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Abstract. Increasing evidence from experimental studies suggests that the losses of semi-volatile vapors to the chamber walls 

could be responsible for the underestimation of organic aerosol (OA) in air quality models which use parameters obtained from 

the chamber experiments. In this study, a box model with volatility basis set (VBS) scheme was developed and the secondary 15 

organic aerosol (SOA) yields with vapor wall loss corrected were optimized by a genetic algorithm based on advanced chamber 

experimental data for biomass burning. The vapor wall loss correction increases the SOA yields by a factor of 1.9–4.9, and 

leads to a better agreement with the measured OA for 14 chamber experiments under different temperatures and emission 

loads. To investigate the influence of vapor wall loss correction on regional OA simulations, the optimized parameterizations 

(SOA yields, emissions of intermediate-volatility organic compounds from biomass burning, and enthalpy of vaporization) 20 

were implemented in the regional air quality model CAMx (Comprehensive Air Quality Model with extensions). The modeled 

results from the VBS schemes with standard (VBS_BASE) and vapor wall loss corrected parameters (VBS_WLS), as well as 

the traditional two-product approach were compared and evaluated by OA measurements from five Aerodyne aerosol chemical 

speciation monitor (ACSM)/aerosol mass spectrometer (AMS) stations in the winter of 2011. An additional reference scenario 

VBS_noWLS was also developed using the same parameterization as VBS_WLS except for the SOA yields which was 25 

optimized assuming there is no vapor wall loss. The VBS_WLS generally shows the best performance for predicting OA 

among all OA schemes, and reduces the mean fractional bias from -72.9% (VBS_BASE) to -1.6% for the winter OA. In Europe, 

the VBS_WLS produces the highest domain average OA in winter (2.3 µg m-3), which is 106.6% and 26.2% higher than 

VBS_BASE and VBS_noWLS, respectively. Compared to VBS_noWLS, VBS_WLS leads to an increase in SOA by up to 

~80% (in Balkans). VBS_WLS also leads to a better agreement between the modeled SOA fraction in OA (fSOA) and the 30 

estimated measured values in the literature. The substantial influence of vapor wall loss correction on modeled OA in Europe 

highlights the importance of further improvements in the parameterizations based on laboratory studies with a wider range of 

chamber conditions and field observations with higher spatial and temporal coverage. 
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1 Introduction 

Organic aerosol (OA) accounts for a substantial fraction of atmospheric particulate matter (Jimenez et al., 2009), which is 35 

closely associated with human health impacts and climate change (Cohen et al., 2017; Kanakidou et al., 2005; Lelieveld et al., 

2015). Organic aerosol originates from a variety of natural and anthropogenic sources (Hallquist et al., 2009), among which 

residential biomass burning emission has been recognized as the dominant source for both primary (POA) and secondary (SOA) 

organic aerosols in Europe during winter time (Butt et al., 2016; Jiang et al., 2019b; Qi et al., 2019). Despite its substantial 

contribution to OA, biomass burning OA is largely underestimated by chemical transport models (CTM) (Ciarelli et al., 2017a; 40 

Hallquist et al., 2009; Robinson et al., 2007; Theodoritsi and Pandis, 2019; Woody et al., 2016).  

Many efforts have been devoted to understand and diminish the gap between modeled and observed OA from biomass 

burning. One of the major reasons of the underestimated OA is the absence of semi-volatile organic compounds (SVOCs) from 

residential biomass burning in the current emission inventories (Denier van der Gon et al., 2015). A smog-chamber study 

showed that the precursors traditionally included in the CTMs account for only ~3-27% of the observed SOA from residential 45 

biomass burning (Bruns et al., 2016). Increasing number of laboratory experimental studies attempted to identify and quantify 

the S/IVOC precursors from biomass burning, and found it is of high variability depending on different burning conditions 

(Hatch et al., 2015; Hatch et al., 2017; Jen et al., 2019; Koss et al., 2018; Sekimoto et al., 2018). In order to compensate the 

effects from missing precursors, various modeling studies treated the POA as semi-volatile and increased the POA emissions 

by a factor based on findings from chamber experiments (Ciarelli et al., 2017a; Fountoukis et al., 2014; Jiang et al., 2019b; 50 

Tsimpidi et al., 2010). Meanwhile, increasing evidence from chamber experiments demonstrated that the losses of semi-

volatile vapors to the chamber walls could lead to a substantial underestimation of OA (Akherati et al., 2020; Bertrand et al., 

2018; Bian et al., 2015; Krechmer et al., 2016; Loza et al., 2010; Matsunaga and Ziemann, 2010; Zhang et al., 2014). Unlike 

the particle wall losses – which have been routinely corrected in the chamber studies – the effects of vapor wall losses are 

rarely investigated and considered in modeling practices.  55 

Zhang et al. (2014) reported that the vapor wall losses may lead to an underestimation of SOA by a factor of 1.1-4.2, 

depending on different NOx conditions. This factor has been adopted by several CTM studies to scale the yields of SOA up. 

For instance, Baker et al. (2015) tested the sensitivity of CMAQ to the vapor wall loss by increasing the yields of semi-volatile 

gases by a factor of 4, in which the traditional two-product approach was used for OA simulations. This factor was also 

implemented in a box model with volatility basis set (VBS) scheme (Hayes et al., 2015), which distributed organic species 60 

into logarithmically spaced volatility bins and was shown to improve the model performance for predicting SOA (Donahue et 

al., 2011; Donahue et al., 2006; Hodzic et al., 2010; Robinson et al., 2007). Nevertheless, recent studies showed that the vapor 

wall losses lead to even larger variability on SOA yields according to different chamber conditions and precursor species 

(Akherati et al., 2019; Cappa et al., 2016). On the other hand, some studies took the vapor wall loss corrections into account 

in CTMs using the SOA yields generated from the Statistical Oxidation Model (SOM). Cappa et al. (2016) and Akherati et al. 65 

(2019) used the traditional two-product model to fit vapor wall loss corrected SOA yields, and applied the yields in the regional 
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CTM UCD/CIT. They reported, however, that the two-product fits might not be sufficiently robust. Furthermore, Hodzic et al. 

(2016) used a vapor wall loss corrected VBS parameterization in the global model GEOS-Chem based on chamber experiments 

conducted on individual precursors, which are highly dependent on the experimental conditions. Each of these latter studies 

clearly called for a better assessment of the uncertainties across the entire range of precursor compounds as well as under 70 

different chamber conditions. 

Here, we 1) developed a VBS-based box model and fit the vapor wall loss corrected SOA yields of biomass burning 

IVOC based on the 14 chamber experiments under different temperature and emission loads, 2) implemented the vapor wall 

loss corrected VBS parameters in the regional chemical transport model Comprehensive Air Quality Model with extensions 

(CAMx), and 3) investigated the role of vapor wall loss correction on model performance by comparing modeled organic 75 

aerosols from traditional and modified VBS OA schemes with ambient observations at multiple European sites. The biomass 

burning in this study refers to residential biomass burning, while the wildfires and prescribed burning are not included. 

2. Parameterization method 

2.1 Chamber experimental data 

The parameterization of the VBS scheme was based on experimental data from two smog chamber campaigns in 2014-2015. 80 

It includes 14 experiments conducted under various temperature conditions (-10oC, 2oC, 15oC) and covered a wide range of 

emission loads (from 19 to 284 µg m-3). Emissions were generated by combustion of beech wood in three different wood 

stoves including conventional and modern burners manufactured in 2002-2010. Beech wood is selected as it is one of the major 

forest types in Europe, and beech wood is widely used for residential heating and cooking in Europe. Although different 

biomass fuel types may largely affect the emitted organic gas species and affect the SOA formation, a recent study showed 85 

that the effect of biomass fuel type on SOA formation is much smaller than the effects of initial OM load and OH exposure 

(Lim et al., 2019). The organic gases covering 86 intermediate-volatility and semi-volatile organic compounds (S/IVOC) which 

are SOA precursors, were measured by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). The 

aerosol evolution was monitored by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The particle 

wall loss has already been corrected as described in Stefenelli et al. (2019). The conditions of each chamber experiment are 90 

shown in Table S1. More detailed description of the experiments can be found in Stefenelli et al. (2019), Bertrand et al. (2017) 

and Bruns et al. (2016).  

2.2 VBS box model 

A VBS box model was developed to simulate the formation and evolution of primary and secondary OA in the chamber. In 

the model, we assumed that the condensable gases generated from oxidation of the precursors could 1) partition to the particle 95 

phase, 2) be lost on the chamber wall, as well as 3) be diluted by other gases injected into the smog chamber. To simplify the 

simulation, as well as to facilitate its implementation in the VBS scheme of the regional model CAMx, all the SOA precursors 
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were lumped into one surrogate with the same reaction rate and volatility distribution. The organic compounds were distributed 

into 6 logarithmically spaced volatility bins, corresponding to saturation concentrations of 10-1, 100, 101, 102, 103, and 104 µg 

m-3. The change in the organic gas concentration (C) for a constituent within the volatility bin i (Ci) can be described by Eq. 100 

(1), where P is the production of organic gas (OG) in the chamber due to oxidization of precursors, kcs is the condensation sink 

(s-1) describing the speed of condensable gases condensing on existing aerosol particles, kw is the rate constant of vapor lost to 

the wall, kdil is the dilution rate, and Ceqi,p and Ceqi,w represent the gas-phase equilibrium concentrations to the aerosol particles 

and chamber wall surface, respectively: 
𝑑𝐶!
𝑑𝑡 = 𝑃 ∙ 𝜁! − 𝑘"#*𝐶! − 𝐶𝑒𝑞!,%-	

									−	𝑘&*𝐶! − 𝐶𝑒𝑞!,&- − 𝑘'!( ∙ 𝐶! 																																																												(1) 105 

The production rates of oxidized organic gases (P) are used as inputs of the box model. It is determined by the consumption 

rates of precursors measured by PTR taking into account their dilution. 𝜁! represents the mass fraction of primary and oxidation 

products in a volatility bin i. 𝜁! of POA from biomass burning is obtained from May et al. (2013), with values of 0.2, 0.1, 0.1, 

0.2, 0.1, 0.3 for compounds in each volatility bin. 𝜁! of oxidation products are assumed to follow a kernel normal distribution 110 

as a function of logC*, 𝜁~N(μ, σ2), where μ is the median value of logC* and σ is the standard deviation, which will be 

optimized as described in Section 2.3. The assumption of normal distribution could ensure positive  ζ)  values, allow 

constraining the total mass fraction of the certain surrogate equals 1, and reduce the model’s degree of freedom significantly, 

as reported in Stefenelli et al. (2019). The time series of kdil is obtained from Stefenelli et al. (2019). The kcs of each experiment 

is obtained from Bertrand et al. (2018). The kw varies significantly depending on the chamber conditions. Zhang et al. (2014) 115 

reported kw values of 2.5×10-4 s-1 and 1×10-4 s-1 for toluene and other VOCs respectively, while it is much higher in recent 

studies such as 1.2×10-3 to 2.4×10-3 s-1 in Krechmer et al. (2016), 1.28×10-3 s-1 in Akherati et al. (2020), and ~1×10-3 to 3.3 

×10-3 s-1 in Bertrand et al. (2018). To cover the wide range of vapor wall loss, we tested three kw values 0.0020 s-1, 0.0033 s-1, 

0.0040 s-1 based on the condition of our chamber. A base case was also developed assuming there is no vapor wall loss in the 

chamber (kw = 0). The condensation of a species in the particle-phase (Cp) can then be described by Eq. (2). 120 
'*!,#
'+

= 𝑘"#*𝐶! − 𝐶𝑒𝑞!,%- − 𝑘'!( ∙ 𝐶!,%         (2) 

Following the partitioning model of Pankow (1994), the gas-phase concentrations at equilibrium with respect to the particle 

phase (Ceqi,p) and to the chamber wall (Ceqi,w) are determined by their partitioning coefficients 𝜉! 	and		𝜉!,& (Donahue et al., 

2009), as shown in Eq. (3) and Eq. (4):   

  𝐶𝑒𝑞!,% = (𝐶!,, + 𝐶!,%) ∙ [1 − 𝜉!],					𝜉! 	= 	 ;1 +
*!
∗

*%&
<
-.
			 	 	 		(3)	125 

𝐶𝑒𝑞!,& = (𝐶!,, + 𝐶!,&) ∙ [1 − 𝜉!,&],		𝜉!,& 	= ;1 + *!
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<
-.
					 	 	 	(4) 
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where C* represents the saturation concentration, COA is the wall-loss corrected OA concentration measured by the AMS, Cwall 

is the equivalent organic mass concentration at the wall determined in Bertrand et al. (2018). The Clausius-Clapeyron equation 

(Eq. 5) was applied to take into account the effects of temperature on C*:   

 𝐶∗ = 𝐶01∗ ∙ 0*
0
∙ 𝑒𝑥𝑝(∆3+(#/5.7.8

./0*-./0
)				 	 	 	 	 	(5) 130 

where 𝐶01∗ 	is the mass saturation concentration under the reference temperature (T0). T is the temperature of each experiment, 

while T0 equals 298 K. ΔHvap (J) is the enthalpy of vaporization at reference temperature, and 8.314 is the universal gas constant 

(J mol-1 K-1). ∆𝐻9:% = {70000 − 11000 × log C∗} is adopted for the primary set (May et al., 2013), while ΔHvap of the 

oxidized products is determined during model optimization. The Cwall was determined in previous studies as on the order of a 

few mg m-3 (Bertrand et al., 2018). In this study, we run the box model for three different Cwall values (1, 5, 25 mg m-3) with a 135 

reference temperature of 2 oC (275.15 K) according to Bertrand et al. (2018).  

2.3 Model optimization 

The model is optimized to constrain the volatility distribution (as a function of logC*, 𝜁 ~ N(μ , σ2)) and ΔHvap of the oxidized 

products. A genetic algorithm (GA) is used to find the best-fit parameters leading to the lowest average root-mean-square error 

(RMSE) and mean bias (MB) between modeled and measured OA concentrations for all 14 experiments. The genetic algorithm 140 

is a metaheuristic algorithm inspired by the natural selection process to generate optimized solutions (Mitchell, 1996). It begins 

by creating an initial population of individual solutions (20 different combinations of μ, σ, ΔHvap here) within certain upper and 

lower bounds, as called parents. The performance of each solution is evaluated by a fitness function, which is the sum of 

RMSE and MB between modeled and measured OA concentrations of 14 experiments in this study. A new generation of 

solutions is then formed either by making random changes to a single parent (called mutation) or by combining the vector 145 

entries of a pair of parents (called crossover). The process will be repeated until reaching the stopping conditions, which are 

either the iterations time reaching 50 or the stall generations (generation with no significant change of fitness function) reaching 

20. The GA is conducted using the genetic algorithm solver of Global Optimization Toolbox of MATLAB R2019a (The 

MathWorks, Inc). 

3. Modeling approach 150 

3.1 Regional chemical transport model CAMx 

The regional model CAMx version 6.50 (Ramboll, 2018) was used to model organic aerosol in Europe (15oW – 35oE, 35oN – 

70oN) for the whole year of 2011, with a horizontal resolution of 0.25o × 0.125o and 14 terrain following vertical layers from 

~20 m above ground reaching up to 460 hPa. The Carbon Bond 6 Revision 2 (CB6r2) gas-phase mechanism (Hildebrandt Ruiz 

and Yarwood, 2013) was selected. The gas-aerosol partitioning of inorganic aerosols was simulated by the ISORROPIA 155 

thermodynamic model (Nenes et al., 1998).  For organic aerosols, several OA schemes including both the traditional 2-product 
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approach (SOA chemistry/partitioning scheme, SOAP) and the VBS scheme with different parameterizations were applied 

(see Section 3.2).  

The meteorological parameters were prepared with the Weather Research and Forecasting model (WRF, version 3.7.1; 

Skamarock et al., 2008) based on the 6-h European Centre for Medium–Range Weather Forecasts (ECMWF) reanalysis global 160 

data (Dee et al., 2011). The meteorological parameters were evaluated and reported in a previous study (Jiang et al., 2019a), 

which showed that most of the meteorological parameters met the criteria for meteorological model performance by Emery 

(2001). The initial and boundary conditions were obtained from the global model MOZART-4/GEOS-5 (Horowitz et al., 2003). 

Inputs of ozone column densities were produced based on the Total Ozone Mapping Spectrometer (TOMS) data by the 

National Aeronautics and Space Administration (NASA,  ftp://toms.gsfc.nasa.gov/pub/omi/data/), and the photolysis rates 165 

were then calculated by the Tropospheric Ultraviolet and Visible (TUV) Radiation Model version 4.8 (NCAR, 2011). The 

source specific anthropogenic emissions were based on the European emission inventory TNO-MACC (Monitoring 

Atmospheric Composition and Climate)-III (Kuenen et al., 2014). The biogenic emissions (isoprene, monoterpenes, 

sesquiterpenes, soil NO) were simulated by the PSI model developed at the Laboratory of Atmospheric Chemistry at the Paul 

Scherrer Institute (Andreani-Aksoyoglu and Keller, 1995; Jiang et al., 2019a; Oderbolz et al., 2013). More details about the 170 

model inputs can be found in our previous studies performed using the same input data (Jiang et al., 2019a; Jiang et al., 2019b).  

3.2 Parameterization of OA schemes 

To investigate the effects of vapor wall loss corrected yields, as well as to compare to other modifications/parameterizations 

that are currently strongly debated in the community, five simulations with different OA schemes were conducted in this study 

(Table 1). Besides VBS_WLS which uses the optimized parameterization with vapor wall loss correction for the biomass 175 

burning sector, SOAP and VBS_BASE represent the two standard parameterization in CAMx; VBS_3POA represents a 

common approach to offset the missing SVOC emissions in recent modelling studies without vapor wall loss; VBS_noWLS 

is another reference case for that without vapor wall loss, which uses exactly the same parameters as VBS_WLS except for 

the SOA yields from IVOCs. Details about each OA schemes are introduced below: 

- SOAP. The SOAP (SOA chemistry/partitioning) module is a semi-volatile equilibrium scheme based on the 180 

traditional two-product approach. The POA emissions are assumed to be inert in SOAP. The updated parameterization 

of SOAP2.1 in CAMx v6.50 used the aerosol yield data that correct for vapor wall losses in smog chamber 

experiments based on Zhang et al. (2014).  

- VBS_BASE. The VBS_BASE used the standard VBS parameterization in CAMx v6.50. The IVOC emissions from 

different sources were calculated based on literature. The IVOCs from gasoline and diesel vehicles were calculated 185 

as 25% and 20% of NMVOC emissions from gasoline and diesel vehicles, respectively (Jathar et al., 2014). IVOC 

emissions from residential biomass burning were estimated as 4.5 times of POA emissions based on Ciarelli et al. 

(2017a). The IVOC emissions from  other anthropogenic sources were calculated as 1.5 times of POA as proposed 

by Robinson et al. (2007).  
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- VBS_3POA. An increasing number of experimental and modeling studies have reported a considerable contribution 190 

of semi-volatile organic compounds (SVOCs) to SOA formation (Bruns et al., 2016; Ciarelli et al., 2017b; Denier 

van der Gon et al., 2015; Hatch et al., 2017; Woody et al., 2015), while the SVOCs are absent in the current emission 

inventories. Despite considerable variabilities of the SVOC emissions from biomass burning according to recent 

studies, the VBS_3POA is supposed to be a reference case representing the commonly used approach without vapor 

wall loss, and therefore we adopted the routine approach by a factor of 3 to offset the influence of missing SVOC 195 

emissions. This approach has been widely used in modeling studies (Ciarelli et al., 2016; Ciarelli et al., 2017a; 

Shrivastava et al., 2011; Tsimpidi et al., 2010). All the other parameters were kept the same as the standard VBS 

parameterization in CAMx v6.50. The VBS_BASE IVOC emissions were adopted here. 

- VBS_WLS. The VBS_WLS used the optimized parameters by the VBS box model, including the emissions and vapor 

wall loss corrected yields for IVOC from residential biomass burning, and the ΔHvap of the oxidized products. The 200 

modified parameters for volatility bin specific yields and ΔHvap of the oxidized products from IVOC can be found at 

https://doi.org/10.5281/zenodo.3998342. The reaction rate with OH (kOH) was calculated based on the measurements. 

Based on the chamber measurements, the IVOC emissions from residential biomass burning is ~13.7 times the 

primary OM load (Fig. S1), among which the traditional precursors toluene, xylene and benzene occupying ~15% of 

the total emission. To avoid double counting of these traditional precursors which are already included in the emission 205 

inventory, we applied a factor of 12 to calculate the IVOC emissions from biomass burning. The IVOC emissions 

from other sources were estimated by the same approach as in VBS_3POA.  

- VBS_noWLS. The VBS_noWLS was designed as a reference of VBS_WLS, which adopted the same parameters as 

VBS_WLS except for the yields. The VBS_noWLS used the fitted yields from the box model assuming that there is 

no vapor wall loss (kw = 0).  210 

3.3 Model evaluation 

The general model performance for the major air pollutants (SO2, NO2, O3, PM2.5) was reported in our previous study (Jiang 

et al., 2019b), which was comparable to other modeling studies in Europe. OA measurements and source apportionment studies 

using positive matrix factorization (PMF) analysis from five Aerodyne aerosol chemical speciation monitor (ACSM) /aerosol 

mass spectrometer (AMS) stations in winter of 2011 were used to evaluate the modeled primary and secondary organic aerosol 215 

by different OA schemes: Zurich (Canonaco et al., 2013), Marseille (Bozzetti et al., 2017), SIRTA (Site Instrumental de 

Recherche par Télédétection Atmosphérique) facility located in the Paris region (Zhang et al., 2019), as well as Bologna and 

San Pietro Capofiume (SPC) (Paglione et al., 2020). For Zurich and SIRTA, only data collected from late autumn to early 

spring (January, February, March, November and December) - when emissions from biomass burning are relatively high - 

were used for the statistical analysis, although the observations covered longer time periods. The spatial distribution and 220 

observation periods of each station are shown in Fig. S2. The statistical metrics including mean bias (MB), mean error (ME), 
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root-mean-square error (RMSE), mean fractional bias (MFB) and mean fractional error (MFE) between modeled and observed 

primary and secondary OA were calculated.   

4. Results and discussion 

4.1 Modeled and measured OA from chamber experiments 225 

The optimized parameters were then applied to the box model to simulate OA production for 14 chamber experiments. Figure 

1 shows the comparison between measured OA and modeled primary and secondary OA under the median chamber conditions 

(kw = 0.0033 s-1, Cwall = 5 mg m-3) for each experiment. The model reproduces the process of OA formation for most of the 

experiments well, except for experiment #9 and #14 which have relatively lower OM loads (26 and 48 µg m-3 for Exp9 and 

Exp14, respectively). It can be partially explained by different weighting impact for experiments with high or low OM loads. 230 

The experiments with higher OM loads normally have larger MB and RMSE in the beginning of optimization, and therefore 

have higher impact during the model optimization. A direct consequence is the optimized parameters would work better for 

those experiments with higher OM loads. However, the model performance on each experiment could also be influenced by a 

series of other factors such as temperature and chamber conditions. While the model simulation without vapor wall loss 

correction largely overestimates the OA at the initial time point and underestimates the final OA (Fig. S3), the agreement 235 

between the modeled and measured trends was improved when the vapor wall loss is taken into account. The mean bias (MB) 

and root mean square error (RMSE) between the modeled and observed OA in 14 experiments are 6.7 µg m-3 and 42.2 µg m-3 

for the case under median chamber conditions, which are 48% and 12% lower than in the case without vapor loss correction 

(MB = -12.8 µg m-3, 47.8 µg m-3). To investigate the role of vapor wall loss on the modeled OA, another set of simulations 

were performed, in which we used the same optimized parameterization under the median chamber conditions but set kw = 0. 240 

In these cases, the modeled OA concentrations (dashed line in Fig. 1) were based on the assumption that there is no vapor wall 

loss. The wall loss ratio Rwall, which is defined as the ratio between modeled OA concentration without (kw = 0) and with (kw = 

0.0033 s-1, Cwall = 5 mg m-3) vapor wall loss, was calculated for the endpoint of each experiment (Fig. 1c). The Rwall values 

varied from 1.5 (Exp2) to 3.2 (Exp11) among the 14 experiments, and showed a clear dependence on the initial OA loads. 

To further understand the factors influencing Rwall, we conducted a series of model simulations with and without vapor 245 

wall loss under different initial organic mass load, temperature and condensation sink inputs (Fig. 2). Higher kw and Cwall lead 

to higher Rwall values for all the cases, and different chamber conditions (kw, Cw) could result in a different Rwall by a factor of 

1.2–1.6, depending on different temperature, OM loads and condensation sinks. The Rwall values generally decrease with 

increasing initial OM loads, which is consistent with the fact that Rwall values for Exp8–14 are higher than Exp1–7. The 

increased Rwall with the increasing temperature explains why the Exp10–14 (T = 15 oC) have higher Rwall than Exp8 and Exp9 250 

(T = –10 oC) while they have similar OM load levels. The condensation sink is inversely correlated with Rwall, indicating that 

the higher the rate of condensable gases condensing on the existing particles, the lower the vapor loss to the chamber wall, and 

therefore the lower the effect of vapor wall loss on modeled OA.  
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The optimized volatility distribution for the secondary condensable gases from biomass burning (ppm per ppm IVOC) 

based on different wall loss assumptions (kw>0 or kw=0) are displayed in Fig. 3a. The optimized yields considering the vapor 255 

wall loss leads to a 3.3 times higher mass in the low-volatility bins (logC* ≤ 0) compared to that assuming kw=0, indicating 

significant effects of vapor wall loss correction on predicting the SOA production. To give a more direct view about the effects 

of vapor wall loss on the SOA yield, we integrated the mass of SOA for all the volatility bins at 298 K (Fig. 3b). The mass 

yield under the median chamber conditions for vapor wall loss (kw = 0.0033 s-1, Cwall = 5 mg m-3) is higher than the base case 

without considering the vapor wall loss about by factors of 4.9 (when COA = 0.1 µg m-3) to 1.9 (when COA = 1000 µg m-3). The 260 

influence of vapor wall loss on mass yield decreases with decreasing temperature. At 0 oC, the mass yield with vapor wall loss 

correction is higher than the base case by factors of 4.3 (when COA = 0.1 µg m-3) to 1.7 (when COA = 1000 µg m-3).  

4.2 Performance of CAMx with different OA schemes 

The modeled OA concentrations with different OA schemes were compared with measurements from five ACSM/AMS 

stations in winter. The statistical results are shown in Table 2, and the distributions of OA concentrations and mean bias 265 

between modeled and measured primary and secondary OA are displayed in Fig. 4. The OA are overall underestimated with 

all OA schemes. The VBS schemes lead to a better model performance than the two-product approach SOAP, except for 

VBS_BASE with default VBS parameterization. These results are consistent  with a previous study using CAMx (Meroni et 

al., 2017), in which the better performance of SOAP compared to the default VBS was reported as a result of error 

compensation. The improved performance of modified VBS (3POA, noWLS, WLS) for OA mainly comes from the 270 

contribution of SOA (Table 2). The modeled SOA by 3POA and noWLS are very similar, therefore the analysis below will 

focus on the comparison between noWLS and WLS, for which the only difference is that WLS uses vapor wall loss corrected 

yields for IVOCs from biomass burning while noWLS uses the fitted yields assuming no vapor wall loss (kw=0). WLS reduces 

the MFB between the modeled and measured SOA from 52.5% in noWLS to 20.0%. WLS shows a better average MB than 

noWLS, however, also increases the upper whisker of the MB (Fig. 4b), largely affected by overestimated SOA in Bologna 275 

and SPC.   

Limited by the availability of OA measurements, the effects of vapor wall loss correction on model performance present 

a clear site dependence in this study. The modeled and measured daily average OA concentrations at each site are shown in 

Fig. 5. The temporal variations of primary and secondary OA at these sites can be found in Fig. S4. VBS_WLS leads to the 

best performance for both OA and SOA in Marseille and SIRTA, in spite of an overall underestimation (Fig. S4b, c). In Zurich, 280 

the vapor wall loss corrected yields for biomass burning improve the model performance in February and March, while there 

is an overestimation of the OA and SOA for all the OA schemes in November (Fig. S4a). The largest contribution to OA during 

this period was found to be from the biogenic SOA, which was potentially overestimated due to the overestimated temperatures 

during the same time period (Jiang et al., 2019b). Bologna and SPC are located in the Po Valley where biomass burning 

contributes most to the winter OA (Jiang et al., 2019b), and therefore higher effects from vapor wall loss correction on SOA 285 

are observed compared to other sites. At SPC, the fog scavenging processes played an important role on OA during the 
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measurements (Gilardoni et al., 2014), however, the meteorological model failed to reproduce the fog events due to the coarse 

resolution in this study (Jiang et al., 2019b). Consequently, both VBS_WLS and noWLS lead to an overestimation of OA and 

SOA, while SOAP and VBS_BASE show better performance probably due to compensation of errors (Fig. S4e). In Bologna, 

a significant overestimation of temperature was found on 2 to 6 December (Jiang et al., 2019b), leading to a significant 290 

underestimation of SOA for all the OA schemes (Fig. S4d). Excluding this period, the modeled SOA by VBS_WLS is 89% 

higher than the measurements, while the modeled SOA concentrations by the other schemes are closer to the measurements 

with relative differences of -64% for SOAP, -10% for VBS_BASE, and 4% for VBS_noWLS.  

The distinct performance of vapor wall loss corrected VBS at different sites could arise from various reasons. It might 

come from the high uncertainties of S/IVOC emissions from biomass burning, which were estimated by the same factor for 295 

the whole domain but were reported to have substantial inter-country variations (Denier van der Gon et al., 2015). Missing 

formation and removal processes such as photolytic and heterogeneous oxidation in the model could also result in different 

model performance for specific sites. In addition, in spite of the advanced chamber measurements we used to optimize the 

yield parameters, covering a wide range of precursor species and multiple temperature and chamber conditions, the fitted vapor 

wall loss corrected parameterization is still highly uncertain. To achieve a more robust parameterization and to further improve 300 

the model performance for OA, more studies on S/IVOC emissions, as well as the formation and removal mechanisms of SOA 

based on extensive laboratory studies and field observations with higher spatial and temporal coverage are needed.  

4.3 Effects of vapor wall loss correction on modeled OA in Europe 

4.3.1 OA  

The modeled OA results in Europe for the whole year 2011 by different OA schemes were compared to investigate the effects 305 

of OA schemes and the vapor wall loss correction. Among all the sources, residential biomass burning contributed to 16.3-

52.6% of POA and 5.9-28.9% of SOA in winter (Jiang et al., 2019b), indicating the potential roles of vapor wall loss for the 

biomass burning sector. Figure 6 shows the modeled OA, SOA and POA in winter (December–January–February). VBS_WLS 

leads to the highest domain average OA (2.3 µg m-3), which is 16.4%, 26.2%, 38.7% and 106.6% higher than VBS_3POA, 

VBS_noWLS, SOAP and VBS_BASE, respectively. The VBS schemes generally produce higher OA than SOAP, except for 310 

the default parameterization (VBS_BASE) in which the lack of SVOC emissions is not considered. However, SOAP leads to 

the second highest SOA after VBS_WLS, especially in northern Europe where the monoterpene emissions from coniferous 

forests are relatively high. This is mostly because of the high terpene SOA yields in SOAP2.1, which were reduced in the later 

version of the CAMx model (CAMx v7.0, http://www.camx.com). The vapor wall loss corrected yields lead to increased SOA 

in large areas of central and southern Europe (Fig. 7). The largest difference is predicted for the Po Valley and Romania regions 315 

with high residential biomass burning impact (Fig. S5). The overall relative differences between VBS_WLS and VBS_noWLS 

are more than 80% and the highest grid-scale increment reaches 5.6 µg m-3 in the region of Balkans. The modeled POA 

concentrations are similar to those in the VBS case with correction for SVOC (3POA, noWLS, WLS) with domain average 
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concentrations ranging from 0.9 (noWLS) to 1.1 (3POA) µg m-3, and therefore no significant effects were observed from vapor 

wall loss correction (Fig. 6). The POA simulated by VBS_BASE (0.3 µg m-3) is even lower than SOAP (0.7 µg m-3), as the 320 

POA is semi-volatile and could evaporate and react with oxidants to form secondary products in VBS while SOAP assumes 

the POA to be inert.  

The effects of different VBS schemes on OA are much smaller in summer (Fig. S6). Despite a slight increase from the 

VBS_BASE (1.2 µg m-3), the modeled OA by the three modified VBS schemes are quite similar (1.4 – 1.5 µg m-3). The effects 

of vapor wall loss corrected yields for biomass burning emissions are negligible due to low emissions in summer (Fig. S7). 325 

SOAP produced the highest OA (2.1 µg m-3) in summer due to the high SOA yields from monoterpenes as explained before.  

4.3.2 Fraction of SOA in OA 

The effects of the updated VBS schemes on the fraction of annual average SOA in total OA (fSOA = SOA/OA) are shown in 

Fig. 8. The VBS schemes lead to a higher fSOA (domain average 71.4%–87.3%) compared to SOAP (domain average 69.9%) 

in most of the domain except for northern Europe, where SOAP produces high biogenic SOA. The increased POA emissions 330 

to offset the missing SVOC emissions (3POA, noWLS, WLS) decrease the fSOA compared to the default VBS 

parameterization (BASE), while the vapor wall loss correction yields (WLS) result in ~5.8% higher fSOA than noWLS for the 

domain average and the largest grid-scale increase reaches 43.4% in the Balkans. The absolute differences between fSOA for 

WLS and noWLS are relatively higher in rural areas than urban areas, where fSOA is lower due to high primary emissions.  

The modeled fSOA values were compared with the measurements from previous studies in Europe (Crippa et al., 2014; 335 

Jiang et al., 2019b). The measured fSOA from literature covered 18 sites and different seasons between 2008 and 2011 (Table 

S2). SOAP tends to underestimate the fSOA, while VBS_BASE significantly over-predicts the fSOA (Fig. 9). Both WLS and 

noWLS tend to underestimate the high fSOA and overestimate the low fSOA. VBS_WLS has 5% higher fSOA than 

VBS_noWLS and shows the highest agreement on the range of fSOA with the measurements, as well as the average fSOA 

values (measured: 69.6%; VBS_WLS: 69.1%). The largest improvements occur in winter, when the vapor wall corrected 340 

yields of biomass burning emissions largely increase the SOA production.  

5. Conclusions 

In this study, we optimized the SOA yields for a VBS-based box model using 14 chamber experiments with biomass 

burning and implemented the fitted VBS parameters (SOA yields, IVOC emissions from biomass burning, and enthalpy of 

vaporization) in the regional air quality model CAMx v6.5. The influence of the vapor wall loss correction on the model 345 

performance was investigated by comparing modeled primary and secondary OA with the traditional and modified OA 

schemes, including the 2-product approach (SOAP), the standard VBS (VBS_BASE), VBS with 3 times of POA to compensate 

for the missing SVOC (VBS_3POA), VBS with vapor wall loss correction (VBS_WLS) and an additional reference scenario 
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with the same parameterizations as in VBS_WLS except for using the default SOA yields from biomass burning IVOC 

(VBS_noWLS).  350 

The vapor wall loss correction increases the mass distributed in the low-volatility bins (logC* ≤ 0) by a factor of 4.3, 

and increases the SOA yields by a factor of 1.9–4.9 (at 298 K). Comparison of the modeled results with different OA schemes 

with the field measurements from five ACSM/AMS stations in Europe in winter, suggests that VBS_WLS generally has the 

best performance to predict OA, which lowers the highest mean fractional bias from -72.9% (VBS_BASE) to -1.6% for OA, 

and -77.8% (SOAP) to 20.0% for SOA. In Europe, the VBS_WLS produces the highest domain average OA in winter (2.3 µg 355 

m-3), which is 106.6% and 26.2% higher than VBS_BASE and VBS_noWLS, respectively. The largest influence of vapor wall 

loss correction was predicted in Romania where the VBS_WLS increase the SOA by ~80% compared to VBS_noWLS due to 

high emissions from residential biomass burning. VBS_WLS also leads to the highest agreement with measurements for the 

SOA fraction in OA (fSOA) from literature.  

The optimized parameterization with vapor wall loss correction in this study is expected to provide some insight to 360 

improve SOA underestimation in CTMs. Despite the overall improvement of model performance for predicting SOA, the 

VBS_WLS was found to increase the mean bias at specific sites compared to noWLS. To achieve a more robust 

parameterization and to further improve the model performance, complementary studies on S/IVOC emissions, as well as on 

the formation and removal mechanisms of SOA based on extensive laboratory studies and field observations with higher spatial 

and temporal coverage are still needed.  365 

 

Code and data availability. The source code of the standard CAMx model is available at the RAMBOLL website 

(http://www.camx.com). The modified CAMx codes, as well as the source code of the MATLAB-based VBS box model are 

available online at https://doi.org/10.5281/zenodo.3998342.  
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Table 1: Description about the different OA schemes.  

OA scheme IVOBa emissions kOH for IVOB 
(cm3 molec-1 s-1) 

SOA yields for IVOB (ppm/ppm)b 

SOAP = 4.5*POA_BB 
 

1.34 / c 
VBS_BASE 4.0 [0.081, 0.135, 0.800, 0.604, 0.0] 
VBS_3POA 4.0 [0.081, 0.135, 0.800, 0.604, 0.0] 
VBS_noWLS = 12*POA_BB 1.5 [0.014, 0.036, 0.076, 0.136, 0.44] 
VBS_WLS 1.5 [0.078, 0.118, 0.157, 0.177, 0.312] 

aIVOB is the abbreviation of “IVOC from Biomass Burning” in CAMx 
bThe yield values are corresponding to volatility bins with saturation concentrations of 10-1, 100, 101, 102 and 103 µg m-3. 
cSOAP does not separate IVOC from biomass burning and other anthropogenic sectors, and therefore is not comparable 615 

with the SOA yields for IVOBs.  
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Table 2: Statistical results for model performance on simulating OA, SOA and POA. The number of daily average observations 620 
from five ACSM/AMS stations is 216. 

Species OA scheme MB (µg m-3) ME (µg m-3) RMSE (µg m-3) MFB (%) MFE (%) r 
OA SOAP -4.1 4.9 7.2 -44.3 65.3 0.38 
 VBS_BASE -4.9 5.6 7.9 -72.9 83.3 0.29 
 VBS_3POA -1.6 4.3 6.5 -12.4 51.7 0.42 
 VBS_noWLS -1.9 4.3 6.5 -17.4 52.7 0.41 
 VBS_WLS -0.4 4.6 6.9 -1.6 52.2 0.41 
SOA SOAP -2.3 3.1 4.3 -77.8 98.3 0.12 
 VBS_BASE -1.6 2.8 4.1 -63.0 90.6 0.22 
 VBS_3POA -1.2 2.8 4.1 -51.1 84.3 0.23 
 VBS_noWLS -1.3 2.8 4.0 -52.5 84.9 0.24 
 VBS_WLS 0.2 3.2 4.6 -20.0 76.4 0.26 
POA SOAP -0.7 1.9 3.1 4.4 56.7 0.49 
 VBS_BASE -2.3 2.5 4.0 -64.1 81.5 0.44 
 VBS_3POA 0.8 2.4 3.4 36.3 64.2 0.45 
 VBS_noWLS 0.4 2.2 3.2 30.1 61.9 0.45 
 VBS_WLS 0.6 2.3 3.3 32.4 62.5 0.45 
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Figure 1: Comparison between measured and modeled OA with optimized parameterization under kw = 0.0033 s-1, Cwall = 5 625 
mg m-3 (a, b) and relation between the endpoint wall loss factor Rwall of each experiment and initial OM loads under different 
temperature (c). The gray dashed lines in (a) represent modeled OA with the same parameterization but set kw=0. 
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Figure 2:  Dependence of wall loss factor Rwall (COA, kw=0 /COA, optimal kw) on initial organic mass load, temperature and 630 
condensation sink.  

 

 

 
Figure 3: Optimized yield factors (a) and mass yield of SOA from biomass burning at 298 K (b) with and without vapor wall 635 
loss correction. The blue bars (a) and line (b) with vapor wall loss refer to median chamber conditions with kw = 0.0033 s-1, 
Cwall = 5 mg m-3.  

 

 

  640 
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Figure 4: Concentrations of measured and modeled OA, POA and SOA at five ACSM/AMS stations in winter (a) and mean 
bias for different OA schemes (b). The lines inside boxes represent median values, and the yellow triangles represent mean 
values. 
 645 

 

 
Figure 5: Measured and modeled daily average OA using different OA schemes in winter. ZRH: Zurich, BLQ: Bologna, MRS: 
Marseille, SIRTA: Paris SIRTA, SPC: San Pietro Capofiume. 
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 650 
Figure 6: Modeled OA, SOA and POA in winter (DJF, December–January–February) by different OA schemes. 
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Figure 7: Differences in modeled OA, SOA and POA in winter (DJF, December–January–February) by VBS schemes with 
(VBS_WLS) and without (VBS_noWLS) vapor wall corrections. 
 655 

 

 

Figure 8: Modeled fractions of annual mean SOA to total OA (fSOA) using different OA schemes. Modeled results of 
VBS_3POA are very similar to VBS_noWLS, and therefore are not shown here. 
 660 
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Figure 9: Comparison between modeled and measured fSOA from literature over the year (see data and sources in Table S2). 
The shadows are confidence intervals of the regression lines.  
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