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Abstract. We developed a new fluid-dynamical numerical model, which we call convectiveFoam, designed to simulate fluids

with very large Prandtl number. First we implemented the high-Pr case, in which advection still acts explicitly, and then the

Pr→∞ version, where the momentum equation becomes diagnostic (that is, without time derivatives) and it is formalized as

an elliptic problem. The new solver, based on a finite volume integration method, is developed on the OpenFOAM platform5

and it exhibits a good performance in terms of computational costs and accuracy of the results. Scaling properties show a

maximum performance around 16000 cells/core, in agreement with other works developed on the same platform. A systematic

validation of the solver was performed for both 2D and 3D geometries, showing that convectiveFoam is able to reproduce the

main results of several iso-viscous cases. This new solver can thus simulate idealized configurations of natural geophysical

convection, such as in the Earth Mantle where Pr = 1023. This solver represents a starting point for general exploration of the10

behaviour and parameter dependence of several fluid systems of geological interest.

1 Introduction

Convection in the Earth mantle is driven by internal heating associated with radioactive decay, cooling at the surface, crustal

subduction and interaction between rock and liquid water. Mantle convection in turn affects plate tectonics and the global

carbon cycle. Since our planet is the only known one which shows an active tectonics, several researchers also suggested a link15

between this phenomenon and Earth habitability. Despite such crucial importance in determining planetary equilibria, however,

mantle convection is still only partially understood, owing to the extreme difficulties in examining planetary interior dynamics

(Bercovici and Ricard, 2014; O’Neill et al., 2007). To cite a few, the Earth mantle exhibits a viscoelastic nature, behaving like

a solid on short time scales but like a fluid on the long ones. This behaviour is synthesized by the Maxwell time:

τM =
η

µR
(1)20

defined as the ratio between dynamic viscosity ([η] = Pa · s) and elasticity (or shear modulus [µR] = Pa). A typical value for

the Earth mantle is τM ≈ 1010s which relates the evolution to the geological time scales. Also the characteristic spatial scales
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(about 3000 km) are a non trivial obstacles to direct geological measurements (Bercovici and Ricard, 2014). For these reasons,

indirect methods have usually been employed, such as seismic data analysis or numerical simulations. In particular, for the long

time-scale behaviour (t' τM ), numerical simulations produce diagnostic and prognostic descriptions of geological processes25

(Khaleque et al., 2015). Furthermore, because of the high viscosity values (ν = 1018− 1021m2s−1), the infinite-Pr number

assumption, where Pr = ν
κ , ν is the kinematic viscosity and κ the thermal diffusivity, is usually adopted for the Earth mantle

(Bercovici, 2007; Turcotte and Schubert, 2014). Simulating high-Pr regimes poses peculiar numerical difficulties due both to

time steps constraints and changes of the mathematical structure of governing equations (Busse, 1979).

This work is a first step towards the exploration of Earth Mantle processes through a model suitable to simulate both high-30

and infinite-Pr fluid flows. In its first implementation, we will present the model for an isoviscous, single-phase fluid. However,

the numerical model is conceived to include future applications with non-Newtonian viscosities (dependent on temperature

and pressure), multi-phase and multi-component flows, and for non Cartesian problems, potentially suitable to simulate com-

plex geometries (e.g., slabs or spherical shells) and flows with strong interfaces, needing locally refined numerical meshes.

To develop the new tool for the numerical simulations we adopt the OpenFOAM® (Open Field Operation and Manipulation)35

toolkit, a free, open source, and widely diffused CFD software. OpenFOAM offers a variety of C++ libraries for Finite Volume

(FV) discretisation of partial differential equation systems on a three-dimensional unstructured, colocated mesh. It includes li-

braries for data manipulation and linear algebra, and a number of numerical solvers for the solution of CFD problems. Thanks

to the high level of abstraction, numerical solvers can be developed following pre-built templates. The segregated, iterative

solution method at the base of most pre-built solvers allows the solution of CFD problems with complex, non-linear rheolo-40

gies, compressible/incompressible regimes, turbulent flows, and the solution of multi-phase, multi-component fluids, withouth

increasing the size of the linear systems, thus keeping the computational complexity affordable. OpenFOAM is parallelized

with a domain decomposition approach using MPI libraries. It displays satisfactory parallel efficiency up to thousands of cores

and offers a variety of pre- and post-processing integrated tools. OpenFOAM is released open-source and is supported by a

broad users and developers community worldwide, making it suitable for the development of community models.45

All built-in OpenFOAM solvers are implemented for low-Pr viscous fluids and several rheological laws are already imple-

mented for fluids like water, air, oil, but also for multiphase mixtures of gas, liquids and granular fluids (OpenCFD, 2007).

Some extensions of this provided solvers have been recently developed and applied to Earth Science (Cerminara et al., 2016;

Dietterich et al., 2017; Rosi et al., 2018). Since an infinite-Pr solver is not provided in the current version of OpenFOAM, we

built a new solver to simulate idealized problems in geological convection. We started exploring high-Pr fluid behaviour, up to50

that of infinite-Pr number fluids (under the assumption of isoviscosity). For infinite-Pr number fluids, we implemented a brand

new solver, which is then validated for 2D and 3D configurations.

The structure of this paper is as follows: a theoretical description of the problem is presented in Sec.2; Sec.3 introduces the

numerical setting with an overview on code development. The validation of the new solver is presented in Sec.4. Conclusions

and perspectives are given in Sec.5.55
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2 Model Equations

As in the milestone work on convection done by Rayleigh (Rayleigh, 1916) and Bénard (Bénard and Avsec, 1938) at the

beginning of last century, the convection model adopted here is based on classical (incompressible) fluid dynamics equations

(Busse, 1979; Chandrasekhar, 1981). The equations for momentum, energy and mass conservation in a rotating frame read:

∂u

∂t
+ (u · ∇)u =− 1

ρ0
∇p− gβ∆T k̂ + ν∇2u− 2Ω×u + Ω× (Ω× r) (2a)60

∂T

∂t
+ (u · ∇)T = κ∇2T (2b)

∇ ·u = 0 (2c)

where u = (u,v,w) is the three-dimensional velocity, Ω = (0,0,Ω) is the angular velocity, T is the temperature field and other

parameters are listed in Table 1. The non-dimensional form is obtained by rewriting Eqs.(2) in terms of relevant units, chosen

here as the domain thickness D, the diffusive time τκ = D2

κ , the temperature scale ∆T and the velocity scale κ
D . The equations65

thus become:

1
Pr

[
∂u′

∂t′
+ (u′ · ∇)u′

]
=−∇p′+ RaT ′k̂ +∇2u′− 1

Ek
k̂×u′ (3a)

∂T ′

∂t′
+ (u′ · ∇)T ′ =∇2T ′ (3b)

∇ ·u′ = 0 (3c)

where primed variables are non-dimensional. In Eqs.(3), Pr = ν
κ and Ra = gβ∆TD3

νκ are the Prandtl and Rayleigh numbers,70

representing respectively the ratio between convective and conductive heat transfer and the ratio between kinematic and thermal

heat transport. The Ekman number, Ek = ν
2ΩD2 , indicates the ratio between Coriolis and viscous effects. Even if Earth mantle

Sym Parameter Value Units

g Gravitational acceleration 9.81 m s−2

ρ0 Mean density 4000 kg m−3

β Thermal expansion coefficient 2 · 10−5 K−1

κ Thermal diffusivity 7.5 · 10−7 m2 s−1

ν Kinematic viscosity 2.5 · 1017 m2 s−1

∆T Temperature difference 1500 K

Ω Angular velocity 7 · 10−5 rad s−2

D Characteristic length scale 3 · 106 m

Table 1. Physical parameters typically used in simulations of Earth Mantle convection (Ricard, 2007).

parameters are strongly dependent on pressure and temperature, here we assume constant parameters, fixed as in Ricard (2007).

This leads to constant values for Pr and Ra. Moreover, since Ek ≈ 1012, the Pr→∞ assumption holds. In this limit, Eqs.(3)
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become (removing primes for simplicity):75

∇p−RaT k̂−∇2u = 0 (4a)

∂T

∂t
+ (u · ∇)T =∇2T (4b)

∇ ·u = 0. (4c)

where an elliptical PDE governs the dynamics of the velocity field. In this new problem, the velocity field is strictly dependent

on the temperature and pressure fields, since acceleration has been neglected together with the nonlinear inertial term. Never-80

theless, the advective term in the temperature equation still acts as a source of nonlinearity. It follows that analytical solutions

are not available and a numerical approach is warranted.

3 Numerical Methods

The problem described by Eqs.(4) is solved with OpenFOAM. OpenFOAM uses the FV method discretising the integral form

of governing equations over each control volume (CV). Each CV is indentified by a polyhedral cell and all field values are85

calculated in the centre of such cell (i.e. colocated) (Jasak, 1996). Once the mesh is defined, the surface fluxes are reconstructed

using the Gauss theorem. This requires an interpolation step to infer the surface value from the volume one. To this aim

OpenFOAM provides a set of pre-defined interpolation rules (Ferziger and Peric, 2012). In the following we briefly introduce

two rules adopted in our work.

Figure 1. Sketch of a control volume from Jasak (1996). Each field is calculated in the centre of a polyhedral cell ( P). N is the centre of the

nearby cell and f the point on the surface on which the field is reconstructed by interpolating between P and N.

The first is the Linear method, also known as Central Differencing (CD), which reconstructs the field on the surface S,90

assuming its linear variation between the two points P and N, located in the centre of two nearby cells. The field value in point

f is calculated as:

ϕf = fxϕP + (1− fx)ϕN (5)

where fx is defined as the ratio between fN and PN . CD is second order accurate on all kind of meshes (Ferziger and Peric,

2012) even if affected by some non physical oscillations in the solution of convection-dominated problems (Jasak, 1996).95
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Figure 2. Sketch of the 1D version of the linear method from Jasak (1996). The value of the ϕ field on the face passing through f is

reconstructed by interpolating the values on neighbours cells (ϕP ,ϕN ) and weighted by fx.

The second rule, the LimitedLinear interpolation, removes the oscillations which are tipically associated with second-order

schemes (Sweby, 1984). The Total Variation Diminishing (TVD) criterion was introduced to characterise such oscillation-free

flux-limited schemes (Harten, 1983).

OpenFOAM uses a general approach, the segregated method, to solve systems of coupled equations as Eqs.(4) (Patankar

and Spalding, 1972; Issa, 1986). At each integration step, equations are solved separately for each variable with an iterative100

procedure, in order to enforce the coupling, until a prescribed global residual level is achieved. Non-linear differential equations

are linearized before discretisation and the non-linear terms are lagged (Jasak, 1996). The segregated solution approach consists

of two main phases: the PISO (Pressure Implicit with Splitting of Operator) algorithm (Issa, 1986) which solve the momentum

equations enforcing the incompressibility constrain, and the SIMPLE (Semi-Implicit Method for Pressure Linked Equations)

iterative solver, used to improve the numerical solution of non-linear equations and to enforce the coupling of the momentum105

and energy equations.

To solve an unsteady, incompressible Navier Stokes problem as in Eqs.(3), OpenFOAM solvers merge the PISO and the

SIMPLE procedures into the PIMPLE algorithm. Accordingly, an elliptic equation for the pressure field is derived by a combi-

nation of the continuity and momentum equations (Patankar, 1981). The integration procedure for each time step is described

by the following (Jasak, 1996):110

1. Calculate the time step value based on CFL condition;

2. Momentum predictor: discretize and solve the momentum equation (2a) for the velocity, with pressure from previous

iteration;

3. Discretize and solve the temperature equation using the guessed velocity field from step 2;

4. Discretize and solve the pressure equation with the predicted velocity field;115

5. Update the velocity field with the new pressure field;

6. PISO loop: repeat from step 4 for a prescribed number of iterations;

7. PIMPLE loop: repeat from step 2 for a prescribed number of iterations or until residual constraints are satisfied;
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As part of this work we extended the built in buoyantBoussinesqPimpleFoam solver, designed to solve heat transfer prob-

lems, to approach the infinite-Pr number problem. First, the overall structure of the solver has been modified by moving120

the temperature equation, originally solved outside the PISO loop, within it. A flowchart comparing the structure of the two

solvers is illustrated in Fig.3 . We compared the performances of the two solvers by monitoring the number of PIMPLE iter-

ations required to converge, that is when residuals, for a given variable, fall under a given threshold. Residuals are defined by

substituting the current solution into the equation and taking the (normalized) magnitude of the difference between the left and

right hand sides of equation members (OpenCFD, 2007).

Figure 3. Flowcharts of the integration procedure: velocity, temperature and pressure fields are sequentially discretized and solved, then

coupled though the PISO and PIMPLE loops. Left: the old solver buoyantBoussinesqPimpleFoam; right: the new solver convectiveFoam.

Computation of temperature, originally done outside the PISO loop, has been moved into the loop.

Simulated Time Execution Time TOT PIMPLE Aver.PIMPLE

Teq. IN 10−2τκ 75 s 3.1 · 103 2.28 ±0.26

Teq. OUT 10−2τκ 239 s 1.3 · 104 9.56 ±19.53

Table 2. Execution time, number and average number of PIMPLE iterations for the two solvers for a simulated time of 10−2τκ (transient

regime). the Teq.IN solver is about 3 time faster than Teq.OUT .

125

Results show that moving the temperature equation within the PISO loop drastically decreases the computation time. This

fact is quantified in Tab.2 where we compare some representative data, as the total and the average number of final PIMPLE

iterations and the execution time for each solvers, in the case of a 642 grid points domain, for the initial part of simulation

(until 10−2 thermal time). Analogous results are obtained for longer simulations, until one thermal time: also in this case the

total and the average number of PIMPLE iterations, as the execution time, are compared and reported in Tab.3 (see Fig.4 for130
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Simulated Time Execution Time TOT PIMPLE Aver.PIMPLE

Teq. IN τκ 8.0 · 103s 3.5 · 105 2.75±0.19

Teq. OUT τκ 3.8 · 104s 2.3 · 106 17.99±56.43

Table 3. Execution time, number and average number of PIMPLE iterations for the two solvers for a simulated time of τκ. The performance

is comparable with that of the transient regime: the Teq.IN solver is about 5 time faster than Teq.OUT .

Figure 4. Number of PIMPLE iterations as function of time. Left: transient regime (10−2τκ), right: statistically stationary regime (τκ).

Required loops for TeqIN (blue) are lower than those for TeqOUT (orange) in both cases.

a graphical representation). We concluded that the TeqIN solver performance is clearly improved respect to that of TeqOUT

for both the transient and the statistically stationary regime.

A more detailed representation of pressure and temperature residuals behaviour is shown in Fig.5 for a fixed time step. Each

PIMPLE loop groups a fixed number of four points which are the initial residuals at every PISO loop. This is valid for the

pressure field, which is always calculated into the PISO loop, but only for TeqIN temperature field. Looking at the pressure135

panel, the first two PISO loops of each PIMPLE loop result the more important for convergence (cf. 2nd and 3rd point of each

group). The same is valid for PIMPLE loops: only two cycles are required by TeqIN solver to converge against the six required

by TeqOUT . This behaviour, in agreement with results of Tabs.(2,3), confirms that an average value of 2-3 PIMPLE loops is

sufficient, for the TeqIN solver, to reach the prescribed convergence.

3.1 Implementation of the Pr → ∞ case.140

The central goal of this work is to reproduce the infinite-Pr structure. As introduced, Eqs.(3) reduce to the elliptical problem:

∇p+ RaT k̂−∇2u = 0 . (6)

Hyperbolic and elliptic equations require different numerical strategies to be solved. However, to improve the convergence of

the linear system solution, we want to maintain the original hyperbolic structure of the solver. This requires the presence of a

time derivative, to preserve the diagonally dominant structure of the matrix resulting from the numerical discretization of the145

momentum equation (Moukalled et al., 2016). With this aim, we introduced an explicit artificial time derivative on the left hand

side of Eq.(6), designed so that it does not affect the result when convergence is reached. This derivative is computed within

7
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Figure 5. Initial residuals for a fixed time step (t= 0.0098τκ) for the two solvers TeqIN (blue) and TeqOUT (orange). The initial residuals

are calculated before the linear system is solved.

TOP panel: pressure residual show a periodicity every 4 points. Each set of consecutive points represents a PIMPLE loop, while each point

of the same set (e.g., those market from 1 to 4) is a PISO iteration. The first point of each set (magenta), highlights the initial residual of each

PIMPLE loop.

BOTTOM panel: temperature field residuals are evaluated more frequently in the TeqIN configuration, since the temperature equation has

been moved into the PISO loop, while, in TeqOUT , residuals are computed only at every PIMPLE loop. As shown, TeqIN requires a lower

number of PIMPLE loops. In particular, two PIMPLE loops are sufficient to converge.

Is also clear that, in both cases, the first two PISO loops are the main steps to reach convergence.

the PISO loop as:

∆un
∆t

=
umn −um−1

n

∆t
with n,m ∈ N (7)

where n indicates the n-th PIMPLE iteration and m the m-th PISO iteration. Once convergence is reached, |umn −um−1
n |< ε,150

with ε the prescribed threshold, the auxiliary time derivative of Eq.(7) goes to zero recovering a steady problem.

It is worth noticing that in the Boussinesq approximation the density is held constant in the unsteady and in the advective

terms but not in the gravity one, where it is assumed to depend on temperature (Oberbeck, 1879). The Boussinesq OpenFOAM

solver defines two auxiliary variables in order to avoid errors in calculating the buoyant term on non-orthogonal and distorted

meshes (OpenCFD, 2007):155

ρκ = 1−β(T̃ −Tref ), prgh = p− gρκz (8)

and it solves the momentum equation with respect to the effective pressure prgh. Since in this work a Cartesian mesh is used,

we explicitly rewrote the buoyancy term defining ρ as the sum of a mean value and a perturbation:

g
ρ

ρ0
= g

[
1 +

ρ̃

ρ0

]
= g

[
1−β(T̃ −T0)

]
(9)
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where a linear relation between temperature and density is assumed with T0,ρ0 are reference values.160

Similarly to the spatial scheme, OpenFOAM provides several temporal discretization strategies. Among them we selected

the following (using OpenFOAM definitions (Ferziger and Peric, 2012)):

– Euler scheme (first order, implicit), defined as :

∂f(n)
∂t

=
f(n)− f(n− 1)

∆t
(10)

– Backward scheme (second order, implicit):165

∂f(n)
∂t

=
3
2f(n)− 2f(n− 1) + 1

2f(n− 2)
∆t

. (11)

indicating with n the time step and with ∆t the time step width.

In the following section, all the previous features are tested, in order to validate the new solver.

4 Solver Benchmarking

Our solver has been tested considering both 2D and 3D cases. For the first, we simulated numerically the 2D results reported170

by Whitehead et al. (2013) for increasing Pr. For the second, instead, we referred to Sotin (1999) in which the infinite-Pr

configuration is studied with varying Ra number.

4.1 2D Benchmark

We replicated the same conditions of Whitehead et al. (2013): the xz-squared domain has fixed BCs for bottom and top temper-

ature (T = 0 at z = 1,T = 1 at z = 0∧ 1
4 ≤ x≤ 3

4 ) and zero normal gradient boundary condition at x= 0 and x= 1. Velocities175

BCs are free slip on every side of the domain. A 128×128 grid has been used with the exception of the resolution study where

different choices are shown. In Whitehead et al. (2013), the dynamics of a convective process is simulated in the case of a fixed

Ra = 106 number and varying Pr ∈ [1,∞). Fig.6 shows the evolution of temperature field for Pr = 1,10,102,103,∞. The pro-

cess evolves through four different stages: plume formation, the plume head reaching the top of the domain, the head spreading

and turning back to the bottom. These phases correspond, for Pr = 103, at times t= 12.4 · 10−4, t= 27 · 10−4, t= 50 · 10−4180

and t= 1000 · 10−4 (Fig.6, panel d) and all times are in unit of the non-dimensional diffusive time τκ. The dynamics varies

at different values of Pr and the new solver is able to reproduce all of them (Fig.6, panels a-e) even for longer times when the

plume starts to oscillate (Fig.6, panel f).

All simulations have been run on the Laki cluster at INGV, Sezione di Pisa (2× 8-cores Intel Xeon 2.40GHz).

4.1.1 Methodology185

As in Whitehead et al. (2013), we fixed Ra = 106, but we focused only on Pr = 103 and Pr→∞ cases, setting the residual

threshold to 3·10−7. We performed our analysis comparing temperature and velocity profiles and streamfunction time evolution
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Figure 6. Panels a)-e): Snapshots of the temperature field at different time steps for the original work in Whitehead (2013) (black and

white) and for the new solver convectiveFoam (colours). Each panel shows, from left to right, snapshots at: t= 12.4 · 10−4, t= 27 · 10−4,

t= 50 · 10−4, t= 1000 · 10−4 in unit of the diffusive time τκ. Panel f): Snapshots of the oscillating temperature field at different time

steps (bottom, right). From left, snapshots are taken at: t= 1810 · 10−4, t= 1820 · 10−4, t= 1830 · 10−4, t= 1840 · 10−4, in unit of the

non-dimensional time τκ. For each simulation Ra = 106.

against the originals. The study has been done for three different solvers: the original solver buoyantBoussinesqPimpleFoam,

the new solver for finite-Pr numbers convectiveFoam and for infinite-Pr numbers convectiveFoamInf. For each solver, a sys-

tematic analysis has been performed on both short and long term behaviour of the process. In both cases several choices of190

resolution, algorithm or numerical schemes have been tested, in order to test the sensitivity of the results.

Resolution

We ran simulations increasing the number of grid points selecting the following configuration: 64×64, 128×128, 256×256.

The main scope of this study is to explore how the resolution affects results, since higher resolution allow to resolve more

detailed fluid structures. We led this analysis following the same approach adopted in Whitehead et al. (2013) where increasing195

resolution provides different results.
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Numerical Scheme

FV method requires interpolation rules to reconstruct face fields values from the volume ones. We tested the Linear and Lim-

itedLinear spatial schemes implemented in OpenFOAM (OpenCFD, 2007). Concerning temporal domain, instead, we tested

OpenFOAM’s Euler and Backward schemes. We performed several attempts combining spatial and temporal interpolation200

rules as follows:

– Linear + Euler (LE);

– LimitedLinear + Euler (LLE);

– Linear + Backward (LB);

– LimitedLinear + Backward (LLB);205

We used the LB/LLB schemes in conjunction with convectiveFoam solver (CLB/CLLB for brevity) and with the original

buoyantBoussinesqPimpleFoam solver (BLB/BLLB). The same naming convention has consistently extended to the LE and

LLE schemes.

Algorithm

Algorithm analysis was performed by varying the number of inner PISO loops (which enforces incompressibility) and outer210

PIMPLE loops (which enforces the coupling with the temperature equation). We named each configuration adopting the pXpY

convention, where pX stands for X PISO loops and pY for Y PIMPLE loops. Since we observed that a p2p2 configuration is

sufficient to reach the satisfactory residual, we focused on a limited number of PISO/PIMPLE iterations. In the following, only

a selection of significant results is discussed, since some PISO/PIMPLE combinations, (p1p3 and p3p1), were computationally

unstable.215

4.1.2 Analysis of the Transient Regime

In this section we report, at different times temperature (Fig. 7) and velocity (Fig. 8) profiles related to the transient scenario

comparing them with the originals. To compare the time-dependent behaviour, we also compare the value of the streamfuntion

as a function of time (Fig. 9). Figs.7-9 show results from the resolution study performed with the momentum predictor, the

LB scheme and the p2p2 algorithm. Results are in agreement with Whitehead et al. (2013), confirming that the 128× 128220

resolution is enough to reproduce all cases, while a 64× 64 grid is insufficient, especially in reproducing the first time steps.

The results for the different tests on numerical schemes in Figs.10-12 indicate an overall scheme independence, with some

discrepancies around t= 15·10−4, when the velocity and the temperature fields exhibit a highly dynamic behaviour. In this time

steps, LB and LLB provide the closest match. The same is valid for the horizontal profile of vertical velocity at t= 1000 ·10−4

(Fig.11). For all simulations we used the momentum predictor, a 128× 128 resolution and the p2p2 algorithm.225
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Pr = 103 Pr=∞

Figure 7. Vertical temperature profiles for two different times (upper and lower panels) and for different resolutions: 64× 64 (green),

128× 128 (blue), 256× 256 (magenta). Profiles are calculated at x= 0.5. The two left columns report the buoyantBoussinesqPimpleFoam

(original) and the convectiveFoam solver (new) for Pr = 103; the right column reports the convectiveFoamInf results for Pr→∞. Benefits

of increasing resolution are more appreciable for highly dynamically variable times (t= 15 · 10−4 when the plume reaches the top) and less

evident at the latest times (t= 35 · 10−4).

Concerning algorithm, for all simulations, we used the momentum predictor, the LB scheme and a 128× 128 resolution

(Figs.13-15). The analysis of the results suggests p2p2 algorithm as a good compromise both in terms of computational time and

accuracy. From the analysis reported above varying resolutions, algorithms and schemes, we selected a reference configuration

aimed to develop further studies. In particular, the final configuration has: Linear spatial interpolation scheme, Backward

temporal scheme, 128×128 spatial resolution and p2p2 algorithm. We remark this is not the more accurate setting but the best230

compromise between simulation time and accuracy.
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Pr = 103 Pr=∞

Figure 8. Horizontal profiles of vertical velocities at different resolution. Left columns report buoyantBoussinesqPimpleFoam and convec-

tiveFoam for Pr = 103; the right column shows the results of convectiveFoamInf (Pr→∞). Profiles are taken at z = 0.5 for t= 1000 ·10−4,

in the middle of the head of the plume for t= 12.4 · 10−4. Changing the resolution affects the results for t= 12.4 · 10−4, t= 1000 · 10−4

for the buoyantBoussinesqPimpleFoam and convectiveFoam finite-Pr solvers.

Pr = 103 Pr=∞

Figure 9. Streamfunction evolution for different resolutions, 64× 64 (green), 128× 128 (blue), 256× 256 (magenta), in the interval [0−
50] · 10−4 (in unit of the non-dimensional time τκ). From the left: buoyantBoussinesqPimpleFoam, convectiveFoam, convectiveFoamInf.
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Pr = 103 Pr=∞

Figure 10. Vertical temperature profiles for different schemes at two different times (upper and lower panels): LE (green), LLE (blue), LB

(magenta) and LLB (yellow). Profiles are calculated at x= 0.5. Left two columns: buoyantBoussinesqPimpleFoam and convectiveFoam for

Pr = 103. Right column: convectiveFoamInf for Pr→∞. With the only exception of t= 15·10−4, all times show a good agreement between

the different schemes. Note that for the infinite-Pr case, the LB scheme reproduces well also the highly dynamic period t= 15 · 10−4.

Pr = 103 Pr=∞

Figure 11. Horizontal profiles of vertical velocity for the different schemes for two different times. Profiles are taken at z = 0.5 for t=

1000 ·10−4, in the middle of the head of the plume for t= 12.4 ·10−4. Other details as in Fig.8. In this case, the LB, LLE and LLB schemes

provide similar results.
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Pr = 103 Pr=∞

Figure 12. Streamfunction evolution for the different schemes: LE (green), LLE (blue), LB (magenta) and LLB (yellow) in the interval

[0− 50] · 10−4. From left: buoyantBoussinesqPimpleFoam, convectiveFoam, convectiveFoamInf.

Pr = 103 Pr=∞

Figure 13. Vertical temperature profiles for two different times and different algorithms: p2p1 (green), p2p2 (blue), p2p3 (magenta) and

p3p2 (yellow). At t= 15 · 10−4, p2p2 and p2p3 display the best accuracy for buoyantBoussinesqPimpleFoam (left), p2p2/p2p3/p3p2 for

convectiveFoam (middle), p3p2/p2p3 for convectiveFoamInf (right). Other times display best accuracy with the p2p2 and p3p2 choices. All

times are in unit of the diffusive time τκ.
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Pr = 103 Pr=∞

Figure 14. Horizontal profiles of vertical velocity for different algorithms. Profiles are taken as in Fig.8. Left two columns: buoyantBoussi-

nesqPimpleFoam and convectiveFoam for Pr = 103; right column: convectiveFoamInf for Pr→∞. While convectiveFoamInf has better

results at initial times, this is not true for t= 1000 · 10−4.

Pr = 103 Pr=∞

Figure 15. Streamfunction time evolution for p2p1 (green), p2p2 (blue), p2p3 (magenta) and p3p2 (yellow), in the interval [0− 50] · 10−4.

A better performance of the p2p2 algorithm is evident.
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4.2 Analysis of the long term regime

With the same configuration of Sec. 4.1.2, we then analyze the statistically stationary regime until two thermal times. Referring

to the long term results of Whitehead et al. (2013), we reproduced the temporal evolution of the streamfunction and compared

it with the original outcomes. As in the original work, we observed the emergence of two subsequent oscillating regimes with235

different frequencies, whose, unlike those of Whitehead et al. (2013), didn’t lock in a steady oscillation of fixed frequency.

To identify these oscillations we adopted the same approach of the original work, computing the heat flux (HF) and the

streamfunction. The heat flux is defined as function of time:

HF(t) =N ×T (0.5,N − 1, t) (12)

where T (x,z, t) is the temperature field, N the number of used level, the streamfunction is defined as:240

Sm(t) =max(|Ψ|)(t) (13)

where Ψ is the proper streamfunction, but, for simplicity we will refer to Sm(t) as streamfunction. Results for both the Sm(t)

and HF are reported in Fig.16, in which a shifting related to the increasing resolution (right panel) is observable as in the

original work. A complete characterization of the oscillating phenomena has been performed evaluating the amplitudes of

the oscillations in the long term regime. The main difference of our work is the absence of a long term regime with locked

Figure 16. Left: several regimes of the process are identified: the transient, the first and the second statistically stationary regimes. Two

different oscillations give rise to beats in the first and second oscillating regimes. Right: long term behaviour of the HF for increasing

resolution and decreasing dissipation. In blue res= 64× 64, in orange res= 128× 128. As in the original work, the initial perturbation

develops later for increasing resolution, shifting all the process ahead. The vertical lines indicate two times in which the shifting is particularly

appreciable.

245

frequencies. To investigate this behaviour we ran simulations adopting increasing or decreasing dissipation (that is, increasing

resolution). With the Gauss Linear scheme, the oscillations are completely damped, while, increasing resolutions or tolerance

leave the oscillations active. For the moment we limit to report results for only two different configurations. The results, with

relative details, are reported in Tab.4.
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Sim Res Tol Ams1 Af1 T11 T12 Ams2 Af2 T2

Whitehead et al. 64× 64 - 113.9 115.0 0.00152 0.00305 173.5 169.5 0.00269

ConvectiveFoamInf 64× 64 3 · 10−7 129 78 0.0060 – 149 116 0.0055

ConvectiveFoamInf 128× 128 1 · 10−10 131 80 0.0059 – 150 115 0.0077
Table 4. Comparison of several parameters for the Pr =∞, Ra = 106 case. With the same convention adopted in Whitehead et al. (2013)(1

refers to first oscillation, 2 to the second): Ams1 = time average of Sm, Af1 = amplitude peak to peak. T11 = period of the first oscillation, T12

= the doubled period after the previous oscillation (not observed in our simulations), Ams2 = the steady value between the two oscillations (or

the time average when a non steady behaviour is present), Af2 = amplitude of oscillations peak to peak, T2 = period of the second oscillation.

4.3 3D Benchmark250

Three-dimensional simulations are run following the work of Sotin (1999). The simulation domain is a box with squared

horizontal section
(

i.e. Lz

Lx
= Lz

Ly
= 1

2

)
with stress-free velocity BCs and fixed temperature on top and bottom and periodic BCs

on the horizontal directions for both velocity and temperature. All simulations are run with the same configuration obtained

from the previous analysis: CLB (Convective, Linear, Backward), p2p2 algorithm and 128× 128× 128 grid points.

Sim Pr Ra Grid points Sotin et al. convectiveFoamInf

I ∞ 105 128× 128× 128 Qt = 10.42(2) Qt = 10.39(1)

Tmean = 0.500 Tmean = 0.552

II ∞ 2 · 105 128× 128× 64 Qt = 12.86(19) Qt = 13.01(4)

Tmean = 0.500 Tmean = 0.500

III ∞ 5 · 105 128× 128× 128 Qt = 17.15(11) Qt = 21.29(6)

Tmean = 0.500 Tmean = 0.471

IV ∞ 106 128× 128× 64 Qt = 21.24(19) Qt = 24.78(2)

Tmean = 0.497 Tmean = 0.507

V ∞ 106 128× 128× 128 Qt = 21.24(19) Qt = 29.74(12)

Tmean = 0.500 Tmean = 0.564

VI ∞ 3 · 106 128× 128× 128 Qt = 28.59(37) Qt = 44.71(24)

Tmean = 0.500 Tmean = 0.561

Table 5. Columns 1-4: configuration for each 3D simulation. Columns 5-6: comparison of heat flux and mean temperature evaluated at

the stationary state for the original data and convectiveFoamInf. For each value of the heat flux is reported the mean value and the relative

fluctuation, for the temperature field, the value averaged over the volume.

We reproduced some cases selected from the original work and validated our solver comparing the statistically stationary255

behaviour of the flux at the top boundary Qt and the mean temperature in the volume of domain. As shown in columns 5-6

of Tab.5, the convectiveFoam results are close to those of Sotin (1999) and catch the increase of the heat flux and fluctua-
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tions for higher Rayleigh numbers. The values are closer to each other for lower values of the Rayleigh number, while some

discrepancies emerge as the turbulence level increase. Future simulations will further address this discrepancy.

4.3.1 Performances260

Parallel efficiency has been estimated by evaluating the strong scaling, that is how the computation time varies with increasing

number of cores, keeping the problem size fixed. We defined the speedup as the ratio:

Sp=
T (1)
T (n)

(14)

where T (1) and T (n) are the execution times on one and n cores, respectively. Results of the simulations are reported in

Fig.17 where the performance significantly decreases for simulations with more than 16 cores, corresponding to about 16000265

cells/core. This result is consistent with Cerminara et al. (2016) and Paronuzzi Ticco S.V. (2016) which used an analogous

numerical structure (i.e. in the FV method) reaching the best efficiency around 13000 cells/cores. In this work, due to the

simplification of the model (no advection of the velocity field), this performance is slightly increased to about 16000 cells/cores.

All simulations have been run on the Marconi cluster at CINECA (1× 68-cores Intel Xeon Phi7250, KNL, at 1.4 GHz).

Figure 17. Speed up law for the strong scaling problem. The problem size is fixed to 128× 128× 128 cells. At 128 cores (maximum speed

up) the cells per processor ratio is 16000.

4.4 Further tests and portability270

For completeness, additional test considering a relaxation parameter have been done. Results with relaxation exhibit a smooth-

ing effect for both the temperature field and streamfunction with respect to those without relaxation, thus introducing a non

acceptable deformation of both finite and infinite-Pr number results.

ConvectiveFoamInf, originally developed on OpenFOAM5, is available also on OpenFOAM7.

The relaxation and the portability tests, have been performed monitoring the same observables of the previous benchmark:275

the vertical temperature profile and isolines of temperature and streamfunction. For all the described studies results are available

under request, as for the complete results for the benchmark.
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5 Conclusions

We built and tested convectiveFoam, a new solver dedicated to the simulation of infinite-Pr number fluids, using the Open-

FOAM toolkit. The development of the new solver moved from very high, finite-Pr number to the infinite-Pr case. We called280

this different variants convectiveFoam and convectiveFoamInf respectively. We tested the solver reliability by quantitative com-

parisons with the 2D simulations described by Whitehead et al. (2013) and the 3D simulations reported by Sotin (1999). A

satisfactory agreement between our results and such cases was found. In particular, the analysis of the 2D cases indicates that:

i) Moving the temperature equation into the PISO loop improved the performance, by reducing significantly the number of

required PIMPLE loops to achieve convergence. The TeqIN solver is about 3-5 times faster than TeqOUT .285

ii) Resolution higher than 128×128 did not considerably improve the results, with the exception of highly dynamic times for

which a finer grid can give a more accurate description in all the domain. As in Whitehead et al. (2013), the bigger discrepancies

are present for the 64× 64 resolution.

iii) Concerning schemes, even if the LLB and LLE schemes produced good results, the LB choice, combining the spatial

Linear and temporal Backward schemes, gave the best compromise between time simulation and matching with original results.290

iv) Although we discarded some algorithms because of their inconsistency with original results, several combinations of

PISO and PIMPLE loops gave good results in terms of reproducibility. The p2p2 algorithm was chosen as the optimal com-

promise between simulation cost and agreement with the previous results.

v) Further studies performed with and without relaxation parameter revealed that the use of relaxation gave results that were

not consistent with the reference study. Further investigation is needed to further explore the origin of this behaviour.295

For the 3D case, comparing our results with Sotin (1999) we found that:

vi) The convectiveFoamInf solver was able to reproduce main results of Pr→∞, isoviscous fluid simulations even if a more

accurate study on resolution is necessary to avoid non-physical results.

vii) Strong scaling analysis showed a maximum speedup around 16000 cells/cores.

viii) Portability was evaluated for the latest release OpenFOAM7.300

We remark that in this work we analyzed idealized models. This step is just the first of a longer project: further developments

should consider rheological aspect of the Earth mantle such as the temperature/pressure viscosity dependence, which still has

unsolved numerical issues in 3D domains (Khaleque et al., 2015). Also, analysis of both Newtonian and non Newtonian

viscosity has to be considered.

Code availability. The code developed in this work is available for collaboration or download at https://doi.org/10.5281/zenodo.3718556.305

At the same link, also some examples and a general description of the code are available.
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