
Author Responses for GMD-2020-281. 

SC1: 'executive editor comment on gmd-2020-281' 
We have named the algorithm used as version v1.0.0 to meet the journal requirements. This is now 

included in the title and in the Zenodo reference. The DOI is cited in the “Code Availability” section (15-

24). 

Referee Comments 
Thank you all for your comments and feedback. Here are some specific responses and references to 
revisions in the text with the author responses in bold below each referee comment. 
 

RC1: ‘Review of gmd-2020-281' 
 

“1. The question of the relevance of other aerosol processes on process rate estimates from the 
inverse model. 
In particular, a set of measured aerosol particle size distributions in the actual atmosphere will 
be subject to variation from a wide variety of processes. Some of these can be simulated by 
either the CTM or TOMAS to varying degrees of accuracy while others may not be included at 
all. As a first step the authors select three aerosol processes for their relevance to prediction of 
CCN in a CTM (page 2-7). In circumstances where other processes are relevant to changing 
aerosol particle size distributions—perhaps terms included in f_k, or other processes held 
constant in the model but changing in the actual atmosphere and therefore affecting the 
measured distribution—the result would presumably be a (not physically relevant) change to at 
least one of these investigated process rates. Is there a limit to how much the resulting error on 
the estimated process rate would be, or a method to identify when such a circumstance is 
occurring? Would it be evident in, say, the condition number of equation 3, or is there another 
method of detecting such a scenario and limiting its impact on process rate estimates? 
This is of course an issue with all under-constrained inverse problems, not unique to this 
method, and is beyond the scope of this manuscript to resolve. However, some discussion of the 
issue may be warranted as an outstanding issue with such efforts.” 

 
The sensitivity of inventory variables to model errors determines the magnitude that the unknown 

model error affects the estimated rates. Thus, there is not a general rule of thumb on how much error 

this issue would contribute to the estimated rates, but it depends on the specific scenario (e.g., with 

an inventory variable of total aerosol volume: coagulation errors would not affect the estimates while 

wet deposition errors would strongly affect estimates). As you mentioned, the only way we can think 

of identifying such a situation is if the estimated rates are not physical. This takes some expert domain 

knowledge of the process and location being simulated. We have added a paragraph discussing this 

starting at 7-29, which states:  

Another drawback of this estimation method, which is shared with most inverse techniques, is the 

effect of uncertainty in model errors not corrected by the estimator (𝒇𝒌 uncertainty). Model errors 

outside of particle nucleation, emissions, and growth can lead the estimator to over-compensate in 



the scaling factors if the inventory variables are sensitive to those model errors. For example, the 

estimation technique applied to a model that does not correctly simulate particle deposition will 

estimate particle emissions incorrectly while the estimated nucleation rate will not be affected. 

Identifying this scenario with outside model errors negatively impacting the estimated process rates is 

very difficult, but one sign is when the estimated process rates are not physical, e.g., a higher SOA 

production rate during nighttime. In future work, including various types of observations and more 

inventory variables can possibly inform the scaling factors and limit the impact of outside model errors 

on the estimated process rates.   

The condition number would not necessarily provide insight on model errors since it is calculated by 

just the sensitivity array (G_k), which is only indirectly effected by model errors. 

“2. Additional physical reasoning regarding the circumstances under which an ill-conditioned 
sensitivity matrix may occur.  
The authors discuss a weakness of the method occurring when the sensitivity matrix, G_k, is ill 
conditioned (page 9-6). Cases in which solutions to these situations are discussed occurs at page 
10-28 and 11-10. In these situations, it may be helpful to include more physical reasoning 
regarding the ill-conditioned scenario and the implications of removing one uncertain process 
rate (held constant for the given time step).” 

 
We have added further clarification on the condition number and the physical meaning behind an ill-
conditioned system at 7-16, which should clarify the questions raised below as well. This section now 
states: 
This corresponds to the situation in which the measured inventory variables do not unambiguously 

constrain the process rates, i.e. several sets of process rates adequately satisfy the measured 

constraints, leaving at least two of the equations nearly linearly dependent. Physically, this can be 

thought of as a scenario in which inventory variables react to an aerosol process in the same way. For 

example, the system of equations using inventory variables 𝑵𝟏𝟎 and 𝑵𝟏𝟎𝟎 to estimate SOA production 

and emissions would be ill-conditioned in a scenario with the model predicting only particles greater 

than 100 nm and an emitted size distribution of particles 100 nm and larger. It follows that the 

condition number is not informed by any model-measurement mismatch. 

 
“To a very general degree, additional discussion might address several open questions: Would 
this be interpreted as the aerosol process being generally sensitive to changes in more than one 
inventory variable? What are the physical implications of this in terms of adjustments to the 
aerosol process rates at such time steps?” 

 

The ill-conditioned case should be interpreted as: changes in aerosol processes affect more than one 

inventory variable in the same way. That is to say, as SOA production and POA emissions are 

increased, the increase in N10 due to each of those processes is the same or a factor times the 

increase in Vdry due to each of those processes. Since we are dealing with this by removing an aerosol 

process and inventory variable from the 3x3 system of equations, the implication is that we are only 

able to constrain two of the uncertain process rates while the remaining process evolves as it was in 

the previous timestep even if that is unrealistic. 

 



“Would real world changes in other relevant processes, or those contained in f_k, be at least 
partially responsible? Moving forward with this method, should those be considered?” 
 

No, the sensitivity and condition number is calculated solely based on the model equations, so any 

real world changes to other processes not captured in the model do not affect this calculation of the 

condition number. 

 
“How does this model perform when multiple process rates are changing simultaneously?” 
 

In each of the 27 scenarios with synthetic measurements, all three process rates are scaled 

simultaneously, so the estimation technique performs very well. 

“For example, in the ill-conditioned scenario described at the beginning of section 4, would the 
physical interpretation be that changes to both emissions and SOA production rates are 
expected by TOMAS to have roughly the same impact on N_10 and V_dry (similar sensitivities in 
G_k)—and that information on changes to the size distribution (via our inventory variables) are 
constrained to only influence emission rate to solve this issue? That would seem to be a 
reasonable solution when lacking a better reason to constrain one of the process rates, but 
more discussion of G_k and the condition number in such circumstances would be helpful. If this 
is not the correct interpretation of these ill-conditioned sensitivity scenarios, it may help to 
provide more physical reasoning of what is happening in the model and what the physical 
implications are in these circumstances.” 

 
In this case, we still take into account changes to the inventory variables due to SOA production, but 

we do not have enough information (through the inventory variables) to determine both POA and 

SOA rates. So, here we assume the modeled SOA production is correct and assume all the model-

measurement bias is due to POA to estimate POA emission rate. 

2-14: The last several sentences in this paragraph are somewhat confusingly worded. Consider 
clarifying the meaning here.” 

The wording is slightly changed to be clearer at 2-14, which now reads: 

An uncertain amount of VOCs are emitted from biomass burning, anthropogenic sources, and the 

biosphere (Folberth et al., 2006). After their emission, sulphuric acid and VOCs  form secondary organic 

aerosol (SOA) (e.g. Kerminen et al., 2018; Kulmala et al., 2014; Shrivastava et al., 2017), where the 

SOA yield from VOCs is also uncertain. 

3-1: The use of the word “integrates” could be misconstrued as integration of the size 
distribution here. Consider a different word such as combines or includes. 

We have replaced with “assimilates”. 
4-14: “as nearly as possible”. Consider something like “as closely as possible”. 
4-19: The point of this sentence is valid, but these processes are not the only processes that 
control evolution of the particle size distribution. 

Replaced “process control the evolution” with “processes significantly affect the evolution”. 

6-2: The terms here look somewhat like t_k(mu_k) as a function. Consider a change to 
something like "...depend on the scaling factors (mu_k), at time t_k ..." if appropriate. 



7-1: Should mu_k_hat be referred to as “scaling factors” or similar here, as in 6-25 and 7-11, to 
prevent confusion? 

Yes, this has been changed. 

7-17: Even if restating from an earlier cited source, an additional reference for more information 
on the use of the condition number and relative sensitivity array in this methodology would be 
helpful for a reader wanting more information on this step. 

Citation to book by Highman, N. J., 2008 added. 

7-24: Consider “e.g.” rather than “i.e.” if appropriate. 
8-25: Refer to inventory variables for each of these in this sentence, i.e. "...underpredicted 
aerosol mass (via dry aerosol volume, V_dry) as well as N_10..." or similar. 

These edits have been made. 

9-5: What was the justification for these ranges of rates spanning expected atmospherically 
relevant process rates? 

This is described in the sentence: “Since the objective is to design an inverse technique that is robust 

enough to apply in a global 3D CTM”. We want to test the estimation technique on atmospherically 

relevant process rates to test the method’s viability in a global CTM. 

Section 3.1: Was the uncertainty and estimated effect of instrument noise calculated using only 
the limited "meteorologically stable" time periods as opposed to the full year of data? 

No, as stated in the text the uncertainty is calculated only with the 23 well-conditioned synthetic 

measurements. We added clarification in the second sentence pointing to the measurements 

explored in the previous section (Section 3) at 10-24. 

10-16: Should be "damps" rather than "dampens". 
I think this is a personal preference as Merrian-Webster lists the verbs with the same definitions. 

Since “damps” can be considered a noun, adjective, or verb we will keep the less-ambiguous 

“dampens”. 

13-15: Use of "integrate" again here. Consider “…way to combine information from …” or similar 
instead. 
Fig 9: Needs a legend to show line color meaning in figure. 

These have been addressed in the revised manuscript. 

RC2: 'Review of McGuffin et al. 2020' 
“In reality, emissions (and other processes) vary on a wide range of time scales, including 
seasonal, weekly, and diurnal cycles, and variability at shorter timescales. These variations are 
likely not fully captured by any CTM. Does this present a challenge for the choice of an 
appropriate value for the gain Kc? Can the authors comment on the robustness of their method 
to this issue?” 

The estimated scaling factor can be time-varying or constant depending on what the model needs to 

match the measurements, so the estimation method is already formulated to correct for timescales 

missing from the model. The most important decision to capture a missing timescale is defining an 

inventory variable that depicts that timescale in its measurements. 

“Could the authors discuss the sensitivity of the results to the sink rate chosen in this work? I 
understand that a detailed treatment of dilution, transport, and deposition is beyond the scope 



of this study. However, given that the rates of these processes are both variable and uncertain, I 
think that a little further discussion is warranted. This discussion would also inform the potential 
of this method to be applied in a CTM, as there are uncertainties in more model processes than 
can be tested simultaneously using this method.” 

In a CTM, the loss rate should be more representative than the consistent first-order rate used in this 

box model. However, if the modeled loss rate is slower than reality, i.e. not raining in the model, the 

estimation technique will not be able to match the model to the measurements. This is included in the 

main limitation of the estimation method – we assume all aerosol processes are known reasonably 

well except for nucleation, emissions, and growth. 

We have added a paragraph discussing how this general issue of model uncertainties would affect the 

estimation performance at 7-29, which states:  

Another drawback of this estimation method, which is shared with most inverse techniques, is the 

effect of uncertainty in model errors not corrected by the estimator (𝒇𝒌 uncertainty). Model errors 

outside of particle nucleation, emissions, and growth can lead the estimator to over-compensate in 

the scaling factors if the inventory variables are sensitive to those model errors. For example, the 

estimation technique applied to a model that does not correctly simulate particle deposition will 

estimate particle emissions incorrectly while the estimated nucleation rate will not be affected. 

Identifying this scenario with outside model errors negatively impacting the estimated process rates is 

very difficult, but one sign is when the estimated process rates are not physical, e.g., a higher SOA 

production rate during nighttime. In future work, including various types of observations and more 

inventory variables can possibly inform the scaling factors and limit the impact of outside model errors 

on the estimated process rates.   

“I do not see the chosen values of the gain Kc listed in the paper. It would be best to list them in 
section 2.2. It may be helpful to express them as convergence timescales.” 

This is added at 7-1, which states: 

For the rest of this paper, we use a matrix with diagonal elements of [𝟒, 𝟒, 𝟏]𝑻 𝒉𝒓−𝟏 for 𝑲𝒄, which 

corresponds to convergence timescales of 15 min and 1 hr for the number- and volume-based 

inventory variables, respectively. This array was found to have the best performance in reducing 

model-measurement mismatch without instabilities in the estimated scaling factors. 

“p4, line 20: Is it improved performance that the authors anticipate, or greater understanding? I 
would guess that the authors would find similar or better performance in using the mixing ratios 
directly as the control variables.” 

We anticipate greater understanding; this has been revised. 

“p8, line 10: What is the timescale of the moving average? The authors later state that the 
synthetic noisy measurements are filtered with an 11-hour timescale. Was the same timescale 
applied to the observations?” 

The 11-hour window was used for noisy synthetic measurements (mentioned at 11-5), but without 

noise we used a window of 5 hours (added to text at 9-11). Then, for field measurements we used a 

window of 3 hours (added to text at 8-25) to smooth measurement noise without significantly 

dampening nucleation events. 



“p9, line 1, “will repeat”: The authors should use the present tense here. Reserve the future 
tense for future work.” 

This has been fixed in the text. 

“p10, line 31-33. I found this sentence confusing. If I am reading Fig. 7a correctly, the maximum 
in normalised mean bias increases from 0.06 to 0.09. Is the “maximum bias” the authors are 
referring to, then, the bias for a single time step of the box model  (not shown in the figures)? If 
so, I would request that this be split into two sentences, as the second half does not refer to Fig. 
7a.” 

This sentence was confusing and not correct, so we have deleted it. 

“p5, line 1 states that the TOMAS model simulates particles as small as 0.5 nm in diameter. 
However, p12, line 31 seems to indicate that nucleated particles are generated with an initial 
diameter of 3 nm. Are the smallest size bins unused (i.e. always contain zero mass) in this study? 
This should be stated plainly in the methods section.” 

This is correct, so we have added a statement on this at 5-1, which states: 

Although TOMAS tracks the concentration of particles as small as 0.5 nm, the minimum predicted size 

is 3 nm here due to the implemented nucleation routine described below. 

“p13, lines 9-10: It may be clearer to say “this is after sunset on February 22 and before sunset 
on March 28th”.” 

This has been edited. 

“Figure 7: Does the mean bias in the nucleation rate decrease when noise is added to the 
synthetic measurements? If so, this warrants a brief discussion in the text.” 

No, there is not a significant change among the 23 scenarios, although the bias in a few cases may be 

lower with noise. We added the median, among the 23 scenarios, of the normalized mean bias to the 

text at 11-18: 

In Figure 7a, we find that the normalized mean bias across the 23 scenarios does not significantly 

change with median values without and with noise, respectively, of 0.03 and 0.03, 0.005 and 0.007, 

and 0.004 and 0.006 for nucleation, emissions, and growth, respectively 

RC3: 'Review of McGuffin et al.' 
“I believe the manuscript would benefit from further discussion on the limitations of applying 
this approach to ambient size distributions which may be influenced by many uncertain aerosol 
processes that are not being scaled in the inverse technique. As aerosol processes are often 
non-linear, how sensitive is this method to potential errors in the representation of other 
aerosol processes? The authors do introduce this issue in Section 4.2 (and I agree a full 
exploration of the problem is beyond the scope of this paper). What are the implications of the 
assumption that the other modeled aerosol processes are correct? If a given aerosol process is 
drastically misrepresented in the CTM, will this inverse approach overcompensate (attempting 
to get the correct answer for the wrong reason)?” 

You are correct that the estimation method will overcompensate for model errors outside of the 

scaled uncertain processes. We have added a paragraph discussing this issue at 7-29, which states:  

Another drawback of this estimation method, which is shared with most inverse techniques, is the 

effect of uncertainty in model errors not corrected by the estimator (𝒇𝒌 uncertainty). Model errors 



outside of particle nucleation, emissions, and growth can lead the estimator to over-compensate in 

the scaling factors if the inventory variables are sensitive to those model errors. For example, the 

estimation technique applied to a model that does not correctly simulate particle deposition will 

estimate particle emissions incorrectly while the estimated nucleation rate will not be affected. 

Identifying this scenario with outside model errors negatively impacting the estimated process rates is 

very difficult, but one sign is when the estimated process rates are not physical, e.g., a higher SOA 

production rate during nighttime. In future work, including various types of observations and more 

inventory variables can possibly inform the scaling factors and limit the impact of outside model errors 

on the estimated process rates.   

“How generalizable is this approach in terms of choosing the scale factors and inventory variables? 

Would it be relatively straightforward for future studies to choose different aerosol processes to scale 

(for instance, if I wanted to assume nucleation rates are accurate but instead scale dry deposition 

rates)?” 

This approach is very generalizable as most of the difficulty is in choosing inventory variables that can 

capture the uncertain processes your model is missing. You can apply the same code we have 

implemented, but instead of calculating difference in your inventory variable before and after 

nucleation, you would do the difference before and after the aerosol process of interest, i.e., dry 

deposition. 

In terms of choosing different scaling factors and inventories, you can choose any set you would like 

as long as you have at least as many inventories as scaling factors. Also, changes in the scaling factor 

must affect the predicted inventory variable to get good results. Ideally, you can choose an inventory 

variable in which the uncertain process is the dominating process. 

We hope this is clearer in the text as we have slightly altered the text at 6-13 to read:  

Because these rates are determined by finite difference, i.e., by saving model parameters before and 

after relevant subroutines are called, this approach is generalizable to various processes, modular, 

and robust with respect to changes in the aerosol microphysics. Internal details of subroutines can 

change so long as the estimator is able to compare the model state before and after the subroutine 

call. Additionally, this method can easily be adapted to other models with different uncertain 

processes or available measurements 

“How is the exponential error decay factor (Kc) tuned? Is it kept constant across the simulations 
using the synthetic and observed data or is it tuned in each simulation?” 

In the three sets of simulations performed, we used the same Kc. The values chosen were based on 

initial tests with the 27 scenarios of synthetic measurements so that the error converged to near-zero 

but also the estimated scaling factors did not become unstable. A short description of this is included 

in the text at 7-1, which states: 

For the rest of this paper, we use a matrix with diagonal elements of [𝟒, 𝟒, 𝟏]𝑻 𝒉𝒓−𝟏 for 𝑲𝒄, which 

corresponds to convergence timescales of 15 min and 1 hr for the number- and volume-based 

inventory variables, respectively. This array was found to have the best performance in reducing 

model-measurement mismatch without instabilities in the estimated scaling factors. 

“Specific comments: 



1. Line 2-13 could be rephrased as there are other processes that could contribute to aerosol 
growth not considered here.” 

This has been changed to: …particles grow partially due to… 

“ 2. What is the normalized error for the aerosol properties simulated with the a priori TOMAS 
model in Figure 8? How does this compare when using the inverse method?” 

The a priori rates in TOMAS were chosen to be realistic, but we did not aim for this baseline model to 

match the measurements. Therefore, it is expected that the inverse method matches the inventory 

variables better than the baseline model with a priori rates. The normalized absolute error in the 

baseline simulation at the three measurement sites is tabulated here and added as a figure in the 

supplemental information (SI.1). 

 
 
 
 
 

“ 3. I think Figure 9 could benefit from a legend or additional annotation. I found it hard to 
remember each color representation.” 

We added a legend to Figure 9.  

NAE: A priori simulation N36 N10 Vdry 

SPC 0.98 0.48 0.38 

MPZ 1.36 0.49 0.48 

HYY 2.83 0.69 0.98 


