
Author Response to RC1 
 
We thank the reviewer for their thoughtful comments and suggestions to improve this study, along 
with their positive recommendation of this work. We have sought to address the comments below, 
and hope the reviewer will find them to be an improvement on the previous iteration of this study, 
making the work more flexible and useful for the scientific community. 
 
In particular, we have added a short appendix to note which functions are used and included in the 
pyPI repository,  and relate them to the steps in the algorithm boxes. We have also added a short 
written section suggesting a few assumptions that one could modify to alter pyPI for their own 
tropical cyclone studies. 
 
Major comments 
 
1. We agree that a list of functions (and especially connecting them with the algorithm steps) 
would be a useful addition to the study for interested readers. We assume that the reviewer was 
referring to the steps in Algorithm 1 (in lieu of Table 1, which includes only the input/output 
variables). 
 
In order to not detract from the flow of the main study itself---and to avoid moving the study 
towards a user’s guide, as cautioned by the other referee---we have added this information in a 
short Appendix (B). We include the list of functions pyPI employs which are commonly used in 
meteorology: the empirical Clausius-Clapeyron equation (i.e. the Bolton eqn. for saturation vapor 
pressure), the latent heat of vaporization, vapor pressure and mixing ratio conversions, reversible 
entropy, and density temperature; we also include less common expressions which pyPI relies on or 
makes use of: CAPE, the minimum pressure estimate, the empirical LCL equation, PI efficiency, and 
the potential intensity decomposition. 
 
2. We have sought to highlight the many assumptions in pyPI by (for the first time, in this 
study) fully documenting in section 3 the two algorithms which form the pyPI code base. 
 
In response with the other reviewer, we considered the effects of several specific assumptions 
(both numerical and scientific). We discussed how changes in pLCL or CAPE could affect PI 
calculations, how the minimum pressure convergence threshold might affect the influence PI 
values, and the role of dissipative heating. 
 
The adjustable parameters define the existing set of assumptions which can be quickly tested by 
users without any further code modifications. A (non-exhaustive) list of additional assumptions that 
would require code changes to address includes the definition of the outflow temperature, the LCL 
definition, inclusion of Ck/CD variability as a function of wind speed, and inclusion of a tropospheric 
stratification factor. Alternative characterizations of PI---such as the ocean coupled index (Lin et al. 
2013) or “surface PI” (Rousseau-Rizzi and Emanuel 2019)---could also be included in the repository 
as additional separate functions to improve pyPI’s utility and flexibility. 
 
We have added a short discussion in section 4 on these existing assumptions and opportunities for 
improvement, including the future inclusion of a tropospheric stratification factor (1-s(Gamma)) 



suggested by Kieu and Wang (2017). The section synthesizes some of the primary opportunities for 
growth in the pyPI. 
 
There are certainly more assumptions which could be addressed than we mention here. For 
individual planned improvements in pyPI, we make use of the Projects tool in the Git repository to 
inform the community of our goals. We also strongly encourage users to bring them to our 
attention using the repository’s “Issues” tool or by directly contacting the developer. 
 
Minor comments 
 
Eq. 14: Thank you for noting this typo. This should be R_d, and “Rd” has now been replaced in 
equation 14 with the appropriate “R_d” constant. Eq. 14 has also been updated for improved 
readability, in response to comments from the other reviewer. 
 
Author Response to RC2 
 
We thank the reviewer for their support for this effort and their helpful comments which have 
improved this work. 
 
In response we have endeavored to clarify some opaque details of certain points which were raised 
by the reviewer, including the algorithm sensitivity to the minimum pressure convergence 
threshold, the role of dissipative heating, model run times compared with MATLAB, and the 
differences with other CAPE algorithms. We have also updated the equation formats, added a 
temperature unit check, and fixed the tone of the piece from first person to a more passive voice. 
 
Minor comments 
 
Line 40: As suggested, the MATLAB function has been included directly in the pyPI v1.3 code 
archive. We have removed this link and original line 40 to avoid confusion. 
 
Line 68: Agreed. This line has been changed to, “Tropical cyclones arise as an indirect response to…” 
 
Line 147: As highlighted by the SHARPpy introductory BAMS article (Blumberg et al. 2017), different 
thermodynamic profile analysis routines---and especially CAPE calculations---can vary substantially 
from one another. In our case, we expect this will also be true. While similar mathematically to 
other existing CAPE routines (e.g., SHARPY and MetPy), there are several key differences between 
pyPI’s CAPE algorithm and others. 
 
First, finding the lifting condensation level is a part of the pyPI CAPE routine, found empirically as 
described in Eqn. 8. This method of determining the LCL contrasts with other programs. SHARPpy, 
for instance, begins by finding the LCL temperature with an empirical formula (this is possibly from 
Hart and Korotky 1991), and then determines the p_LCL from that. MetPy has an iterative 
procedure which convergences on the LCL pressure as a the parcel is lifted (consistent with its 
temperature and water vapor properties). Across the sample dataset we find that the LCL 
differences between pyPI and MetPy (when the parcel is lifted from the same sfc. level~1000hPa) 
can be up to 8 hPa. As a result, the associated CAPE calculation will be different, as the point where 



the ascent goes from dry to moist adiabatic can affect the amount of integrated temperature 
difference.  
 
More importantly are the specific assumptions made when computing CAPE itself. MetPy calculates 
CAPE assuming it is proportional to the vertically integrated temperature differences. SHARPpy 
assumes that CAPE is proportional to the vertically integrated virtual temperature differences. pyPI 
assumes that CAPE is proportional to the vertically integrated density temperature differences. In 
the lower part of the atmosphere the density temperature and virtual temperature will be the same 
(as r_T à r) and we would expect SHARPpy and pyPI to yield similar results if they are making the 
same ascent assumptions (below). However, without the virtual temperature correction, the errors 
in the MetPy CAPE calculation could be tens of percent (Doswell and Rasmussen 1994). 
 
pyPI also has the capability of scaling between reversible and psuedoadiabatic ascent, whereas 
MetPy and SHARPpy (to our knowledge) use exclusively pseudoadabiatic ascent. As noted in the 
manuscript’s main text, this will impact the buoyancy, and make the reversible calculations in pyPI 
(which are typically the default in PI studies) less comparable with other packages which only look 
at psuedoadiabatic ascent. 
 
We stress that it is the CAPE difference between the saturated CAPE in the eyewall and the 
environmental CAPE which drives the PI calculation (see also Garner 2015). We suspect that PI 
calculations will overall be sensitive to the definition/module of CAPE used. More work is needed to 
determine the sensitivity of pyPI to thermodynamic assumptions and functional forms (see 
response to other reviewer, where we discuss this in more detail, and following their suggestion 
provide a list of assumptions in Appendix B). It is our hope that the availability of the pyPI project 
will enable these and related studies, but a full analysis of this sensitivity is beyond the scope of this 
paper. 
 
We have now added a short discussion at the end of the CAPE algorithm description noting that 
other CAPE algorithms exist (citing MetPy and SHARPpy in particular) and have differences based on 
particular assumptions. The distinctions in pyPI’s definition of CAPE (especially the reversible ascent 
option and LCL definition) are also highlighted within section 3.2. 
 
Line 241: To test the sensitivity of the calculation to this convergence threshold, we reduce its value 
to 0.05 hPa, as suggested, and re-run the sample analyses. Because the threshold is just an upper 
bound on the uncertainty of the final minimum pressure (i.e. the final p_m in Eqn. 3), we expect 
that the related sensitivity on V_max will likewise be small and fractional. 
 
Across the full sample dataset we find that, between the calculations with convergence thresholds 
of 0.5 hPa and 0.05 hPa, the maximum difference in potential intensity (anywhere) is 0.26 m/s. 
Simultaneously, the computational cost of this tighter convergence threshold is an increase of ~3 
seconds per 100k profiles on our machine (a ~29% increase in elapsed run-time). Because the PI 
numerical errors are much smaller than those associated with the uncertainties in other 
parameters/assumptions (e.g. the C_k/C_D ratio), and by contrast the associated run-time costs are 
relatively high, we ultimately do not implement this change in pyPI v1.3. Depending on a user’s 
preference, needs, and available computational resources, they may want to make this trade-off 
between code efficiency and precision in their individual pyPI computations. 



 
We now include this sensitivity as a footnote in the main text.  
 
Line 281: This is an excellent question, as it useful to place the pyPI speed in context. 
 
After updating the code with small improvements and new version dependencies, the mean elapses 
run time (i.e. the wall time for the code’s execution) is now about 10.13 seconds on our machine (a 
laptop). 
 
To find the wall time associated with each pyPI, we resample (with replacement) environmental 
profiles from the MERRA2 2004 dataset and then run them through the pyPI algorithm. This process 
is repeated 10 times to assess the variance of the run-time. As we scale the number of samples 
computed through the algorithm, the run time appears to linearly scale; see attached Fig. R1. 
 
The results are somewhat noisy, possibly because of system processes or sampling; ultimately 
100,000 profiles takes about 10.1 seconds to calculate PI with pyPI. 
 
We perform the same analyses with the original Bister and Emanuel (2002) PI algorithm---which is 
also archived within the pyPI repository, as noted above---see attached Fig. R2. 
 
We find that the MATLAB algorithm appears less noisy, but likewise scales linearly with the number 
of runs processed through the algorithm. The MATLAB algorithm takes about 8.3 seconds to 
calculate PI for 100,000 profiles (about 18% less elapsed run-time than for pyPI). Note that although 
the MATLAB algorithm outperforms pyPI, it retains the original errors in constants, and poorly 
handles missing data (as discussed in the main text, section 4.2). In contrast, the conditional 
statements which properly handle missing data in the pyPI algorithm increases its run time. 
 
We stress that run times will ultimately depend each user's particular implementation and system. 
Whereas these tests provide context for pyPI’s performance relative to MATLAB for our application 
and system, they are not necessarily representative for each application or user. 
 
We have added a brief discussion on the mean pyPI run time (and comparisons with the MATLAB 
algorithm) to the main text. 
 
Line 289: Thank you for noting this. We have added Bryan et al. (2012) and Green and Zhang (2014) 
as additional references for the sensitivity of numerical simulations to the C_k/C_D ratio. 
 
LaTeX Equations: Thank you for the suggested equation improvements. We have modified the 
formatting for these as follows: 
Eq. 8—An exponential superscript (^) has been added and the exponential is no longer vertically 
compressed 
Eqs. 3, 7, 12-13, 16, and throughout text—“log” has been replaced with \log 
Eqs. 5, 8-10, and 14—now have parentheses which vertically extend 
Eqs. 5 and 14—“e^” has been replaced with \exp as suggested. This also distinguishes the 
exponential from water vapor pressure introduced in Eq. 4 
 



Lines 306-307: We agree this original statement was not specific enough. 
As an exercise, one can determine a rough estimate of how much dissipative heating influences the 
potential intensity calculation. As noted in Bister and Emanuel (1998), including dissipative heating 
acts to scale the enthalpy/drag flux ratio (C_k/C_D) by a factor of T_s/T_0 (see Eqn. 2). A rough 
scaling for this factor during a tropical cyclone season is T_s/T_0~300K/200K~3/2. As V_max is 
proportional to the square root of this quantity, we estimate that dissipative heating scales V_max 
by sqrt(3/2)~1.22, or about 22%. 
 
We can also explore the influence of dissipative heating empirically. Using the sample input dataset 
in this study (from MERRA2 in 2004), we recalculate the potential intensity after turning dissipative 
heating off (diss_flag=0). Plotting the scatter between the valid PI calculations with and without 
dissipative heating against one another, we find (attached Fig. R3). 

 
There is a strong approximate-linear relationship between PI calculations with and without 
dissipative heating. The slope of the linear fit over the full range of valid PI values is ~1.34, which is 
slightly larger than the rough scaling estimate above. 
 
Looking more closely, it appears that this relationship is not entirely linear. To look at how it 
changes as a function of the PI calculation, we bin each profile’s PI calculations with and without 
dissipative heating (at each individual time and grid location) by its value of non-dissipative heating 
PI (every 10 m/s). Then we recalculate the slope of the linear fit between the two potential intensity 
samples in that bin, and determine the percent difference between them (attached Fig. R4). 
 
The slopes of these linear fits appear to be noisy, which likely comes from the changing number of 
profiles/samples in each bin, and the individual SST/outflow temperature properties dominating 
each bin. The percent difference between these potential intensities, however, is consistently 
around ~25% at intensities of tropical storm wind speeds or greater. While a full analysis of this 
topic is beyond the scope of this model development study, it is clear that the effects of dissipative 
heating are not always static---a result which is consistent with how sea conditions and wind speeds 
may affect the enthalpy and drag fluxes (e.g. Bao et al. 2011). It also illustrates the usefulness of 
pyPI for investigating these PI properties with gridded datasets. 
 
Taken altogether, we conclude that (on average) dissipative heating will increase PI calculations by 
about 20-30%. Old lines 306-307 have been rewritten as: 
“Scaling arguments and empirical estimates suggest that dissipative heating increases PI by about 
20-30% (not shown).” 
The above results been included in the pyPI Git repository in a Jupyter notebook 
(dissipative_heating_effect.ipynb). 
 
Line 350: This illustrative analysis shows the flags for a single month (September 2004) of pyPI 
output. This was previously noted in the Figure 2 caption, but now we also clarify in text. 
 
Line 376: Thank you for noting this needed specificity. We now note this is “instead of 6-hourly 
calculations” in the main text. 
 



Temperature Units: The distinction of input Celsius units (for the temperature profile/SST) and 
output Kelvin units (for the outflow temperature) is a hold-over from the original Bister and 
Emanuel (2002) algorithm. As you note, we suspect the roots of this difference are that some 
observational input temperatures are provided in degrees Celsius (e.g. soundings). However, other 
sources (such as the reanalyses here) provide their raw gridded data in kelvin. In light of this, we 
agree that a unit check for temperatures is warranted. 
 
To follow your suggestion, we have added a very simple set of conditional statements to the main 
PI algorithm which check whether the SST and the air temperature in the input profile are in 
degrees Celsius. They examine the input temperatures, and if any of these exceed 100 (which would 
be indicative of unrealistic Celsius inputs, pointing to a potential input in kelvin), then the code fails 
and returns missing values and the associated flag. 
 
A long-term goal for improving pyPI (compared with this rudimentary test) is to integrate full unit 
support, through the use of a tool such as Pint (https://pint.readthedocs.io/en/stable/). This, 
however, would require an overhaul of the existing code and could also noticeably affect the run 
time; we therefore leave it for future work. 
 
Typographical and Grammatical errors 
 
Thank you for noting the paper’s original tone took away from the study. While this study is a model 
description paper, and hence documenting the model development process is important, we 
understand and agree that using these personal pronouns detracts from the overall presentation of 
this study. 
 
Accordingly, throughout the study personal pronouns have been removed and those sentences 
have either been rewritten or “I” has been replaced with a more passive voice. We have also 
revised the manuscript to remove any unnecessary (too-frequent) references to  our own work. In 
line with your comment, we hope this revision makes the paper more readable and professional, 
consistent with the tone of more traditional peer-reviewed manuscripts. 
 
Line 21: Earth is now capitalized. 
 
Line 39: Thank you for noting this was incomplete; Kerry Emanuel’s full name has been added. 
 
Line 50: Added “a” 
 
Line 465: “approximately” now replaces the original tilde. 
 
Line 483: These commas have been added. 
 
Eq. 14: Subscript “_d” has been added; the equation has also been updated for readability (as noted 
above). 
 



Fig. 6: While the longitudinal extent of the figure is already global we agree that we need to make 
the best use of the whitespace around it. We have therefore increased the overall size of the image 
and removed the original whitespace around the image (especially on the long/longitudinal edge). 
 
Zenodo link: The in text reference to the Zenodo archive has been removed from the main text, and 
is now only included in the Code Availability section. The line (original line 123-124) discussing 
comments within the code, which referenced this, has been removed for readability (consistent 
with the tonal changes discussed above). 
 
References: 
 
Bao, J.-W., Fairall, C. W., Michelson, S. A., & Bianco, L. (2011). Parameterizations of Sea-Spray 
Impact on the Air–Sea Momentum and Heat Fluxes, Monthly Weather Review, 139(12), 3781-3797. 
 
Hart, J.A., and W. Korotky, 1991: The SHARP workstation v1.50 users guide. National Weather 
Service, NOAA, US. Dept. of Commerce, 30 pp. [Available from NWS Eastern Region Headquarters, 
630 Johnson Ave., Bohemia, NY 11716.] 
 
Lin, I.-I., Black, P., Price, J. F., Yang, C.-Y., Chen, S. S., Lien, C.-C., Harr, P., Chi, N.-H., Wu, C.-C., 
and D'Asaro, E. A. (2013), An ocean coupling potential intensity index for tropical 
cyclones, Geophys. Res. Lett., 40, 1878-1882, doi:10.1002/grl.50091. 
 
Rousseau-Rizzi, R., & Emanuel, K. (2019). An Evaluation of Hurricane Superintensity in Axisymmetric 
Numerical Models, Journal of the Atmospheric Sciences, 76(6), 1697-1708. Retrieved Feb 5, 2021, 
from https://journals.ametsoc.org/view/journals/atsc/76/6/jas-d-18-0238.1.xml 
 


