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Abstract 

Drought is predicted to increase in the future due to climate change, bringing with it a myriad of impacts on ecosystems. 

Plants respond to drier soils by reducing stomatal conductance, in order to conserve water and avoid hydraulic damage. 

Despite the importance of plant drought responses for the global carbon cycle and local/regional climate feedbacks, land 55 

surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil 

moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land 

Environment Simulator (JULES) vn4.9 on seasonal and annual timescales, and evaluated ten different representations of soil 

moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the 

tropics or high latitudes/cold region sites, while LE was best simulated in temperate and high latitude/cold sites. Errors not 60 

due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savanna and 

deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic 

results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil 

layers from 4 to 14, and the soil depth from 3.0 m to 10.8 m. In addition, we found improvements when soil matric potential 

replaced volumetric water content in the stress equation (the ‘soil14_psi’ experiments), when the critical threshold value for 65 

inducing soil moisture stress was reduced (‘soil14_p0’), and when plants were able to access soil moisture in deeper soil 

layers (‘soil14_dr*2’). For LE, the biases were highest in the default configuration in temperate mixed forests, with 

overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new 

parameterizations mentioned above) increased LE and increased model biases, but improved the simulated seasonal cycle 

and brought the monthly variance closer to the measured variance of LE. Further evaluation of the reason for the high bias in 70 

LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil 

moisture stress. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, 

and we recommend these settings in future work using JULES, or as a general way to improve land surface carbon and water 

fluxes in other models. In addition, using soil matric potential presents the opportunity to include plant functional type-

specific parameters to further improve modelled fluxes. 75 

1 Introduction  

Drought has a range of impacts on terrestrial ecosystems (Allen et al., 2010; Choat et al., 2012), plays a role in feedbacks on 

the weather and climate systems across scales (Seneviratne et al., 2013; Lemordant et al., 2016; Miralles et al., 2019; Lian et 

al., 2020) and affects the global carbon cycle (Green et al., 2017; Humphrey et al., 2018; Peters et al., 2018). These impacts 
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and feedbacks have the potential to affect society, either directly through moisture availability effects on crops, or indirectly 80 

by adjusting near-surface temperatures, or forcing large-scale variations to the climate system. Roughly 40% of the vegetated 

land surface is limited by seasonal water deficits (Nemani et al., 2003; Beer et al., 2010), which are a major control on gross 

primary productivity (GPP) in sub-humid, semi-arid, and arid regions (Stocker et al., 2018). In the future, soil moisture stress 

for ecosystems is predicted to increase over large regions (Berg et al., 2016; Ukkola et al., 2020). (In this paper, we define 

“soil moisture stress” as the physiological stress experienced by vegetation due to its interactions with dry soils.) For these 85 

reasons, accurate process-based models of plant response to soil moisture stress are needed in coupled land-atmosphere 

climate models. However, the models used to represent biogeophysical and biogeochemical processes in Earth System 

Models (ESMs) are often unable to properly capture observed responses to soil moisture stress (Beer et al., 2010; Powell et 

al., 2013; Medlyn et al., 2016; Restrepo-Coupe et al., 2017; De Kauwe et al., 2017; Peters et al., 2018; Paschalis et al., 

2020).   90 

Plants respond to reductions in soil moisture content (SMC) through a range of drought tolerance and prevention strategies. 

Commonly, plants respond to low SMC by reducing their stomatal aperture to conserve water and protect the xylem from 

damage (Field and Holbrook, 1989; Sparks and Black, 1999). Embolism is caused by low soil and/or leaf water potential due 

to dry climatic conditions, and it causes water tension inside the plant to increase enough to drive the formation of air 

bubbles within the xylem vessels (Lambers et al., 2008; Choat et al., 2012). Embolized xylem is unable to transport water, 95 

and for some vegetation types, this is a dominant cause of plant mortality under drought conditions (Brodribb and Cochard, 

2009; Choat et al., 2018). To avoid this, many plants limit water loss by reducing their stomatal conductance when soil 

moisture levels reach a certain threshold (Tyree and Sperry, 1989; Sperry et al., 1998; Choat et al., 2012) or by shedding 

leaves (Wolfe et al., 2016). High atmospheric vapor pressure deficits (VPD), which sometimes occur in conjunction with 

meteorological drought, may also result in stomatal closure. The reduced stomatal conductance triggers a cascade of other 100 

responses, beginning with reduced rates of photosynthesis (Ball et al., 1987), which reduce carbon uptake and possibly 

growth, and change allocation between above- and below-ground stocks (Merbold et al., 2009b; Doughty et al., 2015). 

Lower stomatal conductance will reduce transpiration, which causes more surface available energy to be converted into 

sensible heat. This transference of latent to sensible heat can contribute to further desiccation of soils, increased land surface 

temperature, and amplification of heat waves (Seneviratne et al., 2010). Over the long term, droughts can lead to changes in 105 

plant species composition (Liu et al., 2018) or large-scale forest mortality (Mcdowell et al., 2008), sometimes causing a 

transient situation where large ecosystems switch from being a sink of carbon dioxide to a source (Ciais et al., 2005; Gatti et 

al., 2015).  

There is a spectrum of mechanisms through which species tolerate or acclimate to drought, meaning a “one-size-fits-all” 

approach to modelling can be inadequate. Explicit model representations of the xylem hydraulics are complex and difficult 110 

to parameterize globally. The emergence of plant trait databases has enabled early models to represent the hydraulic 

properties of the soil-plant-atmosphere continuum (Sperry et al., 2016; Eller et al., 2018; De Kauwe et al., 2020; Eller et al., 

2020; Sabot et al., 2020). Also, new approaches are emerging that focus on ‘plant profit maximisation’, where 
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photosynthetic uptake of CO2 is optimally traded against plant hydraulic function, as an alternative to the empirical functions 

commonly used in models to regulate gas exchange during periods of water stress (Sperry et al., 2017; Sabot et al., 2020). 115 

More often, for now, land surface models (LSMs) represent the regulation of stomatal conductance as a simple generic 

function of SMC, generally expressed in terms of volumetric water content (θ, m3 m-3). This simple generic function is the 

so-called “beta” function, where β is a factor between zero and one that limits photosynthesis in some way (depending on the 

model, See Methods). Above a critical SMC, there is no stress (β=1), and below the critical threshold value, stress increases 

as SMC decreases, until the wilting point is reached (β=0). Alternative, yet related, expressions are available whereby 120 

stomatal regulation occurs through changes in the soil matric potential (𝜓, expressed in pressure units, such as MPa); θ and 

matric potential (a measure of how tightly the water is held in the soil pores, thereby affecting water uptake by the roots) are 

closely related via the water retention curve. However, using one function for all plant responses to drying soils can result in 

errors, for example the parameters describing plant and soil hydraulic responses to soil moisture may change in time 

(Robinson et al., 2019), and can vary between ecosystem types (Teuling et al., 2010).  Such variation may be in response to 125 

climate change, or evolving vegetation and soil properties, and their structure. 

In this study, we focus on the effects of droughts on vegetation that occur due to low SMC. Although droughts are often 

associated with changes beyond low precipitation levels, including high air temperatures and VPD, these climate drivers 

have their own set of impacts on vegetation, adding to the effects of low SMC, that will not be addressed here. We explore 

different ways in which soil moisture stress can be represented in a widely used model of the terrestrial biosphere, the Joint 130 

UK Land Environment Simulator (JULES) (Best et al., 2011; Clark et al., 2011). JULES is a community model, and is used 

in coupled or standalone mode, forced by meteorological variables. Its applications are on timescales ranging from weather 

forecasting to climate projections, and the model is the terrestrial component of the UK Earth System Model and the 

HadGEM family of models (Martin et al., 2011). The spatial scales are similarly diverse. Studies range from single-point 

modelling of crop yield at one site (Williams et al., 2017), which requires detailed knowledge of one crop variety under 135 

carefully controlled conditions, to global predictions of land sources and sinks of CO2 for the annually updated Global 

Carbon Project (Friedlingstein et al., 2019), which requires reliable performance for all vegetation types across the globe. 

The aim of this study is to find an improved general model equation and parameters for global applications of JULES.  

Soil moisture stress has been identified as a key driver of variability in JULES projections (Blyth et al., 2011).  Verhoef and 

Egea (2014) showed that the standard β function in JULES, and similar LSMs, needs urgent attention, as to whether it is the 140 

most appropriate functional form, and/or if parameterized correctly. For example, JULES calculates β based on θ, but using 

soil matric potential instead results in a curvilinear increase in stress as soils dry, which may be more realistic (Fig. 1; 

Verhoef and Egea, 2014). In an evaluation of the model across ten flux tower sites,  Blyth et al. (2011) showed that the “dry-

down” of the sites in semi-arid areas was too quick and the seasonal variation of evaporation in the tropics was too great, 

possibly due to the roots being modelled as too shallow (Blyth et al., 2011) or due to modelled stress beginning when soils 145 

were still relatively wet. Other studies have suggested that the root depths of LSMs were too shallow (Teuling et al., 2006; 
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Wang and Dickinson, 2012). Indeed, some LSMs (CLM, SiB3, TERRA-ML) were able to improve model performance by 

representing deeper (e.g. 10 m) and more efficient roots (Baker et al., 2008; Akkermans et al., 2012; Liu et al., 2020).  

Evaluating the impact of simulated soil moisture stress on vegetation requires that other model errors that also affect CO2 

and water fluxes are minimized. For instance, it is possible that the rapid drying found in Blyth et al. (2011) was due to over-150 

estimation of soil evaporation. The fact that land surface models in general over-estimate evapotranspiration during wet 

periods is well documented (Blyth et al., 2011; Mueller and Seneviratne, 2014; Martínez-De La Torre et al., 2019) and leads 

to unrealistically low soil moisture after long dry periods (Ukkola et al., 2016). The high evaporation (and subsequent low 

SMC) could be due to errors in factors not being addressed in this study, such as radiation absorption or turbulent exchanges 

with the atmosphere. Leaf area index (LAI) also strongly affects the magnitude and seasonality of fluxes coming from 155 

vegetation and soil (via variations in shading).  

This study aimed to evaluate the simulation of GPP and LE for a range of biomes and climates, to diagnose sites and seasons 

when soil moisture stress affects the results, and to evaluate different methods for representing soil moisture stress in JULES 

as a first step in improving the simulated plant responses to low SMC in global applications of JULES. To do this, we chose 

a subset of sites in the FLUXNET2015 database and from the Large Scale Biosphere-Atmosphere Experiment in Amazonia 160 

(LBA) experiment based on availability of data. Where possible we prescribed soil moisture and LAI from site 

measurements, to differentiate the roles of SMC, the β parameterization, or modelled phenology in model biases. We used 

the GPP calculated before soil moisture stress is applied to understand seasons and locations where the β parameterization 

was contributing to model errors. We also reviewed other commonly used approaches for modelling soil moisture stress, 

presented in Section 2.2, to motivate the representations evaluated in the remainder of the paper. This work is one of the first 165 

published results from a JULES community-wide focus group (called a JULES Process Evaluation Group, or JPEG) on 

understanding soil moisture stress impacts on vegetation, which began in 2016. 

2 Methods 

2.1 Photosynthesis and stomatal conductance in JULES 

The Joint UK Land Environment Simulator (JULES) (Best et al., 2011; Clark et al., 2011) is a process-based model that 170 

simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. JULES treats 

each vegetation type as existing on a separate tile within a grid box. Energy and carbon flux calculations are performed 

separately for each tile, depending on Plant Functional Type (PFT)-dependent parameters. The tiles share a common soil 

column. Leaf-level net photosynthesis is integrated over the canopy, according to the canopy radiation scheme specified. In 

the present study, we used 10 canopy layers of equal LAI (in JULES this is ‘canopy radiation model 6’), although another 175 

option in JULES is to use a ‘big leaf’ approach (Clark et al., 2011). Potential (non-stressed) photosynthesis is calculated 

based on three limiting rates: Wc (a RuBisCO limited rate), Wl (a light-limited rate), and We (a transport limited rate for C3 
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plants and a PEPCarboxylase limitation for C4 plants). For full details on the photosynthesis scheme in JULES see (Clark et 

al., 2011; Harper et al., 2016). 

Stomatal conductance to water vapour gs (in m s-1) is related to net photosynthesis A (in molCO2 m-2 s-1) through:  180 

𝑔! = −1.6𝐴 "#∗

$"%$#
 ,           (1) 

where ca and ci are the atmospheric and intercellular CO2 concentrations, respectively, in Pa, and 1.6 is the molar diffusivity 

ratio of CO2 to H2O in air (Guerrieri et al., 2019). R is the universal gas constant (8.314 J K-1 mol-1) and T* is the leaf 

temperature (K). Vapour deficit at the leaf surface (D, kg kg-1) affects stomatal conductance through the gradient between ca 

and ci: 185 
&"%'∗

&#%'∗
= 𝑓( *1 −

)
)$%"&

+           (2) 

Here, 𝛤* is the photorespiration compensation point (Pa), and Dcrit and f0 are PFT-dependent parameters (Cox et al., 1998; 

Best et al., 2011). 

2.2 Soil moisture stress in JULES and other terrestrial biosphere models 

Many land surface, terrestrial biosphere, and crop models include a β function to represent the effect of soil moisture stress 190 

on vegetation. The implementation of the stress factor can generally be split into two categories: stomatal and biochemical 

limitation (Bonan et al., 2014; De Kauwe et al., 2015). JULES falls under the latter category, with potential leaf-level carbon 

assimilation, Ap, being converted to the water-limited net leaf photosynthesis through multiplication with the stress factor: 

𝐴 = 𝐴*𝛽            (3) 

Other land surface models apply biochemical limitation through reducing RuBisCO or reducing electron transport (e.g.  195 

ORCHIDEE, (Krinner et al., 2005). CABLE applies limits to both the stomata (via reducing gs) and A (De Kauwe et al., 

2015).  

In JULES, soil moisture stress (β, unitless) for each soil layer k is a function of volumetric water content (θ) in each layer 

(𝜃k, m3 m-3) using: 

𝛽+ = /

1																	𝜃+ ≥ 𝜃,**,+
.'%.(")&,'

.+,,,'%.(")&,'
								𝜃/012,+ ≤ 𝜃+ ≤ 𝜃,**,+

0																			𝜃+ ≤ 𝜃/012,+

 ,       (4) 200 

where 𝜃wilt and 𝜃upp are the water contents at the wilting point and at which the plant starts to become water stressed, 

respectively (Cox et al., 1998). 𝜃upp is a function of 𝜃crit, the critical water content (usually defined as the field capacity), and 

p0, a PFT-dependent parameter: 

𝜃,** = 𝜃/012 + (𝜃$302 − 𝜃/012)(1 − 𝑝()         (5) 

The parameter p0 was added to JULES in version 4.6 to allow β=1 for θ<θcrit, in other words delaying the critical threshold 205 

value for inducing stress as soils dry below the field capacity. In the default configuration, p0 is set to 0 (meaning 𝜃upp= 𝜃crit), 
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and 𝜃wilt and 𝜃crit correspond to soil matric potentials of -1.5 MPa and -0.033 MPa, respectively. Equation 4 means that, for 

each soil layer, soil moisture stress completely limits root water extraction from that layer if θk is at or below the wilting 

point (βk=0), while there is no soil moisture stress (βk=1) if θk is at or above 𝜃upp,k. In between these points, there is a linear 

increase in stress (decrease in βk) as water content decreases (blue line in Fig. 1). An effective root fraction per layer (rk) is 210 

used to calculate the overall soil moisture stress factor: 

𝛽 = ∑ 𝑟+𝛽+
4-.")
+              (6) 

Where 

𝑟+ = 𝑒
5
6%7             (7) 

In Eq. 7, z is the depth of each soil layer, and dr is a PFT-specific parameter that weighs the effective root fraction within 215 

each layer (Fig. 2). rk is an effective root fraction and is not the same as the actual root mass distribution, as it accounts for 

other traits and processes not present in JULES such as the surface area of roots, conductivity, and hydraulic redistribution.   

JULES has four soil layers (nsoil = 4) that together extend to 3 m depth. The smaller the dr, the more emphasis is given to 

shallow layers; while deeper layers are emphasized with a larger dr. As a specific example: with JULES default soil depth of 

3 m, 87% of the root water extraction is from the top 1 m for C3 and C4 grasses (dr=0.5), compared to 45% in the top 1 m for 220 

tropical broadleaf evergreen trees (dr=3.0). As Fig. 2 shows, dr is not the root depth because roots are present in every soil 

layer, even though the fraction of roots is very small towards the bottom of the column for small values of dr. 

The stress factor is also applied to leaf maintenance respiration (and optionally to stem and root maintenance respiration). 

The effective root distribution and stress factor also affect the fraction of total plant transpiration extracted from each soil 

layer, ϵk: 225 

𝜖+( =
3'8'
8

             (8) 

Although not used in this study, it is worth noting that many land surface and terrestrial biosphere models apply soil 

moisture stress through limiting stomatal conductance (the ‘stomatal’ grouping from Bonan et al. 2014) (Egea et al., 2011; 

Fatichi et al., 2012; De Kauwe et al., 2015). These include JSBACH and DLEM (Raddatz et al., 2007; Tian et al., 2010). For 

example, CABLE uses β to modify the slope of the relationship between stomatal conductance and net photosynthesis (De 230 

Kauwe et al., 2015). In other models (e.g. crop model WOFOST), they interact through allowing the actual or potential 

evapotranspiration to impact the soil moisture threshold for unstressed vegetation (Tardieu and Davies, 1993). Models that 

limit stomatal conductance from soil moisture stress can include the explicit consideration of the plant/soil hydraulics 

(Williams et al., 1996; Zhou et al., 2013; Bonan et al., 2014; Mirfenderesgi et al., 2016; Eller et al., 2018; Kennedy et al., 

2019; De Kauwe et al., 2020) and/or chemical signalling, such as the abscisic acid (ABA) concentration in the xylem sap 235 

(Tardieu and Davies, 1993; Dewar, 2002; Verhoef and Egea, 2014; Huntingford et al., 2015; Takahashi et al., 2018). In other 

models, β can affect root growth and leaf senescence (Arora and Boer, 2005; Song et al., 2013; Wang et al., 2016), or reduce 

mesophyll conductance (Keenan et al., 2010). 
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2.3 Alternative representations of soil moisture stress  

In this study, we evaluated JULES GPP and LE using alternative parameterizations for β, based on a review of methods 240 

found in the literature and supported by measurements. The ten experiments are summarized in Tables 1 and 2, including 

settings in the default configuration. To summarize, these experiments aim to capture the impact of: 

1. deeper soils and roots (‘soil14’ and ‘soil14_dr*2’ experiments, Sect 2.3.1); 

2. reducing the critical soil moisture content below which stress begins to increase (‘p0’ experiments, Sect. 2.3.2); 

3. using soil matric potential rather than θ to calculate soil moisture stress (‘psi’ experiments, Sect. 2.3.3); 245 

4. emphasizing deep roots that may have small fraction of total root biomass, but can extract large amounts of soil water 

(‘mod1’ experiments, Sect. 2.3.4); 

5. assuming a strong decay rate of root functioning for all PFTs (‘soil14_dr0.5’, Sect. 2.3.5). 

 

2.3.1 Deeper soil column and roots (soil14 and soil14_dr*2) 250 

Several studies have found that deep roots are an essential part of modelling plant drought responses (Canadell et al., 1996; 

Teuling et al., 2006; Baker et al., 2008; Akkermans et al., 2012; Wang and Dickinson, 2012).  Canedell et al. (1996) found 

that the global average maximum root depth is 7±1.2 m for trees and 2.6±0.1 m for herbaceous plants. We evaluated the 

impact of deeper soils by using a 14-layer soil, extending to 10.8 m depth, which has been used in JULES to study soil 

freeze/thaw dynamics in permafrost regions (Chadburn et al., 2015). In the ‘soil14’ experiments, nsoil increased from 4 to 14, 255 

and the thickness of each soil layer (dzsoil) was changed as in Table 1, to give a total depth of 10.8 m. This also increased the 

vertical resolution of layers in the top 2.8 meters of soil, which more accurate for solving the nonlinear Richards’ equation 

(Mu et al., 2021). The parameter dr remained unchanged, giving the effective root profiles shown in the middle panel of Fig. 

2. As a result, for C3 and C4 grasses (dr = 0.5), 99% of root water extraction was from the top 2.4 m, while for tropical 

broadleaf evergreen trees (dr=3) 95% of root water extraction was from the top 7.8 m. These numbers compare well to the 260 

observed maximum rooting depths (Canadell et al., 1996).  

To evaluate the impact of placing more emphasis on deeper soil layers (in Eqs. 6 and 8), we doubled dr in an additional 

experiment (‘soil14_dr*2). In these experiments, 99% of root water extraction was from the top 4.8 m for C3/C4 grasses 

(dr=1), and for tropical evergreen trees (dr=6), 87% of root water extraction was from the top 7.8 m. 

2.3.2 Delayed onset of stress (p0 and soil14_p0) 265 

Measurements of transpiration rates show that plants do not limit transpiration until intermediate levels of soil dryness occur 

(Fig. 1) (Verhoef and Egea, 2014). In JULES, having no stress until soils dry below field capacity can be represented with 

the parameter p0 (Eq. 5), where a value of 0.4-0.5 for p0 would capture the range of responses found in Verhoef and Egea 

(2014). In the ‘p0’ experiments, we used p0=0.4. This was done with both the 4 layer (p0) and 14 layer (soil14_p0) soils. 

2.3.3 Curvilinear response (psi and soil14_psi) 270 
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While Eq. 4 assumes a linear increase in stress as water content decreases, some models assume a curvilinear increase in 

stress (Sinclair, 2005; Oleson et al., 2010; Egea et al., 2011), or an S-shaped curve (Tardieu and Davies, 1993; De Kauwe et 

al., 2015). Nonlinear responses can be represented by a parameter to induce curvature (Egea et al., 2011) or through using 

the soil matric potential, 𝜓, rather than θ: 

𝛽9,+ =
9'%9$).-/

9.,/0%9$).-/
           (9) 275 

Here, 𝜓open is the soil matric potential above which β=1, and 𝜓open is the soil matric potential below which β=0. We set 𝜓open 

and 𝜓close to -0.033 and -1.5 MPa, respectively, which are typical values for field capacity and wilting point. Models that use 

soil water potential include (Verhoef and Egea, 2014; Fatichi et al., 2012; Manzoni et al., 2013; Lawrence et al., 2019), while 

other models use leaf water potential (Tuzet et al., 2003; Christina et al., 2017). In the ‘psi’ experiments, we replaced Eq. 4 

with Eq. 9. This was done with both the 4 layer (psi) and 14 layer (soil14_psi) soils. 280 

2.3.4 Remove root-weighted access to soil moisture (mod1 and soil14_mod1) 

The measure of water availability for β can be a function of each layer’s water content (Eq. 6), or water in the wettest layer 

(Martens et al., 2017), or the contribution of the water in each layer can be weighted by the root density or plant and soil 

hydraulics (Oleson et al., 2010; Christina et al., 2017). Another approach is to use a function of water in the whole root 

column (�̅�), rather than layer-by-layer, which is equivalent to assuming that plants can access water anywhere in the soil 285 

column, if there are roots present (Baker et al., 2008; Harper et al., 2013):  

𝛽:;6< =
.=%.(")&

.+,,%.(")&
           (10) 

In this approach, root water extraction per layer is weighted by layer thickness (dzsoil) rather than by beta: 

𝜖+( = 𝑑𝑧!;01(𝜃+ − 𝜃/012)           (11) 

In the ‘mod1’ experiments, Eqs. 4 and 6 were replaced with Eq. 10; and Eq. 8 was replaced with Eq. 11.  In addition, dr was 290 

implemented as the maximum root depth instead of the e-folding depth and was double its default value (with a maximum 

depth of 3 m). The effective root fraction in each soil layer was set equal to the proportional thickness of each layer, up to the 

maximum depth of roots. In ‘soil14_mod1’, dr was double its default value (Table 2), but without enforcing a maximum 

depth of 3m. With the default interpretation of dr, roots are present in every layer, but in these experiments plants could not 

access water at depths below the parameter dr. Therefore, this approach should benefit deep-rooted PFTs, as they could 295 

access more of the soil column than shallow-rooted grasses and shrubs. 

2.3.5 Exponential decline of roots with depth (soil14_dr0.5) 

The effective root profile from grasses with nsoil=14 and depth of 10.8 m more closely resembles the observed rapid decay of 

root biomass with depth than the profiles for other PFTs (Zeng, 2001) (Fig. 2, right panel). We evaluated the impact of using 

more realistic root distributions by setting dr to 0.5 for all PFTs in the ‘soil14_dr0.5’ experiment. Essentially, this gave more 300 

emphasis to shallow layers in calculating root water extraction and β, and was an opposite approach of the ‘mod1’ 

experiments, which gave more emphasis to the thickest soil layers. 
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2.4 Model set up and evaluation 

We evaluated JULES at 40 sites covering eight general biome types from the tropics to the Arctic (Fig. 3, SM Table 1). Each 

JULES simulation was run with meteorological measurements taken at each site (i.e. point-scale runs rather than simulating 305 

the entire gridbox). The meteorological and flux tower observations were obtained from the LBA Model Intercomparison 

Project (sites with 'LBA' in the name) or FLUXNET2015 dataset (Pastorello et al., 2020). We selected sites with soil 

moisture measurements at the time of our original data request (July 26, 2016). At each site, we extracted temperature, 

precipitation, wind speed, surface pressure, specific humidity, longwave and shortwave radiation for running JULES at 

either half-hourly or hourly resolution, depending on the data available. We then used measured LE and calculated GPP as 310 

supplied in both datasets (for the FLUXNET2015 data, these are variables LE_F_MDS and GPP_NT_VUT_REF, 

respectively). Details of the data pre-processing are provided in the SM.  

For sites with soil moisture data, we individually contacted site PIs to gather details on the depth of the measurements and 

other details on soil texture, physical properties, and root depth. This resulted in a subset of 21 sites with soil moisture 

measurements. We also collected data from site PIs on LAI. Fourteen sites had both LAI and SM data. Often the time period 315 

of LAI/SM measurements was shorter than the full record, and we only ran JULES for the time periods with the most data to 

avoid the need for gap-filling. The time periods of the simulations and soil layers for prescribing data are provided in Table 

SM1.  

The default plant parameter set was taken from Harper et al. (2016). When LAI was not prescribed, we used the JULES 

phenology scheme to predict LAI. This scheme predicts leaf growth and senescence based on temperature alone. Fractions of 320 

each PFT (or bare soil) present at the site were determined from the vegetation class (Tables SM1, SM2). We calculated soil 

properties from information supplied by site PIs where possible; otherwise, we used the gridbox sand, silt, clay fractions of 

the Met Office Central Ancillary Program (CAP) high resolution input file (Dharssi et al. 2009) to derive the Brooks and 

Corey (1964) parameters, along with the approximations of the parameters (via pedotransfer function) required for the soil 

hydraulic properties as detailed in Cosby et al. (1984) (Table SM3). Each simulation began with a 50-year spin-up of the soil 325 

moisture using recycled meteorology. 

This evaluation focused on seasonal and annual timescales of fluxes. We started with daily measurements from the sites, 

then masked any modelled outputs on days when measurements were not available and calculated monthly means when 

>50% of the data was present. To evaluate the model performance, we used four metrics: normalized absolute error (NAE), 

variance ratio (VR), correlation coefficient (r), and root mean squared error (RMSE). The NAE gives an indication of the 330 

average model-data mismatch: 

𝑁𝐴𝐸 =	>.1-
???????%>2.3????????

>.1-???????            (11) 

where Xobs is the observed flux, Xmod is the modelled flux, and the overbar denotes an average taken over the entire 

simulation period. The other metrics were calculated from monthly mean fluxes. The VR is the ratio of variance in the 

simulations to the observations. For a perfect fit, the VR would be 1: lower values mean the model variance is too low, and 335 
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vice versa (Carvalhais et al., 2008). R is the Pearson’s correlation coefficient and it gives an indication of model-data 

agreement on both a seasonal and year-to-year timescale. For the soil moisture stress experiments, we used Taylor diagrams 

based on monthly mean fluxes to evaluate the best fit, along with RMSE from fluxes averaged over daily and monthly 

periods, and VR and correlation calculated from monthly fluxes. 

3. Results 340 

3.1 Simulated GPP and ET 

On average, JULES matched the pattern of observed seasonal cycle of GPP well for sites in non-agricultural biomes in 

temperate and cold climates (mean r>0.79) (Fig. 4, Table 3). The correlation was fairly good for sites in tropical grasslands 

and savannas (mean r>0.70), and cropland (r=0.67). However, the seasonal cycle was not well represented for sites in 

tropical dry forests (mean r=0.43) or tropical evergreen forests (mean r = -0.10).  345 

In terms of model biases, the NAE was lowest (mean <0.2) for GPP at tropical evergreen forest and temperate woody 

savanna sites, while NAE was highest in tropical grassland, tropical savanna, and cold grassland sites (mean >0.50) (Fig. 5). 

The variance ratio (VR) indicates the amount of simulated variability in comparison to observations. On average, VR was 

between 0.55–0.92 for sites in tropical savannas, temperate non-agricultural biomes, and boreal forest. A low VR indicates 

that simulated variability (either magnitude of seasonal cycle or interannual variability) was too low – this was the case for 350 

sites in cold grasslands and cropland (average VR of 0.35 and 0.21, respectively). Conversely, a high VR indicates that 

simulated variability was higher than observed. Sites in tropical dry and evergreen forests and tropical grasslands had an 

average VR of 4.8, 5.5, and 4.8, respectively, due to an overestimated seasonal cycle (ie LBA-K67 in Fig. 6). 

The model tended to perform best in temperate midlatitude climates. The average NAE and correlation (r) for temperate 

forest sites was 0.15 and 0.92, compared to 0.51 and 0.75 for the three sites in a Mediterranean climate (IT-CA1, IT-Ren, 355 

and IT-Col). Sites in temperate grasslands had an average NAE of 0.35 and were better simulated than those in cold and 

tropical grasslands (NAE = 0.50 and 0.99, respectively). NAE also was significantly higher for sites in tropical savannas 

(NAE=0.79) compared to those in temperate savannas in the US (NAE=0.14). 

The model performance was also more related to climate than biome for LE. On average, the seasonal cycle of LE was well 

simulated for sites outside of the tropics (mean r per biome > 0.84), and for sites in tropical savannas (r=0.79) (Table 4, Fig. 360 

SM1). However, in tropical dry and evergreen forests and tropical grasslands, the seasonal cycle was overestimated, as 

indicated by low correlations (mean r=0.52, 0.29, 0.35, respectively) and high variance ratios (mean VR=1.9, 3.8, 5.2, 

respectively). Model variance was close to observed for the tropical savanna sites (VR=0.99). Unlike for GPP, the highest 

NAE occurred in temperate mixed forests (NAE=0.55) (Fig. SM2). The NAE was lowest for the cropland sites (NAE=0.03), 

followed by tropical evergreen and dry forest sites (NAE=0.13 for both). 365 

3.2 Role of soil moisture stress in GPP errors 
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Based on the above analysis, on average the model performance is poorest for evergreen broadleaf sites, Mediterranean 

climates, cold and tropical grasslands, and tropical savannas. We compared the GPP that JULES would calculate if there was 

no soil moisture stress to the actual simulated GPP (Fig. 6, Fig SM3), to elucidate the role of soil moisture stress in 

generating model bias from 3.1. This was possible through a new diagnostic added to the model, which output GPP prior to 370 

multiplication by β. At the tropical forest sites (GF-Guy, LBA-K34, LBA-K67, LBA-K83, and LBA-BAN), simulated GPP 

decreased during the dry season, while the unstressed GPP and observed GPP remained high or even increased during dry 

seasons (Figs. SM3-4), which indicates that the model was over-estimating soil moisture stress during the dry season. At the 

tropical grassland and savanna sites (AU-Fog, CG-Tch, LBA-PDG, LBA-K77, and LBA-FNS), the modelled GPP was often 

too high, and the unstressed GPP was even higher. An exception was ZA-Kru, where the observed GPP was somewhere in 375 

between simulated GPP and unstressed GPP. There were mixed results for the sites with a Mediterranean climate (IT-CA1 

deciduous broadleaf forest, US-Ton woody savanna, and US-Var grassland); stress was impacting the GPP but other 

processes were also affecting the simulation. For example, at IT-CA1 the modelled GPP was very close to measured values 

when observed soil moisture and LAI were used, indicating that errors in soil hydrology and phenology were important at 

this site. At other semi-arid sites (IT-Col deciduous broadleaf forest, US-Ton, and US-Var), the bias occurred during the 380 

peak growing season, when JULES GPP was lower than observed but unstressed GPP was closer to observations, indicating 

that soil moisture stress was impacting results at these sites. In the cold grassland sites, soil moisture stress sometimes 

resulted in underestimated GPP (e.g. RU-Che), possibly due to JULES not simulating enough unfrozen soil moisture at these 

sites. Conversely, at two temperate climate grasslands (AT-Neu and CH-Cha), the simulated GPP was too low even with soil 

moisture stress removed. Other sites where JULES showed a large improvement with the unstressed GPP were the aspen site 385 

in Canada (CA-Oas), Tharandt evergreen needleleaf forest in Germany (DE-Tha), the deciduous broadleaf forest in Belgium 

(BE-Vie), and the cropland site (US-Ne1). This analysis gives a list of sites that are useful for further exploring the role of 

soil moisture status in vegetation functioning: all sites with a Mediterranean climate or in tropical forests, as well as ZA-Kru, 

RU-Che, CA-Oas, DE-Tha, BE-Vie, and US-Ne1.  

When prescribing soil moisture and LAI (see Sect. 2.3), the general trends in model performance were similar to prior 390 

simulations, although often the simulated GPP was less realistic with more prescribed data. This could be due to other errors 

within the soil physical parameterizations related to infiltration or soil evaporation (Van Den Hoof et al., 2013). The 

simulations at the tropical evergreen forest sites still did not resemble the measured GPP (as indicated by very low or 

negative correlations), even with prescribed LAI and soil moisture. It is possible that soil layers below those typically 

measured are influencing the forests soil water balance and canopy exchange processes, so more data are needed to 395 

accurately prescribe the full soil moisture profile. Only 14 sites had enough data to prescribe both soil moisture and LAI 

from site observations (Sect. 2.4), and often the time resolution of data was monthly which for soil moisture could miss 

impact of extremely wet or dry periods. However, most often adding the LAI data resulted in an improved simulation of 

GPP, indicating biases resulting from the JULES phenology scheme. The improvements with incorporation of prescribed 

LAI were particularly large for the cropland sites, and at LBA-RJA, which is a seasonally dry tropical forest.  400 
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We categorize the sites depending on the impact of soil moisture stress on their simulation of GPP with the most available 

prescribed data (for example, in the simulation with soil moisture and LAI prescribed at LBA-BAN, and for the simulation 

with soil moisture only at CN-HaM). The four categories are: 

1. Sites with underestimated GPP: Simulated GPP was lower than observed. However, β was often 1, and 

removing soil moisture stress had a small effect on the simulation, indicating the importance of other processes 405 

in regulating GPP at these sites. Two tropical (LBA-K34, LBA-RJA) and two temperate grasslands (AT-Neu, 

CH-Cha) sites fall into this category 

2. Sites with overestimated GPP: Simulated GPP was higher than observed, so removing soil moisture stress 

increased GPP and made the simulation worse. This category includes one tundra site (CN-HaM), a 

Mediterranean woodland (IT-CA1), two coniferous evergreen forests in Finland and Italy (FI-Hyy and IT-Ren), 410 

an arid grassland (US-SRG) and two tropical savanna sites (CG-Tch, SD-Dem). 

3. Soil moisture stressed sites:  As in the first set of sites, there was a low bias in GPP, but removing soil moisture 

stress improved the simulation. The “stressed” sites includes three temperate mixed forests (BE-Vie, DE-Tha, 

and US-UMB), a Mediterranean deciduous forest (IT-Col), a boreal aspen forest (CA-Oas), a tropical 

evergreen forest (GF-Guy), and a cropland site (US-Ne1). 415 

4. Stressed sites plus other errors: At several sites, removing soil moisture stress made the simulation slightly 

better, but apparently other missing processes also affect the simulation. The difference between this category 

and the soil moisture stressed sites is the fact that there would still be a large bias even without soil moisture 

stress. Sites in this category include tropical forests (LBA-Ban, LBA-K83, LBA-K67), cropland (US-Ne2, US-

Ne3), two savanna sites (ZA-Kru and US-SRM), and a tundra site (RU-Che). 420 

The challenge is to determine a representation of soil moisture stress which improves the simulations at sites falling into 

categories 3 and 4 without degrading the simulation at the other sites. Clearly, we do not want to completely remove soil 

moisture stress as this plays an important role in regulating seasonal cycles in many ecosystems. In the remainder of the 

paper, we will focus on examples of changes at some of these sites.  

3.3 New treatments of soil moisture stress 425 

We ran the ten experiments (Section 2.3, Table 1) at a subset of 11 sites that span the categories listed in Section 3.2. This 

included four sites where soil moisture stress was the main contributor to model biases (soil moisture stressed sites GF-Guy, 

BE-Vie, DE-Tha, and CA-Oas), sites with a Mediterranean climate (IT-Col, US-Var, US-Ton), and sites with soil moisture 

stress plus other errors (LBA-K67, LBA-BAN, ZA-Kru, and RU-Che). Because some experiments focused on extending the 

soils far below the deepest soil moisture measurements available, we were unable to use prescribed data for these 430 

experiments. Taylor diagrams for GPP and LE for all sites are shown in Figs. SM5 and SM7, respectively; and seasonal 

cycles of GPP, simulated b, and LE are shown in Figs. SM6 and SM8. 
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3.3.1 Soil moisture stressed sites 

At these sites, there was an improvement when the 14 layer soil was combined with model settings p0, psi, or dr*2 

(representing, respectively, setting p0 in Eq. 3 to 0.4; using Eq. 9, that depends on the soil matric potential, to represent b; 435 

and doubling the parameter dr). Monthly RMSE decreased from 2.30 gC m-2 d-1 on average to 1.59, 1.54, and 1.73 gC m-2 d-1, 

respectively in the soil14_p0, soil14_psi, and soil14_dr*2 experiments, averaged across the four sites. There was also an 

improvement in the VR and the correlation coefficient (Table 5). The VR reduced from 2.15 in the default simulation to 

nearly 1 in the soil14, soil14_p0, and soil14_mod1 experiments. For LE, the RMSE was slightly higher in these experiments 

(22.57, 22.49, and 20.77 W m-2, respectively for soil14_p0, soil14_psi, and soil14_dr*2) compared to the default experiment 440 

(19.78 W m-2), and the correlation coefficient was >0.81 (Table SM4).  

At the tropical forest site (GF-Guy), experiments with default 3 m soil depth had correlation coefficients r<0.4, and an 

exaggerated seasonal cycle, as indicated by the high normalized standard deviation in the Taylor diagrams (Fig. 7). In the 

soil14_p0, soil14_psi, and soil14_dr*2 experiments, the correlation r was >0.7 (compared to 0.2 in the default 

configuration), and the standard deviation was closer to observed.  The GF-Guy site experienced the lowest amount of soil 445 

moisture stress in the soil14_p0 and soil14_psi experiments, which led to a more realistic simulation of GPP at this site (Fig. 

8). Using a shallower effective root profile (setting dr to 0.5) produced the worst results, and b was very low during the dry 

season at the tropical forest sites in the ‘soil14_dr0.5’ experiments (Fig. 8). In the ‘soil14_dr0.5’ simulation, b was still 

weighted by root distribution, so the dry top soil layers had a relatively large impact on the stress experienced by the plants. 

Another site in the ‘soil moisture stressed’ category was DE-Tha, where most simulations yielded reasonable results (r>0.9) 450 

(Fig. 7). Only the default and ‘soil14_dr0.5’ simulations produced results outside the standard deviation of measured GPP 

(Fig. 8). Variability (denoted by standard deviation in the Taylor diagram as well as VR close to 1) was best in the 

soil14_p0, p0, soil14_psi, and psi simulations.  

3.3.2 Mediterranean climate sites 

At the sites with a Mediterranean climate (IT-Col, US-Var, US-Ton), soil14_psi and soil14_p0 removed the most stress, but 455 

p0 and psi with the default soil depth also produced a good fit for GPP (Figs. SM5b, SM6b, Table 6). However the RMSE 

for LE was significantly higher in these four experiments (RMSE=22.55, 23.59, 25.52, and 26.09 W m-2 for the p0, psi, 

soil14_p0 and soil14_psi experiments, respectively, compared to 19.67 W m-2 in the default simulation), while the 

correlation coefficient was high (r=0.85–0.87 compared to 0.88 in the default) (Fig. SM7b, Table SM5). US-Var and US-

Ton are dominated by grass and shrubs, which have an effective root depth dr of 0.5 m and 1 m, respectively. At these sites, 460 

the ‘soil14_mod1’ experiments had β<0.5, and GPP was underestimated during the growing season (Fig. SM6b). (In these 

experiments, access to soil moisture was not weighted by effective root fractions, dr was double its default value, and it was 

interpreted as the maximum root depth.) This meant that grasses and shrubs could not access water below 1 m and 2 m 

depth, respectively, resulting in the strong soil moisture stress seen at the US-Ton and US-Var sites. 

3.3.3 Sites with soil moisture stress and other errors 465 
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At the sites with soil moisture stress plus other errors, there were fewer improvements although RMSE decreased from 2.81 

gC m-2 d-1 in the default simulation to 2.08, 2.14, and 2.17 gC m-2 d-1 in the soil14_psi, soil14_p0, and soil14_dr*2 

simulations, respectively (Figs. SM5c, SM6c, Table 7). These sites are LBA-K67, LBA-BAN, ZA-Kru, and RU-Che. The 

VR was best captured in the soil14_dr*2 simulations, while the correlation coefficient was highest in the default simulation 

and in the soil14_dr0.5 simulation. At LBA-K67 (a tropical forest site), soil14_psi and soil14_p0 had the lowest RMSE and 470 

seasonal variation in GPP, although for all experiments the correlation coefficient was negative (Fig. SM5c). When dr=0.5 m 

(as in ‘soil14_dr0.5’), there were proportionally more roots in the top soil layers, and as these dried out, there was a sharp 

decline in b. This is further illustrated in Figure SM9 at the LBA-K67 site, which plots b against soil moisture in the top 1 m. 

In comparison, with dr =3 m (the default value) the trees were able to access water from deeper layers, so b did not decline as 

rapidly. At ZA-Kru, all results were within the range of the measurements, although the growing season GPP was 475 

underestimated (Fig. SM6c). At LBA-BAN, soil14_dr*2, soil14_psi, and soil14_p0 gave lowest RMSE, but VR was very 

high (>3) and the correlation coefficient was low (r<0.4) for all simulations. There was very little difference between any of 

the simulations at RU-Che, and b was <0.25 year-round for all experiments. For LE, there was a significant reduction in 

RMSE from 22.54 W m-2 to <18 W m-2 for all experiments with 14-layer soil at these sites (Table SM6). The correlation 

coefficient was also significantly improved in these experiments (from 0.48 in the default simulation to >0.67). The 480 

exception to these improvements was the ‘soil14_dr0.5’ experiment, where the RMSE increased to 25.17 W m-2 and 

correlation coefficient decreased to 0.35. 

3.3.4 Average response across sites 

Averaging across the 11 sites where we performed additional experiments, the lowest RMSE for GPP occurred in the 

soil14_p0, soil14_psi, and soil14_dr*2 experiments (on both daily and monthly timescales). The variability was best 485 

captured by the soil14, soil14_p0, and soil14_psi experiments (as denoted by VR of 1.06, 1.06, and 0.98, respectively). The 

mean correlation coefficient was similar across all experiments (0.50–0.57). All of the experiments were an improvement 

compared to the default configuration, except for the p0, mod1, and soil14_dr0.5 experiments. 

For LE, averaged across all sites, the daily and monthly RMSE was lowest for the soil14 experiment, and this was the only 

experiment with RMSE lower than the default configuration. There was an improvement in the VR for the soil14, soil14_p0, 490 

soil14_psi, soil14_mod1, and soil14_dr*2 experiments, compared to the default (with VR between 1.26-1.44 compared to 

1.58 in the default). The correlation was highest (r~0.74–0.76 compared to default r=0.70) for all experiments with a 14-

layer soil, except for soil14_dr0.5.  

4. Discussion and Conclusions 

4.1 Default model configuration 495 

Tables 3-4 summarize some of the key findings from this study pertaining to the default configuration. JULES simulated 

GPP was more realistic in temperate biome sites than in the tropics or high latitudes/cold region sites, as indicated by three 
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statistics to measure annual biases (NAE), seasonal cycles (r), and variability (VR). LE was best simulated in temperate and 

high latitude/cold sites based on the same statistics (except for temperate mixed forests). For sites in the tropics, the default b 

parameterization contributed to an exaggerated seasonal cycle of GPP compared to the measurements, especially in tropical 500 

evergreen forests. Although the NAE was low in tropical evergreen forest sites (e.g. LBA sites K34, K83, K67, and BAN), 

the seasonal cycle was overestimated (despite LAI being nearly constant all year), as indicated by high VR and low 

correlation coefficients. A similar result was observed with LE in most tropical sites: the seasonal cycle was incorrect and 

the VR was high. For example, at LBA-K67, the measurements show an increasing trend in GPP from August to October 

(coinciding with the dry season), while JULES predicted a decreasing trend during this time. Even with soil moisture and 505 

LAI prescribed for the four tropical evergreen forest sites, the correlation coefficients were negative. At these sites, it is 

possible that including a seasonally varying photosynthetic capacity would improve the results, as in (Wu et al., 2017). The 

dry season is often accompanied by enhanced carbon uptake in Amazon forests, due to a combination of fewer clouds and 

increased incoming solar radiation (Saleska et al., 2003; Restrepo-Coupe et al., 2013; Von Randow et al., 2013; Zeri et al., 

2014) and seasonal leaf flushing (Wu et al., 2016). The observed seasonality in GPP is enabled by deep roots that can access 510 

ample soil moisture, and by the relatively high photosynthetic capacity of new leaves (Wu et al., 2017), a process not yet 

represented in JULES.  

Other errors, possibly linked to phenology, also contributed to model biases in tropical savanna and deciduous forest sites. 

The improvements seen when LAI was prescribed at LBA-RJA (a seasonally dry tropical forest site) further suggest that 

JULES’ lack of a moisture-driven phenology scheme could be affecting the results at this site. LBA-RJA serves as 515 

interesting comparison to LBA-K67: RJA receives a similar amount of annual rainfall, but the dry season is more intense, 

with about half as much rainfall during the dry season compared to K67 (Restrepo-Coupe et al., 2013). The bedrock is 

relatively shallow at RJA (2-3 m) (Christoffersen et al., 2014), therefore deep soil moisture is not present. At this site, 

measured GPP drops steadily from January until reaching a minimum in the middle of the dry season. JULES captured this 

seasonal cycle very well, although the amplitude was slightly dampened with predicted GPP being higher than observed 520 

during most of the year (with prescribed LAI and soil moisture).  

In cold grassland sites, JULES underpredicted the variability of GPP and had high annual biases. The biases were due to 

very little GPP being simulated, with β being low year-round. At RU-Che, giving more emphasis to deeper layers (with 

‘soil14_dr*2’) did not increase GPP – which is not unexpected due to the presence of frozen soils both in the simulations and 

in reality at this site (Merbold et al., 2009a). The C3 grass PFT at this site has most roots in the top 0.5m, which indicates that 525 

evaporation or sublimation could be drying the soils too much in the layers with the most roots and unfrozen soil moisture 

content.  

4.2 Overview of alternative approaches for representing soil moisture stress 

We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default 

parameterization for most biomes and climates: 14-layer soil with a curvilinear stress response function (‘soil14_psi’, Eq 9), 530 

14-layer soil with delayed induction of stress (‘soil14_p0’, Eq. 3), and 14-layer soil with deeper roots (‘soil14_dr*2’).  
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Within the default configuration, LE biases were greatest in temperate mixed forests, with overestimation occurring during 

Spring-Autumn. At these sites, reducing soil moisture stress (i.e. with soil14_psi, soil14_p0, and soil14_dr*2) increased LE 

and increased RMSE, but improved the simulated seasonal cycle and variance. Further evaluation into the reason for the high 

bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for 535 

β.  

There is ample justification for having deeper soils and roots in JULES. Total soil column depth and root distribution 

determine the total amount of water and nutrients available to plants. Deep roots can access soil moisture at depth (Christina 

et al., 2017) and potentially the water table, and hence contribute to tree transpiration during dry periods, e.g. for GF-Guy 

where many canopy trees are not impacted by dry season droughts (Stahl et al., 2013a; Stahl et al., 2013b). Deep roots have 540 

been found to be important for many vegetation types and ecosystems (Canadell et al., 1996; Pierret et al., 2016; Germon et 

al., 2020): for multiple tree species in tropical forests (Nepstad et al., 1994; Jipp et al., 1998; Strey et al., 2017; Brum et al., 

2019), for Acacias in semi-arid savannas such as SD-Dem (Ardö et al., 2008), and for fast-growing Eucalypt and Acacia 

mangium plantations in Brazil (Christina et al., 2011; Laclau et al., 2013; Germon et al., 2018), to name a few examples. In 

particular, in tropical forests, the global average maximum rooting depth is approximately 7 m (Canadell et al. 1996). These 545 

examples contrast with the shallow soils (3 meters) in the default JULES simulations. In addition, weighting root water 

uptake or soil moisture stress by fraction of roots in each layer could produce too much stress, if the shallow layers (with the 

most roots) dry out too quickly. Deep roots are very efficient at moving water, for example, specific hydraulic conductivities 

(Ks) of deep roots can be as much as 15 times higher than Ks of superficial roots for Banksia sp (Pate et al., 1995), and deep 

roots can redistribute water from deep to shallow layers (Caldwell et al., 1998; Burgess et al., 2001; Oliveira et al., 2005). 550 

However, not all plants rely on deep roots during a drought (Prechsl et al., 2015; Brinkmann et al., 2019), and at sites 

dominated by grasses and shrubs there were high biases in the ‘soil14_mod1’ experiments (weighting the contribution of 

each layer’s βi by the thickness of that layer rather than by the effective root fraction in that layer). Studies with other land 

surface models have drawn similar conclusions. Increasing the soil column from 3.5 m to 10 m and allowing roots to access 

this entire reservoir improved the fit of the SiB3 model to observations at the LBA-K83 site (Baker et al., 2008). Similarly, 555 

the ability of the G’Day model to accurately simulate wood production in fast-growing sub-tropical plantations was 

considerably improved by accounting for tree ability to uptake water in deep soil layers (Marsden et al., 2013). On the other 

hand, using the default calculation for β with an e-folding depth dr=0.5 m emphasized shallow layers, and the overall soil 

moisture stress increased at most sites, resulting in a poor fit to measured GPP and LE in the ‘soil14_dr0.5’ experiments.  

4.3 Outlook for modelling soil moisture stress in JULES and other land surface models 560 

In this study, we used flux tower observations and detailed site information when possible. Working with site researchers 

enabled us to narrow down reasons for model biases by prescribing soil moisture and LAI at some sites, and to better 

understand mechanisms of drought responses at others. These are invaluable benefits of working with site-level data. 

However, there is potential to extract even more information from available datasets to improve the representation of soil 

moisture-vegetation interactions (Gentine et al., 2019). This includes better utilisation of satellite data, and one particular 565 
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opportunity is to consider soil moisture measurements in parallel with those of solar-induced fluorescence, which is used to 

estimate photosynthesis (Lee et al., 2013). Satellite records have large spatial coverage, and modern machine learning 

algorithms could be used to characterise Earth Observation datasets of drought conditions (Huntingford et al., 2019). Such 

methods could address the difficulty in modelling the high complexity and geographical diversity of plant adaptive responses 

to soil moisture deficits that exist in nature. 570 

Future work should build upon these results to further evaluate JULES response with these parameterizations, focusing on 

deeper soils and either using a non-zero p0 (we used 0.4 in this study), or using the soil matric potential (ψ) rather than 

volumetric water content for calculating β. We note that such alternative parameterizations are not a replacement for 

improved representations of the soil-plant hydraulic system that have been developed for many models (Bonan et al., 2014; 

Christoffersen et al., 2016; Kennedy et al., 2019) including JULES (Eller et al. 2020). Instead, they provide a practical, 575 

alternative way to represent some aspects of the soil-plant hydraulic system, including hydraulic differences between PFTs 

through the parameters ψopen and ψclose. (Eq. 9), which can be adopted by any model that use the β function to represent 

vegetation responses to soil moisture. Several other land surface models use soil water potential (e.g. CLM Oleson et al. 

2010; Lawrence et al. 2019) for calculating soil moisture stress, and a further benefit of this approach is the ability to set 

PFT-specific values for ψopen and ψclose. (Eq. 9), with measured turgor loss points serving as a starting point for ψclose (Bartlett 580 

et al., 2012). Whereas our new parametrization generally improves JULES skill to simulate GPP and LE it remains to be 

tested if similar results would be achieved by other models, including models that apply the β function at different parts of 

their photosynthesis and stomatal conductance schemes (e.g. Keenan et al., 2010; De Kauwe et al., 2015). 

Currently, the land  partially offsets anthropogenic CO2 emissions by photosynthetic drawdown, but this could be reversed if 

droughts increase in frequency or intensity in the future. Feedbacks from the land surface can amplify and lock-in existing 585 

drought conditions (Morillas et al., 2017), and land surface responses to regional drought can affect precipitation and 

circulation in other regions (Harper et al., 2013; Lian et al., 2020). Improving responses of vegetation to drought in land 

surface models such as JULES would have far-reaching implications for global climate modelling and are therefore of 

utmost importance. 

Code Availability 590 

Both the model code and the files for running it are available from the Met Office Science Repository Service: 

https://code.metoffice.gov.uk/. Registration is required and code is freely available subject to completion of a software 

licence. The results presented in this paper were obtained from running JULES branch 

https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/karinawilliams/r9227_add_gpp_unstressed_diagnostic,  

which is a branch of JULESv4.9 with the additional unstressed GPP diagnostic added. The runs were completed with the 595 

Rose suite https://code.metoffice.gov.uk/trac/roses-u/browser/a/l/7/5/2/u-al752-jpegpaper, which also includes python scripts 

for creating the plots. 
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Data Availability 

The FLUXNET2015 data used to run JULES is available for download from: https://fluxnet.org/.  
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Table 1: Summary of the 10 JULES model experiments, related to the treatment of soil moisture stress. 1080 

Experiment Name Summary of change 

default Eq. 4 used for β. 4 layer soil to 3 m depth. Root profile in left panel of Fig. 2. 

psi  Use soil matric potential (Eq. 8) rather than volumetric water content (Eq. 4) to calculate β; 

induces a curvilinear response.  

p0 Reduce the critical VWC where stress begins. p0 in Eq. 5 is changed from 0 to 0.4 (green 

dashed line in Fig. 1). 

mod1 Allow plants to access all soil moisture in the column. Eq. 9 replaces Eq. 4, and Eq. 10 

replaces Eq. 7. Double default dr (max value 3). dr is the maximum depth of roots instead of 

e-folding depth. 

soil14 Increase soil layers to 14, 10.8 m depth, but dr remains unchanged. Root profile in middle 

panel of Fig. 2.  

soil14_dr*2 Increase soil layers to 14, 10.8 m depth, but double dr (gives more emphasis to deeper 

layers). 

soil14_psi Combine soil14 and psi experiments. 

soil14_mod1 Combine soil14 and mod1 experiments, except dr is not capped at 3m. Root profile is the 

dashed line in middle panel of Fig. 2.  

soil14_p0 Combine soil14 and p0 experiments. 

soil14_dr0.5 Increase soil layers to 14, 10.8 m depth. Set dr =0.5 m for all PFTs, gives a more realistic 

reduction of root density with depth (see C3, C4 grass root profile in middle panel of Fig. 2).  
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Table 2. Default parameter settings (changed in experiments summarized in Table 1). In the JULES code, p0 is called fsmc_p0; nsoil is called 
sm_levels; dr is called rootd; 𝜓open is psi_open; 𝜓close is psi_close. 
 1085 
JULES 

Parameter 

Explanation Default setting Change in experiments 

fsmc_shape Switch that controls whether β 

decreases linearly with VWC θ or 

with soil matric potential 𝜓. 

0 1 in psi and soil14_psi 

l_use_pft_psi Switch that controls whether β is a 

function of θwilt and θcrit (false) or 

𝜓close and 𝜓open (true)  

false true in psi and 

soil14_psi 

𝜓open Soil matric potential (MPa) above 

which β is 1. Dimension of npft. 

None (only used when 

l_use_pft_psi=true) 

-0.033 MPa for all 

PFTs in psi and 

soil14_psi 

𝜓close Soil matric potential (MPa) below 

which β is 0. Dimension of npft. 

None (only used when 

l_use_pft_psi=true) 

-1.5 MPa for all PFTs 

in psi and soil14_psi 

p0 Threshold at which plants begin to 

feel stress (when 

l_use_pft_psi=false). Dimension of 

npft. 

0 0.4 for all PFTs in p0 

and soil14_p0  

fsmc_mod Switch for method of weighting the 

contribution that each soil layer 

makes to the total β. Dimension of 

npft. 

0  1 for all PFTs in mod1 

and soil14_mod1 

dr If fsmc_mod=0, dr is the e-folding 

depth of roots assuming an 

exponential root distribution with 

depth. If fsmc_mod=1, dr is the total 

depth of the root zone. Dimension of 

npft. 

Tropical broadleaf evergreen trees 

= 3m 

Other broadleaf trees and 

deciduous needleleaf trees = 2m 

Evergreen needleleaf trees = 1.8m 

C3 and C4 grasses = 0.5m 

Shrubs = 1m 

10.8 for all PFTs in 

soil14_mod1 

 

0.5 for all PFTs in 

soil14_dr0.5 

nsoil Number of soil layers 4 14 in all soil14 

experiments 

dzsoil  Soil layer depths in meters, starting 0.1, 0.25, 0.65, 2.0 (total depth = 0.1, 0.2, 0.2, 0.2, 0.3, 
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with the uppermost layer. 3m) 0.3, 0.3, 0.4, 0.4, 0.4, 

1.0, 1.0, 3.0, 3.0 (total 

depth = 10.8m) in all 

soil14 experiments 
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Table 3. Summary of model performance for GPP with no prescribed data. The statistics are averages for each 
biome: Pearson’s correlation coefficient (r), normalized absolute annual error (NAE), and variance ration (VR). 
 1090 
Climate Biome Correlation 

coefficient (r) 
Normalized 
Absolute 
Error (NAE)  

Variance Ratio 
(VR) 

Diagnosed source of error 

Tropics Evergreen 
forests 

-0.10 0.12 5.5 Soil moisture stress during 
the dry season, or other 
phenological controls on 
GPP  

Deciduous 
forests 

0.43 0.26 4.8 GPP too high except during 
dry to wet season transition  

Grasslands 0.75 0.99 4.8 GPP is too high all year 
Savannas 0.70 0.79 0.79 GPP is too high all year 

Temperate Forests 0.87 0.28 0.92 
 

Soil moisture stress during 
growing season 

Grasslands 0.85 0.35 0.57 GPP underestimated at 
wetter sites 

Woody 
savannas 

0.82 0.14 0.64 Multiple factors (soil 
moisture stress, hydrology, 
and phenology) 

Cropland 0.67 0.24 0.21 Phenology and soil 
moisture stress 

High latitude 
or altitude 

Boreal forests 0.90 0.43 0.55 Underestimated GPP during 
summer months 

Grasslands 0.79 0.50 0.35 Frozen soils 
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Table 4. Summary of model performance for LE with no prescribed data. The statistics are averages for each biome: 
Pearson’s correlation coefficient (r), normalized absolute annual error (NAE), and variance ration (VR). 
 1095 
 
Climate Biome Correlation 

coefficient (r) 

Normalized 

Absolute Error 

(NAE)  

Variance Ratio (VR) 

Tropics Evergreen forests 0.29 0.13 3.83 

Deciduous forests 0.52 0.13 1.90 

Grasslands 0.35 0.31 5.24 

Savannas 0.79 0.34 0.99 

Temperate Forests 0.88 0.55 1.47 

Grasslands 0.94 0.23 1.15 

Woody savannas 0.91 0.32 1.34 

Cropland 0.84 0.03 0.70 

High latitude 

or altitude 

Boreal forests 0.89 0.26 1.25 

Grasslands 0.84 0.42 0.64 

 
 
Table 5. Average results of soil moisture stress experiments for GPP at the soil moisture stressed sites GF-Guy, BE-
Vie, DE-Tha, and CA-Oas. 1100 
Experiment RMSE 

(monthly) 
RMSE 
(daily) 

NAE VR r 

Default 2.30 2.59 0.28 2.15 0.75 
p0 1.92 2.33 0.21 2.33 0.78 
Psi 1.83 2.24 0.20 2.00 0.79 
Mod1 2.33 2.63 0.29 2.20 0.74 
Soil14 1.84 2.22 0.25 0.95 0.85 
Soil14_p0 1.59 2.07 0.21 0.97 0.88 
Soil14_psi 1.54 2.03 0.20 0.90 0.89 
Soil14_mod1 1.79 2.21 0.23 0.96 0.86 
Soil14_dr0.5 2.57 2.88 0.31 2.61 0.69 
Soil14_dr*2 1.73 2.17 0.23 0.85 0.89 
 
  



39 
 

Table 6. Average results of soil moisture stress experiments for GPP at the sites with Mediterranean climate (IT-Col, 
US-Var, and US-Ton). 
Experiment RMSE 

(monthly) 
RMSE 
(daily) 

NAE VR r 

Default 2.14 2.41 0.29 0.45 0.82 
P0 1.94 2.26 0.26 0.83 0.82 
Psi 1.93 2.26 0.26 0.88 0.82 
Mod1 2.10 2.38 0.28 0.48 0.82 
Soil14 1.97 2.27 0.26 0.53 0.82 
Soil14_p0 1.94 2.27 0.25 0.89 0.82 
Soil14_psi 1.98 2.32 0.27 0.90 0.82 
Soil14_mod1 2.31 2.57 0.20 0.47 0.68 
Soil14_dr0.5 2.28 2.56 0.34 0.40 0.82 
Soil14_dr*2 2.01 2.30 0.25 0.56 0.80 
 1105 
Table 7. Average results of soil moisture stress experiments for GPP at sites with soil moisture stress plus other errors 
(LBA-K67, LBA-BAN, RU-Che, ZA-Kru). 
Experiment RMSE 

(monthly) 
RMSE 
(daily) 

NAE VR r 

Default 2.81 3.07 0.43 3.22 0.24 
P0 2.77 3.06 0.34 3.32 0.19 
Psi 2.69 3.00 0.31 3.02 0.16 
Mod1 2.86 3.13 0.43 3.33 0.22 
Soil14 2.30 2.58 0.38 1.81 0.22 
Soil14_p0 2.14 2.44 0.34 1.51 0.21 
Soil14_psi 2.08 2.39 0.32 1.33 0.20 
Soil14_mod1 2.45 2.71 0.42 2.67 0.05 
Soil14_dr0.5 2.82 3.13 0.45 3.49 0.33 
Soil14_dr*2 2.17 2.44 0.39 1.06 0.22 
  



40 
 

 

 1110 
Figure 1: Comparison of JULES soil moisture stress factor (β) to measurements from various potted experiments 

from Verhoef and Egea (2014). β is calculated from Eq. 4. Two different values of p0 (Eq. 5) are shown: p0=0.4 was 

used for the ‘soil14_p0’ and ‘p0’ soil moisture stress experiments. 
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 1115 
Figure 2: Effective root water extraction profiles for JULES with the default four layer soil (maximum depth of 3 m; 

left panel), with an updated 14 layer soil (maximum depth of 10.8 m; middle panel), and compared to root fractions 

from Zeng (2001) (right panel), where distributions were calculated based on available measurements of root profiles. 

The parameter dr in JULES is the e-folding depth for weighing root water extraction and soil moisture stress.. The 

plant functional types are: C3, C4 grasses; evergreen and deciduous shrubs (ESh, DSh); needleleaf evergreen trees 1120 

(NET), temperate broadleaf evergreen trees (BET-Te), broadleaf deciduous trees (BDT), needleleaf deciduous trees 

(NDT), tropical broadleaf evergreen trees (BET-Tr). 
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 1125 
Figure 3. Location of sites used in this study. Details on site characteristics are provided in the Supplemental 

Material. 
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 1130 

 
Figure 4. Correlation coefficient for simulated monthly mean GPP at Fluxnet sites for ten biomes: TrEF=Tropical 

Evergreen Forests; TrDF= Tropical Deciduous Forests; TrG = Tropical Grasslands; TrS=Tropical Savannas; TeMF 

= Temperate Mixed Forests; TeG=Temperate Grasslands; TeS=Temperate Savannas; Cr=Cropland; 

CoG=Continental/High altitude grasslands; BoF=Boreal Forests. The sites that fall into each category are listed in the 1135 

Supplemental Material. 
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 1140 

 
Figure 5. Normalized Absolute Errors for simulated GPP at Fluxnet sites for ten biomes: TrEF=Tropical Evergreen 

Forests; TrDF= Tropical Deciduous Forests; TrG = Tropical Grasslands; TrS=Tropical Savannas; TeMF = 

Temperate Mixed Forests; TeG=Temperate Grasslands; TeS=Temperate Savannas; Cr=Cropland; 

CoG=Continental/High altitude grasslands; BoF=Boreal Forests. The sites that fall into each category are listed in the 1145 

Supplemental Material. 
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 1150 

 
Figure 6: Average seasonal cycle of GPP (gC m-2 d-1) for representative sites in biomes with large biases. Full dates of 

simulations are provided in the Supplemental Material, here we give the years included: AU-Fog (2006-2008); BE-Vie 

(1996-2006); CA-Oas (1996-2010); DE-Tha (1996-2014); IT-Col (1996-2014); LBA-BAN (2004-2006); LBA-K67 

(2002-2003); RU-Che (2002-2005); US-Ne1 (2001-2012); US-Ton (2001-2014); ZA-Kru (2000-2013). 1155 
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Figure 7: Example of impacts of soil moisture stress representations on GPP model skill for two soil moisture stressed 

sites: GF-Guy (Tropical evergreen forest), and DE-Tha (Temperate evergreen needleleaf forest). The GF-Guy 1160 

simulations included years 2007-2009; and the DE-Tha simulations included years 1996-2014. Details of the 

simulations are provided in Sect. 2.3 and Tables 1-2. 
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 1165 

 

Figure 8: Example of impacts of various soil moisture stress-related changes (see Table 1) on simulated seasonal cycle 

of GPP at two soil moisture stressed sites (see Section 3.3; similar figures for BE-Vie and CA-Oas are in Fig. SM9a). 

The GF-Guy simulations included years 2007-2009; and the DE-Tha simulations included years 1996-2014. GF-Guy 

is a tropical evergreen broadleaf forest and DE-Tha is an evergreen needle-leaf forest. Details of the simulations are 1170 

provided in Sect. 2.3 and Tables 1-2. 

 

 

DE_Tha: Stress factor

DE_Tha: GPP (gC/m2/d)

GF_Guy: Stress factor

GF_Guy: GPP (gC/m2/d)

Jan        Mar        May        Jul        Sep       Nov

Jan        Mar        May        Jul        Sep       Nov Jan        Mar         May        Jul          Sep         Nov

Jan        Mar         May        Jul          Sep         Nov
Obs
Default
p0

psi
mod1
soil14

soil14_p0
soil14_psi
soil14_mod1

soil14_dr0.5
soil14_dr*2

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

1.00

0.95

0.90

0.85

0.80

0.75

0.70

14
12
10
  8
  6
  4
  2
  0
 -2

12
11
10
  9
  8
  7
  6
  5
  4
  3


