flows. Furthermore, some of these studies (Beck et al., 2019; Maulik et al., 2019; Zhou
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et al., 2019) resorted to ad-hoc adjustments (e.g. artificially introducing dissipation by combining with the Smagorinsky SGS

model, neglecting all backscatter) to achieve stable a posteriori results. Such ad-hoc adjusments are not ideally preferred: they

obscure the link between the a priori and a posteriori implementation, and re-introduce part of the assumptions that are ideally60

circumvented by using ANN SGS models.

There are also studies that attempted similar methods in cases that better represent ABLs. Some of them focused on LES

wall modelling specifically (Milano and Koumoutsakos, 2002; Yang et al., 2019), which is challenging on its own because

of the many unresolved near-wall motions that the wall model has to take into account. Sarghini et al. (2003) and Gamahara

and Hattori (2017), in turn, focused on SGS modelling in the whole turbulent channel flow. Sarghini et al. (2003) used neural65

networks to predict the Smagorinsky coefficient in the Smagorinsky-Bardina SGS model (Bardina et al., 1980) reaching a

computational time saving of about 20%. Gamahara and Hattori (2017) directly predicted the SGS turbulent transport with

a neural network, using DNS during training. They got reasonable a priori results, but did not perform an a posteriori test.

Another important step towards application of these methods in realistic atmospheric boundary layers was taken by Cheng

et al. (2019). They performed an extensive a priori test for an ANN-based LES SGS model covering a wide range of grid70

resolutions and flow stabilities (from neutral channel flow to very unstable convective boundary layers). We emphasize though

that for successful integration of ANN-based SGS models in practical applications, accurate and numerically stable a posteriori

results are an important requirement. Recently, Park and Choi (2021) took a step in this direction by testing an ANN-based SGS

model in a neutral channel flow both a priori and a posteriori. They found that their SGS model introduced numeric instability

a posteriori, except when they neglected all back-scatter or only used single-point, rather than multi-point, inputs. However,75

selecting only single-point inputs, in turn clearly reduced the a priori performance. Hence, it remains an open issue whether

and how the often observed high a priori potential of ANN SGS models, can be successfully leveraged in an a posteriori test,

in particular for wall-bounded flows like ABLs.

In addition, all the previously mentioned ANN LES SGS models, together with traditional eddy-viscosity models, do not

directly reflect the LES approach where a staggered finite-volume numerical scheme acts as an implicit filter, despite being a80

common practice when simulating ABLs. Traditional eddy-viscosity models are typically derived based on a generic filtering

operation that does not consider the finite discrete nature of the used numerical grid (i.e. it is usually thought of as an analytical

filter like a continuous top-hat filter), while the ANN SGS models so far did not attempt to compensate for all the discretization

errors arising in simulations with staggered finite-volumes. These discretization errors, however, can strongly influence the

resolved dynamics (e.g. Ghosal, 1996; Chow and Moin, 2003; Giacomini and Giometto, 2020), especially at the smallest85

resolved scales. Since the ANNs have access to both the instantaneous DNS flow fields and corresponding coarse-grained field

during training, an unique opportunity arises to compensate also for instantaneous discretization errors in ANN SGS models.

Within this context, there have been a couple of noteworthy studies (Langford and Moser, 1999; Völker et al., 2002; Zandon-

ade et al., 2004) that introduced the framework of perfect and optimal LES. Based on this framework, these studies approxi-

mated the full LES closure terms (that account for both the unresolved physics and all instantaneous discretization errors) with90

a data-driven approach based on DNS. The statistical method they used for this purpose though (i.e. stochastic estimation),

still made additional assumptions about the functional form of the LES SGS model (e.g. linearity). A recent study by Beck
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et al. (2019) therefore used ANNs to approximate, in a similar way as the aforementioned studies, the full LES closure terms.

To construct based on these ANNs an LES SGS model that is numerically stable a posteriori, they combined the ANNs with

eddy-viscosity models. They did not specifically focus on the discretization errrors associated with staggered finite-volume95

grids, and did not consider wall-bounded turbulent flows like ABLs.

In this study, we therefore made a first attempt to construct, based on DNS fields, an ANN SGS model that compensates

for both the unresolved physics and the instantaneous discretization errors introduced by staggered finite-volume grids. Our

ambition in doing so, is to eventually improve the a posteriori accuracy compared to LES with traditional SGS models like

Smagorinsky. This may potentially reduce the computational cost involved in LES as well, as accurate results may still be100

achieved with much coarser, computationally cheaper resolutions than currently used.

To make a step towards this ambition, our aim with the current manuscript is two-fold:

1. Describe the framework of our ANN SGS model, which takes both the unresolved physics and instantaneous spatial

discretization errors in finite-volume LES into account. This includes its theoretical foundations (Sect 2) and its imple-

mentation (Sect 3).105

2. Characterize both the a priori and a posteriori performance of our ANN SGS model for a wall-bounded turbulent neutral

channel flow, without resorting to previously used ad-hoc adjustments (Sect. 4). This includes a discussion about the

numeric instability we observed a posteriori (Sect. 4.2), together with suggestions for future studies that may help to

overcome the observed instability without needing the previously used ad-hoc adjustments (Sect. 5).

2 Theoretical framework ANN SGS model finite-volume LES110

As mentioned in Sect. 1, one of our key objectives is to construct an ANN LES SGS model that compensates for the instanta-

neous discretization errors introduced by implicit filtering with staggered finite-volume numerical schemes. To derive such an

SGS model, we used as a starting point the Navier-Stokes momentum conservation equations for a Newtonian, incompressible

fluid without buoyancy effects (which is appropriate for the test case used in this study, see Sect. 3.1):

∂uj
∂t

= −∂uiuj
∂xi

− 1

ρ0

∂P

∂xj
+ ν

∂2uj
∂xi2

, (1)115

where uj (u,v,w) [m s−1] is the wind velocity along the j-th direction, t [s] the time, xi and xj [m] the positions in the i-th

direction and j-th direction respectively, ρ0 [kg m−3] the density, P [Pa] the pressure, and ν [m2 s−1] the kinematic viscosity.

The governing LES equations are usually derived by applying a generic, unspecified filtering operation G to Eq. 1, which

introduces a subgrid term τij ≡ uiuj −ui uj that has to be modeled (Pope, 2001; Sagaut, 2006). Traditional subgrid models

like Smagorinsky (Smagorinsky, 1963; Lilly, 1967) attempt to model τij associated with G. However, by only considering the120

generic operation G, they cannot directly compensate for the discretization errors arising on a specific finite numerical grid.

Although the impact of the discretization errors can be reduced by adopting an explicit filtering technique (for instance by

increasing the grid resolution compared to the filter width), this is in practice often not done because of the high computational
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cost (Sagaut, 2006). It may therefore be beneficial to develop a LES SGS model that directly compensates for the introduced

discretization errors, ideally such that explicit filtering is not required anymore.125

To this end we applied the finite volume filtering operation GFV to Eq. 1 instead of the generic operation G. GFV is

defined as a 3D top-hat filter sampled on an a priori defined finite volume grid, where the finite sampling implicitly imposes

an additional spectral cutoff filter (Langford and Moser, 1999; Zandonade et al., 2004). We used GFV to derive an alternative

set of LES equations (Eq. 3) that reflects the employed finite volume grid, and removes the need for commutation between the

filtering and spatial differentiation operators (Eq. 3; Denaro (2011)). This allowed us to explicitly include many instantaneous130

discretization errors in the definition τij , making use of prior knowledge about the employed finite volume grid and numerical

schemes.

Considering for the sake of clarity only equidistant LES grids, following Zandonade et al. (2004) the filtered velocity

associated with GFV , uj , at a certain grid cell with indices (l,m,n) can be written as:

135

uj(l,m,n) =
1

∆x∆y∆z

∫
Ωj(l,m,n)

uj(x,y,z) dx′, (2)

where ∆x,∆y,∆z are the equidistant filter widths in the three spatial directions, Ωj(l,m,n) the grid cube/control volume for

uj at the considered grid cell, and x a vector indicating the position (x,y,z) in the flow domain. Since we focused in this

study on staggered finite-volume grids (Table 1), the location of each control volume Ωj(l,m,n) depends on the j-component

considered (Sect. 3.2).140

Applying the finite volume filter to Eq. 1, using the divergence theorem to convert the volume integrals to surface integrals,

and combining the advection and viscous stress terms, for a certain grid cell we get an expression similar to that obtained by

Zandonade et al. (2004):

∂uj(l,m,n)

∂t
= − 1

∆x∆y∆z

∫
∂Ωj(l,m,n)

(uiuj − ν
∂uj
∂xi

)ni dx′− 1

∆x∆y∆z

1

ρ0

∫
∂Ωj(l,m,n)

pnj dx′, (3)

where ∂Ωj(l,m,n) is the surface area of the control volume Ωj(l,m,n), and ni, nj the i-th and j-th component respectively of145

the outward pointing normal vector n corresponding to ∂Ωj(l,m,n). Noteworthy is that, by invoking the divergence theorem,

the divergence operator itself is effectively replaced by surface integrals, which removes the need for a commutative filter

(Denaro, 2011) and avoids the truncation errors introduced by the discretization of the divergence operator on the finite grid.

The well-known closure problem does, off course, persist. In fact, none of the terms on the right-hand side of Eq. 3 can be

determined exactly on the available finite LES grid and therefore have to be approximated. As argued however by Langford150

and Moser (2001) and Zandonade et al. (2004), an optimal formulation for the pressure term is impractical and barely more

accurate than traditional finite-volume pressure schemes.

The errors made in approximating the time derivative, in turn, are usually constrained by the advection and diffusion terms

through the selected time step. Furthermore, the time discretization scheme we selected (Table 3.1) has good energy conserva-

tion properties with a slight damping of TKE over time (van Heerwaarden et al., 2017b).155
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In this study we will therefore only consider the instantaneous spatial discretization errors in the advection and viscous stress

terms. We further note that, in contrast to eddy-viscosity SGS models, the isotropic part of the transport terms does not have to

be incorporated in a modified pressure term.

To approximate the advection and viscous stress terms on the finite LES grid, in this study we used second-order linear

interpolations (Sect. 3.2, 4.2). If we then consider specifically i) the control volume of the u-component, and ii) the transport160

in vertical direction, we can rewrite the first term at the right-hand side of Eq. 3 as follows:

1

∆x∆y∆z

∫
∂Ωin

u (l,m,n)

(
wu− ν

∂u

∂z

)
dx′dy′− 1

∆x∆y∆z

∫
∂Ωout

u (l,m,n)

(
wu− ν

∂u

∂z

)
dx′dy′

=
1

∆z

(
w(l,m,n) +w(l− 1,m,n)

2

u(l,m,n) +u(l,m,n− 1)

2
− ν

u(l,m,n)−u(l,m,n− 1)

∆z

−w(l,m,n + 1) +w(l− 1,m,n + 1)

2

u(l,m,n) +u(l,m,n + 1)

2
+ ν

u(l,m,n + 1)−u(l,m,n)

∆z

)
+

1

∆z

(
τ inwu(l,m,n)− τoutwu (l,m,n)

)
, (4)165

where ∂Ωinu (l,m,n) and ∂Ωoutu (l,m,n) are, respectively, the lower and upper boundaries of the control volume corresponding

to the u-component Ωu(l,m,n), representing two different subsets of the total control volume area ∂Ωu(l,m,n).

τ inwu(l,m,n) and τoutwu (l,m,n), in turn, are unknown terms at the lower and upper boundary of the considered control volume,

and are directly defined by the given Eq. 4. They correct for the unresolved physics and instantaneous discretization errors

introduced by the employed approximations denoted at the right-hand side.170

The correction terms for the other control volumes and transport components can be defined in a similar manner. In the

remainder of the paper, we will denote the complete correction terms with the shorthand notation τ inij and τoutij . It is these

complete terms we aim to predict with our ANN-based LES SGS model. To fully solve Eq. 3, after training our ANN SGS

model only makes use of information available in actual finite-volume LES: for its inputs, it relies only on the resolved flow

fields u, v, w and their boundary conditions (Sect. 3.3).175

3 Methodology

In this section, we will describe in detail the implementation of our ANN SGS model. First, we will provide a description of

the DNS test case we used to train and test our ANN SGS model (Sect. 3.1). Next, we will briefly outline how we generated

the data needed to train our ANN SGS model, using the selected DNS test case (Sect. 3.2). Subsequently, we will describe how

we designed and trained our ANN SGS model (Sect 3.3 and Sect. 3.4). Finally, we will specify how we tested the a priori and180

a posteriori performance of our ANN SGS model (Sect. 3.5).
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3.1 DNS test case

We used as a test case a DNS of incompressible neutral channel flow (with friction Reynolds number Reτ being equal to

590) based on Moser et al. (1999). The friction Reynolds number is a variant of the standard Reynolds number based on the

friction velocity, which is typically lower in magnitude than the standard Reynolds number and is often used in the context of185

wall-bounded turbulent flows (e.g. Pope, 2001). The friction velocity, in turn, is a velocity scale that measures the amount of

mechanically-generated turbulence, and consequently is a logical scale to consider in neutral channel flow. We note that the

selected friction Reynolds number is relatively low compared to most turbulent flows occurring in nature.

As simulation tool we used the high-order DNS and finite-volume LES code MicroHH (v2.0), which has been verified

previously for the case selected in this study (van Heerwaarden et al., 2017b). The selected neutral channel flow is a turbulent190

flow bounded by walls at both the bottom and top of the domain (no-slip boundary conditions), with a mean flow characterized

by a symmetric horizontally averaged vertical profile (Fig. (1)). In the horizontal directions, periodic boundary conditions

were applied and a constant volume-averaged velocity (Uf = 0.11m s−1) was enforced by dynamically adjusting the pressure

gradient.

We stored in total 31 3D flow fields of the wind velocity fields u,v,w at time intervals of 60s after the flow reached steady195

state. This time interval was large enough to ensure that subsequent stored flow fields were (nearly) independent, which is

preferable for the training and testing of the neural networks (Sect. 3.4 and 3.5). More details about the used simulation set-up

and simulation code can be found in Table 1 and van Heerwaarden et al. (2017b).

Table 1. Simulation specifications for direct numerical simulation of incompressible neutral channel flow test case we used to generate the

training data (Sect. 3.2). Here, δ [m] refers to the channel-half width. Additional details about the employed code (MicroHH v2.0) are given

in van Heerwaarden et al. (2017b).

Friction Reynolds number Reτ 590

Boundary conditions horizontal directions (x,y): periodic, vertical direction (z): no-slip

Domain size(x,y,z) 2πδ, πδ, 2δ

Kinematic viscosity ν 1.0× 10−5 [m2 s−1]

Prescribed volume-averaged velocity Uf 0.11 [m s−1]

Grid resolution (x,y,z) 768, 384, 256 (stretched in vertical)

Employed grid staggered Arakawa C-grid

Spatial discretization fourth-order interpolation scheme

Time discretization three-stage, third-order Runge-Kutta scheme
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u(x)
v(y)

w(z)
2δ

2πδ
πδ

Figure 1. Sketch of simulated turbulent channel flow. Here, δ [m] refers to the channel-half width.

3.2 DNS training data generation200

Using the filtering procedure outlined in Sect. 2, we calculated consistent pairs of i) low-resolution flow velocity fields uj (that

serve as input for the ANN), and ii) correction terms τ inij , τoutij (that serve as the ground truth for the ANN predictions) from

31 previously stored DNS flow fields (Sect. 3.1). We used these input-output pairs as training data for our ANNs (Sect. 3.4).

By design, the filter in Sect. 2 is directly defined by a selected coarse equidistant LES resolution (Eq. 2). To generate the

training data, we selected three different typical horizontal equidistant coarse resolutions with an identical coarsening in the205

vertical: 192×96×64, 96×48×64, and 64×32×64 (x× y× z) cells. These three resolutions correspond to horizontal coarse-

graining factors, fhor, of 4, 8, and 12 respectively. In the remainder of the paper, we will denote the horizontal coarse-graining

factor(s) used during training and testing as fhor,train and fhor,test respectively (see Sect. 3.5.1).

We note that the spatial discretization errors introduced by the applied coarsening, specifically concern errors associated

with typically applied second-order linear interpolations (Eq. 4). These interpolation errors remove a substantial fraction of the210

turbulent energy remaining after applying the filter (Eq. 2), reflecting their detrimental impact on the smallest resolved scales

(Fig. 2). Only by including their impact in the predicted correction terms, our ANN SGS model is able to fully compensate for

the spatial discretization errors in the advection and viscous stress terms.
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Figure 2. Example streamwise power spectra of u for the selected channel flow (Sect. 3.1), at a height of 0.109δ (i.e. in the log-layer) and

considering a typical coarse equidistant LES resolution of 64×32×64 (x× y× z) cells (which corresponds to a horizontal coarse-graining

factor of fhor = 8. Here, δ [m] refers to the channel-half width. The power spectral density E on the vertical axis has been normalized by

δ−1 and uτ−2, where uτ [m s−1] is the friction velocity. Here, the black line corresponds to the power spectrum of the DNS fields, the red

line to the power spectrum remaining after the finite-volume LES filter (Eq. 2) has been applied, and the blue line the spectrum remaining

after both the finite-volume filter and the second-order linear interpolations required on the coarse LES grid (Eq. 4).

3.3 ANN architecture215

We used feed-forward, fully-connected ANNs with a single hidden layer, to predict the correction terms τ inij and τoutij with the

resolved flow fields uj as input. These are simple ANNs that facilitate computationally fast evaluations and easy implemen-

tation. We did not use deeper, more sophisticated ANNs to limit the computational cost involved in making predictions with

the ANN as much as possible. This computational cost is critical for the affordability of an ANN SGS model in an actual LES

simulation (Sect. 4.2).220

To introduce non-linearity in the ANN, we used as an activation function the leaky rectified linear unit (ReLu) function

(Maas et al., 2013) with the constant α set to the common value 0.2. This non-linear activation function, together with the

linear matrix-vector multiplications and bias parameter addition, defines the entire functional form of the ANN.

Similar to conventional LES SGS models, the ANN should preferably act on a small subdomain of the full grid to facilitate

integration in our simulation code MicroHH, which uses domain decomposition for distributed memory computing. We conse-225

quently predicted with the ANN only the τ in/outij -values associated with one grid cell (l,m,n) at a time. As input to the ANN,

we used the locally resolved flow fields uj in a 5×5×5 stencil surrounding the grid cell for which we predict τ in/outij . Similar

to Cheng et al. (2019) and Yang et al. (2019), we opted not to make our inputs Galilean/rotational invariant as the walls already

provide an intrinsic coordinate system and velocity reference.

To select appropriate 5×5×5 inputs stencils close to the boundaries of the domain, we made use of the horizontal periodic230

boundary conditions and the vertical no-slip conditions. We encoded the no-slip conditions in the input stencils by mirroring
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uj over the walls, such that uj linearly interpolated to the wall was 0 m s−1. This may have helped the ANN to distinguish the

near-wall region from the bulk of the flow, potentially removing the need for separate SGS and wall models.

Using the 5×5×5 stencils in combination with the employed staggered Arakawa C-grid, an asymmetric bias is introduced in

the ANN input and output variables if no special care is taken. We overcame this issue by combining three separate single-layer235

ANNs, where each one corresponded to one of the three control volumes considered (Sect. 2). Here, each received a stencil

with slightly adjusted dimensions, and predicted only the correction terms (τ inij , τ
out
ij ) corresponding to the considered control

volume (resulting in 6 outputs per ANN; Fig. 3). This ensured symmetry in the inputs and outputs of the ANN (Fig. 4 panel

(a)), and did not increase the computational effort involved in evaluating the ANN after training.

In fact, this allowed us to reduce the number of ANN evaluations in the a posteriori simulation (Sect. 4.2) by almost a factor240

2. Except for close to the walls, evaluating the ANN with a checkerboard-like pattern was sufficient to obtain all the needed

correction terms (Fig. 4 panel (b)). Close to the walls, we did require (sometimes partial) ANN evaluations at every grid cell

to calculate all needed correction terms: the checkerboard-like pattern does not provide all the correction terms at the edges of

the domain. In the horizontal directions, we could make use of the periodic boundary conditions at the edges of the domain.

245

Control volume
u 

Control volume
v 

Control volume
w 

u (5x5x5)
v (4x4x5)

w (4x5x4)

u (4x4x5)
v (5x5x5)

w (5x4x4)
Input layer

Hidden layer (nhidden)...nhidden ...nhidden ...nhidden

τuu,in

τvu,in

τwu,in

τuu,out

τvu,out

τwu,out

τuv,in

τvv,in

τwv,in

τuv,out

τvv,out

τwv,out

τuw,in

τvw,in

τww,in

τuw,out

τvw,out

τww,out

Output layer (noutput=3x6)

u (4x5x4)
v (5x4x4)

w (5x5x5)

Figure 3. Architecture of ANN-framework used in this study. We combined three separate ANNs that each correspond to one of the three

considered control volumes. For more information, please refer to Sect. 3.3.

10



Figure 4. Panel a): Example two-dimensional input stencil of u,v that the ANN corresponding to the control volume of u receives, together

with four of its outputs (i.e. τ inuu, τoutuu , τ inuv , τoutuv ). Panel b): Two-dimensional visualization of the way we evaluated the ANN during a

posteriori simulations. By evaluating the ANN in checkerboard-like pattern (i.e. only evaluating the grey-shaded grid cells) and making use

of the periodic boundary conditions, we could calculate all needed correction terms except those close to the walls.

3.4 ANN training

We trained the employed ANNs (Fig. 3) using the training data (consisting of corresponding local 5× 5× 5 uj fields and

correction terms τ in/outij ; Sect. 3.2) we generated from 31 previously stored DNS flow fields (Sect. 3.1). The exact number of

unique samples we could extract from each flow field during training, depended on the considered fhor,train (Sect. 3.2). For

the case we mostly focused on in the a priori and a posteriori test (i.e. where fhor,train = 8; see Sect. 3.5), we could extract250

294.912 unique samples from each flow field. Of the 31 stored flow fields, we used 25 for training, 3 for validation during

training and tuning of the the hyperparameters, and 3 for the a priori and a posteriori test (Sect. 3.5.1).

To train our ANNs, we used TensorFlow (v 1.12.0), an open-source machine learning framework (Abadi et al., 2016). We

relied on the backpropagation algorithm (Rumelhart et al., 1986) incorporated within TensorFlow to minimize the loss function.

We defined the loss function as the mean squared error (MSE) between the 18 DNS-derived τ in/outij,DNS-components (Sect. 3.2),255

and the 18 ANN-predicted τ in/outij,ANN -components (Sect. 3.3), combining the results from all three separate ANNs (Sect. 3.3).

We observed good convergence of both the training and validation loss without signs of over-fitting for all the ANNs we tested

(shown as an example for fhor,train = 8 in Fig.5).

Here, we chose the popular ADAM optimizer (Kingma and Ba, 2014) with a relatively low value for the learning rate η

(0.0001) and a relatively large batch size of 1000. As our training data contains a high amount of noise inherent to turbulence,260

these parameter choices were in our case needed to stabilize the training results and achieve good convergence. For all the

chosen ANNs corresponding to 2 or 3 fhor,train (see Sect. 3.5.1), we ensured that the samples originating from the different

fhor,train were approximately equally represented in each training batch.

Besides that, we implemented preferential sampling near the walls: during training, we selected the five horizontal layers

closest to the bottom and top wall more often than the other horizontal layers (starting from the bottom/top wall towards the265

center of the channel, respectively with a factor 10, 8, 6, 4, and 2). The preferential sampling restored the balance in the training
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data set between the physics near the wall and the bulk of the flow, allowing the ANN to improve its performance close to the

walls where a SGS model generally matters most.

In Table 2 we give an overview of all the hyperparameters and settings we used. The chosen initialization methods for

the weights and bias parameter are standard for the architecture and activation function we selected. Furthermore, in line270

with common practice, we normalized all the inputs and outputs with their means and standard deviations. This improved the

convergence during training and accelerated learning.

Table 2. Fixed hyperparameters and settings used in the ANNs we trained. Here, # means ’number of’.

# training iterations (epochs) 500.000 (≈ 38 epochs for fhor,train = 8, taking into account the preferential sampling)

# hidden layers 1

Batch size 1000

Loss function mean squared error, no regularization

Activation function Leaky ReLu with α= 0.2 (Maas et al., 2013)

Optimizer ADAM with β1 = 0.9, β2 = 0.999, and ε= 1e− 08 (Kingma and Ba, 2014)

Learning rate η 0.0001

Normalization z-score ( value−mean
standard deviation )

Weight/kernel initializer He uniform variance scaling initializer (He et al., 2015)

Bias initializer zeros initializer

We performed a more extensive sensitivity analysis with the number of neurons in the hidden layer, nhidden, as it is for our

architecture a good measure of the model complexity. In general we found for all three selected fhor (Sect. 3.2) that increasing275

nhidden, and thus increasing the model complexity, improved the reduction of the loss function without showing signs of over-

fitting (shown as an example for fhor = 8 in Fig. 5). However, the improvement in training loss reduction clearly reduced with

increasing model complexity, while a higher model complexity increases the computational cost of the ANN SGS model. In

the next sections we will therefore focus on the results we obtained with nhidden = 64, as a reasonable compromise between

accuracy and total computational cost.280
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Figure 5. Evolution of the loss corresponding to the considered training batches (dotted lines) and the 3 validation flow fields (solid lines)

with a changing number of neurons in the single hidden layer as a function of training iteration, for the ANNs using fhor,train = 8 (see Sect.

3.5.1). To improve readability and keep the total computational effort involved in the training feasible, we show here both losses only for

every 10.000 iterations instead of every single iteration.

3.5 ANN testing

3.5.1 A priori (offline) test

To assess the potential a priori accuracy of our ANN SGS model, we first compared the ANN predictions to the DNS-derived

values (Sect. 2 and Sect. 3.2) for 3 flow fields held out during training (Sect. 3.4) and a single representative coarse LES

resolution (i.e. an equidistant grid with fhor,train = fhor,test = 8; see Sect. 4.1.1). This tests the ability of our ANN SGS285

model to generalize towards previously unseen realizations of the steady state associated with the selected channel flow (Sect.

3.1).

We especially focused, in the log-layer, on τwu and the net energy transfer towards the unresolved scales, εSGS , where εSGS

is defined and approximated as εSGS ≡−τijSij ≈−τ in/out,intij
∆uj

∆xj
. We calculated εSGS by interpolating all the individual

components to the grid centers (denoted here as τ in/out,intij ), and subsequently summing them. εSGS can be both positive290

and negative, where positive values indicate SGS dissipation and negative values back-scatter towards the resolved scales.

Both these processes are critical for the a priori and a posteriori performance: dissipating sufficient energy to the unresolved

scales is crucial for achieving stable a posteriori results. τwu, in turn, is also of particular interest in channel flow: it is the

vertical gradient of τwu that has to balance the imposed horizontal pressure gradient (e.g. Pope, 2001), making τwu critical

for the quality of the achieved steady state solution. The log-layer is mainly interesting because of its universal character. In295

the log-layer, the horizontally averaged profiles of the mean velocity and Reynolds stress tensor components becomes partly

independent of the Reynolds number when properly scaled with wall units (e.g. Pope, 2001).
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As a reference, we included in the comparison the subgrid fluxes and net SGS transfer predicted with the popular Smagorin-

sky (Lilly, 1967) SGS model (see Sect. 4.1.2), which we will denote as τij,Smag and εsmag respectively. In the Smagorinsky

SGS model, τij,Smag is modelled as τij = −2νrSij , with νr being the modelled eddy-viscosity coefficient and Sij being the fil-300

tered strain rate tensor (defined as Sij ≡ 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
) (Pope, 2001, e.g.). In line with usual practice for wall-bounded flows,

we augmented the model for νr with an ad-hoc Van Driest (Van Driest, 1956) wall-damping function to (partly) compensate for

the known over-dissipative behaviour close to walls (e.g. Pope, 2001; Sagaut, 2006). Consequently, νr is effectively modelled

as νr = (cs∆(1− exp(−z+/A+)))
2
S, with cs being the Smagorinsky coefficient (which is being set to 0.1), ∆ being the

filter size (defined as ∆ ≡ (∆x∆y∆z)
1
3 ), z+ the absolute vertical distance from the closest wall normalized by u∗ and δ, A+305

an empirical constant (which is being set to 26), and S the squared filtered strain rate tensor (defined as S = 2(SijSij)
1
2 ).

To facilitate easier interpretation and comparison with the Smagorinsky SGS model, for the ANN and DNS results we

combined the two separate correction terms τ inij , τ
out
ij . In the remainder of the paper we will denote the resulting combined

correction terms as τij,ANN and τij,DNS , where both consist of the same 9 components as τij,smag . We did this in accordance

with the way we evaluated the ANNs within our CFD-code MicroHH during the a posteriori test (Sect. 3.3).310

On top of the comparison for a single horizontal coarse resolution, we separately explored the generalization performance of

the developed ANN SGS model with respect to the selected coarse horizontal resolution in Sect. 4.1.3 . To this end, we trained

our ANN SGS model, in three different ways, on filtered DNS data corresponding to all selected fhor (4, 8, 12 respectively;

see Sect. 3.2):

1. Train only on filtered DNS data corresponding to fhor = 8.315

2. Train on filtered DNS data corresponding to fhor = 4,12.

3. Train on filtered DNS data corresponding to all three fhor.

For all three training configurations mentioned above, we tested the performance of the ANN SGS models on previously unseen

filtered data corresponding to all three fhor. This thus includes several cases where the ANN SGS model is being applied to

other resolutions than seen during training.320

Finally, to get some more insight into the behaviour of our ANNs, in Sect. 4.1.4 we calculated for every input variable in

the 5× 5× 5 stencils the so-called permutation feature importance (e.g. Fisher et al., 2019; Molnar, 2019; Breiman, 2001)

associated with predicting τ inwu and τoutwu in the log-layer.

The most important advantage of these permutation feature importances is their intuitive meaning: they indicate how impor-

tant a certain input variable is for the prediction quality of the τ inwu, τoutwu in the log-layer: the higher it is, the more important that325

variable is. Specifically, the permutation feature importance measures by which factor the prediction error (in our case mea-

sured as the root-mean square error between the DNS-values and ANN predictions) increases when the information contained

in that input variable is destroyed, while the information in the other input variables is retained. We destroyed the information

in each input variable by randomly shuffling it in the corresponding horizontal plane. Besides that, we averaged the calculated

permutation feature importances over all the 3 testing flow fields and over 10 different random shufflings, to stabilize the results.330
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We intentionally chose not to shuffle the input variables along different heights. Because of the strong mean vertical gradient in

u, this would possibly introduce an unrealistic bias into the calculated permutation feature importances. We do emphasize that

the permutation feature importances are likely affected by the correlations existing in our input data. The permutation feature

importances we report therefore need to interpreted with caution.

3.5.2 A posteriori (online) test335

To test the a posteriori performance of our ANN LES SGS model, we directly incorporated one of our ANNs (i.e. with

nhidden = 64 and fhor,train = 8) into our CFD code MicroHH (v2.0) (van Heerwaarden et al., 2017b). We chose the input

and output variables of our ANN SGS model such that the integration into our CFD code was relatively straightforward (Sect.

3.3). Furthermore, we improved the computational performance of the ANN SGS model by implementing BLAS routines from

the Intel(R) Math Kernel Library (version: 2019 update 5 for Linux), which has been optimized for the Intel CPUs we used340

(i.e. E5-2695 v2 (Ivy Bridge) and E5-2690 v3 (Haswell)). Still, the computational effort involved in the ANN SGS model was

large: an equivalent LES simulation with the Smagorinsky SGS model was for our set-up about a factor 15 faster, showing that,

in its current form, our ANN SGS model still needs more optimizations for practical applications.

With the ANN SGS model incorporated in our CFD code, we ran a LES with an equidistant grid of 96× 48× 64 cells,

directly corresponding to the selected fhor,train = 8, for the turbulent channel flow test case described in Sect. 3.1. Here, we345

used second-order linear interpolation to calculate all the velocity tendencies, consistent with our filtering and training data

generation procedure (Sect. 2 and 3.2). Furthermore, we initialized the LES simulation from one of the 3 flow fields reserved for

the a priori testing. We did this to ensure that any possible errors in the initialization phase of the LES (i.e. before steady state

is achieved) did not impact the solution. Still, our LES ran freely from the prescribed initialized steady-state fields, meaning

that all the model and discretization errors made in calculating the channel flow steady state dynamics were included.350

4 Results & Discussion

In this section, we will characterize the a priori and a posteriori performance of our ANN SGS model. We will first describe

the a priori performance of our ANN SGS model and the Smagorinsky SGS model for a single coarse resolution (i.e. where

fhor,train = fhor,test = 8; Sect. 4.1.1 and 4.1.2). Subsequently, we will discuss the generalization performance of our ANN

SGS model with respect to the selected coarse resolution (Sect. 4.1.3), and the permutation feature importances associated with355

the input stencils (Sect. 4.1.4). Finally, we will describe and discuss the instability we observed a posteriori (Sect. 4.2).

4.1 A priori (offline) test

4.1.1 Single horizontal resolution ANN performance

The ANN-predicted τwu,ANN , εSGS,ANN (with nhidden = 64, see Sect. 3.4) in the log-layer generally show excellent agree-

ment with the DNS-derived values (Fig. 6 - 9). Especially the consistency we found in the horizontal cross-sections (Fig. 6,360
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7 panel a and b) is striking given the noisy spatial patterns of τwu,DNS and εSGS,DNS , which the ANN reproduces quite

accurately both qualitatively and quantitatively. Particularly noteworthy is its ability to accurately reproduce both negative and

positive εSGS,DNS , as these are associated with back-scatter and SGS dissipation respectively. These two processes are both

critical for the quality of the a posteriori simulations (see Sect. 4.2).

We note that the found correspondence between correction and SGS transfer terms in the log-layer of neutral channel flow,365

is in agreement with the results of Cheng et al. (2019), Park and Choi (2021), and Gamahara and Hattori (2017), despite that

our training data generation procedure additionally accounted for numerical errors associated with LES where a staggered

finite-volume grid acts as an implicit filter (Sect. 2 and 3.2). Consistent with the matching horizontal cross-sections, the ANN

reproduces quite well the distributions and spectra of τwu,DNS and εSGS,DNS (Fig. 8, 9 panel b and c). The notable high

normalized spectral density of τwu,DNS at high wave modes, is a direct consequence of the instantaneous spatial discretization370

errors we compensate for. As these discretization errors remove a large part of the variance at the smallest resolved spatial scales

(Fig. 2), the corresponding correction terms, including τwu, are characterized by strong variability at the smallest resolved

scales.

From the tails of the distribution and the high wave modes of the spectra (Fig. 8 and 9 panel b), it is apparent that the ANN

does still slightly underestimate the extremes at small spatial scales characteristic of τwu,DNS and εSGS,DNS . Probably, these375

extremes were hard to predict accurately because of their high stochastic nature and inherent rare occurrence. Yang et al. (2019)

identified this issue in the context of an ANN-based LES wall model, and found that this issue persisted even when the errors

were weighted inversely proportional to their PDF (i.e. giving extreme values larger weights in the loss function).

Figure 6. Horizontal cross-sections of τwu in the log-layer (0.09375 z
δ
(55.3125z+)) for a representative flow field not used to train and

validate the ANNs. All values are normalized by the friction velocity uτ and half-channel width δ.

.
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Figure 7. Horizontal cross-sections of εSGS in the log-layer (0.109375 z
δ
(64.53125z+)) for a representative flow field not used to train and

validate the ANNs. All values are normalized by the friction velocity uτ and half-channel width δ.

.

Figure 8. Performance of τwu,ANN (with nhidden = 64) in the log-layer (0.09375 z
δ
(55.3125z+)) for a representative flow field not used

to train and validate the ANNs. Panel (a) shows the corresponding hexbin plot between τwu,ANN and τwu,DNS , where the dotted blue

line indicates the 1:1 line. Panel (b) shows the probability density functions, and panel (c) the streamwise spectra averaged in the spanwise

direction. τwu,ANN and τwu,DNS have been normalized by the friction velocity u−2
τ . The power spectral density E on the vertical axis in

panel (c) has been normalized by δ−1 and uτ−2. As a reference, in panel (b) and (c) τwu,smag is shown as well.
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Figure 9. Performance of εSGS,ANN (with nhidden = 64) in the log-layer (0.109375 z
δ
(64.53125z+)) for a representative flow field not

used to train and validate the ANNs. Panel (a) shows the corresponding hexbin plot between εSGS,ANN and εSGS,DNS , where the dotted

blue line indicates the 1:1 line. Panel (b) shows the probability density functions, and panel (c) the streamwise spectra averaged in the

spanwise direction. εSGS,ANN and εSGS,DNS have been normalized by the friction velocity u−3
τ and δ. The power spectral density E on

the vertical axis in panel (c) has been normalized by uτ−3. As a reference, in panel (b) and (c) εSGS,Smag is shown as well.

Extending our focus from the log-layer to vertical profiles of horizontally averaged τwu and εSGS , in general we again

observe quite good correspondence between the ANN predictions and DNS-derived values (Fig. 10 and 11). In the profile of380

τwu,ANN we do see some deviations from the τwu,DNS profile, especially close to the walls. In our training data, the horizon-

tally averaged flux of τwu,DNS was generally small compared to its point-wise fluctuations. As a result, the loss associated

with τwu,DNS was probably more sensitive to the point-wise fluctuations than the average flux, which may have contributed to

the observed deviations.

The vertical profile of εSGS,ANN , in turn, matches very closely the profile of εSGS,DNS . The ANN approximately provides385

the net dissipation inferred from the DNS, which primarily occurs close to the walls. Hence, this does not make yet clear why

our ANN SGS model induces the observed a posteriori instability. In Sect. 4.2, we will elaborate more on potential reasons

why our ANN SGS model nonetheless induces instability.
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Figure 11. Vertical profiles of horizontally averaged εSGS,DNS , εSGS,ANN , and εSGS,smag at one representative time step not used to train

and validate the ANNs. All values are normalized by the friction velocity u−3
τ and half-channel width δ.

Extending our focus towards all components, we found that in general the ANN correlated well with all DNS-derived

correction and SGS transfer terms (third row Table 3 and Fig. 12; mostly ρ 0.6− 0.9). Looking more closely at the found390

correlations, we did find that the correlations differed depending on the channel height. Closer to the walls, the correlations

generally slightly decreased compared to the middle of the channel (except for the vertical layers directly adjacent to the wall,

where most terms show a better correlation). Here, we emphasize that we implemented a preferential sampling technique
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(Sect. 3.4), which helped to minimize this reduction of prediction performance close to the walls compared to the middle of

the channel.395

Looking at the individual terms, some of them were clearly better predicted than others (e.g. τvu vs τvw): this was likely

related to differences in their magnitude that persisted even after the applied normalization (i.e. the same normalization was

applied over the entire domain, meaning that some components with strong vertical gradients still contained more extreme

values than components without a clear vertical gradient), and differences in their stochastic variability and consequent signal-

to-noise ratio.400

One clear outlier is τwu at the first vertical level (with ρ= 0.339, not shown), which appeared to be most difficult to predict.

This component was located at the bottom wall because of the staggered grid orientation, and consequently only the viscous

flux contributed. As a consequence, the target DNS values and input patterns were different than for other vertical levels and

components, making it hard for the ANN to give accurate predictions. Still, the magnitude of the ANN predictions matched

reasonably well the DNS values (not shown).405

4.1.2 Single horizontal resolution Smagorinsky performance

Considering the individual grid points, the a priori performance of the Smagorinsky SGS model is in sharp contrast with the

a priori ANN performance: τij,smag , and to a somewhat lesser extent εSGS,smag , show barely any agreement with the DNS-

derived values both qualitatively and quantitatively (Fig. 6 - 9).The poor point-wise a-priori performance of Smagorinsky is

well-known in literature (e.g. Clark et al., 1979; McMillan and Ferziger, 1979; Liu et al., 1994). In addition, we can also410

observe its known inability, in the form we employed, to account for back-scatter (e.g. Pope, 2001; Sagaut, 2006).

In our case though, the point-wise a-priori performance of Smagorinsky is still worse than usually documented: the found

correlations with DNS in our study (mostly ρ= 0.0 at individual heights for all correction and dissipation terms, not shown)

are lower than reported before (where ρ=∼ 0...0.4; Cheng et al. (2019); Clark et al. (1979); McMillan and Ferziger (1979);

Liu et al. (1994)). Furthermore, τwu,Smag and εSGS,smag are off by approximately one order of magnitude and are too smooth415

(Fig. 6, 7 and Fig. 8-9 panels b and c): in comparison to τwu,DNS and εSGS,DNS , the PDF is narrower (Fig. 8,9 panel b), and

the spectral energy in τij,Smag , εSGS,smag is smaller and skewed towards low wave modes (Fig. 8 and 9 panel c).

This exacerbated point-wise a priori performance of the Smagorinsky SGS model is caused by our alternative definition for

τij , which, in contrast to the commonly defined τij , compensates for all the instantaneous discretization effects introduced

by the staggered finite-volumes in both the advection and viscous flux terms (Sect. 2). As these discretization effects remove420

a large part of the variance present in the LES (Figure 2), our τij inherently contains a large amount of variance that is not

represented by Smagorinsky.

Focusing on the horizontally averaged vertical profiles of τwu, we consequently found also that τwu,smag does not compare

well with τwu,DNS (Fig. 10). Except close to the walls and the center of the channel, the Smagorinsky SGS model strongly

underestimates the horizontally averaged τwu. We emphasize that the correspondence close to the walls was only achieved425

because of the implemented ad-hoc Van Driest wall damping function (Van Driest, 1956).
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Figure 12. Vertical profiles of correlation coefficients between ANN predictions and DNS values for all correction and dissipation terms

(panels a-d), at one representative time step not used to train and validate the ANNs. Here, the j-index refers to the considered control

volume (Sect. 2). The heights are normalized by the half-channel width δ−1. Note that the τuw,vw-components are left out at the first vertical

level, as these are due to the staggered grid located exactly at the bottom wall. At the bottom-wall we imposed a no-slip boundary-condition,

meaning that these components are by definition 0.
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In the horizontally averaged vertical profiles of εSGS (Fig. 11), we observe a striking characteristic that may seem counter-

intuitive at first: the Smagorinsky SGS model under-predicts εSGS,DNS at the walls, despite its known over-dissipative be-

haviour in a posteriori tests (e.g. Pope, 2001; Sagaut, 2006). However, as the Smagorinsky SGS model does not directly com-

pensate for instantaneous discretization errors (and thus does not re-introduce the associated inherent variance), the Smagorin-430

sky SGS needs to produce less dissipation than our ANN SGS model to achieve stable a posteriori results (see also Sect.

4.2).

All in all, our ANN SGS model is clearly better able to represent τij,DNS and εSGS,DNS in the presented a priori test than

the Smagorinsky SGS model. This shows the promise ANN SGS models like ours could have to construct more accurate SGS

models that, in contrast to traditional SGS models like Smagorsinky, additionally compensate for instantaneous spatial dis-435

cretization errors. The most important issue remaining, is whether and how this a priori potential can be successfully leveraged

in a posteriori simulations without introducing numeric instability.

4.1.3 Multiple horizontal resolutions ANN generalization

Overall, our ANN SGS model shows promising generalization capabilities towards other coarse horizontal resolutions than

the one considered in the previous section. The extent to which it is able to maintain its high a priori accuracy, however, does440

strongly depend on the considered ftrain,hor and ftest,hor (Table 3).

Table 3. Pearson correlation coefficients ρ between ANN predictions (nhidden = 64) and DNS values averaged for all 3 test flow fields, all

heights, and all correction and dissipation terms. The different coarse-graining factors used during training, fhor,train, and testing, fhor,test

are indicated. Here, the third row refers to the training and test configuration used in Sect. 4.1.1. More details about all the indicated training

and test configurations, are given in Sect. 3.5.1.

fhor,train fhor,test ρ

8 12 0.624

8 8 0.758

8 4 0.526

12,4 12 0.656

12,4 8 0.737

12,4 4 0.832

12,8,4 12 0.657

12,8,4 8 0.744

12,8,4 4 0.832

Considering first the ANNs solely trained on fhor,train = 8 (second-fourth row Table 3), we find, unsurprisingly, that they

achieve their best performance when fhor,test = 8 (which is identical to the configuration used in Sect. 4.1.1). More interest-

ingly however, we observe that these ANNs already have some generalization capability, even without having seen multiple445
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fhor,train. This does depend on the selected fhor,test: the performance is better for fhor,test = 12 than for fhor,test = 4 (where

for multiple terms ρ < 0.5; not shown).

Comparing these ANNs to the ones trained on fhor,train = 4,12 (fifth-seventh row Table 3), first of all we see a clear,

unsurprising improvement when fhor,test = 4,12: including the tested coarse-graining factors in the training, improves the

ANN performance in the associated a priori test. Interestingly, this improvement is much larger for fhor,test = 4 than for450

fhor,test = 12.

Secondly, we observe that, without using fhor,train = 8, the ANN performance on fhor,test = 8 is only subtly lower than

the ANNs directly trained on fhor,train = 8. This shows that our ANN SGS model may accurately generalize to other unseen

resolutions without losing its high a priori accuracy, if fhor,test is within the range of the used fhor,train.

Finally comparing the previously discussed ANNs (with fhor,train = 4,12) to the ones trained on all three considered455

fhor,train (eight-tenth row Table 3), we find that additionally including fhor,train = 8 barely influences the ANN performance

for all terms (even when fhor,test = 8). This again highlights the possibility our ANN SGS model may accurately generalize to

other resolutions, as long as the range in the training data covers the testing situations. In doing so, the need to include multiple

intermediate fhor,train can likely be limited.

4.1.4 Permutation feature importance ANN460

For τ inwu and τoutwu in the log-layer, we calculated all the permutation feature importances associated with the ANNs listed in

Table 3 (see Sect. 3.5.1). Generally, we found that highest feature importances were associated with u, and that the feature

importances corresponding to ANNs trained on two or more resolutions were mostly lower than the ones corresponding to the

ANNs trained on one resolution. The former suggests that the ANN focuses mostly on the flow velocity component in the mean

direction, while the latter suggests that the ANN becomes less sensitive on the inputs when trained on multiple resolutions. As465

an example, we show in Fig. 13 and 14 the feature importances corresponding to the u-input stencil and the ANN only trained

and tested on fhor = 8 (third row Table 3).

Interestingly, all the calculated feature importances (including the ones not shown in Fig. 13 and 14) suggest that the input

variables most important to the ANN are generally located close to the considered correction term. In addition, there seem to

be an orientation along the mean flow direction l, with corresponding low feature importances at the edges in the span-wise m470

and wall-normal k direction.

Comparing the calculated feature importances corresponding to τ inwu and τoutwu in turn, we generally observe a corresponding

shift in the vertical. For the shown u-velocity input stencil (Fig. 13-14) for instance, the vertical patterns corresponding to τ inwu
and τoutwu are nearly mirrored versions of each other.

All in all, these findings suggest that the employed input stencils can be made smaller in the vertical and span-wise direction475

without sacrificing their predictive value, and that an extension along the stream-wise direction, in turn, may help to increase

the predictive value of the input stencils.
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Figure 13. Permutation feature importance of all u-velocities in the local input stencil (with indices (l,m,n)) associated with predicting τ inwu

in the log-layer (0.09375 z
δ
(55.3125z+)) using an ANN (with nhidden = 64) trained and tested only on fhor = 8, averaged over 3 flow

fields reserved for a priori testing and 10 random shufflings. The five panels a-e each show one of the five horizontal planes (indicated by

their vertical index n) present in the input stencils. τ inwu is located in the center of the shown horizontal plane, halfway between n= 1 and

n= 2.
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Figure 14. Permutation feature importance of all u-velocities in the local input stencil (with indices (l,m,n)) associated with predicting

τoutwu in the log-layer (0.09375 z
δ
(55.3125z+)) using an ANN (with nhidden = 64) trained and tested only on fhor = 8, averaged over 3

flow fields reserved for a priori testing and 10 random shufflings. The five panels a-e each show one of the five horizontal planes (indicated

by their vertical index n) present in the input stencils. τoutwu is located in the center of the shown horizontal plane, halfway between n= 2

and n= 3.

4.2 A posteriori (online) test

Our ANN LES SGS model produced numerically unstable a posteriori results without resorting to artificially introducing

additional variance (for instance via eddy-viscosity models) or imposing strong ad-hoc numerical constraints, which is in480

agreement with the results of Beck et al. (2019), Maulik et al. (2019), and Zhou et al. (2019).

Several other studies (Guan et al., 2021; Park and Choi, 2021; Wang et al., 2018; Xie et al., 2019; Yang et al., 2019), in

contrast, did report stable a posteriori results without requiring ad-hoc adjustments, although in some cases only after using

single-point rather than multi-point inputs (Park and Choi, 2021), or ensuring that sufficient training samples are presented

(Guan et al., 2021).485

We emphasize though that all the aforementioned studies (with the notable exception of Park and Choi (2021)), do not

consider wall-bounded flows. In addition, they do not compensate for the instantaneous spatial discretization errors associated

with a staggered finite-volume grid.
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Crucially, for our set-up these spatial discretization errors were substantial, removing a large part of the variance present at

high wave modes in the DNS (Fig. 2). Since we designed our ANN SGS model to fully compensate for these instantaneous490

discretization errors, our SGS model tended to re-introduce a large amount of variance at the highest resolved wave modes.

In the a priori test, we consistently found that the Smagorinsky SGS model, as opposed to our ANN SGS model, strongly

underestimated the small-scale variability of τij,DNS and εSGS,DNS (Sect. 4.1.2).

The introduction of additional variance at the highest wave modes by our ANN SGS model is on its own not necessarily

a problem if the energy transfer from the resolved to the unresolved scales is sufficient. Our ANN SGS model, consequently,495

needs to provide sufficient additional dissipation, compared to the SGS models from the aforementioned studies and traditional

SGS models like Smagorinsky. Promisingly, a priori we found that the ANN matched well the net dissipation inferred from

the DNS (Fig. 11), and indeed provided more net dissipation than the traditional Smagorinsky SGS model. Despite that, we

observed a posteriori a gradual pile-up of spectral energy at the smallest wave modes (shown as an example for the u-component

in Fig. 15), indicating that an overall lack of dissipation nonetheless remains.500
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Figure 15. Time evolution of stream-wise spectra averaged in the span-wise direction, where the colour brightness indicates the different

time steps. Here, the light blue colours refer to the first time steps, and the dark blue colours to the final time steps. The time steps range from

t=0s to t=36s, with intervals of 3s.

We hypothesize that two issues prevented the ANN SGS model from producing the required dissipation a posteriori: 1) error

accumulation, and 2) aliasing errors.

In the first place, similar to Beck et al. (2019), we hypothesize that high-frequency errors in the ANN predictions accumulated

over time due to strong positive feed-backs between our ANNs and the LES simulation. We stress that ANN SGS models like

ours can never be perfect, and consequently will always introduce errors in an a posteriori simulation that affect, together with505

the full LES dynamics, its own inputs in the next time step. It strongly depends on the characteristics of the SGS model, whether

this can result in positive feedback loops that cause divergence from the physical solution and subsequent numeric instability.
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In this regard, eddy-viscosity models like Smagorinsky have an important stabilizing property in steady-state channel flow: as

soon as the energy content starts deviating from the physical solution, the subgrid dissipation is automatically adjusted (via a

change in the gradients serving as input) to compensate for it.510

Such a stabilizing property, however, was clearly lacking in our ANN SGS model. This is not surprising: we designed

our ANN SGS model to compensate for many spatial discretization effects, which typically dampen the error accumulation

at high-frequencies. It is well-known that, due to the chaotic nature of turbulence, small errors introduced by the predicted

transports have a tendency to grow over time (e.g. Liu et al., 1994). On top of that, it has been shown before by Nadiga

and Livescu (2007) that ’perfect’ SGS models (that exactly compensate for the unresolved physics, modelling errors, and515

instantaneous discretization errrors), are inherently unstable in implicit-filtering LES due to the presence of multiple different

attractors. These issues were likely exacerbated by the growing need for the ANN to extrapolate beyond its training state once

the simulation started deviating from the physical solution. This extrapolation likely increased the ANN prediction errors,

which would in turn accelerate the divergence from the physical solution.

In the second place, we hypothesize that, during the a posteriori test, aliasing errors became prominent due to the introduced520

variance at high wave modes. Such aliasing errors are known to introduce instability when not dampened by discretization

errors and/or dealiasing techniques (e.g. Kravchenko and Moin, 1997; Chow and Moin, 2003). The quadratic velocity products

in the non-linear advection term, can in principle introduce wave modes that are not supported by the finite LES grid. The

additional variance could have prevented them from being dampened by the instantaneous spatial discretization errors, causing

them to appear as spurious resolved wave modes in the finite LES solution. This would increase the amount of dissipation525

required in the LES simulation. These aliasing errors were not accounted for during the ANN training, as it only relied on

instantaneous coarse-grained flow fields that did not contain additional variance.

5 Conclusions and recommendations

In this study, we evaluated and developed a data-driven large-eddy simulation (LES) subgrid-scale (SGS) model based on

artificial neural networks (ANNs) that aims to represent both the unresolved physics and instantaneous spatial discretization530

errors. We focused specifically on the widely-used LES approach where a staggered finite-volume grid acts as an implicit filter,

where the discretization errors can strongly interact with the resolved physics.

We designed our ANN SGS model such that, similar to conventional eddy-viscosity SGS models like Smagorinsky, it

can be applied locally in the grid domain: the employed ANNs used as input only local 5× 5× 5 stencils of the resolved

wind velocity components (u,v,w). Interestingly, an additional analysis we performed with so-called permutation feature535

importances, suggested that our ANNs mostly focused on a small part of the stencils oriented along the mean flow direction.

Hence, the input stencils we used could perhaps be further optimized by selecting smaller stencils that extend along the mean

flow direction.

Using as a test case turbulent channel flow (with Reτ = 590), we trained the ANNs with individual 3D flow fields obtained

from direct numerical simulation (DNS). By applying an explicit finite-volume filter (i.e. a discrete 3D top-hat filter) on the540
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high-resolution DNS fields and mimicking the instantaneous spatial discretization errors made in actual LES, we generated

millions of ANN input-output pairs that allowed us to train the ANNs in a supervised manner.

Subsequently, we performed both an a priori, offline and a posteriori, online test. As an a priori test, we directly compared

the ANN predictions to the DNS derived values for flow fields unseen during training. Focusing first on the relatively simple

case where a single coarse horizontal coarse resolution is used during both training and testing, we found, in general, excellent545

agreement for all heights in the channel: the spatial patterns in the DNS values were well captured, and the correlation coeffi-

cients between the ANN predictions and DNS values were high (mostly between 0.6 and 1.0). For a single coarse resolution,

the ANNs were thus well able to represent the unresolved physics and instantaneous spatial discretization errors in the entire

flow, based only on the resolved flow fields. We do note that we did find a few shortcomings that can possibly be improved

upon: the extreme SGS fluxes were slightly underestimated, and the predicted horizontally averaged vertical profile of τwu550

deviated in particular close to the walls.

In addition, we tested the generalization performance of our ANN SGS model with respect to the selected coarse horizontal

resolution. We found that the ANN could be successfully trained on multiple resolutions simultaneously, and was in most

cases able to generalize to other resolutions unseen during training. The generalization performance was particularly good

when the unseen resolution was within the range of the resolutions seen during training, suggesting that a limited set of555

training resolutions may be sufficient to achieve a good generalization performance with respect to the selected resolution.

The generalization performance of our ANN SGS model towards other flow types and/or higher Reynolds number though, is

currently still an open issue. This can possibly be overcome by applying known scalings and properties to the inputs and outputs

(e.g. Ling et al., 2016b; Yang et al., 2019), extending the range of cases covered in the training data-set, and/or retraining a

previously optimized ANN on limited data from a new flow through transfer learning (Guan et al., 2021).560

To test our ANN SGS model a posteriori, we incorporated a trained ANN SGS model directly into an actual LES of the

selected turbulent channel flow test case. Contrary to the a priori test, the ANN SGS model did not produce satisfactory

results. Since our ANN SGS model, in contrast to traditional SGS models like Smagorinsky, compensated for many spatial

discretization effects by introducing additional variance, the need for additional dissipation increased. The ANN SGS model

appeared not to provide this dissipation sufficiently, causing an artificial build-up of TKE at high wave-modes that eventually565

destabilized the solution. We hypothesized that our ANN SGS model did not produce sufficient dissipation because of 1) error

accumulation, and 2) aliasing errors.

We thus conclude that our ANN SGS model cannot, in its current form, achieve computationally stable results without

resorting to previously suggested ad-hoc adjustments (e.g. neglecting all backscatter or combining with the Smagorinsky SGS

model). These ad-hoc adjustments, however, (re-)introduce strong assumptions, and obscure the link between the a priori and a570

posteriori SGS model. We therefore would like to mention below a couple of possible alternative approaches, which may help

to circumvent the need for ad-hoc adjustments and could therefore be worth exploring further in future studies.

First of all, one way forward could be to adjust the training procedure such that it reflects better the a posteriori simulation.

A potential elegant way to achieve this may be an online learning procedure similar to the ones proposed by Rasp (2020) and

Guan et al. (2021), where the ANN SGS model would be trained within the actual, online LES simulation to reproduce the575
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correct statistics and/or the correction terms inferred from a dynamically coupled DNS. Alternatively, errors expected to be

introduced by an ANN SGS model in an a posteriori LES simulation, could be added offline to the filtered flow fields u, v, w

during training. This may help to reduce the sensitivity of the ANN to its own errors, alleviating the need for extrapolation

once the a posteriori LES simulation starts diverging.

A second way forward may be to further improve the design of our data-driven SGS model, in particular including more580

physical constraints and insights. It could for instance be interesting to include the SGS transfer terms in the loss function used

during offline training, as it may allow the ANNs to improve their representation of the net SGS transfer. This could make the

ANN SGS model less prominent to a posteriori instability.

Besides that, it is likely worthwhile to further optimize the chosen inputs, the selected machine-learning algorithm, and the

training when attempting to stabilize the a posteriori simulation. Park and Choi (2021) found for instance that using single-point585

inputs, rather than multi-point inputs, alleviated the observed a posteriori instability. Guan et al. (2021) observed that so-called

convolutional neural networks achieved higher a priori accuracy than the multi-layer perceptron architecture selected in this

study, and, interestingly, that the a posteriori stability depended on the number of training samples. Possibly, a corresponding

further increase in the a priori accuracy helps to reduce the error accumulation a posteriori, making the a posteriori simulation

less prone to instability.590

All in all, our developed ANN LES SGS model has, based on its excellent a priori performance, potential to improve the

representation of the unresolved physics and discretization errors in turbulent flows. However, the developed ANN LES SGS

model is in its current form still prone to numeric instability in a posteriori simulations. Hence, several open challenges remain

before the potential of ANN LES SGS models like ours can be successfully leveraged in practical applications.
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