
Final author response on: ”Development of a

large-eddy simulation subgrid model based on

artificial neural networks: a case study of

turbulent channel flow (gmd-2020-289)”

Robin Stoffer et al.

March 17, 2021

In this author comment, we will respond to the comments of the two referees.
First of all, we would like to thank both of them, together with the editor, for
the time and effort they have invested in the peer review of our manuscript.
The comments of both referees are in our view very valuable, and help us a lot
in improving the quality of our manuscript.

Below, we will give our response to the individual comments of the referees.
Each time, we will first show the corresponding quote from the review in blue,
and subsequently our response. However, before we respond to the individual
comments, we first would like to re-clarify the scope and intentions of our paper,
as we realized from the reviews that this requires improvement, and we would
like to motivate why we see a need in documenting the observed a posteriori
instability.

1 Intended scope and novelty of paper

In particular, the concerns raised by referee #1 made clear to us that we need
to motivate the intentions and novelty of our paper better.

The intended message of our paper was two-fold. First, we aimed to thor-
oughly document our novel training data generation procedure that incorpo-
rates both the subgrid physics and discretization errors. Second, using one of
the simplest wall-bounded flow cases (which is already a more complicated case
than most other ANN SGS modelling studies have considered), we wanted to
make a first assessment whether an ANN SGS model trained on our novel train-
ing dataset, can potentially be implemented in an actual LES without having
to resort to previously used ad-hoc adjustments (e.g. by combining it with
Smagorinsky). We therefore opted to limit the scope of the a priori test, and
instead provide a discussion of the currently observed a posteriori instability,
together with suggestions for future research that may circumvent the need for
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the previously used ad-hoc adjustments. We emphasize that the previously
used ad-hoc adjustments to tackle the instability, are not ideally preferred so-
lutions with important issues (e.g. ad-hoc tuning, re-introduction assumptions
of Smagorinsky SGS model, neglecting back-scatter), and we hope that docu-
menting the observed instability will help the field to assess alternative, possibly
better approaches.

We nonetheless understand the concern of referee #1 that the a priori test,
in its current form, does not sufficiently test the generalizability of our ANN
SGS model, especially as we only demonstrated the ANN performance for one
coarse resolution.

We will revise the paper in order to ensure that our intentions come better
across, in particular in the introduction and conclusion sections. In addition,
we will extend the a priori analysis by training and testing our ANN SGS model
on multiple horizontal coarse resolutions simultaneously, including tests on hor-
izontal coarse resolutions unseen during training.

2 Response to comments of Referee #1

2.1 general comments

”The manuscript is well-referenced and thoroughly rigorous in its development,
and their code/parameters are made publicly available for reproduction which is
appreciated.”

We thank for the referee for these kind words. We hope that the thorough
description of our approach and the remaining challenges, together with the used
code, will contribute to the development of accurate, stable, and generalizable
ANN SGS models.

”However, the experiment and results presented are not a significant contribution
to the literature for a few reasons. Most notably, the ANN was not successful
as an LES SGS turbulence closure while being 15-fold more expensive to run
than the Smagorinsky-Lilly model, not including the cost of training the ANN
or producing the training DNS fields.”

We do believe that our experiment and results are a significant contribution
to the literature. Most importantly, we thoroughly document an ANN SGS
model that has potential to accurately compensate for both subgrid physics
and discretization errors for a staggered finite-volume grid. As mentioned in
Sect.1, we hope that documenting the observed a posteriori instability will help
the field to overcome it without resorting to ad-hoc adjustments/constraints,
allowing to fully leverage the observed a priori potential (see also Sect.2.2).

Regarding the computational cost, an actual LES with our ANN SGS model
(with nhidden = 64) is indeed about a factor 15 slower than an equivalent LES
with the Smagorinsky SGS model (as we also mention in our manuscript). We
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do note that we focused mostly on testing the potential of our approach, rather
than optimizing (yet) its computational cost. Hence, the computational cost of
our ANN SGS model can still be further improved when required.

In addition, we note that the Smagorinsky SGS model is computationally
already very efficient, and thus the ANN cannot be expected to outperform the
Smagorinsky SGS model in this respect. In line with more advanced SGS mod-
els like scale-dependent dynamical SGS models, the primary objective of ANN
SGS models like ours is instead to (eventually) improve the accuracy of LES
for a given resolution (and in doing so may allow a computationally cheaper
lower resolution to achieve a certain desired level of accuracy). We will better
emphasize this point in the methodology sections.

”Further to this point (and as they note), their result that the ANN model gen-
erates too much backscatter and not enough dissipation has been both seen and
addressed with different methods in the literature.”

We are indeed aware of some papers that documented a posteriori insta-
bility in the context of ANN SGS modelling, and subsequently came up with
ad-hoc adjustments (e.g. artificially introducing dissipation by combining with
Smagorinsky) and/or strong numerical constraints (e.g. eliminating back-scatter)
that alleviated the instability. We mention and discuss these papers in the a
posteriori section, together with other papers that, interestingly, did not docu-
ment any instability when using ANN SGS models a posteriori. If the referee
referred to other literature than the papers we cited, we would appreciate it if
he/she provides the references.

Despite that some papers indeed mentioned the a posteriori instability, as
mentioned before we still think it is important to document the a posteriori in-
stability we encountered. We will elaborate more on the reasons why in Sect.2.2.

”The ability of the ANN to predict accurate SGS stresses based on filtered veloc-
ity fields in an a priori setting and the analysis of which input fields the ANN
deems important to achieve these accurate results is an interesting avenue which
could be a valuable contribution to the turbulence-modeling literature, but it is
not pursued deeply enough currently to warrant publication.”

We agree that exploring in more depth the permutation feature importances,
in combination with a more extensive a priori test, would be very interesting,
as it may provide new insights in the dominant locally resolved flow patterns
that drive subgrid physics and numerical errors. We decided to extent the cur-
rent a priori test with ANNs trained on multiple horizontal coarse resolutions
simultaneously (see Sect.1 and 2.2). This allows us to explore whether the per-
mutation feature importances are influenced by the coarse horizontal resolutions
seen during training. If we observe that the permutation feature importances
are indeed substantially influenced, we will add our findings to the permutation
feature importance section in the manuscript.
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2.2 Specific comments

In this section, we will again respond to each comment individually. However
to keep things concise, where appropriate, we will refer to our responses to the
general comments and our general statement about the intended scope of the
paper.

”2.1 Focus is too broad and unbalanced

The presentation is divided relatively evenly between the methodology for filtering
the DNS fields for the specific finite-volume filter including numerical errors, the
training of the ANN, the ANN-produced a priori stress fields, the permutation
feature importance of the ANN in the a priori experiment, and the a posteriori
results and potential explanations of the observed instability. The result is a very
broad outline of the developed ANN SGS turbulence closure with a long descrip-
tion of the methodology and relatively sparse analysis of the results, which would
be more appropriate if the model was completely novel or more successful as a
functional LES turbulence closure, or both. I recommend that the authors pick
one aspect to focus on and thoroughly analyze for this submission and potentially
revisit the others separately. The description of the finite volume filtering is par-
ticularly verbose with ten full lines dedicated to equations and could be greatly
reduced unless the filtering process is decided to be the focus of the manuscript.”

In retrospect, we understand the view expressed here by the referee. It made us
realise that we did not convey clearly enough the intentions and novelty of the
manuscript (see Sect.1), and, in addition, the methodology sections were too de-
tailed on some occasions. We will therefore attempt to shorten the methodology
sections by focusing it more on the novel aspects (in particular the finite-volume
filter) and/or moving parts of the methodology sections to an appendix.

Besides that, we plan to extend the analysis of the ANN performance in
the a priori test (see next response and Sect.2.3) such that, overall, the balance
between the methodology and results sections shifts more towards results.

”2.2 Only one test case

The ANN is trained on fields from a single neutral DNS case at steady state then
evaluated on steady-state fields from the same DNS case. The performance of the
ANN in the a priori test would be much more striking if it were demonstrated
that it was able to accurately model SGS stresses for a case that it was not
trained on, or even if it was still evaluated for a case it was trained with but
shown that the ANN maintains its performance when trained on multiple cases.
Put another way, it is not clear here if the ANN is learning about turbulence in
general or about a single steady-state field specifically, which makes the results
difficult to properly digest. The potential insights into turbulence modeling from
the analysis of permutation feature importance could be quite interesting if it is
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shown that there is some generality to the ANN.”

This is a valid point raised by the referee. Rather than performing such an
extensive a priori test, we opted in this manuscript to test whether the developed
ANN SGS model could be used in an actual LES without ad-hoc adjustments
(see Sect.1). Since we selected for the a posteriori test the same LES case as
represented during the training and a priori test, we could assess this question
already with the a priori test in its current form. In addition, the current
a priori test does show the capability of the ANN to accurately predict the
subgrid physcis and numerical errors for previously unseen realizations of the
selected channel flow case.

As mentioned in Sect.1, we do understand the point of the referee that we
did not sufficiently demonstrate the generalizability of our ANN SGS model,
mainly because we selected only one coarse resolution. We will therefore add an
additional sub-section to the a priori test, where we will assess to what extent our
ANN SGS model can be simultaneously trained on two/three different horizontal
coarse resolutions, and generalize towards horizontal coarse resolutions unseen
during training. To this end, using three different coarse horizontal resolutions
(with horizontal coarsening factors of 4, 8, and 12 resp.), we will train and test
our ANN SGS model in three different ways:

1. Train only on a coarsening factor of 8 (which is equivalent to how we
currently trained our ANN), test on all three coarsening factors.

2. Train on coarsening factors of 4 and 12, test on coarsening factor 8.

3. Train on all three coarsening factors simultaneously, test on all coarsening
factors.

Given the current scope of the paper (Sect.1), we do still intend to exclude
the generalization towards higher Reynolds number and other flow types (e.g.
pipe flow, unstable/stable wall-bounded flows). In our view, doing such an as-
sessment properly would warrant a separate publication. As we focus in our
manuscript on incorporating numerical errors in the training data, we think the
additional analysis we propose above is most relevant for the current scope of
the paper. In the conclusions section, we will additionally mention that the
generalizability of our ANN SGS model towards other Reynolds numbers and
flow types is still an open issue.

”2.3 Unstable when used as a live model

The result that the ANN SGS model leads to an unstable LES solution is not
worthy of publication. I suggest that the authors either re-focus the manuscript
on the implications of what can be learned from the a priori results or imple-
ment some of the possible solutions that they mention (e.g. limiting backscatter,
adding dissipation via an eddy-viscosity component) to achieve numerical sta-
bility and discuss the implications of the amount of tuning necessary to, for
example, their unique filtering process including numerical errors or the general
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formulation of mixed models (which are often very ad-hoc and could use insights
from new sources).”

In contrast to the reviewer, we do believe that the observed a posteriori insta-
bility is interesting for the readers of our paper. In our view, there are three
important reasons why it is valuable to document and emphasize the currently
observed a posteriori instability:

1. The ad-hoc adjustments and/or strong numerical constraints used by sev-
eral previous papers (Beck et al., 2019; Maulik et al., 2019; Zhou et al.,
2019) to resolve the issue, are not ideally preferred, as they require e.g.
ad-hoc tuning, re-introduction of the assumptions associated with the
Smagorinsky SGS model, and/or neglecting back-scatter. This is the main
reason why we think it is more worthwhile to document and discuss the
observed a posteriori instability, rather than implementing these previ-
ously used adjustments/constraints. In the conclusions section, to this
end we also highlight several other alternative approaches that may help
to circumvent the need for the proposed ad-hoc adjusments/constraints
completely.

2. There does not seem to be a consensus in fluid mechanics literature whether
and when the a posteriori instability occurs. Several papers (Wang et al.,
2018; Yang et al., 2019; Xie et al., 2019) did not report any instability
when testing their ANN SGS models a posteriori.

3. Potentially, many GMD readers may experience similar issues in differ-
ent contexts, highlighting interesting cross-disciplinary connections. As
the second referee mentions, the problem that an ANN parameterization
performs well in an a priori (or ”offline”) setting, but badly in an a poste-
riori (or ”online”) setting, is also seen in other geoscientific disciplines like
climate modelling (Brenowitz and Bretherton, 2019; Rasp, 2020, e.g.).

We will better emphasize the issues associated with the previously used
methods to tackle the instability, and the alternative solutions we propose (in
particular in the conclusions section). In addition, we will also mention the find-
ings of two very recent publications (Park and Choi, 2021; Guan et al., 2021),
which, similar to our paper, also highlight the a posteriori instability encoun-
tered with ANN SGS modelling. Guan et al. (2021) also cites our paper in this
context.

2.3 Minor comments

”A formulaic description of your implementation of the Smagorinsky-Lilly model
and its associated wall model would be helpful”
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Agree. We will include it.

”Table 3 would be more digestible as a figure”

Agree. We will plot the correlation coefficient as vertical profiles instead.

”Dissipation (τijSij) would be nice to see in the analysis of the a priori results,
particularly given the low energy in the Smagorinsky-Lilly results for just τij
and the a posteriori outcome for the ANN”

Agree, this is indeed a very good suggestion, especially given the apparent lack of
dissipation in the a posteriori test. We will calculate and include the dissipation
in the a priori test. If appropriate, we will also discuss its implications for the
observed a posteriori instability.

”Line 206: “Simply boils down to...” is overly casual”

Agree, we will rephrase it.

2.4 Technical corrections

”Fig. 2: The titles on the individual fields are much too small to read at 100%
resolution”

Agree. We will enlarge the titles of the individual fields, such that they are
better readable.

3 Response to comments of Referee Noah Brenowitz

3.1 General comments

”The paper is nicely presented and thorough. I enjoyed reading it. It is disap-
pointing that they didn’t achieve good ”a posteriori” skill, but this is hard to do,
and I appreciated their discussion of the issues. I recommended the paper be
accepted, but I would do have some comments:”

We thank the referee for these kind comments. We share his disappointment
about the a posteriori instability, and we hope our discussion about it helps the
field to eventually overcome it.

”1. The introduction has a comprehensive literature review of ML for turbulence
closures in the CFD/engineering community, but could also mention similar
work in the oceanography/atmospheric science on e.g. geostrophic turbulence
(Bolton and Zanna, 2019), boundary layer parameterization (McGibbon and
Bretherton, 2019), and ”fullphysics” parameterization (Brenowitz and Brether-
ton, 2019; Rasp et. al. 2018; Yuval and O’Gorman 2020). These papers all
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formulate similar coarse-graining problems, and I think readers would enjoy see-
ing the connections.”

We agree our introduction could benefit from some additional references, as
the referee suggests, to similar work previously done in other geoscientific disci-
plines, such that the present interesting cross-disciplinary connections are better
highlighted. We will therefore include the suggested references.

”2. The question of ”a posteriori” and ”a priori” errors is a key unsolved
problem in the literature. Overall this study diligently accounted for the spatial
discretization of the LES, but did not handle the time discretization. For exam-
ple, would decreasing the time step or using a different time stepper stabilize the
”a posteriori” simulations, or is the ML problem they have posed intrinsically
unstable?”

This is a good point raised by the referee. In general though, errors in Navier-
Stokes solvers are dominated by errors in the spatial discretizations, due to the
strong time constraints imposed by the advection and diffusion. Furthermore,
our time discretization scheme has an inherent damping making the energy de-
cay over time (van Heerwaarden et al., 2017). Hence, increasing errors over time
are highly likely from other sources than the time integration itself.

In the description of our unique filtering procedure, we will additionally
mention this point.

3.2 Specific comments

”L55: ”a posteriori tests

This jargon has diverged somewhat in the turbulence and weather/climate mod-
eling communities. Climate modelers frequently use the terms ”online” and
”offline” to denote a posteriori and a priori validations, respectively. It would
be good to point this out for the geoscience reader.”

Agree. We will point out the alternative offline/online denotation in the intro-
duction, abstract, and section headers. We will stick to a priori/a posteriori as
our main denotation though, as that is the most common one in SGS modelling.

”L95: ”Friction Reynold’s number”

I assume this refers to the Reynolds number arising from molecular viscosity,
but it would be clearer if it were defined in terms of the geometry, viscocity etc
in Eq 1. Also, it should be pointed out that atmospheric flows have orders of
magnitude higher Reynold’s numbers than Re=590.”

We agree the current formulation is somewhat confusing for the broader geo-
scientific community. We will add a note explaining that the friction Reynolds
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number Reτ is a standard measure in studies of wall-bounded turbulence de-
fined based on the friction velocity.
Although Reτ is significantly lower than the conventional Reynolds number, the
Reτ of the selected test case is indeed still lower than for realistic atmospheric
flows. We will therefore mention more explicitly in the text, the lower friction
Reynolds number compared to reality.

”L185 (Fig 2). Please define ”friction velocity”.”

We will add a brief explanation about the meaning of the ”friction velocity”
when mentioning the ”friction Reynolds number” for the first time (see previ-
ous response).

”L325. How important was this preferential sampling in terms of quantitative
performance?”

The preferential sampling was mainly important to improve the predictions close
to the walls, compared to the predictions in the middle of the channel. In other
words, the preferential sampling did not quantitatively improve the prediction
accuracy averaged over the whole flow, but rather minimized the difference in
prediction performance with channel height. This is desirable, as subgrid mod-
els usually matter most close to the walls, where the physics are very different
than in the middle of the channel. We will further clarify these points in the
corresponding sections.

”Figure 8. The Smagorinsky scheme does dramatically worse. I am concerned
this is a straw-man comparison. Is Smagorinsky a state-of-the-art baseline for
this problem?”

Yes and no. We used the Smagorinsky model because it is one of the most
commonly used SGS models in actual large-eddy simulations, despite that it is
well-known to perform poorly in a priori tests. We do note that there are other
more advanced traditional SGS models that usually perform (somewhat) better
in a priori tests (e.g. scale-dependent dynamical SGS models or scale-similarity
SGS models).

However, what is in our case crucial, is that we included numerical errors
in the definition of τij . The Smagorinsky SGS model, together with the other
traditional SGS models, do not compensate for these errors. This is an impor-
tant reason why also other, more advanced SGS models cannot be expected to
perform well in the a priori tests presented in this manuscript.

We will revise the a priori test section to emphasize further these points, and
highlight that the ANN primarily has potential because of its ability to compen-
sate for numerical errors that other traditional SGS models (like Smagorinsky)
do not compensate for.

”L415. These issues were likely exacerbated by the growing need for the ANN to
extrapolate beyond its training state once the simulation started deviating from
the physical solution.

Many ML-assisted weather models show identical problems. These spiraling er-
rors are can be revealed by normal mode analysis of the underlying linearized
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ML-fluid system (see Brenowitz, et. al. 2020). It would be fascinating to see
this technique applied to NNs here in some future paper.”

We thank the referee for this interesting suggestion. We will keep it in mind for
any possible future work on the observed a posteriori instability.

3.3 Technical corrections

”L83: ”instantaneuous” is misspelled”

Indeed. We will correct it.

”Figure 3. This graphic is busy, but I understood what they meant from the
text.”

We understand that this figure, in its current form, looks busy and contains a
lot of information. Given though that it was clear in combination with the text,
we do opt to retain the figure in its current form, as the 3d-visualization does
nicely allows us to indicate the calculated surface integrals. We will instead
rephrase the caption of the figure, such that the figure hopefully becomes more
clear independent from the main text.

”Figure 9. This graphic has small text and shows some over-plotting in Fig 9a.
I suggest further reducing the transparency of the markers or using a hexbin
plot”

Agree. We will make the labels larger, and we will change it to a hexbin plot.

”Line 340. This section header needs a preposition e.g. ”Comparison *to*
Smagorinsky””

Agree. We will change the header to ”Comparison to Smagorinsky”.
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