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Abstract 

Drought is predicted to increase in the future due to climate change, bringing with it a myriad of impacts on ecosystems. 55 

Plants respond to drier soils by reducing stomatal conductance, in order to conserve water and avoid hydraulic damage. 

Despite the importance of plant drought responses for the global carbon cycle and local/regional climate feedbacks, land 

surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil 

moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land 

Environment Simulator (JULES) vn4.9 on seasonal and annual timescales, and evaluated ten different representations of soil 60 

moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the 

tropics or high latitudes/cold region sites, while LE was best simulated in temperate and high latitude/cold sites. Errors not 

due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savannahsavanna 

and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more 

realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number 65 

of soil layers from 4 to 14, and the soil depth from 3.0 m to 10.8 m. In addition, we found improvements when soil matric 

potential replaced volumetric water content in the stress equation (the ‘soil14_psi’ experiments), when the onset of stress 

was delayedcritical threshold value for inducing soil moisture stress was reduced (‘soil14_p0’), and when when roots 

extended deeper into the soilplants were able to access soil moisture in deeper soil layers (‘soil14_dr*2’). For LE, the biases 

were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. 70 

At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and increased 

model biases, but improved the simulated seasonal cycle and brought the monthly variance closer to the measured variance 

of LEmade the simulation worse. Further evaluation into of the reason for the high bias in LE at many of the sites would 

enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress. Increasing the 

soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these 75 

settings in future work using JULES, or as a general way to improve land surface carbon and water fluxes in other models. In 

addition, using soil matric potential presents the opportunity to include plant functional type-specific parameters to further 

improve modelled fluxes. 
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1 Introduction  

Drought has a range of impacts on terrestrial ecosystems (Allen et al., 2010; Choat et al., 2012), plays a role in feedbacks on 80 

the weather and climate systems across scales (Seneviratne et al., 2013; Lemordant et al., 2016; Miralles et al., 2019; Lian et 

al., 2020) and affects the global carbon cycle (Green et al., 2017; Humphrey et al., 2018; Peters et al., 2018). These impacts 

and feedbacks have the potential to affect society, either directly through moisture availability effects on crops, or indirectly 

by adjusting near-surface temperatures, or forcing large-scale variations to the climate system. Roughly 40% of the vegetated 

land surface is limited by seasonal water deficits (Nemani et al., 2003; Beer et al., 2010), which are a major control on gross 85 

primary productivity (GPP) in sub-humid, semi-arid, and arid regions (Stocker et al., 2018). In the future, soil moisture stress 

for ecosystems is predicted to increase over large regions (Berg et al., 2016; Ukkola et al., 2020). (In this paper, we define 

“soil moisture stress” to meanas the physiological stress experienced by vegetation due to its interactions with unusually dry 

soils.) Feedbacks from water-limited ecosystems on the global carbon cycle may make it more difficult to stabilize the 

climate system at global warming thresholds such as two degrees. For these reasons, accurate process-based models of plant 90 

response to soil moisture stress are needed in coupled land-atmosphere climate models. However, the models used to 

represent biogeophysical and biogeochemical processes in Earth System Models (ESMs) are often unable to properly capture 

observed responses to soil moisture stress (e.g. (Beer et al., 2010; Powell et al., 2013; Medlyn et al., 2016; Restrepo-Coupe 

et al., 2017; De Kauwe et al., 2017; Peters et al., 2018; Paschalis et al., 2020).   

Plants respond to reductions in soil moisture content (SMC) through a range of drought tolerance and prevention strategies. 95 

Commonly, plants respond to low SMC by reducing their stomatal aperture to conserve water and protect the xylem from 

damage (Field and Holbrook, 1989; Sparks and Black, 1999). Cavitation and eEmbolism is caused by low soil and/or leaf 

water potential due to dry climatic conditions, and it causes water tension inside the plant to increase enough to drive the 

formation of air bubbles within the xylem vessels  usually happened when the plant is under water stress and the water 

potential in the xylem is low enough to fill the xylem with water vapor and/or air instead of water (Lambers et al., 2008; 100 

Choat et al., 2012). Embolized xylem is unable to transport water, and for some vegetation types, this is a dominant cause of 

plant mortality under drought conditions (e.g. (Brodribb and Cochard, 2009; Choat et al., 2018). To avoid this, many plants 

limit water loss by reducing their stomatal conductance when soil moisture levels reach a certain threshold (Tyree and 

Sperry, 1989; Sperry et al., 1998; Choat et al., 2012) or by shedding leaves (Wolfe et al., 2016). High atmospheric vapor 

pressure deficits (VPD), which sometimes occur in conjunction with meteorological drought, may also result in stomatal 105 

closure. The reduced stomatal conductance triggers a cascade of other responses, beginning with reduced rates of 

photosynthesis (Ball et al., 1987), which reduce carbon uptake and possibly growth, and change allocation between above- 

and below-ground stocks (Merbold et al., 2009b; Doughty et al., 2015). The Llower stomatal conductance will reduce 

transpiration, which causes more surface available energy to be converted into sensible heat. This transference of latent to 

sensible heat can contribute to further desiccation of soils, increased land surface temperature, and amplification of heat 110 

waves (Seneviratne et al., 2010). Over the long term, droughts can lead to changes in plant species composition (Liu et al., 
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2018) or large-scale forest mortality (Mcdowell et al., 2008), sometimes causing a transient situation where large ecosystems 

switch from being a sink of carbon dioxide to a source (Ciais et al., 2005; Gatti et al., 2015).  

There is a spectrum of mechanisms through which species tolerate or acclimate to drought, meaning a “one-size-fits-all” 

approach to modelling can be inadequate. Explicit model representations of the xylem hydraulics are complex and difficult 115 

to parameterize globally. The emergence of plant trait databases has enabled early models to represent the hydraulic 

properties of the soil-plant-atmosphere continuum (e.g. (Sperry et al., 2016; Eller et al., 2018; De Kauwe et al., 2020; Eller et 

al., 2020; Sabot et al., 2020). Also, new approaches are emerging that focus on ‘plant profit maximisation’, where 

photosynthetic uptake of CO2 is optimally traded against plant hydraulic function, as an alternative to the empirical functions 

commonly used in models to regulate gas exchange during periods of water stress (Sperry et al., 2017; Sabot et al., 2020). 120 

More often, for now, land surface models (LSMs) represent the regulation of stomatal conductance as a simple generic 

function of SMC, generally expressed in terms of volumetric water content (θ, m3 m-3). This simple generic function is the 

so-called “beta” function, where β is a factor between zero and one that limits photosynthesis in some way (depending on the 

model, See Methods). Above a critical SMC, there is no stress (β=1), and below the critical pointthreshold value, stress 

increases as SMC decreases, until the wilting point is reached (β=0). Alternative, yet related, expressions are available 125 

whereby stomatal regulation occurs through changes in the soil matric potential (𝜓, expressed in pressure units, such as 

MPa); θ and matric potential (a measure of “how tightly the water is held in the soil pores”, thereby affecting rootwater 

uptake by the roots) are closely related via the water retention curve. However, using one function for all plant responses to 

drying soils can result in errors, for example , and especially in the extreme cases, for example, by underestimating 

stress in wet ecosystems and overestimating stress in dry ecosystems. In fact, the parameters describing plant and soil 130 

hydraulic responses to soil moisture may change in time (Robinson et al., 2019), and can vary between ecosystem types 

(Teuling et al., 2010).  Such variation may be in response to climate change, or evolving vegetation and soil properties, and 

their structure. 

In this study, we focus on the effects of droughts on vegetation that occur due to low SMC. Although droughts are often 

associated with changes beyond low precipitation levels, including high air temperatures and VPD, these climate drivers 135 

have their own set of impacts on vegetation, adding to the effects of low SMC, that will not be addressed here. We explore 

different ways in which soil moisture stress can be represented in a widely used model of the terrestrial biosphere, the Joint 

UK Land Environment Simulator (JULES) (Best et al., 2011; Clark et al., 2011). JULES is a community model, and is used 

in coupled or standalone mode, forced by meteorological variables. Its applications are on timescales ranging from weather 

forecasting to climate projections, and the model is the terrestrial component of the UK Earth System Model and the 140 

HadGEM family of models (Martin et al., 2011). The spatial scales are similarly diverse. Studies range from single-point 

modelling of crop yield at one site (Williams et al., 2017), which requires detailed knowledge of one crop variety under 

carefully controlled conditions, to global predictions of land sources and sinks of CO2 for the annually updated Global 

Carbon Project (Friedlingstein et al., 2019), which requires reliable performance for all vegetation types across the globe. 

The aim of this study is to find an improved general model equation and parameters for global applications of JULES.  145 



5 

 

Soil moisture stress has been identified as a key driver of variability in JULES projections (Blyth et al., 2011).  Verhoef and 

Egea (2014) showed that the standard β function in JULES, and similar LSMs, needs urgent attention, as to whether it is the 

most appropriate functional form, and/or if parameterized correctly. For example, JULES calculates β based on θ, but using 

soil matric potential instead results in a curvilinear increase in stress as soils dry, which may be more realistic (Fig. 1; 

Verhoef and Egea, 2014). In an evaluation of the model across ten flux tower sites,  Blyth et al. (2011) showed that the “dry-150 

down” of the sites in semi-arid areas was too quick and the seasonal variation of evaporation in the tropics was too great, 

possibly due to the roots being modelled as too shallow (Blyth et al., 2011) or due to modelled stress beginning when soils 

were still relatively wet. This was later supported byOther studies that have found suggested that the root depths of LSMs 

were too shallow (Teuling et al., 2006; Wang and Dickinson, 2012). Indeed, some LSMs (CLM, SiB3, TERRA-ML) were 

able to improve model performance by representing deeper (e.g. 10 m) and more efficient roots (Baker et al., 2008; 155 

Akkermans et al., 2012; Liu et al., 2020).  

Evaluating the impact of simulated soil moisture stress on vegetation requires that other model errors that also affect CO2 

and water fluxes are minimized. For instance, it is possible that the rapid drying found in Blyth et al. (2011) was due to over-

estimation of soil evaporation. The fact that land surface models in general over-estimate evapotranspiration during wet 

periods is well documented (Blyth et al., 2011; Mueller and Seneviratne, 2014; Martínez-De La Torre et al., 2019) and leads 160 

to unrealistically low soil moisture after long dry periods (Ukkola et al., 2016). The high evaporation (and subsequent low 

SMC) could be due to errors in factors not being studied addressed in this study, such as radiation absorption or turbulent 

exchanges with the atmosphere. Leaf area index (LAI) also strongly affects the magnitude and seasonality of fluxes coming 

from vegetation and soil (via variations in shading).  

This study aimed to evaluate the simulation of GPP and LE for a range of biomes and climates, to diagnose sites and seasons 165 

when soil moisture stress affects the results, and to evaluate different methods for representing soil moisture stress in JULES 

as a first step in improving the simulated plant responses to low SMC in global applications of JULES. To do this, we chose 

a subset of sites in the FLUXNET2015 database and from the Large Scale Biosphere-Atmosphere Experiment in Amazonia 

(LBA) experiment based on availability of data. Where possible we prescribed soil moisture and LAI from site 

measurements, to differentiate the roles of SMC, the β parameterization, or modelled phenology in model biases. We used 170 

the GPP calculated before soil moisture stress is applied to understand seasons and locations where the β parameterization 

was contributing to model errors. We also reviewed other commonly used approaches for modelling soil moisture stress, 

presented in Section 2.2, to motivate the representations evaluated in the remainder of the paper. This work is one of the fi rst 

published results from a JULES community-wide focus group (called a JULES Process Evaluation Group, or JPEG) on 

understanding soil moisture stress impacts on vegetation, which began in 2016. 175 
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2 Methods 

2.1 Photosynthesis and stomatal conductance in JULES 

The Joint UK Land Environment Simulator (JULES) (Best et al., 2011; Clark et al., 2011) is a process-based model that 

simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. JULES treats 

each vegetation type as existing on a separate tile within a grid box. Energy and carbon flux calculations are performed 180 

separately for each tile, depending on Plant Functional Type (PFT)-dependent parameters. The tiles share a common soil 

column. Leaf-level net photosynthesis (A) is integrated over the canopy, according to the canopy radiation scheme specified. 

In the present study, we used 10 canopy layers of equal LAI (in JULES this is ‘canopy radiation model 6’), although another 

option in JULES is to use a ‘big leaf’ approach (Clark et al., 2011). Potential (non-stressed) photosynthesis is calculated 

based on three limiting rates: Wc (a RuBisCO limited rate), Wl (a light-limited rate), and We (a transport limited rate for C3 185 

plants and a PEPCarboxylase limitation for C4 plants). For full details on the photosynthesis scheme in JULES see (Clark et 

al., 2011; Harper et al., 2016). 

Stomatal conductance to water vapour gs (in m s-1) is related to net photosynthesis A (in molCO2 m-2 s-1) through:  

𝑔𝑠 = −1.6𝐴
𝑅𝑇∗

𝑐𝑖−𝑐𝑎
 ,           (1) 

where ca and ci are the atmospheric and intercellular CO2 concentrations, respectively, in Pa, and 1.6 is the molar diffusivity 190 

ratio of CO2 to H2O in air (e.g. (Guerrieri et al., 2019). R is the universal gas constant (8.314 J K-1 mol-1) and T* is the leaf 

temperature (K). Vapour deficit at the leaf surface (D, kg kg-1) affects stomatal conductance through the gradient between ca 

and ci: 

𝐶𝑖−Γ∗

𝐶𝑎−Γ∗ = 𝑓0 (1 −
𝐷

𝐷𝑐𝑟𝑖𝑡
)           (2) 

Here, 𝛤* is the photorespiration compensation point (Pa), D is the humidity deficit at the leaf surface (g kg-1), and Dcrit and f0 195 

are PFT-dependent parameters (Cox et al., 1998; Best et al., 2011). 

2.2 Soil moisture stress in JULES and other terrestrial biosphere models 

Many land surface, terrestrial biosphere, and crop models include a β function to represent the effect of soil moisture stress 

on vegetation. The stress factor can be applied in various places, withThe implementation of the stress factor cans generally 

be split into two categories: stomatal and biochemical limitation (Bonan et al., 2014; De Kauwe et al., 2015). JULES falls 200 

under the latter category, with potential leaf-level carbon assimilation, Ap, being converted to the water-limited net leaf 

photosynthesis through multiplication with the stress factor: 

𝐴 = 𝐴𝑝𝛽            (3) 

Other land surface models apply biochemical limitation through reducing RuBisCO or reducing electron transport (e.g.  

ORCHIDEE, (Krinner et al., 2005)). CABLE applies limits to both the stomata (via reducing gs) and A (De Kauwe et al., 205 

2015).  
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In JULES, soil moisture stress (β, unitless) for each soil layer k is a function of volumetric water content (θ) in each layer 

(𝜃k, m3 m-3) using: 

𝛽𝑘 = {

1                 𝜃𝑘 ≥ 𝜃𝑢𝑝𝑝,𝑘

𝜃𝑘−𝜃𝑤𝑖𝑙𝑡,𝑘

𝜃𝑢𝑝𝑝,𝑘−𝜃𝑤𝑖𝑙𝑡,𝑘
        𝜃𝑤𝑖𝑙𝑡,𝑘 ≤ 𝜃𝑘 ≤ 𝜃𝑢𝑝𝑝,𝑘

0                   𝜃𝑘 ≤ 𝜃𝑤𝑖𝑙𝑡,𝑘

 ,       (4) 

where 𝜃wilt and 𝜃upp are the water contents at the wilting point and at which the plant starts to become water stressed, 210 

respectively (Cox et al., 1998). 𝜃upp is a function of 𝜃crit, the critical water content (usually defined as the field capacity), and 

p0, a PFT-dependent parameter: 

𝜃𝑢𝑝𝑝 = 𝜃𝑤𝑖𝑙𝑡 + (𝜃𝑐𝑟𝑖𝑡 − 𝜃𝑤𝑖𝑙𝑡)(1 − 𝑝0)         (5) 

The parameter p0 was recently added to JULES  (in version 4.6) to allow β=1 for θ<θcrit, in other words delaying the critical 

threshold value for inducing stress onset of stress as soils initially dry below the field capacity. In the default configuration, 215 

p0 is set to 0 (meaning 𝜃upp= 𝜃crit), and 𝜃wilt and 𝜃crit correspond to matric soil water matric potentials of -1.5 MPa and -0.033 

MPa, respectively. Equation 4 means that, for each soil layer, soil moisture stress completely limits root water extraction 

from that layer if θk is at or below the wilting point (βk=0), and while there is no soil moisture stress (βk=1) if θk is at or 

above 𝜃upp,k. In between these points, there is a linear increase in stress (decrease in βk) as water content decreases (blue line 

in Fig. 1). An effective root fraction per layer (rk) is used to calculate tThe overall soil moisture stress factor: is calculated 220 

based on the water in each soil layer and the fraction of root mass in that soil layer rk (as the latter co-determines root water 

extraction, see Eq. 7): 

𝛽 = ∑ 𝑟𝑘𝛽𝑘
𝑛𝑠𝑜𝑖𝑙
𝑘              (6) 

Where 

𝑟𝑘 = 𝑒
𝑧

𝑑𝑟⁄             (7) 225 

In Eq. 7, z is the depth of each soil layer, and dr is a PFT-specific parameter that weighs the effective root fraction within 

each layer (Fig. 2). rk is an effective root fraction and is not the same as the actual root mass distribution, as it accounts for 

other traits and processes not present in JULES such as the surface area of roots, conductivity, and hydraulic redistribution.   

JULES has four soil layers (nsoil = 4) that together extend to 3 meters depth. The smaller the dr, the more emphasis is given to 

shallow layers; while deeper layers are emphasized with a larger dr. As a specific example: with JULES default soil depth of 230 

3 m, 87% of the root water extraction is from the top 1 m for C3 and C4 grasses (dr=0.5), compared to 45% in the top 1 m for 

tropical broadleaf evergreen trees (dr=3.0). As Fig. 2 shows, dr is not the root depth because roots are present in every soil 

layer, even though the fraction of roots is very small towards the bottom of the column for small values of dr. 

JULES has four soil layers (nsoil = 4) that together extend to 3 meters depth. The root mass distribution is assumed to decay 

exponentially with depth z, i.e. ez/dr where dr is a PFT-specific parameter that gives the e-folding depth of root (Fig. 2). The 235 

stress factor is also applied to leaf maintenance respiration (and optionally to stem and root maintenance respiration) . The 

Formatted: Subscript

Formatted: Subscript



8 

 

effective root distribution and stress factor also, and affects the fraction of total plant transpiration extracted from each soil 

layer, ϵk: 

𝜖𝑘
0 =

𝑟𝑘𝛽𝑘

𝛽
             (78) 

Although not used in this study, it is worth noting that many land surface and terrestrial biosphere models apply soil 240 

moisture stress through limiting stomatal conductance (the ‘stomatal’ grouping from Bonan et al. 2014) (Egea et al., 2011; 

Fatichi et al., 2012; De Kauwe et al., 2015). These include JSBACH and DLEM ((Raddatz et al., 2007; Tian et al., 2010). 

For example, CABLE uses β to modify the slope of the relationship between stomatal conductance and net photosynthesis 

(De Kauwe et al., 2015). In other models (e.g. crop model WOFOST), they interact through allowing the actual or potential 

evapotranspiration to impact the soil moisture threshold for unstressed vegetation (Tardieu and Davies, 1993). Models with 245 

that limit stomatal limitationsconductance from soil moisture stress can include the explicit consideration of the plant/soil 

hydraulics (Williams et al., 1996; Zhou et al., 2013; Bonan et al., 2014; Mirfenderesgi et al., 2016; Eller et al., 2018; 

Kennedy et al., 2019; De Kauwe et al., 2020) and/or chemical signalling, such as the abscisic acid (ABA) concentration in 

the xylem sap (Tardieu and Davies, 1993; Dewar, 2002; Verhoef and Egea, 2014; Huntingford et al., 2015; Takahashi et al., 

2018). In other models, β can affect root growth and leaf senescence  (e.g. (Arora and Boer, 2005; Song et al., 2013; Wang et 250 

al., 2016)), or reduce mesophyll conductance (Keenan et al., 2010). 

 

2.32 Alternative representations of soil moisture stress  

In this study, we evaluated JULES GPP and LE using alternative parameterizations for β, based on a review of methods 

found in the literature and supported by measurements. The ten experiments are summarized in Tables 1 and -2, including 255 

settings in the default configuration. To summarize, these experiments aim to capture the impact of: 

1. deeper soils and roots (‘soil14’ and ‘soil14_dr*2’ experiments, Sect 2.3.1); 

2. reducing the critical soil moisture content below which stress begins to increase (‘p0’ experiments, Sect. 2.3.2); 

3. using soil matric potential rather than θ to calculate soil moisture stress (‘psi’ experiments, Sect. 2.3.3); 

4. emphasizing deep roots that may have small fraction of total root biomass, but can extract large amounts of soil water 260 

(‘mod1’ experiments, Sect. 2.3.4); 

5. assuming a strong decay rate of root functioning for all PFTs (‘soil14_dr0.5’, Sect. 2.3.5). 

 

2.23.1 Deeper soil column and roots (soil14 and soil14_deeprootssoil14_dr*2) 

Several studies have found that deep roots are an essential part of modelling plant drought responses (e.g. (Canadell et al., 265 

1996; Teuling et al., 2006; Baker et al., 2008; Akkermans et al., 2012; Wang and Dickinson, 2012).  Canedell et al. (1996) 

found that the global average maximum root depth is 7±1.2 m for trees and 2.6±0.1 m for herbaceous plants. We evaluated 

the impact of deeper soils by using a 14-layer soil, extending to 10.8 m depth, which has been used in JULES to study soil 
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freeze/thaw dynamics in permafrost regions (Chadburn et al., 2015). In the ‘soil14’ experiments, nsoil increased from 4 to 14, 

and the thickness of each soil layer (dzsoil) was changed as in Table 1, to give a total depth of 10.8 m. This also increased the 270 

vertical resolution of layers in the top 2.8 meters of soil, which more accurate for solving the nonlinear Richards’ equation 

(Mu et al., 2021). The parameter dr remained unchanged, giving the effective root profiles shown in the colored lines in the 

middle panel of Fig. 2. As a result, for C3 and C4 grasses (dr = 0.5), 99% of root water extraction was from the top 2.4 m, 

while for tropical broadleaf evergreen trees (dr=3) 95% of root water extraction was from the top 7.8 m. These numbers 

compare well to the observed maximum rooting depths (Canadell et al., 1996).  275 

To evaluate the impact of placing more emphasis on deeper soil layers (in Eqs. 6 and 8), we doubled dr in an additional 

experiment (‘soil14_dr*2). In these experiments, 99% of root water extraction was from the top 4.8 m for C3/C4 grasses 

(dr=1), and for tropical evergreen trees (dr=6), 87% of root water extraction was from the top 7.8 m.In ‘soil14_deeproots’, we 

doubled dr, which gave more emphasis to deeper layers in Eqs. 6 and 7. 

2.23.2 Delayed onset of stress (p0 and soil14_p0) 280 

Measurements of transpiration rates show that plants do not limit transpiration until intermediate levels of soil dryness occur 

(Fig. 1) (Verhoef and Egea, 2014). In JULES, a delay of stresshaving no stress until soils dry below field capacity can be 

represented with the parameter p0 (Eq. 5), where a value of 0.4-0.5 for p0 would capture the range of responses found in 

Verhoef and Egea (2014). In the ‘p0’ experiments, we used p0=0.4 to capture the delayed onset.  This was done with both the 

4 layer (p0) and 14 layer (soil14_p0) soils. 285 

2.23.3 Curvilinear response (psi and soil14_psi) 

While Eq. 4 assumes a linear increase in stress as water content decreases, some models assume a curvilinear increase in 

stress (Sinclair, 2005; Oleson et al., 2010; Egea et al., 2011), or an S-shaped curve (Tardieu and Davies, 1993; De Kauwe et 

al., 2015). Nonlinear responses can be represented by a parameter to induce curvature (Egea et al., 2011) or through using 

the soil matric potential, 𝜓, rather than θ: 290 

𝛽𝜓,𝑘 =
𝜓𝑘−𝜓𝑐𝑙𝑜𝑠𝑒

𝜓𝑜𝑝𝑒𝑛−𝜓𝑐𝑙𝑜𝑠𝑒
           (89) 

Here, 𝜓open is the soil matric potential above which β=1, and 𝜓open is the soil matric potential below which β=0. We set 𝜓open 

and 𝜓close to -0.033 and -1.5 MPa, respectively, which are typical values for field capacity and wilting point. Models that use 

soil water potential include (Verhoef and Egea, 2014; Fatichi et al., 2012; Manzoni et al., 2013; Lawrence et al., 2019), while 

other models use leaf water potential (e.g. (Tuzet et al., 2003; Christina et al., 2017)). In the ‘psi’ experiments, we replaced 295 

Eq. 4 with Eq. 89, and set 𝜓open and 𝜓close to -0.033 and -1.5 MPa, respectively. . This was done with both the 4 layer (psi) 

and 14 layer (soil14_psi) soils. 

2.23.4 Remove root-weighted access to soil moisture (mod1 and soil14_mod1) 

Consideration of root distribution and thickness of soil layers, and related depth of soil profile, also varies across models. 

The measure of water availability for β can be a function of each layer’s water content (Eq. 6), or water in the wettest layer 300 

(Martens et al., 2017), or the contribution of the water in each layer can be weighted by the root density or plant and soil 
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hydraulics (Oleson et al., 2010; Christina et al., 2017). Another approach is to use a function of water in the whole root 

column (𝜃̅), rather than layer-by-layer, which is equivalent to assuming that plants can access water anywhere in the soil 

column, as long asif there are roots present (Baker et al., 2008; Harper et al., 2013):  

𝛽𝑚𝑜𝑑1 =
𝜃̅−𝜃𝑤𝑖𝑙𝑡

𝜃𝑢𝑝𝑝−𝜃𝑤𝑖𝑙𝑡
           (109) 305 

In this approach, root water extraction per layer is weighted by layer thickness (dzsoil) rather than by beta: 

𝜖𝑘
0 = 𝑑𝑧𝑠𝑜𝑖𝑙(𝜃𝑘 − 𝜃𝑤𝑖𝑙𝑡)           (1011) 

In the ‘mod1’ experiments, Eqs. 4 and 6 were replaced with Eq. 910; and Eq. 7 8 was replaced with Eq. 1011.  In addition, dr 

was implemented as the maximum root depth instead of the e-folding depth and was double its default value (with a 

maximum depth of 3 m). The effective rRoot fraction in each soil layer was set equal to the proportional layer thickness of 310 

each layer, up to the maximum depth of roots. In ‘soil14_mod1’, dr was double its default value (Table 2), but without 

enforcing a maximum depth of 3m, resulting in root profile given by the dashed line in Fig. 2 (middle panel). With the 

default interpretation of dr, roots are present in every layer, but in these experiments plants could not access water at depths 

below the parameter dr. Therefore, this approach should benefit deep-rooted PFTs, as they could access more of the soil 

column than shallow-rooted grasses and shrubs. 315 

2.23.5 Exponential decline of roots with depth (soil14_realrootssoil14_dr0.5) 

The effective root profile from grasses with nsoil=14 and depth of 10.8 m more closely resembles the often observed rapid 

decay of root biomass with depth than the profiles for other PFTs (Zeng, 2001) (Fig. 2, right panel). We evaluated the impact 

of using more realistic root distributions by setting dr to 0.5 for all PFTs in the ‘soil14_realrootssoil14_dr0.5’ experiment. 

Essentially, this gave more emphasis to shallow layers in calculating root water extraction and β, and wis as an opposite 320 

approach of the ‘mod1’ experiments, which gave more emphasis to the thickest soil layers. 

2.2.6 Stomatal limitation 

Although not used in this study, it is worth noting that many land surface and terrestrial biosphere models apply soil 

moisture stress through limiting stomatal conductance (Egea et al., 2011;Fatichi et al., 2012;De Kauwe et al., 2015). These 

include JSBACH and DLEM ((Raddatz et al., 2007;Tian et al., 2010). For example, CABLE uses β to modify the slope of 325 

the relationship between stomatal conductance and net photosynthesis (De Kauwe et al., 2015). In other models (e.g. crop 

model WOFOST), they interact through allowing the actual or potential evapotranspiration to impact the soil moisture 

threshold for unstressed vegetation (Tardieu and Davies, 1993). Models with stomatal limitations from soil moisture can 

include the explicit consideration of the plant/soil hydraulics (Williams et al., 1996;Zhou et al., 2013;Bonan et al., 

2014;Mirfenderesgi et al., 2016;Eller et al., 2018;Kennedy et al., 2019;De Kauwe et al., 2020) and/or chemical signalling, 330 

such as the abscisic acid (ABA) concentration in the xylem sap (Tardieu and Davies, 1993;Dewar, 2002;Verhoef and Egea, 

2014;Huntingford et al., 2015;Takahashi et al., 2018). In other models, β can affect root growth and leaf senescence (e.g. 

(Arora and Boer, 2005;Song et al., 2013;Wang et al., 2016)), or reduce mesophyll conductance (Keenan et al., 2010). 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed
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2.3 4 Model set up and evaluation 

We evaluated JULES at 42 40 sites covering eight general biome types from the tropics to the Arctic (Fig. 3, SM Table 1). 335 

Each JULES simulation was run with meteorological measurements taken at each site (i.e. point-scale runs rather than 

simulating the entire gridbox). The meteorological and flux tower observations were obtained from the LBA Model 

Intercomparison Project (sites with 'LBA' in the name) or FLUXNET2015 dataset (Pastorello et al., 2020). We selected sites 

with soil moisture measurements at the time of our original data request (July 26, 2016). At each site, we extracted 

temperature, precipitation, wind speed, surface pressure, specific humidity, longwave and shortwave radiation for running 340 

JULES at either half-hourly or hourly resolution, depending on the data available. We then used measured LE and calculated 

GPP as supplied in both datasets (for the FLUXNET2015 data, these are variables LE_F_MDS and GPP_NT_VUT_REF, 

respectively). Details of the data pre-processing are provided in the SM. The FLUXNET2015 data was filtered for periods 

with low u* based on the variable Ustar threshold (VUT) method. NEE was partitioned into GPP and Reco based on the 

nighttime method of Reichstein et al. (2005). All fluxes and meteorological variables were previously gap-filled following 345 

the MDS method in Reichstein et al. (2005). The LBA data was also gap-filled and u* filtered using site-specific u* 

thresholds (Restrepo-Coupe et al., 2013). In the FLUXNET2015 data, a relationship between Reco and Ta was 

parameterized based on nighttime data and applied to the whole dataset to partition NEE into GPP and Reco (Reichstein et 

al., 2005), while in the LBA dataset Reco was derived based on the u* filtered nighttime NEE (not including temperature 

which was not observed to correlate with NEE at night, for details see (Restrepo-Coupe et al., 2013). 350 

For sites with soil moisture data, we individually contacted site PIs to gather details on the depth of the measurements and 

other details on soil texture, physical properties, and root depth. This resulted in a subset of 21 sites with soil moisture 

measurements. We also collected data from site PIs on LAI. Fourteen sites had both LAI and SM data. Often the time period 

of LAI/SM measurements was shorter than the full record, and we only ran JULES for the time periods with the most data to 

avoid the need for gap-filling. The time periods of the simulations and soil layers for prescribing data are provided in Table 355 

SM1.  

The default plant parameter set was taken from Harper et al. (2016). When LAI was not prescribed, we used the JULES 

phenology scheme to predict LAI. This scheme predicts leaf growth and senescence based on temperature alone. Tile 

Ffractions of each PFT (or bare soil) present at the site were determined from the vegetation class (Tables SM1, SM2). We 

calculated soil properties from information supplied by site PIs where possible;, otherwise, we used the gridbox sand, silt, 360 

clay fractions of the Met Office Central Ancillary Program (CAP) high resolution input file (Dharssi et al. 2009) to derive 

the Brooks and Corey (1964) parameters, along with the approximations of the parameters (via pedotransfer function) 

required for the soil hydraulic properties as detailed in Cosby et al. (1984) (Table SM3). The soil properties are available 

with the files used to run JULES (see data availability). Each simulation began with a 50-year spin-up of the soil moisture 

using recycled meteorology. 365 
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This evaluation focused on seasonal and annual timescales of fluxes. We started with daily measurements from the sites, 

then masked any modelled outputs on days when measurements were not available and calculated monthly means when 

>50% of the data was present. To evaluate the model performance, we used four metrics: normalized absolute error (NAE), 

variance ratio (VR), correlation coefficient (r), and root mean squared error (RMSE). The NAE compares flux estimates to 

measured values averaged over the entire simulation periodgives an indication of the average model-data mismatch: 370 

𝑁𝐴𝐸 =  
𝑋𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅−𝑋𝑚𝑜𝑑̅̅ ̅̅ ̅̅ ̅̅

𝑋𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅
           (11). 

where Xobs is the observed flux, Xmod is the modelled flux, and the overbar denotes an average taken over the entire 

simulation period.  The other metrics are were calculated from monthly mean fluxes. The VR is the ratio of variance in the 

simulations to the observations. For a perfect fit, the VR would be 1: lower values mean the model variance is too low, and 

vice versa (Carvalhais et al., 2008). R is the Pearson’s correlation coefficient and it gives an indication of model-data 375 

agreement on both a seasonal and year-to-year timescale. For the soil moisture stress experiments, we used Taylor diagrams 

and RMSE based on annual monthly mean fluxes to evaluate the best fit, along with RMSE from fluxes averaged over daily 

and monthly periods, and VR and correlation calculated from monthly fluxes. 

3. Results 

3.1 Simulated GPP and ET 380 

On average, JULES matched the pattern of observed seasonal cycle of GPP well for sites in non-agricultural biomes in 

temperate and cold climates (mean r>0.8079) (Fig. 4, Table 3). The correlation was fairly good (mean r>0.60) for sites in 

tropical grasslands and savannahsavannas (mean r>0.70), and cropland (r=0.67). However, the seasonal cycle was not well 

represented for sites in tropical dry forests (mean r=0.43) or tropical evergreen forests (mean r = -0.10).  

In terms of model biases, the NAE was lowest (mean <0.2) for GPP at tropical evergreen forest , cropland, temperate 385 

grassland, and temperate woody savannahsavanna sites, while NAE was highest in tropical grassland, tropical savanna, and 

cold grassland sites (mean >0.50) (Fig. 5). The variance ratio (VR) indicates the amount of simulated variability in 

comparison to observations. On average, VR was between 0.55–0.921.5 for sites in tropical savannahsavannas, temperate 

non-agricultural biomes, and boreal forest. A low VR indicates that simulated variability (either magnitude of seasonal cycle 

or interannual variability) was too low – this was the case for sites in cold grasslands and cropland (average VR of 0.35 and 390 

0.21, respectively). Conversely, a high VR indicates that simulated variability was higher than observed. , and this was seen 

for Ssites in tropical dry and evergreen forests and tropical grasslands had an average VR of 4.8, 5.5, and 4.8, respectively,. 

In this case, the error was due to a higher than observedan overestimated seasonal cycle (ie LBA-K67 in Fig. 56). 

Certain patterns emerged with regards to the skill of the JULES model to predict observed GPP within the biomes which 

occur in multiple climates (evergreen needle-leaf forests, grasslands, and savannahs), indicating that Tthe model tendeds to 395 

perform best in temperate midlatitude climates. First, tThe average bias NAE was higher and the correlation (r) was lower at 
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the sites with a Mediterranean climate (e.g. IT-CA1) compared to the other temperate mixed forest sites.for temperate forest 

sites was 0.15 and 0.92, compared to 0.51 and 0.75 for the three sites in a Mediterranean climate (IT-CA1, IT-Ren, and IT-

Col). Second, sSites in temperate grasslands had an average NAE of 0.35 and were better simulated than those in cold and 

tropical grasslands (. The NAE values were more than three and six times as high for sites in cold and tropical 400 

grasslandsNAE = 0.50 and 0.99,, respectively), compared to those in temperate grasslands.  Third, NAE also was 

significantly higher for sites in tropical savannahsavannas (NAE=0.79) compared to those in more temperate 

savannahsavannas sites in the US (NAE=0.14). 

The model performance was also more related to climate than biome for LE. On average, the seasonal cycle of LE was well 

simulated for sites outside of the tropics (mean r per biome > 0.84), and for sites in tropical savannas (r=0.79) (Table 4, Fig. 405 

SM1). However, in tropical dry and evergreen forests and tropical grasslands, the seasonal cycle was overestimated, as 

indicated by low correlations (mean r=0.52, 0.29, 0.35, respectively) and high variance ratios (mean VR=1.9, 3.8, 5.2, 

respectively). Model variance was close to observed for the tropical savanna sites (VR=0.99). U, with the largest biases 

occurring for sites in the tropicsnlike for GPP, the highest NAE occurred in temperate mixed forests (NAE=0.55) (Fig. 

SM2).. On average, the seasonal cycle of LE was well simulated for sites outside of the tropics (mean r per biome > 0.8), and 410 

for sites in tropical savannahs (r=0.79). The NAE was lowest for the cropland sites in temperate grasslands and croplands 

(NAE=0.03<0.05), followed by tropical evergreen  and dry forest sites (NAE=0.13 for both), and tropical savannah sites. 

Model variance was close to observed for the tropical savannah sites, but it was too high for the other tropical biome sites.  

3.2 Role of soil moisture stress in GPP errors 

Based on the above analysis, on average the model performance is poorest for At the sites with the poorest model 415 

performance for GPP (evergreen broadleaf sites, Mediterranean climates, cold and tropical grasslands, and tropical 

savannahsavannas. W), we compared the GPP that JULES would calculate if there was no soil moisture stress to the actual 

simulated GPP (Fig. 56, Fig SM5SM3), to elucidate the role of soil moisture stress in generating model bias from 3.1. This 

was possible through a new diagnostic added to the model, which output GPP prior to multiplication by β. At the tropical 

forest sites (GF-Guy, LBA-K34, LBA-K67, LBA-K83, and LBA-BAN), simulated GPP (standard approach) decreased 420 

during the dry season, while the unstressed GPP and observed GPP remained high or even increased during dry seasons 

(Figs. SM3-4), which indicates that the model was over-estimating soil moisture stress during the dry season. At the tropical 

grassland and savannahsavanna sites (AU-Fog, CG-Tch, LBA-PDG, LBA-K77, and LBA-FNS), the modelled GPP 

(standard approach) was often too high, and the unstressed GPP was even higher. An exception was ZA-Kru, where the 

observed GPP was somewhere in between simulated GPP and unstressed GPP. There were mixed results for the sites with a 425 

Mediterranean climate (IT-CA1 deciduous broadleaf forest, US-Ton woody savanna, and US-Var grassland); stress was 

impacting the GPP but other processes were also affecting the simulation. For example, at IT-CA1 the modelled GPP was 

very close to measured values when observed soil moisture and LAI were used, indicating that errors in soil hydrology and 
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phenology were important at this site. At other semi-arid sites (IT-Col deciduous broadleaf forest, US-Ton, and US-Var), the 

bias occurred during the peak growing season, when JULES GPP was lower than observed but unstressed GPP was closer to 430 

observations, indicating that soil moisture stress was impacting results at these sites. In the cold grassland sites, soil moisture 

stress sometimes resulted in too lowunderestimated GPP (e.g. RU-Che), potentially because plants could not access frozen 

soil moisture, possibly. due to JULES not simulating enough unfrozen soil moisture at these sites. Conversely, at two 

temperate climate grasslands (AT-Neu and CH-Cha), the simulated GPP was too low even with soil moisture stress 

removed. Other sites where JULES showed a large improvement with the unstressed GPP were the Aspen aspen site in 435 

Canada (CA-Oas), Tharandt evergreen needleleaf forest in Germany (DE-Tha), the deciduous broadleaf forest in Belgium 

(BE-Vie), and the cropland site (US-Ne1). This analysis gives a list of sites that are useful for further exploring the role of 

soil moisture status in vegetation functioning: all sites with a Mediterranean climate or in tropical forests, as well as ZA-Kru, 

RU-Che, CA-OAsOas, DE-Tha, BE-Vie, and US-Ne1.  

When prescribing soil moisture and LAI (see Sect. 2.3), the general trends in model performance were similar to prior 440 

simulationsthe same as before, although often the simulated GPP was less realistic with more prescribed data. This could be 

due to compensating other errors within JULES (i.e. with regards tothe soil physical parameterizations related to infiltration 

or soil evaporation , see also (Van Den Hoof et al., 2013)). The simulations at the tropical evergreen forest sites still did not 

resemble the measured GPP (as indicated by very low or negative correlations), even with prescribed LAI and soil moisture. 

It is possible that soil layers below those typically measured are influencing the forests soil water balance and canopy 445 

exchange processes, so more data are needed to accurately prescribe the full soil moisture profile. Only 14 sites had enough 

data to prescribe both soil moisture and LAI from site observations (Sect. 2.34), and often the time resolution of data was 

monthly which for soil moisture could miss impact of extremely wet or dry periods. However, most often adding the LAI 

data resulted in an improved simulation of GPP, indicating biases resulting from the JULES phenology scheme. The 

improvements with incorporation of prescribed LAI were particularly large for the cropland sites, and at LBA-RJA, which is 450 

a seasonally dry tropical forest.  

We categorize the sites depending on the impact of soil moisture stress on their simulation of GPP with the most available 

prescribed data (for example, in the simulation with soil moisture and LAI prescribed at LBA-BAN, and for the simulation 

with soil moisture only at CN-HaM). The four categories are: 

•1. Sites with underestimated GPP: Simulated GPP was lower than observed. However, β was often 1, and 455 

removing soil moisture stress had a small effect on the simulation, indicating the importance of other processes 

in regulating GPP at these sites. Two tropical (LBA-K34, LBA-RJA) and two temperate grasslands (AT-Neu, 

CH-Cha) sites fall into this category 

•2. Sites with overestimated GPP: Simulated GPP was higher than observed, so removing soil moisture stress 

increased GPP and made the simulation worse. This category includes one tundra site (CN-HaM), a 460 

Mediterranean woodland (IT-CA1), two coniferous evergreen forests in Finland and Italy (FI-Hyy and IT-Ren), 

an arid grassland (US-SRG) and twoa tropical savannahsavanna sites (CG-Tch, SD-Dem). 
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•3. Soil moisture stressed sites:  As in the first set of sites, there was a low bias in GPP, but removing soil moisture 

stress improved the simulation. The “stressed” sites includes three temperate mixed forests (BE-Vie, DE-Tha, 

and US-UMB), a Mediterranean deciduous forest (IT-Col), a boreal Aspen aspen forest (CA-Oas), a tropical 465 

evergreen forest (GF-Guy), and a cropland site (US-Ne1). 

•4. Stressed sites plus other errors: At several sites, removing soil moisture stress made the simulation slightly 

better, but apparently other missing processes also affect the simulation. The difference between this category 

and the soil moisture stressed sites is the fact that there would still be a large bias even without soil moisture 

stress. Sites in this category include tropical forests (LBA-Ban, LBA-K83, LBA-K67), cropland (US-Ne2, US-470 

Ne3), two savannahsavanna sites (ZA-Kru and US-SRM), and a tundra site (RU-Che). 

The challenge is to determine a representation of soil moisture stress which improves the simulations at sites falling into 

categories 3 and 4 without degrading the simulation at the other sites. Clearly, we do not want to completely remove soil 

moisture stress as this plays an important role in regulating seasonal cycles in many ecosystems. In the remainder of the 

paper, we will focus on examples of changes at some of these sites.  475 

3.3 New treatments of soil moisture stress 

We ran the ten experiments (Section 2.23, Table 1) at a subset of 11 sites that span the categories listed in Section 3.2. This 

included four sites where soil moisture stress leads to largewas the main contributor to model biases: (soil moisture stressed 

sites GF-Guy, BE-Vie, DE-Tha, and CA-Oas), sites with a Mediterranean climate (IT-Col, US-Var, US-Ton), and sites with 

soil moisture stress plus other errors (LBA-K67, LBA-BAN, ZA-Kru, and RU-Che). Because some experiments focused on 480 

extending the soils far below the deepest soil moisture measurements available, we were unable to use prescribed data for 

these experiments. Taylor diagrams for GPP and LE for all sites are shown in Figs. SM5 and SM7, respectively; and 

seasonal cycles of GPP, simulated , and LE are shown in Figs. SM6 and SM8..  

3.3.1 Soil moisture stressed sites 

At these sites, there was an improvement when the 14 layer soil is was combined with model settings p0, psi, or deeproots 485 

dr*2 (representing, respectively, setting p0 in Eq. 3 to 0.4; using Eq. 89, that depends on the soil matric potential, to represent 

; and having a deeper root profiledoubling the parameter dr). Monthly RMSE decreased from 2.230 gC m-2 d-1 on average to 

1.5947, 1.5444, and 1.7357 gC m-2 d-1, respectively in the soil14_p0, soil14_psi, and soil14_deeprootssoil14_dr*2 

experiments, averaged across the four sites. There was also an improvement in the VR (from >2 for the default simulation to 

0.92-1.0 for the above-listed experiments) and the correlation coefficient (from 0.74 to 0.86-0.88)(Table 5). The VR reduced 490 

from 2.15 in the default simulation to nearly 1 in the soil14, soil14_p0, and soil14_mod1 experiments. For LE, the RMSE 

was slightly higher in these experiments (22.3157, 22.2249, and 20.41 77 W m-2, respectively for soil14_p0, soil14_psi, and 

soil14_deeprootssoil14_dr*2) compared to the default experiment (19.53 78 W m-2), and the correlation coefficient was 
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>0.8281 (Table SM4). Taylor diagrams for GPP and LE for all sites are shown in Figs. SM8 and SM11; and seasonal cycles 

of fluxes and simulated  are shown in Figs. SM9, 10, and 11. 495 

For example,At at the tropical forest site (GF-Guy), experiments with default 3 m soil depth s had correlation coefficients 

r<0.4, and an exaggerated seasonal cycle, as indicated by the high normalized standard deviation in the Taylor diagrams 

(Fig. 67). In the soil14_p0, soil14_psi, and soil14_deeprootssoil14_dr*2 experiments, the correlation r was >0.7 (compared 

to 0.2 in the default configuration), and the standard deviation was closer to observed.  The GF-Guy site experienced the 

lowest amount of soil moisture stress in the soil14_p0 and soil14_psi experiments, which led to a more realistic simulation of 500 

GPP at this site (Fig. 78). Giving the model a more realisticUsing a shallower effective root profile that decayed 

exponentially with depth (setting dr to 0.5‘soil14_realroots’) produced the worst results, and  was very low during the dry 

season at the tropical forest sites in the ‘soil14_dr0.5’ experiments (Fig. 8). In the ‘soil14_realrootssoil14_dr0.5’ simulation, 

 was still weighted by root distribution, so the dry top soil layers had a relatively large impact on the stress experienced by 

the plants. This is further illustrated in Figure SM7 at the LBA-K67 site, which plots  against soil moisture in the top 1m. 505 

When dr =0.5m (as in ‘soil14_realroots’), there were proportionally more roots in the top soil layers, and as these dried out, 

there was a sharp decline in . In comparison, with dr =3m (the default value) the trees were able to access water from deeper 

layers, so  did not decline as rapidly. As a result,  was very low during the dry season at the tropical forest sites in the 

‘soil14_realroots’ experiments (Fig. 7). Another site in the ‘soil moisture stressed’ category wais DE-Tha, where most 

simulations yielded reasonable results (r>0.9) (Fig. 7). Only the default and ‘soil14_realrootssoil14_dr0.5’ simulations 510 

produced results outside the standard deviation of measured GPP (Fig. 8). Variability (denoted by standard deviation in the 

Taylor diagram as well as VR close to 1) was best in the soil14_p0, p0, soil14_psi, and psi simulations.  

3.3.2 Mediterranean climate sites 

At the sites with a Mediterranean climate (IT-Col, US-Var, US-Ton), soil14_psi and soil14_p0 removed the most stress, but 

p0 and psi with the default soil depth also produced a good fit for GPP (Figs. SM5b, SM6b, Table 6). However the RMSE 515 

for LE was significantly higher in these four experiments (RMSE=22.55, 23.59, 25.52, and– 26.09 W m-2  for the p0, psi, 

soil14_p0 and soil14_psi experiments, respectively, compared to 19.67 W m-2 in the default simulation), while the 

correlation coefficient was high for these four experiments (r=0.85–0.87 compared to 0.88 in the default) (Fig. SM7b, Table 

SM5). US-Var and US-Ton are dominated by grass and shrubs, which have an effective root depth dr of 0.5 m and 1 m, 

respectively. At these sites, the ‘soil14_mod1’ experiments had β<0.5, and GPP was underestimated during the growing 520 

season (Fig. SM6b). (In these experiments, access to soil moisture was not weighted by effective root fractions, dr was 

double its default value, and it was interpreted as the maximum root depth.) This meant that grasses and shrubs could not 

access water below 1 m and 2 m depth, respectively, resulting in the strong soil moisture stress seen at the US-Ton and US-

Var sites. 

3.3.3 Sites with soil moisture stress and other errors 525 

Formatted: Font: Bold

Formatted: Font: Bold



17 

 

At the sites with soil moisture stress plus other errors, there were fewer improvements although RMSE decreased from 2.81 

gC m-2 d-1 in the default simulation to 2.08, 2.14, and 2.17 gC m-2 d-1 in the soil14_psi, soil14_p0, and 

soil14_deeprootssoil14_dr*2 simulations, respectively (Figs. SM5c, SM6c, Table 7). These sites are LBA-K67, LBA-BAN, 

ZA-Kru, and RU-Che. The VR was best captured in the soil14_deeprootssoil14_dr*2 simulations, while the correlation 

coefficient was highest in the default simulation and in the soil14_realrootssoil14_dr0.5 simulation. At LBA-K67 (a tropical 530 

forest site), soil14_psi and soil14_p0 had the lowest RMSE and seasonal variation in GPP, although for all experiments the 

correlation coefficient was negative (Fig. SM5c). When dr=0.5 m (as in ‘soil14_dr0.5’), there were proportionally more roots 

in the top soil layers, and as these dried out, there was a sharp decline in . This is further illustrated in Figure SM9 at the 

LBA-K67 site, which plots  against soil moisture in the top 1 m. In comparison, with dr =3 m (the default value) the trees 

were able to access water from deeper layers, so  did not decline as rapidly. At ZA-Kru, all results were within the range of 535 

the measurements, although the growing season GPP was underestimated (Fig. SM6c). At LBA-BAN, 

soil14_deeprootssoil14_dr*2, soil14_psi, and soil14_p0 gave lowest RMSE, but VR was very high (>3) and the correlation 

coefficient was low (r<0.4) for all simulations. There was very little difference between any of the simulations at RU-Che, 

and  was <0.25 year-round for all experiments. For LE, there was a significant reduction in RMSE from 22.54 W m-2 to <18 

W m-2 for all experiments with 14-layer soil (except for ‘soil14_realroots’) at these sites (Table SM6). The correlation 540 

coefficient was also significantly improved in these experiments (from 0.48 in the default simulation to >0.67). The 

exception to these improvements was the ‘soil14_dr0.5’ experiment, where the RMSE increased to 25.17 W m-2 and 

correlation coefficient decreased to 0.35. 

3.3.4 Average response across sites 

Averaging across the ten 11 sites where we performed additional experiments, the lowest RMSE for GPP occurred in the 545 

soil14_p0, soil14_psi, and soil14_deeprootssoil14_dr*2 experiments (on both daily and monthly timescales). The variability 

was best captured by the soil14, soil14_p0, and soil14_psi experiments (as denoted by VR close to 1of 1.06, 1.06, and 0.98, 

respectively). The mean correlation coefficient was similar across all experiments (0.50–0.5657). All of the experiments 

were an improvement compared to the default configuration, except for the p0, mod1, and soil14_dr0.5 experiments. 

For LE, averaged across all sites, the daily and monthly RMSE was similar across experimentslowest for the soil14 550 

experiment, and this was the only experiment with RMSE lower than the default configuration. There was an improvement 

in the VR for the soil14, soil14_p0, soil14_psi, soil14_mod1, and soil14_dr*2 experiments, compared to the default (with 

VR between 1.26-1.44 compared to 1.58 in the default, ). but VR was closest to 1 in the soil14 and soil14_deeproots 

experiments. The correlation was highest (r~0.7574–0.76 compared to default r=0.70) for all experiments with a 14-layer 

soil, except for the ‘realroots’ experimentsoil14_dr0.5.  555 

4. Discussion and Conclusions 

4.1 Default model configuration 
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Tables 3-4 summarize some of the key findings from this study pertaining to the default configuration. JULES simulated 

GPP was more realistic in temperate biome sites than in the tropics or high latitudes/cold region sites, as indicated by three 

statistics to measure annual biases (NAE), seasonal cycles (r), and variability (VR). LE was best simulated in temperate and 560 

high latitude/cold sites based on the same statistics (except for temperate mixed forests). For sites in the tropics, the default  

parameterization contributed to an exaggerated seasonal cycle of GPP compared to the measurements, especially in tropical 

evergreen forests. Although the absolute errorNAE was low in tropical evergreen forest sites (e.g. LBA sites K34, K83, K67, 

and BAN for example), the seasonal cycle was overestimated (despite LAI being nearly constant all year), as indicated by 

high VR and low correlation coefficients. A similar result was observed with LE in most tropical sites: the seasonal cycle 565 

was incorrect and the VR was high. For example, at LBA-K67, the measurements show an increasing trend in GPP from 

August to October (coinciding with the dry season), while JULES predicted a decreasing trend during this time.  

Even with soil moisture and LAI prescribed for the four tropical evergreen forest sites, the correlation coefficients were 

negative. At these sites, it is possible that including a seasonally varying photosynthetic capacity would improve the results, 

as in (Wu et al., 2017). The dry season is often accompanied by enhanced carbon uptake in Amazon forests, due to a 570 

combination of fewer clouds and increased incoming solar radiation (Saleska et al., 2003; Restrepo-Coupe et al., 2013; Von 

Randow et al., 2013; Zeri et al., 2014) and seasonal leaf flushing (Wu et al., 2016). The observed seasonality in GPP is 

enabled by deep roots that can access ample soil moisture, and by the relatively high photosynthetic capacity of new leaves 

(Wu et al., 2017), a process not yet represented in JULES.  

Other errors, possibly linked to phenology, also contributed to model biases in tropical savannahsavanna and deciduous 575 

forest sites. The improvements seen when LAI was prescribed at LBA-RJA (a seasonally dry tropical forest site) further 

suggest that JULES’ lack of a moisture-driven phenology scheme could be affecting the results at this site. LBA-RJA serves 

as interesting comparison to LBA-K67: RJA receives a similar amount of annual rainfall, but the dry season is more intense, 

with about half as much rainfall during the dry season compared to K67 (Restrepo-Coupe et al., 2013). The bedrock is 

relatively shallow at RJA (2–-3 m) (Christoffersen et al., 2014), Christoffersen et al. (2014)), therefore deep soil moisture is 580 

not present. At this site, measured GPP drops steadily from January until reaching a minimum in the middle of the dry 

season. JULES captured this seasonal cycle very well, although the amplitude was slightly dampened with predicted GPP 

being higher than observed during most of the year (with prescribed LAI and soil moisture).  

In cold grassland sites, JULES underpredicted the variability of GPP and had high annual biases. The biases were due to 

very little GPP being simulated, with β being low year-round.  At RU-Che, giving more emphasis to deeper layers (in the 585 

‘mod1’ experiment or with ‘soil14_deeprootssoil14_dr*2’) did not increase GPP – which is not unexpected due to the 

presence of frozen soils both in the simulations and in reality at this site (Merbold et al., 2009a). The C3 grass PFT at this site 

has most roots in the top 0.5m, which indicates that evaporation or sublimation could be drying the soils too much in the 

layers with the most roots and unfrozen soil moisture content.  

4.2 Overview of alternative approaches for representing soil moisture stress 590 

Formatted: Subscript



19 

 

We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default 

parameterization for most biomes and climates: 14-layer soil with a curvilinear stress response function (‘soil14_psi’, Eq 

89), 14-layer soil with delayed induction of stress (‘soil14_p0’, Eq. 3), and 14-layer soil with deeper roots 

(‘soil14_deeprootssoil14_dr*2’).  Within the default configuration, LE biases were greatestFor LE, the biases were highest 

in the default configuration in temperate mixed forests, with overestimation occurring during Spring-Autumn. At these sites, 595 

reducing soil moisture stress (i.e. with soil14_psi, soil14_p0, and soil14_deeprootssoil14_dr*2) increased LE and made the 

simulation worseincreased RMSE, but improved the simulated seasonal cycle and variance. Further evaluation into the 

reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new 

parameterizations for β.  

 600 

There is ample justification for having deeper soils and roots in JULES. Total soil column depth and root distribution 

determine the total amount of water and nutrients available to plants. Deep roots can access soil moisture at depth (Christina 

et al., 2017) and potentially the water table, and hence contribute to tree transpiration during dry periods, e.g. for GF-Guy 

where many canopy trees are not impacted by dry season droughts (Stahl et al., 2013a; Stahl et al., 2013b). Deep roots have 

been found to be important for many vegetation types and ecosystems (Canadell et al., 1996; Pierret et al., 2016; Germon et 605 

al., 2020): for multiple tree species in tropical forests (e.g.(Nepstad et al., 1994; Jipp et al., 1998; Strey et al., 2017; Brum et 

al., 2019), for Acacias in semi-arid savannahsavannas such as SD-Dem (Ardö et al., 2008), and for fast-growing Eucalypt 

and Acacia mangium plantations in Brazil (Christina et al., 2011; Laclau et al., 2013; Germon et al., 2018), to name a few 

examples. In particular, in tropical forests, the global average maximum rooting depth is approximately 7 m (Canadell et al. 

1996). These examples contrast with the shallow soils (3 meters) in the default JULES simulations. In addition, weighting 610 

root water uptake or soil moisture stress by fraction of roots in each layer could produce too much stress, if the shallow 

layers (with the most roots) dry out too quickly. Deep roots are very efficient at moving water, for example, specific 

hydraulic conductivities (Ks) of deep roots can be as much as 15 times higher than Ks of superficial roots for Banksia sp (Pate 

et al., 1995), and deep roots can redistribute water from deep to shallow layers (Caldwell et al., 1998; Burgess et al., 2001; 

Oliveira et al., 2005). However, not all plants rely on deep roots during a drought (Prechsl et al., 2015; Brinkmann et al., 615 

2019), and at sites dominated by grasses and shrubs there were high biases in the ‘soil14_mod1’ experiments ( we did not 

find consistent improvements when weighting the contribution of each layer’s βi by the thickness of that layer (the ‘mod1’ 

experiments) rather than by the effective root fraction of roots in that layer). Studies with other land surface models have 

drawn similar conclusions. This approach was similar to results from (Baker et al., 2008), where they found that Iincreasing 

the soil column from 3.5 m to 10 m and allowing roots to access this entire reservoir improved the fit of the SiB3 model to 620 

observations at the LBA-K83 site (Baker et al., 2008). Similarly, the ability of the G’Day process-based model to accurately 

simulate wood production in fast-growing sub-tropical plantations was considerably improved by accounting for tree ability 

to uptake water in deep soil layers (Marsden et al., 2013). On the other hand, using the default calculation for β with a more 

realistic root distribution parameterised by an e-folding depth dr=0.5 m emphasized shallow layers, and the  increased overall 
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soil moisture stress increased at most sites and, produced resulting in a poor fit to measured GPP and LE in the 625 

‘soil14_dr0.5’ experiments.  

4.3 Outlook for modelling soil moisture stress in JULES and other land surface models 

In this study, we used flux tower observations and detailed site information when possible. Working with site researchers 

enabled us to narrow down reasons for model biases by prescribing soil moisture and LAI at some sites, and to better 

understand mechanisms of drought responses at others. These are invaluable benefits of working with site-level data. 630 

However, there is potential to extract even more information from available datasets to improve the representation of soil 

moisture-vegetation interactions (Gentine et al., 2019). This includes better utilisation of satellite data, and one particular 

opportunity is to consider soil moisture measurements in parallel with those of solar-induced fluorescence, which is used to 

estimate photosynthesis (Lee et al., 2013). Satellite records have large spatial coverage, and modern machine learning 

algorithms could be used to characterise Earth Observationed datasets of drought conditions (Huntingford et al., 2019). Such 635 

methods could address the difficulty in modelling the high complexity and geographical diversity of plant adaptive responses 

to soil moisture deficits that exist in nature. 

Future work should build upon these results to further evaluate JULES response with these parameterizations, focusing on 

deeper soils and either using a non-zero p0 (we used 0.4 in this study), or replacing Eqs. 4–5 with Eq. 8using the soil matric 

potential (ψ) rather than volumetric water content for calculating β, (e.g., Wright et al in prep; Otu-Larbi et al in prep). We 640 

note that such alternative parameterizations are not a replacement for improved representations of the soil-plant hydraulic 

system that have been developed for many models (Bonan et al., 2014; Christoffersen et al., 2016; Kennedy et al., 

2019)(Bonan et al. 2014; Christoffersen et al. 2016; Kennedy et al. 2019) including JULES (Eller et al. 2020). Instead, they 

provide a practical, alternative way to represent some aspects of the soil-plant hydraulic system, including hydraulic 

differences between PFTs through the parameters ψopen and ψclose. (Eq. 89), which can be adopted by any model that use the β 645 

function to represent vegetation responses to soil moisture. Several other land surface models use soil water potential (e.g. 

CLM Oleson et al. 2010; Lawrence et al. 2019) for calculating soil moisture stress, and a further benefit of this approach is  

the ability to set PFT-specific values for ψopen and ψclose. (Eq. 9), with measured turgor loss points serving as a starting point 

for ψclose (Bartlett et al., 2012). Whereas our new parametrization generally improves JULES skill to simulate GPP and LE it 

remains to be tested if similar results would be achieved by other models, including models that apply the β function at 650 

different parts of their photosynthesis and stomatal conductance schemes (e.g. Keenan et al., 2010; De Kauwe et al., 2015). 

Currently, tThe land is currently providing a partially offsetting offsets anthropogenic CO2 of emissions by CO2 

photosynthetic drawdown, but this could be reversed if droughts increase in frequency or intensity in the future. Feedbacks 

from the land surface can amplify and lock-in existing drought conditions (Morillas et al., 2017), and land surface responses 

to regional drought can affect precipitation and circulation in other regions (Harper et al., 2013; Lian et al., 2020). Improving 655 

responses of vegetation to drought in land surface models such as JULES would have far-reaching implications for global 

climate modelling, andmodelling and are therefore of utmost importance. 
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Code Availability 

Both the model code and the files for running it are available from the Met Office Science Repository Service: 

https://code.metoffice.gov.uk/. Registration is required and code is freely available subject to completion of a software 660 

licence. The results presented in this paper were obtained from running JULES branch 

https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/karinawilliams/r9227_add_gpp_unstressed_diagnostic ,  

which is a branch of JULESv4.9 with the additional unstressed GPP diagnostic added. The runs were completed with the 

Rose suite https://code.metoffice.gov.uk/trac/roses-u/browser/a/l/7/5/2/u-al752-jpegpaper, which also includes python scripts 

for creating the plots. 665 

Data Availability 

The FLUXNET2015 data used to run JULES is available for download from: https://fluxnet.org/.  
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Table 1: Summary of the 10 JULES model experiments, related to the treatment of soil moisture stress. 

Experiment Name Summary of change 

default Eq. 4 used for β. 4 layer soil to 3 m depth. Root profile in left panel of Fig. 2. 

psi  Use matric soil matric potential (Eq. 8) rather than volumetric water content (Eq. 4) to 

calculate β; induces a curvilinear response.  

p0 Reduce the critical VWC where stress begins. p0 in Eq. 5 is changed from 0 to 0.4 (green 

dashed line in Fig. 1). 

mod1 Allow plants to access all soil moisture in the column. Eq. 9 replaces Eq. 4, and Eq. 10 

replaces Eq. 7. Double default dr (max value 3). dr is the maximum depth of roots instead of 

e-folding depth. 

soil14 Increase soil layers to 14, 10.8 m depth, but dr remains unchanged. Root profile in middle 

panel of Fig. 2.  

soil14_deeprootssoil14_dr*2 Increase soil layers to 14, 10.8 m depth, but double dr (gives more emphasis to deeper 

layers). 

soil14_psi Combine soil14 and psi experiments. 

soil14_mod1 Combine soil14 and mod1 experiments, except dr is not capped at 3m. Root profile is the 

dashed line in middle panel of Fig. 2.  

soil14_p0 Combine soil14 and p0 experiments. 

soil14_realrootssoil14_dr0.5 Increase soil layers to 14, 10.8 m depth. Set dr =0.5 m for all PFTs, gives a more realistic 

reduction of root density with depth (see C3, C4 grass root profile in middle panel of Fig. 2).  
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Table 2. Default parameter settings (changed in experiments summarized in Table 1). In the JULES code, p0 is called fsmc_p0; nsoil is called 

sm_levels; dr is called rootd; 𝜓open is psi_open; 𝜓close is psi_close. 1155 
 

JULES 

Parameter 

Explanation Default setting Change in experiments 

fsmc_shape Switch that controls whether β 

decreases linearly with VWC θ or 

with soil matric potential 𝜓. 

0 1 in psi and soil14_psi 

l_use_pft_psi Switch that controls whether β is a 

function of θwilt and θcrit (false) or 

𝜓close and 𝜓open (true)  

false true in psi and soil14_psi 

𝜓open Soil matric potential (MPa) above 

which β is 1. Dimension of npft. 

None (only used when 

l_use_pft_psi=true) 

-0.033 MPa for all PFTs in 

psi and soil14_psi 

𝜓close Soil matric potential (MPa) below 

which β is 0. Dimension of npft. 

None (only used when 

l_use_pft_psi=true) 

-1.5 MPa for all PFTs in psi 

and soil14_psi 

p0 Threshold at which plants begin to 

feel stress (when 

l_use_pft_psi=false). Dimension of 

npft. 

0 0.4 for all PFTs in p0 and 

soil14_p0  

fsmc_mod Switch for method of weighting the 

contribution that each soil layer 

makes to the total β. Dimension of 

npft. 

0  1 for all PFTs in mod1 and 

soil14_mod1 

dr If fsmc_mod=0, dr is the e-folding 

depth of roots assuming an 

exponential root distribution with 

depth. If fsmc_mod=1, dr is the total 

depth of the root zone. Dimension of 

npft. 

Tropical broadleaf evergreen trees 

= 3m 

Other broadleaf trees and 

deciduous needleleaf trees = 2m 

Evergreen needleleaf trees = 1.8m 

C3 and C4 grasses = 0.5m 

Shrubs = 1m 

10.8 for all PFTs in 

soil14_mod1 

 

0.5 for all PFTs in 

soil14_realrootssoil14_dr0.5 

nsoil Number of soil layers 4 14 in all soil14 experiments 

dzsoil  Soil layer depths in meters, starting 

with the uppermost layer. 

0.1, 0.25, 0.65, 2.0 (total depth = 

3m) 

0.1, 0.2, 0.2, 0.2, 0.3, 0.3, 

0.3, 0.4, 0.4, 0.4, 1.0, 1.0, 

3.0, 3.0 (total depth = 
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10.8m) in all soil14 

experiments 

 

  



39 

 

Table 3. Summary of model performance for GPP with no prescribed data. Ranking of seasonal cycle is based onThe 

statistics are averages for each biome: the average Pearson’s correlation coefficient for each biome(r), : Good 1160 

(r≥0.80); Fair (0.80>r≥0.60); Poor (r < 0.60); Very poor (r≤0). Ranking of absolute error is based on the average 

normalized absolute annual error (NAE) for each biome, and variance ration (VR).: Low (NAE < 20%); Medium 

(NAE < 50%); High (NAE < 100%); and Very High (NAE > 100%). 

 

Climate Biome Seasonal 

CycleCorrelation 

coefficient (r) 

Normalized 

Absolute 

error Error 

(NAE) 

(annual) 

VariabilityVari

ance Ratio (VR) 

Diagnosed source of error 

Tropics Evergreen 

forests 

Very poor-0.10 Low0.12 Too high5.5 Soil moisture stress during 

the dry season, or other 

phenological controls on 

GPP  

Deciduous 

forests 

Poor0.43 Medium0.26 Too high4.8 --GPP too high except 

during dry to wet season 

transition  

Grasslands Fair0.75 High0.99 Too high4.8 GPP is too high all year 

Woody 

savannahSavann

as 

Fair0.70 Medium0.79 Fair0.79 --GPP is too high all year 

Temperate Mixed 

forestsForests 

0.87Good Medium0.28 Fair0.92 

 

Soil moisture stress during 

growing season 

Grasslands Good0.85 Low0.35 Fair0.57 GPP underestimated at 

wetter sites-- 

Woody 

savannahsavann

as 

Good0.82 Low0.14 Fair0.64 Multiple factors (soil 

moisture stress, hydrology, 

and phenology) 

Cropland Fair0.67 Medium0.24 Too low0.21 --Phenology and soil 

moisture stress 

High latitude 

or altitude 

Boreal forests Good0.90 Medium0.43 Fair0.55 Underestimated GPP during 

summer months-- 

Grasslands Good0.79 High0.50 Too low0.35 Frozen soils 

 1165 
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Table 4. Summary of model performance for LE with no prescribed data. The statistics are averages for each biome: 

Pearson’s correlation coefficient (r), normalized absolute annual error (NAE), and variance ration (VR).Ranking of 

seasonal cycle is based on the average Pearson’s correlation coefficient for each biome: Good = r>0.80; Fair = r>0.60; 

Poor = r < 0.60; Very poor = r<0. Ranking of absolute error is based on the average normalized absolute annual 1170 

error (NAE) for each biome: Low = NAE < 20%; Medium = NAE < 50%; High = NAE < 100%; and Very High = 

NAE > 100%. 

 

 

Climate Biome Correlation 

coefficient 

(r)Seasonal 

Cycle 

Normalized 

Absolute Error 

(NAE) Absolute 

error (annual) 

Variance Ratio 

(VR)Variability 

Tropics Evergreen forests Poor0.29 Low0.13 Very poor (too high)3.83 

Deciduous forests Poor0.52 Low0.13 Poor (too high)1.90 

Grasslands Poor0.35 Medium0.31 Very poor (too high)5.24 

Woody 

savannahSavannas 

Fair0.79 Low0.34 Good0.99 

Temperate Mixed 

forestsForests 

Good0.88 High0.55 1.47Fair 

Grasslands Good0.94 Low0.23 Poor (too high)1.15 

Woody 

savannahsavannas 

Good0.91 Medium0.32 Fair1.34 

Cropland Good0.84 Low0.03 Fair0.70 

High latitude 

or altitude 

Boreal forests Good0.89 Medium0.26 Fair1.25 

Grasslands Good0.84 Medium0.42 Fair0.64 

 1175 

 

Table 5. Average results of soil moisture stress experiments for GPP at the soil moisture stressed sites GF-Guy, BE-

Vie, DE-Tha, and CA-Oas. 

Experiment RMSE 

(monthly) 

RMSE 

(daily) 

NAE VR r 

Default 2.30 2.59 0.28 2.15 0.75 

p0 1.92 2.33 0.21 2.33 0.78 

Psi 1.83 2.24 0.20 2.00 0.79 

Mod1 2.33 2.63 0.29 2.20 0.74 

Soil14 1.84 2.22 0.25 0.95 0.85 

Soil14_p0 1.59 2.07 0.21 0.97 0.88 

Soil14_psi 1.54 2.03 0.20 0.90 0.89 

Soil14_mod1 1.79 2.21 0.23 0.96 0.86 
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Soil14_dr0.5 2.57 2.88 0.31 2.61 0.69 

Soil14_dr*2 1.73 2.17 0.23 0.85 0.89 

 

  1180 
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Table 6. Average results of soil moisture stress experiments for GPP at the sites with Mediterranean climate (IT-Col, 

US-Var, and US-Ton). 

Experiment RMSE 

(monthly) 

RMSE 

(daily) 

NAE VR r 

Default 2.14 2.41 0.29 0.45 0.82 

P0 1.94 2.26 0.26 0.83 0.82 

Psi 1.93 2.26 0.26 0.88 0.82 

Mod1 2.10 2.38 0.28 0.48 0.82 

Soil14 1.97 2.27 0.26 0.53 0.82 

Soil14_p0 1.94 2.27 0.25 0.89 0.82 

Soil14_psi 1.98 2.32 0.27 0.90 0.82 

Soil14_mod1 2.31 2.57 0.20 0.47 0.68 

Soil14_dr0.5 2.28 2.56 0.34 0.40 0.82 

Soil14_dr*2 2.01 2.30 0.25 0.56 0.80 

 

Table 7. Average results of soil moisture stress experiments for GPP at sites with soil moisture stress plus other errors 

(LBA-K67, LBA-BAN, RU-Che, ZA-Kru). 1185 

Experiment RMSE 

(monthly) 

RMSE 

(daily) 

NAE VR r 

Default 2.81 3.07 0.43 3.22 0.24 

P0 2.77 3.06 0.34 3.32 0.19 

Psi 2.69 3.00 0.31 3.02 0.16 

Mod1 2.86 3.13 0.43 3.33 0.22 

Soil14 2.30 2.58 0.38 1.81 0.22 

Soil14_p0 2.14 2.44 0.34 1.51 0.21 

Soil14_psi 2.08 2.39 0.32 1.33 0.20 

Soil14_mod1 2.45 2.71 0.42 2.67 0.05 

Soil14_dr0.5 2.82 3.13 0.45 3.49 0.33 

Soil14_dr*2 2.17 2.44 0.39 1.06 0.22 
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Figure 1: Comparison of JULES soil moisture stress factor (β) to measurements from various potted experiments 

from Verhoef and Egea (2014). β is calculated from Eq. 4. Two different values of p0 (Eq. 5) are shown: p0=0.4 was 1190 

used for the ‘soil14_p0’ and ‘p0’ soil moisture stress experiments. 
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Figure 2: Effective root water extraction profiles Root distributions for JULES with the default four4 layer soil 

(maximum depth of 3 m; left panel), with an updated 14 layer soil (maximum depth of 10.8 m; middle panel), and 1195 

compared to parameters root fractions from Zeng (2001) (right panel), where distributions were calculated based on 

available measurements of root profiles. The parameter dr in JULES is the e-folding depth for weighing root water 

extraction and soil moisture stress.root depth. The plant functional types are: C3, C4 grasses; evergreen and 

deciduous shrubs (ESh, DSh); needleleaf evergreen trees (NET), temperate broadleaf evergreen trees (BET-Te), 

broadleaf deciduous trees (BDT), needleleaf deciduous trees (NDT), tropical broadleaf evergreen trees (BET-Tr). 1200 
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Figure 3. Location of sites used in this study. Details on site characteristics are provided in the Supplemental 

Material. 1205 
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 1210 

Figure 34. Correlation coefficient for simulated monthly mean GPP at Fluxnet sites for ten biomes: TrEF=Tropical 

Evergreen Forests; TrDF= Tropical Deciduous Forests; TrG = Tropical Grasslands; TrS=Tropical 

SavannahSavannas; TeMF = Temperate Mixed Forests; TeG=Temperate Grasslands; TeS=Temperate 

SavannahSavannas; Cr=Cropland; CoG=Continental/High altitude grasslands; BoF=Boreal Forests. The sites that 

fall into each category are listed in the Supplemental Material. 1215 

 

  



49 

 

 

 



50 

 

1220 



51 

 

 

 

Figure 45. Normalized Absolute Errors for simulated GPP at Fluxnet sites for ten biomes: TrEF=Tropical Evergreen 

Forests; TrDF= Tropical Deciduous Forests; TrG = Tropical Grasslands; TrS=Tropical SavannahSavannas; TeMF = 

Temperate Mixed Forests; TeG=Temperate Grasslands; TeS=Temperate SavannahSavannas; Cr=Cropland; 1225 

CoG=Continental/High altitude grasslands; BoF=Boreal Forests. The sites that fall into each category are listed in the 

Supplemental Material. 
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Figure 56: Average seasonal cycle of GPP (gC m-2 d-1) for representative sites in biomes with large biases. Full dates 

of simulations are provided in the Supplemental Material, here we give the years included: AU-Fog (2006-2008); BE-1235 

Vie (1996-2006); CA-Oas (1996-2010); DE-Tha (1996-2014); IT-Col (1996-2014); LBA-BAN (2004-2006); LBA-K67 

(2002-2003); RU-Che (2002-2005); US-Ne1 (2001-2012); US-Ton (2001-2014); ZA-Kru (2000-2013). 
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Figure 67: Example of impacts of soil moisture stress representations on GPP model skill for two soil moisture 

stressed sites: GF-Guy (Tropical evergreen forest), and DE-Tha (Temperate evergreen needleleaf forest). The GF-

Guy simulations included years 2007-2009; and the DE-Tha simulations included years 1996-2014. Details of the 

simulations are provided in Sect. 2.3 and Tables 1-2. 1245 
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 1250 

Figure 78: Example of impacts of various soil moisture stress-related changes (see Table 1) on simulated seasonal 

cycle of GPP at two soil moisture stressed sites (see Section 3.3; similar figures for BE-Vie and CA-Oas are in Fig. 

SM9a). The GF-Guy simulations included years 2007-2009; and the DE-Tha simulations included years 1996-2014. 

GF-Guy is a tropical evergreen broadleaf forest and DE-Tha is an evergreen needle-leaf forest. Details of the 

simulations are provided in Sect. 2.3 and Tables 1-2. 1255 
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