
Final author response  
Submission “Latent Linear Adjustment Autoencoders v1.0: A novel method for 
estimating and emulating dynamic precipitation at high resolution” 

We thank both referees for their insightful comments, helpful feedback and their positive 
evaluation. We address all points in detail below where we show our reply to reviewer 
comments in red for ease of exposition. 

Review 1 

Major comments:  

1. I don’t understand why you train your autocoder!"#!$%&&'()*)!+,-,.!/0121!34!,!50,#51!

-0,-!6"7!3#587+1!4"91!-0129"+6#,935,8!43:#,8!3#!-01!;2153;3-,-3"#!<318+!=01#!6"7!

93#39341!>!?!>@X . I understand that you detrend the SLP EOF time series, but you don’t 
detrend precipitation. Why not training on 1955-1995 and potentially use more members 
to have the same amount of data? 

Thank you for raising these important points. We agree that there is a chance to include some 
thermodynamical signal under a long training period (although SLP is detrended). We also 
agree that it is important for applications to understand the sensitivity to (i) the training period 
choice, (ii) the amount of training data as well as (iii) the sensitivity to different detrending 
approaches. Hence, we perform the following analyses:  

(1) Sensitivity test to training data amount and training period:  

We train on a shorter period from 1955-2020 (as suggested by referee 2), using the same 
ensemble members as in the first submission (i.e., equivalent to a ~43% reduction in the 
training data, but more importantly, restricting the training to a period with relatively modest 
precipitation change). We then reproduce the dynamical adjustment analysis with this model 
trained on (i) this shorter time period; and (ii) less data. We find that all performance measures 
(i.e., mean squared error, etc.) indicate very robust results with respect to these changes in the 
input data. In particular, the dynamical adjustment analysis based on the shorter training period 
reveals almost identical results as compared to the longer 1955-2070 training period. That is, 
the residual variability is much closer to the ensemble mean forced response (see plot 
reproduced below: Fig. 1). This sensitivity analysis thus provides support that our method is 
robust to (i) a shorter time period and (ii) less training data points. The detailed results can be 
found in the Supplement of the revised manuscript.  



 

 

Figure 1: Dynamical adjustment analysis for the Latent Linear Adjustment Autoencoder (LLAAE) 
model trained only on the period 1955-2020 and thus with 43% fewer training data points. 
Compared to Fig. 6 in the main paper, which shows the same analysis for the LLAAE model 
with more training data (1955-2070), the results shown here are almost identical. 

 



(2) Trend removal sensitivity test:  

As correctly pointed out by the reviewer, the question of whether and how to detrend prior to 
dynamical adjustment is open, somewhat subjective, and often discussed as an inherent 
subjective choice/uncertainty in dynamical adjustment papers (see, e.g. Deser et al. 2016, or 
Lehner et al. 2017, and Lehner et 2018, for a discussion about trend removal). We agree that 
more discussion on this point is needed in the revised manuscript.  
 
Forced changes in European winter SLP are highly uncertain, and models disagree on the sign 
and patterns of forced circulation change (Fereday et al. 2018) - although a northward shift in 
storm tracks and a dynamical extension of the subtropical dry zones is generally expected but 
not supported by all models (Fereday et al. 2018). Thermodynamic aspects are typically 
considered more robust across models (Shepherd et al. 2014; Fereday et al. 2018).  
 
As pointed out by the reviewer, we have orthogonalized SLP EOF time series w.r.t. the 
ensemble-mean SLP change over time (i.e., a very simplistic but generic “detrending”). Our 
main motivation to use this somewhat simplistic detrending approach in our proof-of-concept 
study was to avoid that the ML method would take hypothetical dynamical changes to predict 
thermodynamical trends in precipitation (as the reviewer correctly pointed out). In other words, 
our goal was to estimate daily precipitation variability at high resolution in absence of SLP 
changes; that is introducing LLAAEs as a versatile tool for estimating a high-resolution 
precipitation field based on a coarse-resolution sea level pressure field.  
 
Our analysis shows that the residuals match the ensemble mean very well (Fig. 6 in the main 
manuscript). Hence, if a trend signal would be included in the prediction of the precipitation field 
(e.g., due to hypothetical remaining trend artefacts in the pressure field), this effect is likely to be 
small because the residuals match the ensemble mean (forced) trend very well.  
 
However, in addition to the results so far, we test an alternative simple detrending approach, 
where SLP is not detrended, but where we detrend precipitation using a simple LOESS 
smoother, fitted on the ensemble (seasonal) means at every location and subtracted from every 
day individually. (Furthermore, we here use the shorter 1955-2020 period for training the 
model.) For the dynamical adjustment analysis, we then compute the residuals based on the 
non-detrended precipitation data and our predictions (from the model trained on the detrended 
precipitation data; see Fig. 2). This analysis suggests that this approach to detrend precipitation 
is too simplistic since the residuals of the dynamical adjustment analysis underestimate forced 
changes (the ensemble mean) to some extent (Fig. 2). There are several possible reasons for 
this:  
(1) Precipitation change cannot be modelled by a single additive mean change across the whole 
distribution. For instance, precipitation change is known to increase the variance of the 
precipitation distribution (Pendergrass et al. 2017). Hence, by subtracting the estimated, 
seasonally averaged precipitation trend we may have not fully removed the trend for wet days. 
Developing a more refined approach to remove the forced precipitation changes from daily data 
is non-trivial and beyond the scope of this work, but will be addressed in future work.    



(2) There may be some dynamically-induced changes in precipitation, but it would be hard to 
evaluate this without any additional simulations where dynamical effects and thermodynamical 
effects could be separated.   
 
Overall, we conclude that our simple SLP detrending (without detrending precipitation) is a 
useful approach for introducing LLAAEs as a versatile tool for dynamical adjustment, as 
demonstrated by the fact that the residuals of individual ensemble members after dynamical 
adjustment match the ensemble mean trend of precipitation very well (e.g., Fig. 6 in the main 
manuscript). However, we acknowledge that considerations around whether and how to detrend 
the data prior to dynamical adjustment are crucial, especially for real-world applications. We 
discuss this in the revised manuscript, and we acknowledge that more work is needed to fully 
understand the effect of detrending choices, but which goes beyond the scope of the present 
study. 
 
 
 

 

Figure 2: Dynamical adjustment analysis for LLAAE model trained only on 1955-2020 period 
and with detrending only precipitation using a LOESS smoother.  

 



        

2. It would be good to know the minimal amount of data needed to train the algorithm. 
Indeed, if 1955-2070 daily data from a 9 member ensemble is needed to train the 
algorithm, then it would be cheaper to directly calculate the forced response from this 9-
member ensemble (see comments below on Fig. 8) without dynamical adjustment. 
Ideally, one would like to dynamically adjust expensive simulations which cannot be run 
for long periods of time (e.g. a few decades).  

We provide some analysis in that direction by limiting the training period to 1955-2020 (see 
above). This reduction in training data does not have a noticeable effect on the performance of 
the model (see above). In general, “the minimal amount of data” will depend on one’s 
requirements of how to use the method. We expect the performance of the method to decrease 
gradually when further reducing the amount of training data.  

We agree with the reviewer that, as machine learning algorithms are known to require rather 
large amounts of training data, “proving” the case of autoencoder dynamical adjustment in a 
large ensemble may not be as straightforward (as correctly pointed out by the reviewer, we 
used nine ensemble members for training, which we could have used instead for calculating a 
9-member ensemble average). However, we anticipate the ultimate applications of 
autoencoder-based dynamical adjustment not on a large ensemble (where the forced response 
is “known” anyways, to some extent), but instead on simulations with models where only one (or 
very few) ensemble members may be available. Hence, our present manuscript was intended 
only as a proof-of-concept of the method within a large ensemble. As the next step, we envision 
the application to different climate models (e.g. training on a large ensemble or multiple large 
ensembles, and application of the dynamical adjustment to models for which only a few 
simulations exist), and with ultimate application of the trained autoencoders on reanalysis SLP 
data. This would allow us to leverage the available data from climate model simulations while 
applying the method in a context where a direct calculation of the (x-member) ensemble mean 
is not possible. We discuss and clarify this point in the revised manuscript. 

On the examples of application: 

1. I am convinced by the use of the new tool for dynamical adjustment on a large domain 
and seasonal scale (Fig. 6), this seems to be very successful, even with only 1 member. 
This is quite impressive. For more detailed spatial scales however, it is less successful 
and I guess from extrapolating Fig. 8 that using 7 or 8 members for the “traditional runs” 
(out of 50) outperforms the dynamical adjustment. I would like to see more discussion on 
this in the text and I think that Fig. 8 could be improved with a few changes:   
     

● extend the x axis to at least 10 members, to see when a “traditional averag- ing” 
outperforms the dynamical adjustment (this implies performing dynamical 
adjustment on more holdout members).  



Thank you for these suggestions, and for pointing out that Fig. 8 was thus far a bit unclear. We 
will improve Fig. 8 in a revised manuscript as suggested - extending to at least 10 members 
(possibly to 15 or 20). 

● you plot only one value and it does not correspond to the one in the text (line 
255), I presume for 1 member you can have 41 different values (excluding the 
training set), so you can add median + inter-quartile range / sqrt(number of 
samples), so that one knows if the difference is statistically significant, but I 
presume so. 

The number in Fig. 8 does not correspond with the text, because the figure illustrates RMSE’s 
for the spatial average precipitation trend (only land grid cells), whereas the number quoted in 
the text refers to the RMSE averaged across all individual grid cells (i.e. the number in the text 
corresponds to Fig. 7, lowest middle panel). We will make this distinction very clear in the 
revised manuscript, i.e., clarifying the grid-cell based error analysis (Fig. 7) vs. the domain 
average analysis in Fig. 8. In addition, we use all 41 holdout members to better describe the 
variability/uncertainty of the reconstruction errors. 

● Add details to the caption. I presume that it shows the RMSE of 50y trend maps 
calculated by averaging n members compared to 50y trends using 50 member 
average. It is not very clear from the caption.  

Yes, exactly. We will improve the caption accordingly.  

   

2. The tool is successful for seasonal means. Can you comment on the potential use of this 
tool for assessing trends in extreme precipitation, for which regional models are more 
trustworthy than global models? The prediction in precipitation fields seems smoothed 
out compared to original fields. And not taking into account thermodynamical fields as 
predictors may be limiting the representation of extremes, even in a present-day context. 

 
Extreme precipitation is important and there is a demand for information about these events at 
spatial resolution essentially as high as possible. Our autoencoder may be able to fill an 
important gap in constructing extreme events in that it can reconstruct the dynamical component 
of extreme precipitation events (at least, the component proportional to surface pressure). 
Estimating the thermodynamic component is generally more straightforward than the dynamical 
component, and it may be possible to estimate it with other more straightforward approaches, 
particularly in winter. The reviewer is correct though, that the autoencoders, similar to other 
statistical/ML techniques, have a tendency to “smooth out” predictions (and thus probably 
underpredict the most extreme precipitation days). However, the technique may still be an 
improvement over existing alternatives: the resulting smoothing may still be less than the 
effective smoothing that occurs at the coarse resolution climate models. Rigorous evaluation of 
this application is, however, beyond the scope of this manuscript.  
 



We agree with the reviewer that it is important to clarify these aspects related to potential 
extension toward extreme events more, and we will add a short discussion about future work 
into the Conclusion section.  
 

 
 

3. Regarding the weather generator, I do struggle to exactly understand the novelty of your 
method. If I understand correctly, you are bootstrapping the time series of EOFS, but 
keeping each daily EOF set as it is, so you are not “creating” new pressure patterns, just 
shuffling them. One could do this directly by shuffling daily precipitation maps in the 
same way. I agree that one would need 150 years of present-day data instead of 
simulations with evolving greenhouse gases, but this is easily achieved these days. It is 
interesting that you show that shuffling 150 years of data seems as good as running 
several members, at least for the bulk of precipitation distribution. I wouldn’t think this is 
true for extremes. I think the use for dynamical adjustment has much more potential than 
the weather generator. 

I would suggest to reduce this section to have more space in the article for a figure to 
reply to my point 2 about the method.  

Thank you for raising this concern. Since both referees suggested shortening this section, we 
have decided to follow this advice. Hence, we remove the section on the weather generator 
from our manuscript in order to focus on the method introduction and dynamical adjustment 
illustration, but we mention/discuss the possibility of weather generators here and we will 
expand on it elsewhere. 

To answer your questions, note that the emulator generates dynamically-induced variability in 
the daily precipitation fields only. Hence, this cannot be achieved by using daily precipitation 
fields directly (additionally, note that we draw a bootstrap sample which is not equivalent to 
shuffling the data points).  

Lastly, we agree that the performance for extremes is likely to be worse.      
        

Minor comments:  

Fig. 7, 10, 11: the scatter plots are saturated, it may be better to plot a gaussian kernel 
density estimation https://seaborn.pydata.org/generated/seaborn.kdeplot.html  

We will improve the scatter plots in Figs. 7, 10, 11 in the revised manuscript. 

 

Most figures with blue shading only: I find the continuous colour shading difficult, it may be best 
to reduce the number of colour levels used. One could also potentially use a sequential colour 



map like terrain_r for precipitation fields. It will make figures more readable and may reduce the 
need to show square root precipitation fields, which are less intuitive. 

Thank you for the suggestion. We have experimented with different color maps and different 
numbers of color levels but have not found alternative settings that yielded better figures.   
  

Fig. 9: remove the numbers on it, you are not using them in the article.     

This is correct, we will remove the numbers. 

 

"As is to be expected, the emulated predictions based on the individual spatial fields are not 
visually distinguishable from the original predictions." Do you mean that they look “physical” with 
no artefacts? They are not meant to be similar to the original predictions. This is just like Fig. 3, I 
don’t really see the point of this figure. 

Fig. 12: caption could be a bit more wordy to be self-explanatory if readers only partially read 
the article.  

As we have decided to remove the section on the weather generator, we have also removed 
Fig. 12.  
 

Typos: Line 17: are expected to remains in the Line 176: Fig. 7a -> Fig. 9a  

Thank you, we have fixed the typos.  
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