
Final author response  
Submission “Latent Linear Adjustment Autoencoders v1.0: A novel method for 
estimating and emulating dynamic precipitation at high resolution” 

We thank both referees for their insightful comments, helpful feedback and their positive 
evaluation. We address all points in detail below where we show the referees’ comments in 
italics for ease of exposition. 
 
Please note: In contrast to our previous response in the public discussion phase, we found one 
erroneous response in response to Reviewer #1's comments "On the example of applications": 
The number in the text (l. 259) in the original manuscript does indeed not match with Fig. 8, 
because Fig. 8 reflected the average across six holdout members, while the value in the text 
(taken from Fig. 7) reflects the RMSE across the three specific holdout members illustrated in 
Fig. 7; both values reflect RMSE's over 50-year precipitation trends calculated for local 
grid cells. We apologise for our previous confusing reply in the public discussion regarding this 
comment; please find more detailed comments and all changes made to Fig. 8 described in 
detail below. 

Review 1 

Major comments:  

1. I don’t understand why you train your autocoder!"#!$%&&'()*)!+,-,.!/0121!34!,!50,#51!

-0,-!6"7!3#587+1!4"91!-0129"+6#,935,8!43:#,8!3#!-01!;2153;3-,-3"#!<318+!=01#!6"7!

93#39341!>!?!>@X . I understand that you detrend the SLP EOF time series, but you don’t 

detrend precipitation. Why not training on 1955-1995 and potentially use more members 
to have the same amount of data? 

Thank you for raising these important points. We agree that there is a chance to include some 
thermodynamical signal under a long training period (although SLP is detrended). We also 
agree that it is important for applications to understand the sensitivity to (i) the training period 
choice, (ii) the amount of training data as well as (iii) the sensitivity to different detrending 
approaches. Hence, we perform the following additional analyses:  

(1) Sensitivity test to training data amount and training period:  

We train on a shorter period from 1955-2020 (as suggested by referee 2), using the same 
ensemble members as in the first submission (i.e., equivalent to a ~43% reduction in the 
training data, but more importantly, restricting the training to a period with relatively modest 
precipitation change). We then reproduce the dynamical adjustment analysis with this model 



trained on (i) this shorter time period; and (ii) less data. We find that all performance measures 
(i.e., mean squared error, etc.) indicate very robust results with respect to these changes in the 
input data. In particular, the dynamical adjustment analysis based on the shorter training period 
reveals almost identical results as compared to the longer 1955-2070 training period. That is, 
the residual variability is much closer to the ensemble mean forced response (see plot 
reproduced below: Fig. 1, compare to Fig. 6 in the main manuscript). This sensitivity analysis 
thus provides support that our method is robust to (i) a shorter time period and (ii) less training 
data points. The detailed results can be found in Appendix B of the revised manuscript (Figs. 
A1-A3).  



 

 

Figure 1: Dynamical adjustment analysis for the Latent Linear Adjustment Autoencoder (LLAAE) 
model trained only on the period 1955-2020 and thus with 43% fewer training data points. 
Compared to Fig. 6 in the main paper, which shows the same analysis for the LLAAE model 
with more training data (1955-2070), the results shown here are almost identical. 

 



(2) Trend removal sensitivity test:  

As correctly pointed out by the reviewer, the question of whether and how to detrend prior to 
dynamical adjustment is open, somewhat subjective, and often discussed as an inherent 
subjective choice/uncertainty in dynamical adjustment papers (see, e.g. Deser et al. 2016, or 
Lehner et al. 2017, and Lehner et 2018, for a discussion about trend removal). We agree that 
more discussion on this point is needed in the revised manuscript, and we have added this 
discussion in lines 320-335.  
 
Forced changes in European winter SLP are highly uncertain, and models disagree on the sign 
and patterns of forced circulation change (Fereday et al. 2018) - although a northward shift in 
storm tracks and a dynamical extension of the subtropical dry zones is generally expected but 
not supported by all models (Fereday et al. 2018). Thermodynamic aspects are typically 
considered more robust across models (Shepherd et al. 2014; Fereday et al. 2018).  
 
As pointed out by the reviewer, we have orthogonalized SLP EOF time series w.r.t. the 
ensemble-mean SLP change over time (i.e., a very simplistic but generic “detrending”). Our 
main motivation to use this somewhat simplistic detrending approach in our proof-of-concept 
study was to avoid that the ML method would take hypothetical dynamical changes to predict 
thermodynamical trends in precipitation (as the reviewer correctly pointed out). In other words, 
our goal was to estimate daily precipitation variability at high resolution in absence of SLP 
changes; that is introducing LLAAEs as a versatile tool for estimating a high-resolution 
precipitation field based on a coarse-resolution sea level pressure field.  
 
Our analysis shows that the residuals match the ensemble mean very well (Fig. 6 in the main 
manuscript). Hence, if a trend signal would be included in the prediction of the precipitation field 
(e.g., due to hypothetical remaining trend artefacts in the pressure field), this effect is likely to be 
small because the residuals match the ensemble mean (forced) trend very well.  
 
However, in addition to the results so far, we test an alternative simple detrending approach, 
where SLP is not detrended, but where we detrend precipitation using a simple LOESS 
smoother, fitted on the ensemble (seasonal) means at every location and subtracted from every 
day individually. (Furthermore, we here use the shorter 1955-2020 period for training the 
model.) For the dynamical adjustment analysis, we then compute the residuals based on the 
non-detrended precipitation data and our predictions (from the model trained on the detrended 
precipitation data; see Fig. 2). This analysis suggests that this approach to detrend precipitation 
is too simplistic since the residuals of the dynamical adjustment analysis underestimate forced 
changes (the ensemble mean) to some extent (Fig. 2). There are several possible reasons for 
this:  
(1) Precipitation change cannot be modelled by a single additive mean change across the whole 
distribution. For instance, precipitation change is known to increase the variance of the 
precipitation distribution (Pendergrass et al. 2017). Hence, by subtracting the estimated, 
seasonally averaged precipitation trend we may have not fully removed the trend for wet days. 



Developing a more refined approach to remove the forced precipitation changes from daily data 
is non-trivial and beyond the scope of this work, but will be addressed in future work.    
(2) There may be some dynamically-induced changes in precipitation, but it would be difficult to 
evaluate this without any additional simulations where dynamical effects and thermodynamical 
effects could be separated.   
 
Overall, we conclude that our simple SLP detrending (without detrending precipitation) is a 
useful approach for introducing LLAAEs as a versatile tool for dynamical adjustment, as 
demonstrated by the fact that the residuals of individual ensemble members after dynamical 
adjustment match the ensemble mean trend of precipitation very well (e.g., Fig. 6 in the main 
manuscript). However, we acknowledge that considerations around whether and how to detrend 
the data prior to dynamical adjustment are crucial, especially for real-world applications. We 
discuss this in the revised manuscript (lines 320-335 and Appendix B), and we acknowledge 
that more work is needed to fully understand the effect of detrending choices, which however is 
beyond the scope of the present study. 
 
 
 

 

Figure 2: Dynamical adjustment analysis for LLAAE model trained only on 1955-2020 period 
and with detrending only precipitation using a LOESS smoother.  



 

        

2. It would be good to know the minimal amount of data needed to train the algorithm. 
Indeed, if 1955-2070 daily data from a 9 member ensemble is needed to train the 
algorithm, then it would be cheaper to directly calculate the forced response from this 9-
member ensemble (see comments below on Fig. 8) without dynamical adjustment. 
Ideally, one would like to dynamically adjust expensive simulations which cannot be run 
for long periods of time (e.g. a few decades).  

We provide some analysis in that direction by limiting the training period to 1955-2020 (see 
above). This reduction in training data does not have a noticeable effect on the performance of 
the model (see above). In general, “the minimal amount of data” will depend on one’s 
requirements of how to use the method. We expect the performance of the method to decrease 
gradually when further reducing the amount of training data.  

We agree with the reviewer that, as machine learning algorithms are known to require rather 
large amounts of training data, “proving” the usefulness of autoencoder dynamical adjustment in 
a large ensemble may not be as straightforward (as correctly pointed out by the reviewer, we 
used nine ensemble members for training, which we could have used instead for calculating a 
9-member ensemble average). However, we anticipate the ultimate applications of 
autoencoder-based dynamical adjustment not on a large ensemble (where the forced response 
is “known” anyways, to some extent), but instead on simulations with models where only one (or 
very few) ensemble members may be available. Hence, our present manuscript is intended as a 
proof-of-concept of the method within a large ensemble. As the next step, we envision the 
application to different climate models (e.g. training on a large ensemble or multiple large 
ensembles, and application of the dynamical adjustment to models for which only a few 
simulations exist), and with ultimate application of the trained autoencoders on reanalysis SLP 
data. This would allow us to leverage the available data from climate model simulations while 
applying the method in a context where a direct calculation of a multi-member ensemble mean 
is not possible. We discuss and clarify this point in the revised manuscript in lines 336-358 and 
Appendix B. 

On the examples of application: 

1. I am convinced by the use of the new tool for dynamical adjustment on a large domain 
and seasonal scale (Fig. 6), this seems to be very successful, even with only 1 member. 
This is quite impressive. For more detailed spatial scales however, it is less successful 
and I guess from extrapolating Fig. 8 that using 7 or 8 members for the “traditional runs” 
(out of 50) outperforms the dynamical adjustment. I would like to see more discussion on 
this in the text and I think that Fig. 8 could be improved with a few changes:   
     



● extend the x axis to at least 10 members, to see when a “traditional averag- ing” 
outperforms the dynamical adjustment (this implies performing dynamical 
adjustment on more holdout members).  

● you plot only one value and it does not correspond to the one in the text (line 
255), I presume for 1 member you can have 41 different values (excluding the 
training set), so you can add median + inter-quartile range / sqrt(number of 



samples), so that one knows if the difference is statistically significant, but I 
presume so. 

Thank you for these suggestions, and for pointing out that Fig. 8 was thus far a bit unclear. We 
have improved Fig. 8 in the revised manuscript as suggested (figure is reprinted below/aside for 
ease of reading), by extending to 20 ensemble 
members and by bootstrapping from all 41 holdout 
members in order to show the full distribution and 
hence to better describe the variability/uncertainty 
of the reconstruction errors. We show the full 
distribution of RMSEs from 41 holdout members in 
the form of boxplots: 

  

 

Furthermore, we have added additional discussion 
about the results shown in Fig. 8, as suggested by 
the reviewer (l. 261-272 in revised manuscript): 

“Fig. 8 (top panel) shows the RMSE for the 
reconstruction of forced 50-year precipitation 
trends (i.e., the 50-member average), via 
dynamical adjustment and the averaging of 
original ensemble members, as a function of the 
number of ensemble members n. With an 
increasing number of ensemble members (n), the 
reconstruction RMSE of the forced response 
reduces considerably. Hence, dynamical 
adjustment is particularly useful when only few 
members are available; e.g. for small ensembles 
up to five members. If only one member is 
available, the reconstruction RMSE of the forced 
50-year precipitation trend is reduced by more 
than half via dynamical adjustment. Conversely, to 
achieve the same RMSE of a single dynamically 
adjusted ensemble member, an ensemble 
average of about four to six members would be 
required (Fig. 8, top panel). On the other hand, for 
ensembles with more than about 14 members, 
dynamical adjustment does not improve the ability 
to reconstruct the forced response. Moreover, 
dynamical adjustment reduces not only the 
reconstruction RMSE, but also reduces the spread 



of the distribution across ensemble members, as indicated by the boxes and whiskers in Fig. 8 
(top panel). The overall reduction of the reconstruction RMSE also holds particularly for specific 
circulation regimes (Fig. 8, middle and bottom panel), and is discussed in the next subsection.” 

Please note that the number in the text (l. 259) in the original manuscript did indeed not match 
with the figure, because Fig. 8 reflected the average across six holdout members, while the 
value in the text (taken from Fig. 7) reflects the RMSE across the three specific holdout 
members illustrated in Fig. 7. However, please note that in the revised manuscript the RMSE 
values quoted in the text (l. 259, identical values to original manuscript) fall well inside the 
distribution of RMSEs before and after dynamical adjustment as illustrated in Fig. 8. 

Also, we apologize for our previous confusing comment in the public discussion regarding the 
reviewer’s comment; now we believe all issues are fixed. 

● Add details to the caption. I presume that it shows the RMSE of 50y trend maps 
calculated by averaging n members compared to 50y trends using 50 member 
average. It is not very clear from the caption.  

Yes, exactly. We have improved the caption in the revised manuscript such that it reflects all 
details about the figure content: “RMSE of 50-year trends, calculated by averaging n members, 
compared to 50-year trends using 50-member ensemble average (‘forced response’). RMSE’s are 
based on land grid cells only and shown for averaging n original ensemble members (black) and 
averaging n dynamically adjusted ensemble members (red). Trends are calculated over the entire 
DJF season (top), and only for EOF1+ (middle) and EOF1- situations (bottom). Boxplot whiskers 
indicate 2.5th and 97.5th percentiles (boxes show 25th and 75th percentiles) of RMSE distribution 
obtained from bootstrapping from the 41 holdout ensemble members”.  

   

2. The tool is successful for seasonal means. Can you comment on the potential use of this 
tool for assessing trends in extreme precipitation, for which regional models are more 
trustworthy than global models? The prediction in precipitation fields seems smoothed 
out compared to original fields. And not taking into account thermodynamical fields as 
predictors may be limiting the representation of extremes, even in a present-day context. 

 
Extreme precipitation is important and there is a demand for information about these events at 
as high spatial resolution as possible. Our autoencoder may be able to fill an important gap in 
constructing extreme events in that it can reconstruct the dynamical component of extreme 
precipitation events (at least, the component proportional to surface pressure). Estimating the 
thermodynamic component is generally more straightforward than the dynamical component, 
and it may be possible to estimate it with other more straightforward approaches, particularly in 
winter. The reviewer is correct though, that the autoencoders, similar to other statistical/ML 
techniques, have a tendency to “smooth out” predictions (and thus probably underpredict the 
most extreme precipitation days). However, the technique may still be an improvement over 
existing alternatives: the resulting smoothing may still be less than the effective smoothing that 



occurs at the coarse resolution climate models. Rigorous evaluation of this application is, 
however, beyond the scope of this manuscript.  
We have added discussion around extreme events in the section that discusses the application 
of LLAAEs to composites of specific circulation regimes (lines 306-311): 
 
“The application of dynamical adjustment to composites of specific circulation regimes raises 
the question as to whether the Latent Linear Adjustment Autoencoder may be applicable to 
understanding the dynamical component in extreme precipitation events. While the LLAAE may 
be able to fill an important gap in reconstructing the dynamical component of daily precipitation 
fields, possibly including days with extreme precipitation (at least, the component proportional to 
surface pressure), it exhibits a tendency to smooth predicted precipitation fields (Fig. 3), which 
would presumably result in somewhat underpredicted extreme events. However, a detailed 
evaluation of the LLAAE in the context of extreme events will be the focus of future work.” 

 
 

3. Regarding the weather generator, I do struggle to exactly understand the novelty of your 
method. If I understand correctly, you are bootstrapping the time series of EOFS, but 
keeping each daily EOF set as it is, so you are not “creating” new pressure patterns, just 
shuffling them. One could do this directly by shuffling daily precipitation maps in the 
same way. I agree that one would need 150 years of present-day data instead of 
simulations with evolving greenhouse gases, but this is easily achieved these days. It is 
interesting that you show that shuffling 150 years of data seems as good as running 
several members, at least for the bulk of precipitation distribution. I wouldn’t think this is 
true for extremes. I think the use for dynamical adjustment has much more potential than 
the weather generator. 

I would suggest to reduce this section to have more space in the article for a figure to 
reply to my point 2 about the method.  

Thank you for raising this concern. Since both referees suggested shortening this section, we 
have decided to follow this advice. Hence, we remove the section on the weather generator 
from our manuscript in order to focus on the method introduction and dynamical adjustment 
illustration, but we mention/discuss the possibility of weather generators here and we will 
expand on it elsewhere. 

To answer your questions, note that the emulator generates dynamically-induced variability in 
the daily precipitation fields only. Hence, this cannot be achieved by using daily precipitation 
fields directly (additionally, note that we draw a bootstrap sample which is not equivalent to 
shuffling the data points).  

Lastly, we agree that the performance for extremes is likely to be worse.      
        



Minor comments:  

Fig. 7, 10, 11: the scatter plots are saturated, it may be better to plot a gaussian kernel 
density estimation https://seaborn.pydata.org/generated/seaborn.kdeplot.html  

We have changed the scatter plots to contour lines that show the 99% contours and 
50% contours for each of the three illustrative ensemble members in Figs. 7, 10 and 11.  

Most figures with blue shading only: I find the continuous colour shading difficult, it may be best 
to reduce the number of colour levels used. One could also potentially use a sequential colour 
map like terrain_r for precipitation fields. It will make figures more readable and may reduce the 
need to show square root precipitation fields, which are less intuitive. 

Thank you for the suggestion. We have experimented with different color maps and different 
numbers of color levels but have not found alternative settings that yielded better figures.   
  

Fig. 9: remove the numbers on it, you are not using them in the article.     

We have removed the numbers. 

 

"As is to be expected, the emulated predictions based on the individual spatial fields are not 
visually distinguishable from the original predictions." Do you mean that they look “physical” with 
no artefacts? They are not meant to be similar to the original predictions. This is just like Fig. 3, I 
don’t really see the point of this figure. 

Fig. 12: caption could be a bit more wordy to be self-explanatory if readers only partially read 
the article.  

As we have decided to remove the section on the weather generator, we have also removed 
Fig. 12.  
 

Typos: Line 17: are expected to remains in the Line 176: Fig. 7a -> Fig. 9a  

Thank you, we have fixed the typos.  
 



Review 2 

Major comments:  
1. The training (1955-2070) and testing (2071-2100) periods are consecutive, which I do 

not think is the best choice, as the training data is likely to contain a forced precipitation 
trend. Separating the training and testing datasets (e.g. training 1955-2020) would 
provide a more rigorous test of whether the dynamical adjustment method can sepa- 
rate internal variability from a forced signal, without much of the forced signal being 
present in the training dataset. The authors should test at least some of their results for 
sensitivity to the choice of training period. 
 

Thank you, we provide two additional analyses: (1) to identify the sensitivity to the training 
period, and (2) to identify the sensitivity to the trend removal procedure. In short, reducing 
the training period to 1955-2020 does not have a noticeable effect on the results (see detailed 
discussion on this in the revised manuscript in Subsection 4.4, lines 336-346, and in Appendix 
B). The SLP trend removal procedure used in the paper is shown to yield residuals that match 
the ensemble mean precipitation trend very well. However, there is a known sensitivity of 
dynamical adjustment to different detrending choices, and we show this for the case when SLP 
would not be detrended but precipitation would be detrended (in a simplistic manner). We 
discuss the implication of this limitation of dynamical adjustment (generally) in the revised 
manuscript (Subsection 4.4, lines 320-335, and Appendix B). Please see our response to Major 
Comment 1 from the first referee for all details on both additional sensitivity tests. 
 

 
2. I am not convinced that the forced signal that is extracted using the dynamical 

adjustment method is a purely thermodynamic signal of precipitation change, for two 
reasons. Firstly, the residual trend will include not only Clausius-Clapeyron-related 
increases in moisture, but also any other change in the relationship between SLP and 
precipitation under climate change. This could include, for example, changes in land-
atmosphere interactions or weather system dynamics. 

Secondly, there may be changes in the pattern of the individual SLP EOFs under climate 
change. Even small changes could have large consequences for regional precipitation. 
The authors have tried to address this point by detrending the SLP time-series, based on 
trends in EOF1, but I was slightly confused by the description of this detrending, and am 
not convinced that it would account for any (possibly subtle) changes in the shape of 
EOFs. 

The dynamical adjustment method will remove any signal caused by temporal variation 
in the frequency of the SLP EOFs that were identified during the training period. The 
removed component will likely be due mainly to internal variability, though it could also 
include some forced signal if forcing were to drive any systematic change in the relative 
frequency of SLP EOFs. The residual will likely reflect a forced signal but calling it a 



thermodynamic precipitation change is too much of an oversimplification to be useful. 
Other factors could also be important.  

The reviewer raises very important points, and we agree. Referring to the residual as a pure 
“thermodynamic signal” is clearly an oversimplification. What we meant to say, and this is is 
agreement with the use of terminology in many dynamical adjustment papers (e.g. Deser et al 
2016, Lehner et al 2017), is that we expect the residual time series to *contain* the imprint of 
thermodynamical signals, in particular thermodynamical changes (for example, as pointed out 
by the reviewer, increases in temperature that induce higher water-holding capacity of the 
atmosphere via the C-C relation). We have rephrased the revised manuscript such that, (1) it 
becomes very clear that we are not claiming that the residual is a purely thermodynamical 
signal, but that it may contain effects of feedbacks, remaining internal variability, circulation 
components not directly captured by SLP (lines 192-197), etc. In addition, long-term dynamical 
changes may even be part of the residuals; (2) we have also clarified that the choice of 
detrending (i.e., which variables to detrend, etc.) remains a key uncertainty in dynamical 
adjustment. Hence, clearly, more work is needed to fully understand the different implications of 
trend removal (see discussion in Subsection 4.4, lines 320-335, and Appendix B), but we 
believe this work is beyond the present study as the goal of this study was to illustrate Latent 
Linear Adjustment Autoencoders as a versatile tool to simulate daily precipitation variability 
based on a coarse SLP field. 

3. Dynamical adjustment appears to have the potential to significantly reduce the size of 
ensembles needed to reliably extract forced trends. However, a certain number of model 
years are needed to train the algorithm, so it is not clear exactly what the computational 
cost saving would be overall. Could the authors provide an estimate of the overall 
fractional saving in computational cost, taking algorithm training into account? 

Please see our reply to Point 2 made by Reviewer 1 for a more in-depth discussion. In short, we 
agree, making an exact calculation of “number of ensemble members saved” is difficult because 
of the training. But this is also not our main point: Our main point was to provide a proof-of-
concept for applying dynamical adjustment to high-resolution regional precipitation fields (which 
is novel), and we anticipate eventually our model to be trained on large ensembles, but to be 
applied to, e.g. models where only few runs are available, or even reanalysis. We have included 
this discussion in Subsection 4.4 (lines 347-358). 

4. Is there an alternative type of machine learning algorithm that could be used to link SLP 
EOFs as input directly to the 2D precipitation fields as output (e.g. some form of neural 
network)? What are the benefits of using the intermediate stage of the autoencoder? I 
am not suggesting any extra analysis here, only for the authors to justify their choice of 
method a bit more. 

Linking SLP EOFs as input with the 2D precipitation fields as output without having the 
intermediate stage of the autoencoder would constitute a challenging estimation problem. Here, 
the autoencoder helps to estimate the decoder. We are not aware of alternative ML algorithms 
for this input/output combination and our methodology is novel in this regard.  



More generally, one could extend the method of Sippel et al. by using a neural network instead 
of regularized linear regression. In that case, however, one would have a separate fit for each 
grid point (i.e. not the 2D precipitation field as output). This would be computationally 
demanding and it is also questionable whether the resulting predicted spatial field would be as 
coherent as what we obtained here. We have added this discussion in Subsection 4.5 
“Alternative statistical and machine learning approaches”. 

Minor points  

1. It is not clear from the objectives in section 1 that the dynamical adjustment will be used 
to separate forced precipitation trends from internal variability. It would be useful to the 
reader for this objective to be spelled out here. 

Thank you. We have clarified this in the revised manuscript.  

2. Fig. 3: How were these examples chosen? Are they representative of the data as a 
whole? It might be more useful to show high, medium and low skill cases rather than a 
random selection. 

Thanks for the suggestion. The examples were chosen randomly but we have now updated the 
figure (Fig. 3 in the revised manuscript) to show examples for different quantiles of the loss 
(high, medium and low skill cases).  
 

3. Figure colour scales. It is quite difficult to get much information out of the current single 
shading colour scales. I appreciate this is not a simple problem, but perhaps these could 
be improved to show the spatial features more clearly. 

Thank you for the suggestion. We have experimented with different color maps and different 
numbers of color levels but have not found alternative settings that yielded better figures.   
  

4. Fig. 4 & 5: Why only use a single holdout ensemble member for this? Why not use all of 
them? Also, relative error might be more informative for Fig. 4, rather than absolute error 
which mainly picks out the regions of high precipitation. 

Fig. 4 and 5 look fairly similar for the other holdout members. 
Regarding the relative error, we show the R^2 values in Fig. 3: Note that the R^2 values are 
computed as 1 - relative error where relative error = mean(residual sum of squares)/mean(total 
sum of squares).  

Please also note that we have updated Fig. 8 to include all holdout ensemble members; and 
improved the characterisation of the distribution of RMSE’s using a bootstrapping approach and 
all holdout members.   
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