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Abstract. There is an urgent need for the climate community to translate their meteorological drivers into relevant hazard

estimates. This is especially important for the climate attribution and climate projection communities as we seek to understand

how anthropogenic climate change has, and will, impact our society. This can be particularly challenging because there are

often multiple specialized steps to model the hazard. Current climate change assessments of flood risk typically neglect key

processes, and instead of explicitly modeling flood inundation, they commonly use precipitation or river flow as proxies for5

flood hazard. Here, we lay out a clear methodology for taking meteorological drivers, e.g., from observations or climate

models, through to high-resolution (~90 m) river flooding (fluvial) hazards. The meteorological inputs (precipitation and air

temperature) are transformed through a series of modeling steps to yield, in turn, surface runoff, river flow, and flood inundation.

We explore uncertainties at different modeling steps. The flood inundation estimates can then be directly related to impacts

felt at community and household levels to determine exposure and risks from flood events. The approach uses global data-sets10

and thus can be applied anywhere in the world, but we use the Brahmaputra river in Bangladesh as a case study in order to

demonstrate the necessary steps in our hazard framework.

1 Introduction

Flooding is a natural phenomena which is a part of the lives of many people around the world. Flood waters can be important in

depositing nutrients and encouraging plant growth on floodplains (Johnston et al., 1984; Ogden and Thoms, 2002). Conversely,15

they are also hugely damaging, causing thousands of lives lost and billions of dollars of damage (Wallemacq and House, 2018;

Guha-Sapir et al., 2016). Most inland floods are driven by precipitation events but culminate from the interaction of factors

such as soil-moisture, evaporation, river channel routing and floodplain dynamics. It is these non-linear interactions which

determine the ultimate magnitude and impacts of the resulting flood (Sharma et al., 2018; Grimaldi et al., 2019).

Studies which have combined climate change projections with high resolution flood inundation modeling have so far been20

small-scale case studies (e.g., Ranger et al., 2011; Schaller et al., 2016; Hattermann et al., 2018). Despite the importance of
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flood risk, many climate change impact assessments focusing on flooding have not explicitly modeled flood inundation, and

instead look at changes in extreme precipitation alone or at changes in river flows.

Firstly, it is common to relate future projections of precipitation, simulated by climate models, with flood risk (Frame et al.,

2020; Lin et al., 2018; Cho et al., 2016; Betts et al., 2018). In particular cases, precipitation can be a good proxy for pluvial25

flooding caused by short-duration, small-scale intense rainfall (e.g., Frame et al., 2020). However, more generally, changes in

flood events cannot be directly inferred from changes in precipitation alone, as factors such as antecedent conditions (e.g., soil

moisture) and channel routing effects also influence the catchment response to climate change (Sharma et al., 2018). Secondly,

many studies used hydrological models to quantify water resources and flood risk and assessed how they may change under

different climate change projections (Lehner et al., 2006; Dankers and Feyen, 2008; Mohammed et al., 2017). Most of these30

studies, however, linked simulated runoff or river discharge to flood risk without explicitly simulating flood inundation. This

is informative with regards to the chance of a river flooding somewhere, but not for estimating the risk of specific properties

flooding, which can only be done using flood inundation models.

Large scale hydrological models with the capability of being driven by climate model projections have recently started to

be coupled to flood inundation models. For example, model chains have been run over the Ohio river basin in the USA (Rajib35

et al., 2020), the Elbe river basin in Germany (Falter et al., 2016) and the Murray Darling basin in Australia (Grimaldi et al.,

2019). One key thing to note with these approaches is that they used large numbers of river discharge stations for the calibration

of their hydrological models. This is a successful approach where good quality observations are available, however this is not

as easily applicable in poorly gauged regions or for global studies. In those situations, parameter regionalization, where model

parameters determined in catchments with high-quality observational data are used to model other catchments which have40

similar characteristics (Kokkonen et al., 2003; Beck et al., 2016) may be more appropriate.

Another approach to estimate large-scale flood risk is to simulate the flood inundation at relatively coarse scale (10–30 km),

(Hirabayashi et al., 2013). This coarse resolution flood inundation can then be downscaled onto a higher resolution (250 m–

1 km) Digital Elevation Model (DEM) by distributing the flood volume in each model grid-cell to fill the depressions in the

DEM (Winsemius et al., 2013; Pappenberger et al., 2012; Ikeuchi et al., 2015). These models are able to give estimates of large45

scale flood risk, however do not hydraulically simulate flood inundation at smaller scales, so have limitations in representing

the dynamics and connectivity of flood events. A further use of flood inundation models is to calculate flood hazard for return

periods of river flow rather than specific events (e.g., Sampson et al., 2015; Alfieri et al., 2017; Uhe et al., 2019). Return period

hazard maps where all river segments are assumed to flood simultaneously do not capture the full picture of spatial dependence

in flooding between rivers (Quinn et al., 2019), so need to be interpreted carefully.50

Because of these considerations, a global modeling framework that produces a cascade from meteorological information of

a precipitation event through to hydrological modeling and high resolution flood inundation modeling steps is very valuable.

Here we propose a method for modeling each of the key steps using global, publicly available data-sets in a consistent manner.

This allows the production of flood inundation simulations anywhere in the world at high resolution (up to 90 m), even where

there are sparse observations of precipitation and river flows. For this study, we construct a model framework for simulating55

fluvial flooding over the Ganges-Brahmaputra-Meghna (GBM) river basins. This is a large and complex trans-boundary river
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system, passing through parts of India, China, Nepal, Myanmar and the whole of Bangladesh where it flows into the Bay of

Bengal.

Figure 1 shows a schematic of the modeling steps used to translate meteorological information into flood inundation infor-

mation that is relevant to impacts on different sectors of society. A corresponding example of output from the modeling chain60

for a flood event in a small catchment is shown in Fig. 2. The modeling steps in this framework are:

a) Meteorological input preparation (section 2)

b) Rainfall-runoff modeling (section 4): We rely on the modular modeling framework FUSE (Framework for Understanding

Structural Errors, Clark et al., 2008; Henn et al., 2015) to create an ensemble of conceptual hydrological models,

c) River routing (section 5): We use a stand-alone river routing tool (mizuRoute, Mizukami et al., 2016) to determine flow65

along river channels,

d) Flood inundation modeling (section 6): We use a 2D flood inundation model (LISFLOOD-FP, Bates et al., 2010) to

determine flood hazard.

  

e) Impacts

c) River flow

d) Flooding

a) Meteorology

b) Runoff

Figure 1. Schematic of modeling steps to determine flood impacts from meteorological forcings. The impacts in panel e) can be related to

different sectors e.g., human health, transport, agriculture, property damage.

The inputs to these models are critical to the ability to represent realistic flood events. The meteorological inputs are cascaded

through the model chain. The models also need to be configured and calibrated to minimize errors introduced at each modeling70
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Figure 2. Visualization of model data: a) Precipitation (input), b) runoff from FUSE, c) river flow from mizuRoute and d) flood depth from

LISFLOOD-FP. Results are for the Teesta river, a tributary of the Brahmaputra river, for a flood event in August 2017. The precipitation and

runoff values are catchment averages based on 0.1◦ resolution gridded data. The discharge shown is the value from the downstream section of

this catchment (before joining the Brahmaputra). The flood depth is the maximum over August 2017 calculated at ~270 m resolution (shown

over the downstream part of this catchment).

step (Pappenberger et al., 2012; Pianosi and Wagener, 2016). The other key part of the modeling framework is producing a

realistic river network for use by the river routing and flood inundation models (section 3). The quality of the representation

of the river channels and the DEM (describing the floodplain topography) are essential to obtain plausible flood inundation

estimates, regardless of the inputs to the models. In this study, we use the MERIT DEM (Yamazaki et al., 2017) which is

version of the Shuttle Radar Topography Mission SRTM (Farr et al., 2007) data-set, corrected to remove vegetation and other75

artifacts. An alternative global DEM is TanDEM-X Krieger et al. (2007), however it includes vegetation surface artifacts, so

the corrected MERIT DEM is more appropriate for flood inundation modeling.

We evaluate the performance of the different modeling components used in this study in sections 7–9. Section 7 shows re-

sults from the calibration of the FUSE river runoff modeling. Section 8 compares modeled river flow against station based dis-

charge measurements from three downstream gauges on the Ganges, Brahmaputra and Meghna rivers relating to the combined80

FUSE-mizuRoute simulations. Finally section 9 evaluates LISFLOOD-FP modeled flood inundation extents. Conclusions are

presented in section 10.

2 Meterological input data-sets

An important factor in producing reliable hydrological and flood inundation simulations is high quality meteorological input

data. The FUSE runoff modeling requires precipitation, temperature and potential evapotranspiration (PET). If an unrealistic85

precipitation data-set is used which misses the peak rainfall intensities, the resulting flood events are likely to be poorly

represented. An example of this is the precipitation from a short flash flood lasting one hour will be averaged out in a daily

precipitation data-set. The region of the GBM spans a wide area, and a large portion of this has sparse ground observations
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for precipitation and much of the data is not available publicly. Over the regions where there are gaps in gauge networks,

we have less confidence in the gridded precipitation data-sets. Due to the uncertainty in the meteorological observations, we90

use multiple different input data-sets to establish the variation of model simulations across a range of forcings. We also run

simulations using two horizontal resolutions: 0.5◦ and 0.1◦.

The key precipitation data-sets used in this study are from the ‘EartH2Observe, WFDEI and ERA-Interim data Merged and

Bias-corrected for ISIMIP’ data-set (EWEMBI, Frieler et al., 2017; Lange, 2016) and the ‘Multi-Source Weighted-Ensemble

Precipitation’ data-set version 2.2 (MSWEP2-2, Beck et al., 2017, 2019). The MSWEP data-set in particular, aims to improve95

upon other available precipitation data-sets by merging the best sources of information depending on availability and quality

(Beck et al., 2017, 2019). We note that EWEMBI is a multi-variable data-set, while MSWEP is for precipitation only.

The temperature inputs were either taken from EWEMBI or the ERA5 reanalysis (Hersbach et al., 2020). As the ERA5

data-set is provided at 0.25◦ resolution, it was downscaled to 0.1◦ and bias-corrected using the WorldClim2 data-set (Fick and

Hijmans, 2017) using the method from Hempel et al. (2013). This corrected the monthly mean precipitation and temperature100

to the WorldClim2 climatology, and corrected the range between the daily mean and minimum/maximum air temperatures. We

did not correct the daily variability as WorldClim2 is a monthly data-set. A summary of the three choices of precipitation and

temperature forcing data-sets used in this study is given in table 1.

The calculation of PET is made using the MetSim software package (Bennett et al., 2020). MetSim is based on MtClim and

the pre-processor from version 4 of the VIC hydrologic model (Bohn et al., 2013). It requires inputs of minimum and maximum105

daily temperature in addition to precipitation and calculates PET based on the equation in Priestley and Taylor (1972).

Table 1. List of meteorological forcing data-sets used.

Name Precipitation Temperature Resolution Time Period

EWEMBI EWEMBI EWEMBI 0.5◦ 1979–2013

MSWEPp5deg MSWEP2-2 EWEMBI 0.5◦ 1979–2013

MSWEPp1deg MSWEP2-2 ERA5-WorldClim2* 0.1◦ 1979–2017

*ERA5-WorldClim2 refers to ERA5 bias corrected using the WorldClim2 climatology.

To investigate changes in future flood risk, inputs from climate model simulations are typically used. However, this study

focuses on describing the model framework and evaluating its performance against past observations of river flow and flood

inundation. We do not include climate projections, which we will be covering in a future study.
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3 A consistent river network for simulating streamflow and flood inundation110

3.1 Generating the river network

Before constructing any part of our hydrological modeling chain, we need to define our network of river channels and catch-

ments. The river network is used for both the river routing and flood inundation modeling (e.g., Fig. 1, panels c and d). Using

a river network that is consistent across the modeling components will help improve the reliability of our simulations.

To make this modeling framework widely applicable, we restrict ourselves to global data-sets, and choose the recently devel-115

oped MERIT-hydro data-set (Yamazaki et al., 2019). MERIT-hydro provides drainage directions and upstream area (referred

to as accumulation) at 3 arc-second horizontal resolution (~90 m). MERIT-hydro is largely based on and is designed to be

consistent with the MERIT DEM (Yamazaki et al., 2017). To make it appropriate for hydrological modeling, corrections were

applied to the digital elevation model such as filling in artificial depressions corresponding to errors in the elevation data.

MERIT-Hydro has been designed to improve on a commonly used global data-set HydroSheds (Lehner and Grill, 2013) by120

combining multiple global data-sets representing water bodies to accurately determine location of streams. For the flood inun-

dation modeling terrain data we use the MERIT DEM, as ensuring consistency between the DEM and the river network should

prevent mismatches between what is being simulated by the models and any artifacts arising from these differences.

To produce the river network, we use the data for the accumulation and flow directions from MERIT-Hydro. These were

processed into a vector data-set representing the stream network and catchments using the TauDEM toolbox (http://hydrology.125

usu.edu/taudem), with additional processing of the data-sets done using LFPtools (Sosa et al., 2020).

When generating the river network, only rivers with an upstream area of greater than 250 km2 were included. This captures

larger streams and rivers, however will not include smaller streams. Figure 3a shows an example of this, with smaller streams

with a upstream area of 10 km2 also shown. In some situations, including smaller streams can improve the representation of

flood events Rajib et al. (2020), however as we are using a coarse resolution DEM over a flat region, there will likely be errors130

in the representation of some smaller streams. Because of this, we decided to restrict our river network to larger rivers.

The TauDEM toolbox was then used to determine the extent of each river basin in the domain which flows into the ocean

and produce a vector network of river segments. Each river segment has a corresponding catchment area which drains into it

(Fig. 3b). The catchment areas of each river segment are used by the river routing model to assign a particular amount of runoff

to each segment.135

3.2 Coarsening river network

The LISFLOOD-FP model is a grid based model. This can be run at the full resolution of the MERIT-hydro data-set (3 arc-

seconds, ~90 m), however for large scale applications this may prove to be computationally infeasible. The approach used

here is to coarsen the river network and run LISFLOOD-FP at a lower resolution. We still run the mizuRoute model using the

original full resolution hydrography as it is discretized at the river segment and catchment scale and not gridded.140

Coarsening of the river network needs to be done in a way that does not modify the topology of the river network (i.e. each

river tributary should be connected in the same way in the full resolution and coarsened version). For this study, we developed
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Figure 3. MERIT-Hydro GBM Stream Network. a) Example of river points determined from upstream area values. b) Corresponding vector

stream network and drainage catchments (using upstream area threshold of 250 km2). c) Map showing the full river network over the GBM

basin. Map data ©2020 Google.

a new network coarsening algorithm, described in Appendix A. This coarsens the input data-sets, then traces down the river

network (from low to high accumulation values) and determines which points to include in the coarsened river network and their

connections. We note that this process is prone to errors if coarsened too far. For example at lower resolution, multiple streams145

may flow through the same grid-cell making them indistinguishable. In this study, the choice of coarsening to (9 arc-seconds,

~270 m) was able to significantly reduce the flood model computation, while avoiding the above-mentioned errors.

4 Runoff Modeling

Hydrological models are simulation codes representing the terrestrial part of the water cycle and used to transform precipitation

into runoff (e.g., Fig 1b). These models include processes such as snow accumulation and melt, infiltration and evaporation in150

order to represent the storage and transfer of water across the landscape. A multitude of hydrological models exist and rely

on different structures (i.e. systems of equations) to represent water dynamics (e.g. Hrachowitz and Clark, 2017). To reflect

some of this diversity, we use the Framework for Understanding Structural Errors (FUSE; Clark et al., 2008). FUSE is a

framework for conceptual hydrological models, rather than a single hydrological model. It contains building blocks or modules
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representing different processes used in hydrological models, which can be combined in different ways to produce different155

model structures. This modularity enables us to generate an ensemble of hydrological models by using a single modeling

framework, in contrast to other hydroclimatic impacts studies, which rely on traditional (fixed-structure) hydrological models

that have to be setup and run one by one (e.g., Addor et al., 2014; Eisner et al., 2017; Thober et al., 2018). In other words,

FUSE is used to sample the structural uncertainty of hydrological models.

4.1 FUSE model structures, spatial discretization and inputs160

The recombination of FUSE modules leads to over a thousand unique model structures. For this study, we selected three

structures (identified by the codes ‘900’,‘902’ and ‘904’), which mimic three commonly-used hydrological models: HEC-

HMS (HEC, 2016), VIC (Liang et al., 1994) and the Sacramento soil moisture accounting model (Burnash et al., 1973),

respectively. Each of these structures relies on a different set of equations, whose parameters have to be estimated to reflect

landscape features (e.g. soil type and land cover) influencing the hydrological response to meteorological forcing. We use165

several parameter sets for each model structure (see section 4.2) to account for the uncertainty in these parameter values.

This modeling setup hence allows for a quantification of the uncertainty in the hydrological modeling and a separation of the

uncertainty due to model processes and model calibration (i.e. structural and parameteric uncertainty). The version of FUSE

used in this modeling cascade was set up over the Ganges-Brahmaputra-Meghna river basins. This domain was divided into a

regular grid of 0.5◦ or 0.1◦ grid-cells and FUSE was run in each grid-cell, treating each grid-cell as a catchment.170

Our setup of FUSE requires two types of inputs. It firstly requires gridded meteorological forcing data. The meteorological

inputs are precipitation, near-surface air temperature and PET, as per section 2. Secondly, FUSE requires a description of the

terrain within each grid-cell or catchment. To describe the terrain, each grid-cell is split into 16 elevation bands, which enables

FUSE to account for the influence of elevation on temperature and precipitation when simulating the snow pack. Based on

the full resolution MERIT-DEM data, we calculate the mean elevation and area fraction (of the total grid-cell area) for each175

elevation band.

4.2 FUSE parameter regionalization

Hydrological models require calibration of their parameters to produce realistic runoff for a given catchment (Sorooshian

et al., 1993; Perrin et al., 2007). This is commonly performed using observed streamflow (e.g., Falter et al., 2016; Mohammed

et al., 2017). For this region, we have access to downstream gauges for the Ganges (Hardinge Bridge station), Brahmaputra180

(Bahadurabad station), and Meghna (Bhairab Bazar station). FUSE contains a total of 29 parameters which can be calibrated

(22 as per Clark et al., 2008 and 7 introduced in Henn et al., 2015), although not all are in use for each model structure. The

GBM is a highly heterogeneous catchment, so the parameters need to be spatially variable. Calibrating all model parameters

over such a large region, based on only the downstream gauges which we have access to, would severely under-constrain the

parameters. While it may be possible to calibrate the model and obtain accurate discharge at the outlet, the heterogeneity in185

rainfall-runoff behavior within the catchment would not be realistically represented. In addition to the above considerations for

the GBM region, a global model needs to be applicable to ungauged basins (Sivapalan, 2003; Hrachowitz et al., 2013). Hence
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we chose to use a parameter regionalization scheme using global data to calibrate FUSE. The observed streamflow data for

the Ganges, Brahmaputra, and Meghna were only used in validating the results from the combined FUSE-mizuRoute modeled

streamflow.190

There are many parameter regionalization schemes (Merz and Blöschl, 2004; Samaniego et al., 2010; Parajka et al., 2013) to

determine hydrological model parameters in ungauged basins, and here we use the method of Beck et al. (2016). This method

involves transferring calibrated parameter sets from small catchments (<10,000 km2) with reliable streamflow records (‘donor’

catchments) to catchments with similar climatic and physiographic characteristics where the streamflow is not available. The

characteristics and data-sets we used are presented in Table 2. These are largely similar to those used in Beck et al. (2016),195

except that we used newer versions of the data-sets.

Table 2. List of catchment characteristics used for parameter regionalization, and corresponding data sources.

Characteristic Source Data Resolution

Precipitation WorldClim2 (Fick and Hijmans, 2017) 30s (~1 km2)

Temperature WorldClim2 30s (~1 km2)

PET WorldClim2, (calculated using Hargreaves and Samani, 1985) 30s (~1 km2)

Aridity index Worldclim2 (calculated as precipitation/PET) 30s (~1 km2)

Forest cover Global Forest Change, (Hansen et al., 2013) 30s (~1 km2)

Snow cover MODIS MOD10CM v6 (Hall and Riggs, 2015) 0.05◦ (~5 km)

Terrain Slope MERIT DEM (Yamazaki et al., 2017, slope calculated from elevation) 3s (~90 m)

Soil clay fraction Soilgrids250m (Hengl et al., 2017) 250 m

The catchments considered for the parameter regionalization were 701 catchments from the Global Runoff Data Centre

(GRDC) database with quality controlled, observed discharge. These catchments are a subset of those used in Beck et al.

(2016) (We did not have the Falcone et al. (2010) GAGES-II data-set or the Peel et al. (2000) data-set for this study and

there were eight GRDC catchments which we did not process because of issues with meta-data). Note that there are no donor200

catchments within the GBM region which is simulated for this study. Three donor catchments were matched to each grid-cell

to include a measure of parameter uncertainty. This resulted in 73 donor catchments for the 0.5◦ grid and 222 donor catchments

for the 0.1◦ grid. In both cases, we only considered donor catchments which were used for at least 50 grid-cells.

We note that there are differences in scale between the catchments and the model grid-cells. The catchments used have areas

ranging between 17 km2 and 10,000 km2, with an median area of 1,300 km2. On the other hand, the grid-cells have areas of205

roughly 120 km2 and 3,000 km2 at the equator, for the 0.1◦ and 0.5◦ resolution grids, respectively. Catchments with similar

size to the grid-cells are most appropriate for this type of regionalization, however, we considered all available catchments with

area less than 10,000 km2 to ensure our sample of catchments covers the widest possible range of climatic and physiographic

characteristics.
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For each catchment, FUSE was set up as a single lumped model where forcing inputs were averaged over the catchment210

areas. FUSE was then calibrated using the shuffled complex evolution algorithm (Duan et al., 1992) to minimize the RMSE

of modeled streamflow against observed. The time period run was determined by the overlap between the meteorological

observation timeseries and the streamflow timeseries, and half of the data was used for calibration. For regionalization purposes,

the donor catchments were simulated using the same meteorological forcing data-sets as the gridded model and different

calibrations were performed for each of the FUSE model structures used here.215

5 River routing modeling

The river routing model used in this framework (e.g., Fig 1c) is mizuRoute (Mizukami et al., 2016). mizuRoute is a stand-alone

one-dimensional (1D) river routing model. It is configured to take runoff from a hydrological model as input. Then it applies

two stages of routing. The first is hillslope routing, which represents the delay from runoff being produced at any location in

the catchment and it reaching the river channel. The second is 1D river channel routing where water is routed downstream220

through the river network. mizuRoute has two options of physics schemes for the channel routing. The scheme used here is the

impulse response function - unit-hydrograph scheme.

5.1 Model configuration

mizuRoute relies on three main input data-sets to compute the river flow for each river segment. These are the river network,

the runoff data, and a mapping between the hydrological model grid and the catchments used in mizuRoute.225

Firstly it takes in the river network topology. As mizuRoute uses a 1D routing algorithm, rather than needing the full spatial

information of the river network, it is discretized at the river segment and catchment level, defined per section 3. For each river

segment, the model needs various information representing its physical properties. For example, mizuRoute requires the slope

and length of each segment, information about the downstream segments and the area of each drainage catchment.

5.2 Mapping runoff to river catchments230

mizuRoute is designed in a way which enables it to read the runoff output from a gridded hydrological model such as FUSE.

So in this model set-up, the FUSE output for each simulation can be input directly into mizuRoute without further processing.

To handle the difference in grids between the rectangular grid used in FUSE, and the irregularly shaped drainage catchments

used in mizuRoute, we need one additional data-set which produces a mapping between each catchment, and the FUSE grid-

cells which overlap it. Where multiple grid-cells overlap a catchment, an area weighted sum is used to determine the runoff for235

that catchment. Figure 4 shows an example of the overlap between a particular catchment and the FUSE model grid-cells. As

this mapping is a fundamental property of the model grid/network, it only needs to be calculated once for a particular model

configuration.

10

https://doi.org/10.5194/gmd-2020-280
Preprint. Discussion started: 26 November 2020
c© Author(s) 2020. CC BY 4.0 License.



Stream	Network
Area	of	catchment
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Figure 4. Example of the grid-to-catchment mapping procedure. A single drainage catchment within the GBM basin is highlighted here.

This particular catchment overlaps with three FUSE model grid-cells, so runoff from these three cells is used in this catchment. The runoff

is weighted by the fractional area of each cell in the catchment (percentage areas shown in legend).

6 Flood inundation modeling

The flood hazard model used for this study (e.g., Fig 1d) is LISFLOOD-FP, a 1D-2D flood inundation model (Bates et al., 2010;240

Neal et al., 2012). LISFLOOD-FP solves the shallow water equations, without advection, at each location on the flood plain to

explicitly simulate the floodwater flow. We use a sub-grid version of LISFLOOD-FP, where river channel flow is computed in

1D and floodplain flow in 2D is calculated for water when it exceeds the river bank height within the 1D channels.

Flood simulations were run using discharge inputs from mizuRoute for the period April–October each year. This covers the

monsoon season over which the major floods in Bangladesh occur.245

6.1 New LISFLOOD-FP features for this study

For this study, we have made some updates to the LISFLOOD-FP model to improve its applicability for large scale flood

inundation modeling using the MERIT-Hydro hydrography.

In previous versions of LISFLOOD-FP (Neal et al., 2012), the model had been restricted to allowing river channels to flow

in only the four cardinal directions (referred to as d4). However, river networks such as used in Hydrosheds and MERIT-250

Hydro specify channels flowing in the diagonal directions as well (referred to as d8). For this study, we developed a version of

LISFLOOD-FP that uses d8 directions for river channel flow. This allowed a more accurate representation of the MERIT-Hydro
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river network. In previous studies e.g., Sosa et al. (2020), the river network was first converted to d4, which can be prone to

errors. The errors in converting from d8 to d4 directions are also greater at coarser resolutions, so using d8 directions makes

the procedure of coarsening the river network more reliable.255

In this LISFLOOD-FP version, we also allow the specification of a new input data-set for the sub-grid river channels.

This is a data-set specifying links between cells in the river network. By default, LISFLOOD-FP computes flow between any

neighboring sub-grid channel cells. When using this option, only specified cells are linked together. This is particularly relevant

for coarser versions of the model, where different tributaries may become close together, or in meandering river sections. Also,

when using d8 directions, there can be many possible links between sub-grid cells which are not necessarily desirable, making260

this a useful inclusion to the model.

6.2 Input Data-sets

This model requires a representation of both the physical properties of the river channel and the flood plain. For the flood plain

flow, the main data-set is the Digital Elevation Model (in this case MERIT-DEM).

For the river channels, additional information is required to represent the sub-grid properties of the channel. The model uses265

the following data-sets to represent the river channel bathymetry:

– Elevation of River Bank (determined from MERIT-Hydro elevation)

– Width of River Channel (determined from remotely sensed data-sets)

– Elevation of River Bed (See below)

6.2.1 Estimating river bank elevations from the DEM270

The LISFLOOD-FP model requires elevation values for the river bank at each point along the sub-grid channel. Importantly,

the bank elevation will not necessarily be the same as the DEM elevation, particularly where the river width is wider than the

grid size. In, these cases the DEM elevation may represent a particular water elevation rather than the bank. To help mitigate

this problem, when determining river bank elevations, we use a river channel mask from the MERIT-hydro data-set. For each

point in our river network, we select the closest point in the DEM outside the channel mask to represent the bank elevation.275

6.2.2 Identifying river widths

For river widths we use information from remote sensing based data-sets. In this study, we used the Global River Widths from

Landsat (GRWL, Allen and Pavelsky, 2018) data-set. This data-set does not locate the center points of river channels in the

same location as the MERIT-Hydro data-set, so widths are determined by locating the closest point in the GRWL data-set

to each river channel (within a certain search radius). Where river widths cannot be identified, they are interpolated between280

points along the river, or assumed to be a small river and assigned a width of 30 m when that is not possible.

We also note that the MERIT-Hydro data-set provides a river width variable. This would be simple to include in this set-up,

as the river widths are specified at the same location as the MERIT-Hydro based river channels that are used for this study.
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However, for braided rivers such as used in this case-study, MERIT-Hydro only captures the width from individual braids,

whereas it is more appropriate to use the combined width across all the braid channels.285

6.2.3 Calculation of river depths, bank and bed elevation

To determine the capacity of the sub-grid river channel, it is important to have a reasonable estimate of the river depths at

each point. The river widths are determined from a remote sensing product, however data for river channel depths is not readily

available. One common and simple method for estimating river depths is by using the assumption that a river water level reaches

the bank height at a particular ‘bankfull’ frequency (e.g., once every two years is a classical geomorphologic approximation).290

River depths that are consistent with the flow at this bankfull frequency can then be approximated.

One way of approximating the depth is using the Manning’s equation e.g., used in Sampson et al. (2015). This requires river

flow, width and slope. The width and slope are already available, and using the assumption that the river water level reaches

the bank we can estimate a bankfull river flow. The bankfull flow used here was chosen as the two year return period flow in

mizuRoute simulations for the 1980-2013 period. Discharge values at each node in the river network were linearly interpolated295

to each river grid point.

Another method used in this framework to compute the bankfull water elevations and river depths that are more consistent

with the bank heights is using a gradually varying flow solver (Neal et al., 2020). This solves for the water elevation along whole

reaches and accounts for backwater effects, whereas the Manning’s equation approach solves each channel point independently

and assumes uniform flow. The solver has been shown to produce more realistic bathymetry and hence flood depth. It reduces300

over-prediction of flood extent which is possible using the Manning’s method due to the neglect of backwater effects.

For this study, we use the gradually varying flow solver to find the set of river bed elevations that give water elevations at

1 in 2 year return period discharge that best match the bank elevations extracted from the DEM. Depths calculated using the

Manning’s equation were used as first guesses of the bathymetry. In the LISFLOOD-FP model, the calculated bed elevations

and bankfull water surface elevation were used for the bed and bank elevations. The initial selection of points from the DEM305

may not represent the actual river bank elevation, but other locations in or near the channel, or contain errors from vegetation

artifacts or noise in the DEM. The choice of using the computed water surface corresponding to the bankfull flow instead of

the bank heights chosen from the DEM is intended to produce smoother bank heights and reduce the influence of errors in the

DEM.

6.3 Boundary conditions310

The main boundary conditions for LISFLOOD-FP are determined by the river network and the river flow calculated by the

mizuRoute model.
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6.3.1 Boundary conditions at edge of domain

At the domain boundary, various boundary conditions are possible in LISFLOOD-FP. For this study, we set the downstream

boundaries to be determined by the slope of the river segments. Here the free water surface slope between the final river cell315

and the boundary is set to a constant (which is the average slope along the river segment). This is an approximation, as the

water surface slope changes over time, and will vary during a flood event. However, without any more reliable local information

about each river segment, this approximation gives a reasonable estimate based on the slope of the terrain. A buffer region on

either side of each downstream river point is given the same boundary condition to allow water to flow out of the domain from

the flood plain.320

All other regions of the boundary (most importantly the upstream boundary points) are set to be closed. This ensures that

any inflows go into the model domain.

6.3.2 Inflows

Daily inflows from the mizuRoute model are inserted at specific points of the LISFLOOD-FP domain in river channel grid-cells.

As mizuRoute flows for each river segment represent the outflow at the downstream end of that segment, some assumptions325

were made to allow for inserting the river flow at the upstream edges of the domain. mizuRoute provides two inputs that are

used here: 1. ‘streamflow’: streamflow calculated, including flow from higher sections of the river network, and 2. ‘routed

runoff’: runoff from a specific drainage catchment, routed into the corresponding river segment. We note that for headwater

catchments (i.e. with no upstream tributaries), the streamflow and routed runoff are equivalent.

As the LISFLOOD-FP model routes the river flow, we only want to use the mizuRoute streamflow for the upstream bound-330

aries of the LISFLOOD-FP model domain. At all other locations within the domain, the output of the mizuRoute routed runoff

is used.

The following possible cases are possible for river flow inputs.

1. Headwater river segment of tributary is within the LISFLOOD-FP domain,

2. Headwater river segment enters at the edge of the LISFLOOD-FP domain,335

3. Non-headwater river segment continues outside the LISFLOOD-FP domain,

4. Non-headwater river segment is entirely within the LISFLOOD-FP domain.

Each of these cases is handled slightly differently with regards to how the mizuRoute discharge is input into the LISFLOOD-FP

model domain.

For headwater catchments, discharge is input at two points: at the upstream point and the downstream point of the stream.340

The routed runoff from mizuRoute is split up between these two, based on the upstream accumulation area of each of these
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Figure 5. Left: Example of stream network and LISFLOOD-FP input points for subdomain of the GBM: 89.08-90.3E,24-26.5N. Right:

zoomed in section of this region, showing part of the northern boundary. Map data ©2020 Google.

two points:

Du = R ∗Au/Ad (1)

Dd = R ∗ (Ad −Au)/Ad (2)

Where Du and Dd are upstream and downstream input discharge. R is the mizuRoute routed runoff, and Au and Ad are the345

upstream area for the upstream and downstream points respectively (Ad is the catchment area). We note that these equations

are also used when the upstream end of a headwater catchment is outside the domain. In this case the Du and Au are values

for the point at the edge of the domain.

For non-headwater streams which continue upstream out of our LISFLOOD-FP domain, we have an boundary condition at

the edge of the domain which is determined from the mizuRoute streamflow. For these catchments, we also insert a contribution350

from the routed runoff at the downstream point of the reach (weighted by the portion of the catchment inside the domain).

De = S−R ∗ (Ad −Ae)/(Ad −Au) (3)

Dd = R ∗ (Ad −Ae)/(Ad −Au) (4)

Here S is the mizuRoute streamflow for this catchment. De is the the input discharge at the edge of the domain. Au is the

upstream area of the upstream point of the tributary (outside the LISFLOOD-FP domain), so Ad −Au is the full catchment355

area, and Ae is the upstream area of the tributary at the edge of the LISFLOOD-FP domain.
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For (non-headwater) streams which are entirely within the domain, discharge is only input at the downstream end. For these

catchments the discharge added is simply:

Dd = R (5)

7 Evaluation of FUSE parameter regionalization360

The evaluation of the regionalization and FUSE-mizuRoute part of the model chain is performed in two steps because of the

lack of streamflow observations in the GBM river basin. First, we focus on the parameter regionalization, presenting two main

factors which determine its performance: how closely the characteristics of donor catchments match those of the grid-cells

simulated in the GBM region and how well each of the donor catchments are calibrated. The analysis in this section utilizes

streamflow observations from the donor catchments (none of which are in the GBM region). We secondly use streamflow ob-365

servations from the GBM region to evaluate the skill of the FUSE-mizuRoute simulations and the benefits of the regionalization

over uncalibrated simulations in Section 8.

Fig. 6 shows a normalized measure of dissimilarity (as per Beck et al., 2016) between the catchment characteristics used for

the regionalization in section 4.2. Here a value close to zero indicates that a donor catchment has been found with very similar

characteristics to those of the grid-cell. We note that the regionalization has successfully found similar donor catchments over370

much over this domain with the exception of a few regions. Notably the Tibetan plateau and some of the Himalayas are not

easily matched to donor catchments. Part of the Meghalaya mountains are where the worst matches are found. This region is

very steep and mountainous as well as having extremely high monsoon precipitation.

Another thing to note about the dissimilarity measure here, is that it is based on the characteristics in table 2. However,

grid-cells with zero dissimilarity may not necessarily be ideally matched to their donor catchment(s) due to differences in375

other catchment characteristics not considered here. Conversely, a high dissimilarity may be a reflection of the choice of

characteristics rather than a reflection of how applicable donor catchment parameters are. For example Beck et al. (2020) chose

to use square-root transformed precipitation as a more normally distributed characteristic. This may reduce the dissimilarity

calculated for regions such as the Meghalaya mountains while still selecting suitable donor catchments.

To evaluate the calibration of donor catchments used in the regionalization method, we use the Nash-Sutcliffe efficiency380

score (NSE) as a metric. In this metric, a calibration that perfectly matches the observed flow would give a value of 1. Fig. 7

shows the NSE scores from the calibration simulations of donor catchments (showing the average of NSE scores for the

best three donor catchments transferred to each GBM grid-cell). This value differs for each FUSE model structure, as the

structures will give different performance depending on the particular catchment. We note that this regionalized NSE score is

an artificial measure and expect the performance of individual grid-cells in the GBM region to be lower than the calibration385

scores in Fig. 7. This is because the calibration scores of the donor catchments also account for local random errors in forcing

and local idiosyncrasies in rainfall-runoff behavior – two factors that regionalization cannot account for. With comparison to

Fig. 6, in Fig. 7 the Tibetan plateau is again problematic, but some mountainous regions which show low similarity show good

performance in the donor catchments which were matched to.
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In this study, we did not use the skill scores in the selection of donor catchments. This meant that the catchments with closest390

characteristics were used and the same donor catchments were used for all simulations at the same resolution. However, this

has the drawback that poorly calibrated parameter sets may be used. Choosing only high performing donor catchments would

be ideal, but does have the drawback of reducing the sample size which may increase the dissimilarity between donors and

grid-cells. In addition, calibration scores of donor catchments vary across forcing data-sets and FUSE structures, so this would

result in choosing different donor catchments for each configuration. This would complicate the set-up, making it harder to395

determine the reason for differences in performance between configurations.

In the absence of streamflow observations for small catchments within the GBM, we are not able to evaluate the FUSE

model performance at the grid-cell level. Instead, Figs 6 and 7 give a qualitative indication of where the regionalization scheme

may find reasonable parameters sets or have deficiencies. However, this region is highly heterogeneous and it not possible to

predict from the regionalization how skillful the simulation of the whole region will be. Thus, our main evaluation of FUSE400

simulations considers the FUSE-mizuRoute routed flow for the large GBM catchments where we have observed streamflow.

Figure 6. Average of dissimilarity measures between grid-cells in the GBM basin and the 10 best matching donor catchments. Top is 0.5◦

and bottom is 0.1◦ horizontal resolution.

8 Evaluation of routed streamflow in the Ganges-Brahmaputra-Meghna

We evaluate the streamflow produced by the FUSE-mizuRoute model output against downstream flow data for the Ganges,

Brahmaputra and Meghna rivers. These streamflow measurements are not used in the model calibration so provide an indepen-
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Figure 7. Mean of NSE scores from 3 best donor catchments transferred by regionalization to each grid-cell. The NSE values were calculated

using observed streamflow from each donor catchment (all outside the GBM) hence should not be interpreted as the model performance in

each grid-cell of the GBM region. Top is 0.5◦ and bottom is 0.1◦ horizontal resolution. NOTE: plots are for simulations using FUSE structure

902, forced by MSWEP precipitation.

dent verification of the skill of our model set-up. The closest node in the mizuRoute network to each station was determined405

for this comparison.

Fig. 8 shows a comparison of the FUSE-mizuRoute simulated river discharge against station observations over the 1980-

2013 period. Left hand plots show the average climatology of daily discharge between April and November, covering the rainy

season. Three observationally based precipitation data-sets are used to drive the models in these plots as in section 2. For the

climatology, the seasonal cycle is captured by simulations using all of the precipitation data-sets. In the Ganges, the MSWEP410

data-sets seem to over-predict the discharge, and in the Meghna river, the peak in the seasonal cycle occurs early relative to the

observations.

The right hand panels in Fig. 8 shows the yearly maximum discharge for different return periods. For the Brahmaputra and

Ganges, these show that the maximum flows correspond well with the observed discharge, especially given the uncertainties in

these values.415

For the Meghna river, despite the mean flow being of the right magnitude, the peak flows are completely unrealistic. We

note that wetlands (called Haors) take up a large portion of the upstream portion of the Meghna river basin. So rather than the

runoff flowing through a simple 1D river channel as mizuRoute simulates, much of the water stays in the wetlands, attenuating

the flow. An approach to test this would be to run LISFLOOD-FP over the whole Meghna river basin. As LISFLOOD-FP
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computes water inundation and flow in two dimensions, it should be able to capture this effect of flood water transfer between420

river channels and wetlands. However due to computational restraints, a LISFLOOD-FP simulation over the whole catchment

hasn’t been done for this study. It should also be possible to implement a wetland module as part of the mizuRoute setup

e.g., Rahman et al. (2016). Another possible approach that may improve mizuRoute performance in this situation would be

to additionally represent channel bifurcation (e.g., Ikeuchi et al., 2015). Implementation of these schemes would requires a

different approach to this study, or additional local knowledge for calibration and manual specification of the wetland areas.425

Because of this limitation of the FUSE-mizuRoute model simulating the Meghna river, we focus on the results from the other

two basins (Ganges and Brahmaputra) in the following evaluation.

Figure 8. Comparison between observed and modeled streamflow for three stations on the Meghna (top), Ganges (middle) and Brahmaputra

(bottom). Left plots show seasonal cycle and right plots show return periods for yearly maximum discharge. Different lines in the same

colour show different FUSE structures with different parameter sets.

Table 3 shows Kling-Gupta efficiency (KGE) scores for uncalibrated simulations and the minimum, median and maximum

KGE scores across a range of parameter-sets for discharge on the Ganges and Brahmaputra rivers. We note that the FUSE
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structure 900 is the best performing FUSE structure on the Brahmaputra river, but the best performing FUSE stucture differs430

between forcing data-sets on the Ganges. The best performing simulations have a Kling-Gupta efficiency score of over 0.8 for

both catchments, with higher scores seen over the Brahmaputra river. In most cases, the worst performing calibrated simulations

give improvements upon the uncalibrated simulations, but there are a few simulations e.g., for FUSE structure 902 over the

Ganges where the uncalibrated simulations give similar KGE scores to the median of the calibrated simulations.

Table 3. Kling-Gupta Efficiency (KGE) scores for mizuRoute simulations, categorized by input precipitation dataset and FUSE structure.

KGE scores are given for simulations with default parameters (uncalibrated), then minimum, median and maximum KGE scores from

simulations with different calibrated parameter sets. Note, KGE scores are calculated over the rainy season (April-Oct) between 1985-2013.

Forcing data-set FUSE structure Uncalibrated KGE Min KGE Median KGE Max KGE

Ganges

EWEMBI 900 0.40 0.53 0.61 0.67

EWEMBI 902 0.73 0.70 0.75 0.81

EWEMBI 904 0.71 0.69 0.74 0.78

MSWEPp5deg 900 0.15 0.34 0.44 0.53

MSWEPp5deg 902 0.50 0.42 0.49 0.60

MSWEPp5deg 904 0.51 0.48 0.54 0.60

MSWEPp1deg 900 0.24 0.58 0.58 0.59

MSWEPp1deg 902 0.59 0.58 0.59 0.62

MSWEPp1deg 904 0.56 0.67 0.67 0.68

Brahmaputra

EWEMBI 900 0.67 0.81 0.84 0.86

EWEMBI 902 0.68 0.80 0.83 0.85

EWEMBI 904 0.56 0.73 0.75 0.77

MSWEPp5deg 900 0.75 0.81 0.86 0.88

MSWEPp5deg 902 0.72 0.75 0.80 0.83

MSWEPp5deg 904 0.53 0.70 0.77 0.81

MSWEPp1deg 900 0.72 0.75 0.75 0.77

MSWEPp1deg 902 0.68 0.70 0.71 0.73

MSWEPp1deg 904 0.50 0.66 0.67 0.69

In addition to the climatology, Fig. 9 show a comparison of streamflow for two specific years, 1988 and 1993. Here we435

compare observations against simulations using default parameters and calibrated simulations as well as using inputs from

EWEMBI or MSWEPp1deg data-sets. These show the improvement gained by using the parameter regionalization, but also
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highlight that the uncertainty in the meteorological forcing data is of the same or greater magnitude than the calibration

uncertainty in the runoff model.

9 Evaluation of flood inundation in the Ganges-Brahmaputra-Meghna440

In the climate community, gridded observation data are available at a range of time frequencies. However, this is not currently

the case for flood inundation data. Evaluation of simulated flood inundation is often a complicated procedure. Accurately

mapping flood extents using ground observations over large areas would be an extremely labor intensive and impractical effort.

Instead, satellite images are often employed to estimate flood extents, and can do so at the high spatial resolution needed to

verify flood model inundation. There are, however, drawbacks in using satellite observations and these differ by the satellite445

product used.

For an estimate of historical flood extents, we firstly use a Global Surface Water data-set (GSW, Pekel et al., 2016), produced

by the European Commission’s Joint Research Centre. This has been produced by combining around three million Landsat

images. From this data-set, we use a recurrence product, which gives the percentage of years that each grid-cell was inundated

(at ~30 m resolution) between 1984 and 2015. We note that flooding is obscured by clouds in the Landsat images, and also may450

not be detected under dense vegetation. Furthermore, this data-set has sparse temporal coverage, with one valid data-point per

month or less over the majority of our modeled region. Because of the sparse sampling frequency of this data-set, we expect

it to provide a low estimate of the actual flooded extent. Short duration floods, particularly in small, flashy catchments will

often occur and recede in between observations and not be detected. Because of this, we use the GSW recurrence data-set to

estimate commonly flooded locations, which will be relevant to the major rivers, but do not consider it an authoritative record455

of all flooding that has occurred.

We secondly verify the flood model inundation extent against Sentinel-1 synthetic aperture radar (SAR) images (referred to

as ‘Sentinel’). SAR can be used to detect water surfaces as they are often smoother than the surrounding terrain. Compared to

optical images, SAR has the advantage that it can see through clouds, however it also has limitations. For example, flooded

areas underneath vegetation or with emergent vegetation (e.g. rice paddies) or that is roughened by strong winds can be460

incorrectly detected as dry. Conversely, smooth wet vegetation (e.g. flattened wet grass) can be incorrectly detected as water.

SAR estimates of flood area can correctly classify up to around around 75% of the true flood extent (Horritt et al., 2001). For

this comparison, we estimate the flooded area by a simple thresholding approach, where the SAR amplitude is less than -16dB

(threshold chosen as per Uhe et al., 2019).

The flood model was evaluated over the region shown in Fig. 5. This is a section of the Brahmaputra river along with a465

number of tributaries. It is complicated braided section of river which is challenging to capture accurately in a model. We note

that in this domain, the rivers here are generally flowing north-to-south.

Fig. 10 shows the flood recurrence for both the GSW data-set and the flood inundation model. The model produces additional

flooding in the upstream reaches of the domain compared to the GSW data-set. This is not surprising, given the limitations in the

GSW data-set discussed above. We also note that from year-to-year, the braids of the river channels shift due to sedimentation470
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Figure 9. Yearly streamflow for 1988 (top) and 1993 (bottom). Each of these plots has four panels with EWEMBI simulated streamflow

on the left and MSWEPp1deg simulated streamflow on the right. Top panels show streamflow for the Ganges and bottom panels show

streamflow for the Brahmaputra river. In each of the panels the observed station discharge is compared to different simulated flows. Red

dashed lines show simulations using default FUSE parameters. Grey lines show simulations using a range of different calibrated parameters.

Blue lines show the simulation with the highest Kling-Gupta efficiency score calculated over the 1980-2013 period (‘Best simulation’).
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and moving sand-banks, which is captured in the GSW data-set. The flood model, however uses a DEM which is static,

and largely based on NASA’s SRTM data-set from 2000, so will not capture the year-to-year variation in the river channels.

Another consideration of this set-up is that the sub-grid river channels in the flood model only flow though a single ‘main’

stem. Flooding of the braids is a result of the 2D floodplain flow which only occurs after the water level in the sub-grid channel

reaches bank-height. That said, the model flood extent over the Brahmaputra river’s braids shows a good agreement with the475

GSW data-set.

Figure 10. Recurrence (percentage of years) of maximum flood inundation for the GSW data-set (left) and the flood model forced by

MSWEPp1deg precipitation. Model results show flood inundation greater than 0.5m, over the period 1980-2017, with 9 simulations run for

each year, generated from runoff simulations with differing FUSE configurations.

To take a more quantitative comparison between the flood model and GSW, we take a specific flood recurrence of 20%,

corresponding to a 1-in-5 year flood event. Given the short period of 32 years of observations, more extreme events will be

less certain, so this event was chosen as a significant event, but relatively well constrained. Fig. 11(a) shows the same data as

in Fig. 10, but comparing the data-sets for the 1 in 5 year flood inundation extent.480
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To highlight the influence of differing resolutions, we additionally aggregate the GSW data-set to the same (~270 m) reso-

lution as the flood model by considering the 270 m grid-cells flooded if at least 10% of the corresponding high resolution cells

are flooded. This is shown in (Fig. 11b). As the GSW data-set captures flooding at 10 times finer scales than the flood model,

the flooding of a small river with area less than a model grid-cell will appear to show over-estimation of flooding by the model

no matter how good the simulation, when compared at 30 m. This has the effect of reducing the area of model flood where485

GSW is not flooded, but also increases the area of GSW flooding where the model is dry in Fig 11b).

Another limitations of the above comparison is that, as previously mentioned, short duration floods may be missed in the

GSW data-set. This is a particular consideration in the north western tributaries of this region, which are flashy catchments

fed by rainfall off the Himalayan foothills. The GSW data-set will also detect standing water such as wetlands, rice-paddys or

resulting from pluvial flooding rather than fluvial flooding, so some regions (particularly the smaller scale flooding) where the490

model is under-predicting the GSW flood may be due to this.

Figure 11. Flood extent comparisons between model and GSW data-set. a) Flood extent of a 1 in 5 year (20% recurrence), comparing

modeled and GSW flood extent at 30 m resolution. b) As per (a), but at 270 m resolution. In (b), the 270 m grid-cells for GSW are considered

flooded where 10% of higher resolution cells are flooded. Note: Model results show flood inundation greater than 0.5m. Modeled flood

recurrence is calculated over the period 1980-2017, with 9 simulations run for each year, generated from runoff simulations with differing

FUSE configurations. Map data ©2020 Google.

We additionally analyze a major flood event in 2017, starting around 11th August. The Brahmaputra river reached a record

water level during this event, so it was a very extreme event. We use two Sentinel images for this event, one from 12th August
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(early in the event) and one on the 24th of August (late in the event), shown in Fig. 12. The SAR data has a resolution of 10 m,

but there is significant noise at the grid-cell level, so the Sentinel data was aggregated to 270 m as per the GSW data. In the left495

panel we see that a much larger proportion of the region is inundated, with better agreement between the model and Sentinel

in the upstream tributaries. This image may also indicate that the flood model may be under-predicting the actual flood extent,

although we note that some of the flooding detected by Sentinel may be a result wet vegetation rather than true flooding. Other

flooding not captured by the model may be due to flooding of small streams that are not resolved by our model or pluvial

flooding caused by a combination of high rainfall and poor drainage over the flat floodplains. The second panel shows a picture500

after much of the floodwaters have receded, although there is some additional flooding compared to August 12 along the main

stem of the Brahmaputra. This picture is much more consistent with the GSW data-set, again indicating the limitation of the

GSW data-set, in that the sampling of flood events has missed the peak floods.

Figure 12. Flood extent comparisons between model and Sentinel observations for August 2017 flood event. a) Sentinel image for August

12, 2017. b) Sentinel image for August 24, 2017. Both panels are compared against the maximum extent of flood inundation greater than

0.5 m in a single simulation for 2017. The 270 m grid-cells for Sentinel are considered flooded where 10 % of the higher resolution cells are

flooded. Map data ©2020 Google.

To summarize, while the flood model is not matching all of the observed flood extent, many features of the observed flooding

are captured. Disagreement between the model and satellite observations have a number of causes. Locations of flooded rice-505

paddys, wetlands, flooding of small streams and pluvial flooding may not be captured in the model. Sentinel may have false
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positive and negative detections of flood relating to vegetation, and the GSW data-set is likely to miss a large amount of

flooding in small catchments.

10 Conclusions

We introduce here a new model framework which allows simulation of high resolution flood inundation based on meteo-510

rological inputs that could come from either observations or climate models. Results driven by three observationally based

meteorological data-sets are evaluated, showing good agreement with streamflow for the Brahmaputra and Ganges rivers, as

well as producing realistic flood inundation over a section of the Brahmaputra river and its tributaries.

The flood inundation model is the most compute-intensive component of this modeling chain. So the ability to compute flood

inundation at high resolution over relatively small domains, while computing streamflow for a whole river basin to produce515

realistic upstream boundary conditions, provides a efficient and flexible way of determining local flood risks. Of course, with

expected increases in future compute power, there is also potential to compute flood inundation risks over whole basins.

There are disadvantages in using a complex modeling chain, as each model introduces its own set of uncertainties, making

the factors influencing the accuracy of the final flood inundation hard to interpret. As part of this study, we look into the

uncertainty at different steps. We run our modeling framework using different observation-based meteorological data-sets, and520

also consider three different methods of representing the hydrological processes using FUSE. This gives a range of different

plausible simulations to compare. Another possible disadvantage in using a modeling chain with a standalone hydrological

model for climate change projections is that the hydrological model does not feed back to the climate. For example, in a fully

coupled earth system model, the modeled evapotranspiration influences the climate simulation which will not occur in our

framework. The model set up has also been tested in a challenging location for simulating flood inundation. The wetlands in525

the Meghna basin were problematic for the FUSE-mizuRoute setup, which was not able to capture a realistic peak discharge

for that region. Future work in similar environments will benefit from considering the processes necessary to simulate river

flow through wetlands. These finding highlight the importance of validating global models across diverse regions and only

making conclusions where we have high confidence in the model performance.

We additionally note that the use of global data-sets in this framework is an advantage in terms of applicability. As new global530

DEMs, precipitation data-sets or regionalization methods are developed, they will drive improvements in the hydrological and

flood modeling simulations. However, models which have access to high quality local data have the potential to outperform a

purely global model. Thus this method using parameter regionalization represents a middle ground between flood model chains

calibrated using local information e.g., Falter et al. (2016); Grimaldi et al. (2019); Rajib et al. (2020), and global flood models

forced by uncalibrated hydrological models e.g., Winsemius et al. (2013); Dottori et al. (2016). The regions where this model535

framework will give the most value is where there are gaps in the availability of input data-sets such as meteorological data,

river gauge observations or high quality LIDAR based DEMs. This represents the poorest regions of the world, which may be

highly vulnerable and need the greatest help in adapting to climate change.
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River (or fluvial) flooding which is captured in this modeling framework is just one type of flooding. A comprehensive

flood risk approach would also assess the other types of flood hazard. These types of flooding relate to different types of540

meteorological or hydrological events and require different modeling approaches. Table 4 summarizes these types of flooding.

Operational flood forecasting centers are required to produce forecasts for all of these types of flooding. However due to the

differences in scales and data required, climate change studies into flood risk generally only consider one of these types of flood

risk. Extending this framework to include other types of flooding will be a useful extension for future work. Pluvial flooding

in particular should be a relatively simple addition to this framework although pluvial flooding occurs at smaller scales, the545

would require both higher resolution DEMs and precipitation than fluvial flooding.

Table 4. Types of flood hazards and key modeling inputs.

Type Description Modeling requirements*

Fluvial Flooding caused by river over-topping banks and inundating floodplain Representation of river channels and streamflow

Pluvial Flash flooding caused by short very intense precipitation events High resolution (temporal and spatial) precipitation

Coastal Storm surge or tidal inundation of coastal areas Coastal boundary conditions

Groundwater Flooding caused by groundwater/water table rising Representation of groundwater and interactions

*High resolution modeling of all flood types require high quality digital elevation models to describe the terrain and floodplain.

This paper presents a methodology for global modeling of high resolution flood inundation. The use of fine scale flood

risk information has the potential to transform how climate change risks relating to flooding are presented. Instead of using

general measures of precipitation or river flow, flood inundation can be used to inform about specific risks. These risks can

relate to people or properties exposed to floods, area of farmland inundated or locations where roads or railways are impacted550

by floodwaters. These global flood models can then give better information about projected damage from climate change, to

communities rich and poor.

Code availability. The flood-cascade source code is archived on Zenodo (Uhe, 2020). The LISFLOOD-FP code archived on Zenodo (LISFLOOD-

FP developers, 2020) for non-commercial use only.

Appendix A: Algorithm for Coarsening River Network555

The method here uses the upstream area (acc) and the Strahler order (ord, Strahler, 1957) of each river section. The Strahler

order is an integer which is one for headwater streams, when going downstream it is incremented when two streams with the

same order join. The Strahler order is calculated by TauDEM when generating the stream network.

The main steps for the coarsening algorithm are as follows:

1. combine a block of grid-cells together (e.g., 5x5)560
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2. Require a minimum number of the original cells (e.g., 3) to be part of the river network, otherwise exclude from coarsened

network

3. Take maximum values for acc and ord over each block

4. Traces down the river network from upstream to downstream, to determine the next downstream point. For each point,

consider all points with the same or greater ord and greater acc as possible downstream points565

(a) In the case where there is no change in tributary or a smaller tributary merges into the current stream, the down-

stream point will have the smallest acc of these points

(b) In the case where the current stream merges into a larger stream, we check if there is a large jump between possible

downstream points. If there is a large jump in acc (>acc0) between possible downstream points then we assume the

smaller value is above where the tributary joins, and use the larger acc value for the downstream point.570
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