1	Evaluation of the offline-coupled GFSv15-FV3-CMAQv5.0.2 in support of the
2	next-generation National Air Quality Forecast Capability over the contiguous
3	United States
4	Xiaoyang Chen ¹ , Yang Zhang ¹ , Kai Wang ¹ , Daniel Tong ^{2,6} , Pius Lee ^{4,3} , Youhua Tang ^{3,4} ,
5	Jianping Huang ^{5,6} , Patrick C. Campbell ^{3,4} , Jeff Mcqueen ⁵ , Havala O.T. Pye ⁷ , Benjamin N.
6	Murphy ⁷ , and Daiwen Kang ⁷
7	¹ Department of Civil and Environmental Engineering, Northeastern University, Boston,
8	MA 02115, USA
9	² Department of Atmospheric, Oceanic and Earth Sciences, George Mason University,
10	Fairfax, VA 22030, USA
11	³ Center for Spatial Information Science and System, George Mason University, Fairfax,
12	VA 22030, USA
13	⁴ Air Resources Laboratory, National Oceanic and Atmospheric Administration, College
14	Park, MD 20740, USA
15	⁵ National Oceanic and Atmospheric Administration/National Centers for Environmental
16	Prediction/Environmental Modeling Center, College Park, MD 20740, USA
17	⁶ IM Systems Group, Rockville, MD 20852, USA
18	⁷ Office of Research and Development, U.S. Environmental Protection Agency, Research
19	Triangle Park, NC 27711, USA
20	Correspondence: Yang Zhang (ya.zhang@northeastern.edu)

22 Abstract

23	As a candidate for the next-generation National Air Quality Forecast Capability
24	(NAQFC), the meteorological forecast from Global Forecast System with the new Finite
25	Volume Cube-Sphere dynamical core (GFS-FV3) will be applied to drive the chemical
26	evolution of gases and particles described by the Community Multiscale Air Quality
27	modelling system. CMAQ v5.0.2, a historical version of CMAQ, has been coupled with
28	the North American Mesoscale Forecast System (NAM) model in the current operational
29	NAQFC. An experimental version of the NAQFC based on the offline-coupled GFS-FV3
30	version 15 with CMAQv5.0.2 modeling system (GFSv15-CMAQv5.0.2), has been
31	developed by the National Oceanic and Atmospheric Administration (NOAA) to provide
32	real-time air quality forecasts over the contiguous United States (CONUS) since 2018. In
33	this work, comprehensive region-specific, time-specific, and categorical evaluations are
34	conducted for meteorological and chemical forecasts from the offline-coupled
35	GFSv15-CMAQv5.0.2 for the year 2019. The forecast system shows good overall
36	performance in forecasting meteorological variables with the annual mean biases of
37	-0.2 °C for temperature at 2-m, 0.4% for relative humidity at 2-m, and 0.4 m s ⁻¹ for wind
38	speed at 10-m against the METeorological Aerodrome Reports (METAR) dataset. Larger
39	biases occur in seasonal and monthly mean forecasts, particularly in spring. Although the
40	monthly accumulated precipitation forecasts show generally consistent spatial
41	distributions with those from the remote sensing and ensemble datasets,

42	moderate-to-large biases exist in hourly precipitation forecasts against the Clean Air
43	Status and Trends Network (CASTNET) and METAR. While the forecast system
44	performs well in forecasting ozone (O_3) throughout the year and fine particles with a
45	diameter of 2.5 μ m or less (PM _{2.5}) for warm months (May-September), it significantly
46	overpredicts annual-mean concentrations of PM _{2.5} This is due mainly to the high
47	predicted concentrations of fine fugitive, and coarse-mode particle components.
48	Underpredictions in the southeastern U.S. and California during summer are attributed to
49	missing sources and mechanisms of secondary organic aerosol formation from biogenic
50	volatile organic compounds (VOCs) and semi- or intermediate-VOCs. This work
51	demonstrates the ability of FV3-based GFS in driving the air quality forecasting. It
52	identifies possible underlying causes for systematic region- and time-specific model
53	biases, which will provide a scientific basis for further development of the
54	next-generation NAQFC.
55	
56	1. Introduction
57	Three-dimensional air quality models (3-D AQMs) have been widely applied in
58	real time air quality forecasting (RT-AQF) since the 1990s in the U.S. (Stein et al., 2000;

- 59 McHenry et al., 2004; Zhang et al., 2012a). The developments and applications of the
- 60 national air quality forecasting systems based on 3-D AQMs were conducted in the 2000s
- 61 (Kang et al., 2005; Otte et al., 2005; McKeen et al., 2005, 2007, 2009). Since then,

62	improvements and significant progress have been achieved in RT-AQF through the
63	further development of AQMs and the use of advanced techniques. For example, more air
64	pollutants in the products, more detailed gas-phase chemical mechanisms and aerosol
65	chemistry, and the implementation of chemical data assimilation were available (Zhang et
66	al., 2012b; Lee et al., 2017). Various AQMs, coupled with meteorological models in
67	either an online or offline manner, were developed and applied in RT-AQF (e.g., Chuang
68	et al., 2011; Lee et al., 2011; Žabkar et al., 2015; Ryan, 2016). The early version of the
69	National Air Quality Forecast Capability (NAQFC) was jointly developed by the U.S.
70	National Oceanic and Atmospheric Administration (NOAA) and the U.S. Environmental
71	Protection Agency (EPA) to provide forecasts of ozone (O ₃) over the northeastern U.S.
72	(Eder et al., 2006). Since the first operational version over the contiguous United States
73	(CONUS) (Eder et al., 2009), the NAQFC has been continuously updated and developed
74	to provide more forecasting products (including O ₃ , smoke, dust, and particulate matter
75	with a diameter of 2.5 μ m or less (PM _{2.5})) with increasing accuracy (Mathur et al., 2008;
76	Stajner et al., 2011; Lee et al., 2017).
77	The forecast skill of a historical NAQFC, which was based on the North

American Mesoscale Forecast System (NAM) model (Black, 1994) and the Community

- 79 Multiscale Air Quality Modeling System version 4.6 (CMAQ v4.6), over CONUS during
- 80 year 2008 was evaluated by Kang et al. (2010a) for operational O₃ and experimental
- 81 PM_{2.5} products. Overall, maximum 8-h O₃ was slightly overpredicted over the CONUS

82	during the summer, with the mean bias (MB), normalized mean bias (NMB), and
83	correlation coefficient (Corr) of 3.2 ppb, 6.8 %, and 0.65, respectively. The performance
84	of predicted daily mean $PM_{2.5}$ varied: with an underprediction during the warm season
85	and an overprediction in the cool season. The MBs and NMBs during warm/cool seasons
86	were -2.3/4.5 $\mu g~m^{\text{-3}}$ and -19.6%/45.1%, respectively. The current version of the U.S.
87	NOAA's operational NAQFC has provided the air quality forecast to the public for O_3
88	and $PM_{2.5}$ at a horizontal grid resolution of 12 km over CONUS since 2015. It is currently
89	based on the CMAQ v5.0.2 (released May 2014) (U.S. EPA, 2014) coupled offline with
90	the NAM model. Daily mean $PM_{2.5}$ was underpredicted during warm months (May and
91	July 2014) and overpredicted during a cool month (January 2015) over CONUS still
92	persist (Lee et al., 2017).
92 93	persist (Lee et al., 2017). Efforts have been made to reduce the seasonal and region-specific biases in the
92 93 94	persist (Lee et al., 2017). Efforts have been made to reduce the seasonal and region-specific biases in the historical and current NAQFC. Development and implementation of an analog ensemble
92 93 94 95	persist (Lee et al., 2017). Efforts have been made to reduce the seasonal and region-specific biases in the historical and current NAQFC. Development and implementation of an analog ensemble bias correction approach was applied to the operational NAQFC to improve forecast
92 93 94 95 96	persist (Lee et al., 2017). Efforts have been made to reduce the seasonal and region-specific biases in the historical and current NAQFC. Development and implementation of an analog ensemble bias correction approach was applied to the operational NAQFC to improve forecast performance in PM _{2.5} predictions (Huang et al., 2017). Kang et al. (2008, 2010)
92 93 94 95 96 97	persist (Lee et al., 2017).Efforts have been made to reduce the seasonal and region-specific biases in thehistorical and current NAQFC. Development and implementation of an analog ensemblebias correction approach was applied to the operational NAQFC to improve forecastperformance in PM2.5 predictions (Huang et al., 2017). Kang et al. (2008, 2010)investigated the Kalman Filter (KF) bias-adjustment technique for operational use in the
92 93 94 95 96 97 98	persist (Lee et al., 2017).Efforts have been made to reduce the seasonal and region-specific biases in thehistorical and current NAQFC. Development and implementation of an analog ensemblebias correction approach was applied to the operational NAQFC to improve forecastperformance in PM2.5 predictions (Huang et al., 2017). Kang et al. (2008, 2010)investigated the Kalman Filter (KF) bias-adjustment technique for operational use in theNAQFC system. The KF bias-adjusted forecasts showed significant improvement in both
92 93 94 95 96 97 98 99	persist (Lee et al., 2017).Efforts have been made to reduce the seasonal and region-specific biases in thehistorical and current NAQFC. Development and implementation of an analog ensemblebias correction approach was applied to the operational NAQFC to improve forecastperformance in PM2.5 predictions (Huang et al., 2017). Kang et al. (2008, 2010)investigated the Kalman Filter (KF) bias-adjustment technique for operational use in theNAQFC system. The KF bias-adjusted forecasts showed significant improvement in bothO3 and PM2.5 for discrete and categorical evaluations. However, limitations in the
92 93 94 95 96 97 98 99 99	persist (Lee et al., 2017).Efforts have been made to reduce the seasonal and region-specific biases in thehistorical and current NAQFC. Development and implementation of an analog ensemblebias correction approach was applied to the operational NAQFC to improve forecastperformance in PM2.5 predictions (Huang et al., 2017). Kang et al. (2008, 2010)investigated the Kalman Filter (KF) bias-adjustment technique for operational use in theNAQFC system. The KF bias-adjusted forecasts showed significant improvement in bothO3 and PM2.5 for discrete and categorical evaluations. However, limitations in theunderlying models and the bias correction/adjustment approaches need further

underlying causes for region- and time-specific biases can result in further developmentof the NAQFC system and improved pollutant predictions.

104	As NOAA Environmental Modeling Center (EMC) has transitioned to devote its
105	full resources towards the development of an ensemble model based on the Finite
106	Volume Cube-Sphere Dynamical Core (FV3), the NAM has been no longer updated since
107	March 2017. The FV3 dynamic core will eventually replace all current NOAA National
108	Centers for Environmental Prediction (NCEP) mesoscale models used for forecasting.
109	The FV3 dynamical core was implemented in the operational Global Forecast System as
110	version 15 (GFS v15) in July 2019.

The NOAA National Weather Service (NWS) is currently coordinating an effort 111 to inline a regional scale meteorological model basing on the same FV3 dynamic core as 112 that in GFS v15 to be coupled with an atmospheric chemistry model partially based on 113 CMAQ. The inline system is expected to be the next generation of NAQFC, and to be 114 implemented a few years in the future. An interim system, offline coupling the recent 115 CMAQ with FV3-based GFS, is considered as a candidate NAQFC to replace the current 116 NAM-CMAQ system before the inline system is applied in the operational air quality 117 forecasting. To support this new development of the interim NAQFC, a prototype of the 118 119 offline-coupled GFS v15 with CMAQv5.0.2 (GFSv15-CMAQv5.0.2) has been developed and applied by the NOAA for RT-AQF over CONUS since 2018 (Huang et al., 2018, 120 2019, 2020). In this work, the meteorological and air quality forecasts from the 121

122	offline-coupled GFSv15-CMAQv5.0.2 system are comprehensively evaluated for the
123	year of 2019. The main objectives of this work are to: (1) evaluate the forecast skills of
124	the experimental prototype of the GFSv15-CMAQv5.0.2 system; (2) identify the major
125	model biases, in particular, systematic biases and persistent region- and time-specific
126	biases in major species; (3) investigate underlying causes for the biases to provide a
127	scientific basis for improving the model representations of chemical processes and
128	developing science-based bias correction methods for O_3 and $PM_{2.5}$ forecasts. This work
129	will support NAQFC's further development and improvement through enhancing its
130	forecasting abilities and generating a benchmark for the interim NAQFC that is being
131	developed by NOAA based on the offline-coupled GFS-FV3 v16 with CMAQ v5.3
132	(NACC-CMAQ) (Campbell et al., 2020). Eventually, the latest version of CMAQ
133	(version 5.3), which has updates in gas-phase chemistry (Yarwood et al., 2010; Emery et
134	al., 2015; Luecken et al., 2019), lightning nitric oxide (LNO) production schemes (Kang
135	et al., 2019a, 2019b), and secondary aerosol formation (in particular, secondary organic
136	aerosol) (e.g., Pye et al., 2013, 2017; Murphy et al., 2017) among others, will be coupled
137	with GFS-FV3 v16 and be implemented into the interim operational NAQFC.

139 2. Model system and evaluation protocols

141	FV3 is a dynamical core for atmospheric numerical models developed by the
142	Geophysical Fluid Dynamics Laboratory (GFDL) (Putman and Lin, 2007). It is a modern
143	and extended version of the original FV core with a cubed-sphere grid design and more
144	computationally efficient solvers. It was selected for implementation into the GFS as the
145	next generation dynamical core in 2016 (Zhang et al., 2019a). The GFS-FV3 v15 (GFS
146	v15) has been operational since June 2019. The GFS v15 uses the Rapid Radiative
147	Transfer Method for GCMs (RRTMG) scheme for shortwave/longwave radiation
148	(Mlawer et al., 1997; Iacono et al., 2000; Clough et al., 2005), the Hybrid
149	eddy-diffusivity mass-flux (EDMF) scheme for Planetary Boundary Layer (PBL)
150	(National Centers for Environmental Prediction, 2019a), the Noah Land Surface Model
151	(LSM) scheme for land surface option (Chen et al., 1997), the Simplified
152	Arakawa-Schubert (SAS) deep convection for cumulus parameterization (Arakawa et al.,
153	1974; Grell, 1993), and a more advanced GFDL microphysics scheme for microphysics
154	(National Centers for Environmental Prediction, 2019b). An interface preprocessor has
155	been developed by NOAA to interpolate data, transfer coordinates, and convert the GFS
156	v15 outputs into the data format required by CMAQv5.0.2 (Huang et al., 2018, 2019).
157	The original outputs from GFS v15, which have a horizontal grid with 13-km resolution
158	and a Lagrangian vertical coordinate with 64 layers in NEMSIO format, are processed to
159	Lambert-Conformal Conic projection by PREMAQ, a preprocessor, to recast the
160	meteorological fields for CMAQ into an Arakawa C-staggering grid (Arakawa and Lamb,

161	1977) with a 12-km horizontal resolution and 35 vertical layers (Table 1). The first 72
162	hours in 12:00 UTC forecast cycles from GFS v15 are used to drive the air quality

163 forecast by the offline-coupled GFSv15-CMAQv5.0.2 system.

164	CMAQ has been continuously developed by the U.S. EPA since the 1990s (Byun
165	and Schere, 2006) and has been significantly updated in many atmospheric processes
166	since then. Chemical boundary conditions for the GFSv15-CMAQv5.0.2 system are
167	mainly from the global 3-D model of atmospheric chemistry driven by meteorological
168	input from the Goddard Earth Observing System (GEOS-Chem). The lateral boundary
169	condition for dust is from the outputs of NEMS GFS Aerosol Component (NGAC) (Lu et
170	al., 2016). The anthropogenic emissions from area, mobile, and point sources in National
171	Emissions Inventory of year 2014 version 2 (NEI 2014v2) are processed by the Sparse
172	Matrix Operator Kernel Emissions (SMOKE) modeling system. The onroad mobile
173	sources include all emissions from motor vehicles that operate on roadways such as
174	passenger cars, motorcycles, minivans, sport-utility vehicles, light-duty trucks,
175	heavy-duty trucks, and buses. Onroad mobile source emissions were processed using
176	emission factors output from the Motor Vehicle Emissions Simulator (MOVES).
177	SMOKE uses a combination of vehicle activity data, emission factors from MOVES,
178	meteorology data, and temporal allocation information to estimate hourly, gridded onroad
179	emissions. The nonroad, agriculture, anthropogenic fugitive dust, non-elevated oil-gas,
180	residential wood combustion, and other sectors are included in the area sources. The

181	sectors of airports, commercial marine vessel (CMV), electric generating units (pt_egu),
182	point sources related to oil and gas production (pt_oilgas), point sources that are not
183	EGUs nor related to oil and gas (ptnonipm), and point sources outside US (pt_other) are
184	included in the point sources. The sulfur dioxide (SO_2) and nitrogen oxide (NO_X) from
185	point sources in NEI 2005 are projected to year 2019 following the methods used in Tang
186	et al., (2015, 2017). The biomass burning emission inventory from the Blended Global
187	Biomass Burning Emissions Product system (GBBEPx) (Zhang et al., 2019b) is
188	impletemented for the forecast of forest fires. The GBBEPx fire emission is treated as one
189	type of point source. Its heat flux is derived from satellite retrieved fire radiative power
190	(FRP) to drive fire plume rise. The GBBEPx is a near real time fire dataset. The fire
191	emission implemented in the current forecast cycle comes from the historical fire
192	observation, typically 1-2 day behind. In this system, we use landuse information to
193	classify fires into forest fire and other burning such as agriculture burning. We assume
194	only forest fire can last longer than 24 hours. We assume the forest fire emission will
195	continue on day 2 and beyond. Other types of fires will be dropped. The plume rise of the
196	point source will be driven by the meteorology and allocated to the 35 elevated layers in
197	GFSv15-CMAQv5.0.2 system by the PREMAQ preprocessing system. Biogenic
198	emissions are calculated inline by Biogenic Emission Inventory System (BEIS) version
199	3.14 (Schwede et al., 2005). Sea-salt emission is parameterized within CMAQ v5.0.2.
200	While the deposition velocities are calculated inline, the fertilizer ammonia bi-directional

201	flux for in-line emissions and deposition velocities is turned off. Detailed configurations
202	of photolysis, gas-phase chemistry, aqueous chemistry, and aerosol chemistry for CMAQ
203	v5.0.2 are listed in Table 1.
204	2.2 Datasets and evaluation protocols

Comprehensive evaluation of the GFSv15-CMAQv5.0.2 forecasting system is 205 conducted for both meteorological and chemical variables for year 2019, including 206 207 discrete, categorical, and region-specific evaluations. The products in the first 24-hour of 208 each 72-hour forecast cycle are extracted and combined as a continuous, annual forecast. The evaluation of meteorological variables is carried out for those results from PREMAQ 209 in GFSv15-CMAQv5.0.2 system. Detailed information for datasets used in this study is 210 211 listed in Table S1. Observed hourly temperature at 2-meters (T2), relative humidity at 2-meters (RH2), precipitation (Precip), wind direction at 10-meters (WD10), and wind 212 speed at 10-meters (WS10) are obtained from the Clean Air Status and Trends Network 213 214 (CASTNET) and the METeorological Aerodrome Reports (METAR) datasets. The majority of CASTNET sites are suburban and rural sites. Approximately 1900 METAR 215 sites over CONUS are used in this study (Fig. S1). For evaluation of precipitation, a 216 threshold of ≥ 0.1 mm hr⁻¹ is used for valid records because the CASTNET and METAR 217 have different definitions of 0.0 mm hr⁻¹ values. In CASTNET, the records without any 218 precipitation are filled as 0.0 mm hr⁻¹, the same as those records with negligible 219 precipitation. However, in METAR, the records without any precipitation are left as 220

blank, the same as an invalid record. The negligible precipitation is recorded as 0.0 mm
hr⁻¹.

223	The air quality forecasting products are evaluated include hourly O_3 , hourly $PM_{2.5}$,
224	maximum daily 8-hour average O_3 (MDA8 O_3), and daily average $PM_{2.5}$ (24-h avg $PM_{2.5}$)
225	for chemical forecast. The AIRNow dataset is used for observed hourly O_3 and $PM_{2.5}$. We
226	utilize the Quality Assurance/Quality Control (QA/QC) information from the AIRNow
227	dataset for to filtering the invalid records. Remote sensing data from the Global
228	Precipitation Climatology Project (GPCP) and the Climatology-Calibrated Precipitation
229	Analysis (CCPA) (Hou et al., 2014; Zhu and Luo, 2015) datasets are also used for
230	evaluation of precipitation. GPCP is a global precipitation dataset with a spatial
231	resolution of 0.25 degree and a monthly temporal resolution. The CCPA uses linear
232	regression and downscaling techniques to generate analysis product of precipitation from
233	two datasets: the National Centers for Environmental Prediction (NCEP) CPC Unified
234	Global Daily Gauge Analysis and the NCEP EMC Stage IV multi-sensor quantitative
235	precipitation estimations (QPEs). The CCPA product with a spatial resolution in 0.125
236	degree and temporal resolution of an hour is used in this study. Satellite-based Aerosol
237	Optical Depth (AOD) at 550 nm from Moderate Resolution Imaging Spectroradiometer
238	(MODIS) Terra platform (Levy et al., 2015) is used for the evaluation of monthly AOD.
239	The statistic measures such as mean bias, the root mean square error (RMSE), the
240	normalized mean bias, the normalized mean error (NME), and the correlation coefficient

241	are used, more details about evaluation protocols are referring to Zhang et al. (2009,
242	2016). The Taylor diagram (Taylor, 2001), which includes the correlations, NMBs, and
243	the normalized standard deviations (NSD), is used to present the overall performance
244	(Wang et al., 2015). The NMBs \leq 15% and NMEs \leq 30% by Zhang et al. (2006) and
245	NMBs ($\leq 15\%$ and $\leq 30\%$), NMEs ($\leq 25\%$ and $\leq 50\%$), and Corr (>0.5 and >0.4) for
246	MDA8 O_3 and 24-h PM _{2.5} , respectively, by Emery et al. (2017) are considered as
247	performance criteria. Monthly, seasonal, and annual statistics and analysis are included.
248	Seasonal analysis for O ₃ is separated into O ₃ -season (May-September) and non-O ₃ season
249	(January-April and October-December). Analysis for ten CONUS regions, defined by
250	U.S. EPA (www.epa.gov/aboutepa), are included and listed in Fig. S1c.
251	The metrics of False Alarm Ratio (FAR) and the Hit Rate (H) are used (Kang et
252	al., 2005; Barnes et al., 2009) for categorical evaluation. Observed and forecasted MDA8
253	O_3 and 24-h avg $PM_{2.5}$ are divided into four classes based on whether the predicted and/or
254	observed data fall above or below the AQI thresholds: (a) observed values \leq thresholds
255	and predicted values > thresholds; (b) observed and predicted values > thresholds; (c)
256	observed and predicted values \leq thresholds; (d) observed values $>$ thresholds and

$$FAR = \frac{a}{a+b} \times 100\% \tag{1}$$

259
$$H = \frac{b}{b+d} \times 100\%$$
 (2).

3. Evaluation of model forecast skills

262 3.1 Evaluation of meteorological forecasts

263	Discrete performance evaluation is conducted for post-processed meteorological
264	fields from the GFSv15-CMAQv5.0.2 system (Table 2). The GFS v15 can predict well
265	the boundary layer meteorological variables. It has overall cold biases and wet biases for
266	annual T2 and RH2 in 2019, respectively. It also overpredicts WS10, and underpredicts
267	hourly precipitation. Despite CASTNET siting being slightly different from that of
268	METAR, the annual and most of the seasonal performance for the model show similar
269	pattern in terms of bias for both the CASTNET and METAR networks. Mean biases of
270	T2 are mostly within ± 0.5 degree Celsius except those in February and March against
271	CASTNET (Table S2). Underprediction is generally larger against CASTNET than
272	METAR. For spatial distribution of MB for seasonal T2 against METAR (Fig. S2), cold
273	biases are mainly found in the Midwest and West U.S. where most of the CASTNET sites
274	are located. GFS v15 usually underpredicts T2 in West Coast, the Mountain States, and
275	the Midwest. Overpredictions of T2 in the states of Kansas, Oklahoma, the areas near the
276	East Coast, and the Gulf Coast offset some underpredictions, resulting in smaller mean
277	biases but similar RMSE for the model against METAR compared to that against
278	CASTNET. The difference between observed T2 from the two datasets is larger in cooler
279	months than warmer months. The largest underpredictions occur in the spring (MAM)

280	season. In general, GFS v15 underpredicts T2 for both CASTNET and METAR,
281	consistent with cold biases found in other studies using GFS v15 (e.g., Yang, 2019). Such
282	underpredictions will affect chemical forecasts, especially the forecast of O ₃ . Consistent
283	with the overall underpredictions of T2, GFS v15 overpredicts RH2 in general. The
284	largest overprediction is found in spring (MBs of 3.4% and 2.7% with CASTNET and
285	METAR, respectively), corresponding to the largest underprediction of T2 in spring
286	(MBs of -0.5 $^{\circ}$ C and -0.4 $^{\circ}$ C with CASTNET and METAR, respectively). GFS v15
287	shows moderately good performance predicting wind. The annual MB and NMB of
288	WS10 against METAR are 0.4 m s ⁻¹ and 10.7 %, respectively. A larger overprediction of
289	WS10 is found with CASTNET than other datasets (Zhang et al., 2016).
290	GFSv15-CMAQv5.0.2 also gives higher overpredictions for CASTNET compared to
291	METAR. The largest biases in wind speed are found in summer. GFSv15-CMAQv5.0.2
292	gives the largest cold biases, wet biases in spring, indicating the necessity of improving
293	model performance in such seasons in future GFS-FV3 development.
294	By adopting the threshold of ≥ 0.1 mm hr ⁻¹ , performance against the CASTNET
295	and METAR show similar results: a large underprediction in hourly precipitation.
296	Predicted monthly accumulated precipitation shows consistency in spatial distribution
297	with observations from CCPA and GPCP (Fig. S3). The high precipitation in the
298	Southeast are captured well in spring while the high precipitation in the Midwest and
299	South are captured well in other seasons. It indicates that GFSv15-CMAQv5.0.2 has good

300	performance in capturing the spatial distributions of accumulated precipitation but has
301	poor performance in predicting hourly precipitation. The precipitation from the original
302	FV3 outputs are recorded as 6-h accumulated precipitations. Artificial errors were
303	introduced to the forecast by an issue in precipitation preprocessing during the early stage
304	development of the GFSv15-CMAQv5.0.2 system. The precipitation at first hour of the
305	6-h cycle would be dropped occasionally. We corrected this issue and the hourly
306	precipitation still shows large underprediction against surface monitoring networks
307	(Figure S4). It indicates the difficulty for the forecast system in capturing the temporal
308	precipitation, especially during summer. During the summer season, the discrepancy in
309	capturing the short-term heavy rainfall worsens the model performance in predicting
310	hourly precipitation. Besides, we use the threshold of 0.1 mm hr ⁻¹ to filter the valid
311	records. If the model predicts precipitation that did not occur, the record will be excluded
312	into the statistics calculation. However, all the predicted precipitation is counted in the
313	spatial evaluation against the ensemble datasets of GPCP and CCPA. Therefore, the
314	spatial performance of monthly accumulated precipitation shows better agreement than
315	its of hourly statistics.

An overall comparison of performance with CASTNET and METAR datasets is performed using a Taylor diagram (Fig. 1). The normalized standardized deviations (NSDs), Corrs, and NMBs are considered. The NSDs are ratios of variance of predicted values to variance of observed values, following the equations by Wang et al. (2015). The

320	NSDs represent the amplitude of variability. With the NSDs closer to 1, the predicted
321	values have closer variance as the observed values. Consistent with other analysis in this
322	section, larger biases and lower correlation in model wind speed and wind direction are
323	found for CASTNET compared to METAR. The amplitude of variability of WS10
324	against CASTNET is overpredicted (with the NSD larger than 1), while it is
325	underpredicted against METAR. Because of the post-processing smearing of hourly
326	precipitation, the variance of predicted precipitation is smaller than the observed one,
327	leading to very small NSDs for precipitation. The location of the T2 and RH2 points near
328	the REF marker in the Taylor diagram indicates that the GFSv15-CMAQv5.0.2 is
329	capturing the magnitude and variability of these variables well.
330	
331	3.2 Overall performance of chemical forecast over the CONUS
332	Performance of chemical forecasts (i.e. O ₃ and PM _{2.5}) are evaluated on monthly,
333	seasonal, and annual timescales for the studied period of 2019. Performance of the
334	MDA8 O_3 and the 24-h average PM _{2.5} (24-h avg PM _{2.5}) are considered as the primary
335	objectives. Categorical performance evaluations for MDA8 O_3 and 24-h avg PM _{2.5} are
336	also conducted. Table 3 shows the discrete statistics of predicted MDA8 O_3 and 24-h avg
337	PM _{2.5} against AIRNow.

338	The GFSv15-CMAQv5.0.2 has good performance for MDA8 O_3 on a seasonal
339	and annual basis with MBs $\leq \pm 1.0$ ppb, NMB ≤ 2.5 %, and NME ≤ 20 %. The monthly
340	NMBs/NMEs are within $\pm 15 \%/25 \%$, respectively. Slight overpredictions and
341	underpredictions are found in both seasons with MB of 1.0 and -0.2 ppb, respectively.
342	The largest underprediction is found in spring months, especially in March.
343	Underprediction of MDA8 O ₃ in spring months is consistent with the largest
344	underprediction of T2 in spring. It indicates biases in predicted T2 could be one of the
345	reasons for the corresponding biases in O ₃ prediction. Predicted MDA8 O ₃ is lower than
346	observed values in major parts of the Midwest and West regions during the O3 season
347	(Fig. 2), which is consistent with underprediction of T2 in summer. But
348	GFSv15-CMAQv5.0.2 gives very high O_3 in the southeastern U.S., especially in areas
349	near the Gulf Coast. Such overpredictions compensate for moderate underpredictions in
350	Midwest and West, causing an overall overprediction in overall CONUS. In the non- O_3
351	season, GFSv15-CMAQv5.0.2 can forecast well the spatial variations of MDA8 O_3 with
352	overall underpredictions in the Northeast.
353	Unlike the good performance for O ₃ , GFSv15-CMAQv5.0.2 gives significant
354	overpredictions for 24-h avg PM _{2.5} with annual MB, NMB, and NME of 2.2 μ g m ⁻³ ,

29.0%, and 65.3%, respectively (Table 3). The MBs and NMBs range from $-0.2 \,\mu g \, m^{-3}$ to

 $5.0 \ \mu g \ m^{-3}$, and $-2.6 \ \%$ to $59.7 \ \%$ across the four seasons. With the exception of

357 California and the Southeast, predicted 24-h avg PM_{2.5} shows overprediction during most

358	of the year in spring, autumn, and winter (Fig. 3). Moderate underpredictions of $PM_{2.5}$ are
359	found in California during spring, autumn, and summer, and are found in the Southeast
360	during summer. Using the historical emission inventories from NEI 2005 and NEI 2014
361	instead of the latest version of NEI 2017 is one of the reasons for the overpredictions of
362	$PM_{2.5}$ concentrations in 2019. The significant overprediction mainly occur in the northern
363	regions during cooler months, indicating it is underlying with systematical biases. The
364	annual emission of primary $PM_{2.5}$ and coarse mode PM (PMC) are shown in Fig. S5. As
365	an important surrogate for the fugitive dust, the spatial distribution of large PMC
366	emission is associated with the regions which have the significant overprediction in
367	cooler months. In reality, the meteorological conditions could largely impact the amount
368	and characteristics of anthropogenic fugitive dust. For example, the snow cover and the
369	soil moisture are important factors in calculating the dust emissions in SMOKE. However,
370	the anthropogenic fugitive dust implemented in this GFSv15-CMAQv5.0.2 system was
371	not adjusted by the precipitation and snow cover. It will lead to a significant
372	overestimation in the anthropogenic dust emission. The impact of the meteorological
373	factor on anthropogenic fugitive dust emission and the $PM_{2.5}$ prediction will be further
374	discussed in discussion section 4.
375	Murphy et al. (2017) found that secondary organic aerosols (SOA) generated from
376	anthropogenic combustion emissions were important missing PM sources in California
377	prior to CMAQ v5.2. The largest underpredictions of PM _{2.5} occur in the Southeast in

378	summer. Biogenic volatile organic compounds (BVOCs) and biogenic SOA (BSOA) are
379	most active in Southeast region in summer. Many missing sources and mechanisms for
380	SOA formation from BVOCs have been identified in recent years (Pye et al., 2013, 2015,
381	2017; Xu et al., 2018) and have resulted in significant improvements in predicting SOA
382	in the Southeast using CMAQ v5.1 through v5.3. Anthropogenic emissions and aerosol
383	inorganic compounds were found to have impacts on BSOA (Carlton et al., 2018; Pye et
384	al., 2018, 2019). Such interactions and mechanisms are not represented sufficiently in
385	CMAQ v5.0.2, further enhancing the biases in predicted $PM_{2.5}$ in the Southeast.
386	Evaluation of predicted AOD against observations from MODIS is shown in Fig. 4. High
387	predicted AOD in the Midwest during cooler months show consistency with MODIS and
388	correspond to high surface $PM_{2.5}$ predictions. High predicted AOD are missing in
389	California, corresponding to underprediction of surface PM _{2.5} in California. In summer
390	months, AOD is largely underpredicted in California and the Southeast, which may be
391	caused by the previously mentioned missing sources of SOA.

393 3.3 Categorical Evaluation

394 Categorical evaluation is conducted to quantify the accuracy of the

395 GFSv15-CMAQv5.0.2 system in predicting events in which the air pollutants exceed

moderate or unhealthy categories for the U.S. air quality index (AQI) (www.airnow.gov).

397 The scatter plots for predicted and observed MDA8 O₃ and 24-h avg PM_{2.5} are shown in

398	Fig. 5a and Fig. 5b, respectively. Numbers of the scatters in the four areas (a) to (d) are
399	indicated in the Eqs. (1) and (2) in section 2.2. The higher the FAR is, the more
400	GFSv15-CMAQv5.0.2 overpredicts the AQI leading to false air quality warnings. The
401	higher the H is, exceedances are more successfully captured by the
402	GFSv15-CMAQv5.0.2 system. In this study, the thresholds for two categories of
403	"Moderate" and "Unhealthy for Sensitive Groups" are considered. Since 2018, they are
404	defined as 55 ppb and 70 ppb for MDA8 O_3 and 12 $\mu g~m^{\text{-3}}$ and 35.5 $\mu g~m^{\text{-3}}$ for 24-h avg
405	$PM_{2.5}$. For comparison with previous studies, the historical thresholds are also included
406	into the evaluation: 60 ppb and 75 ppb for MDA8 O_3 and 15 $\mu g~m^{\text{-}3}$ and 35 $\mu g~m^{\text{-}3}$ for
407	24-h avg $PM_{2.5}$. The metrics in four categories, corresponding to four thresholds, are
408	shown in Fig. 5c. Categorical performance under stricter AQI standards is better than
409	under historical standards. For example, the FAR decreases from 48.4 % to 41.4 %, and
410	the H increases from 42.7 % to 45.8 % with the "Moderate" thresholds change from 60
411	ppb to 55 ppb. It could be due to the better performance of the forecast system for values
412	closer to the annual average level (~40 ppb). The scatters are more discrete for extreme
413	values. When the thresholds of MDA8 O_3 are closer to the average level, the categorical
414	performance increases. Similar improvement in the FAR and H for predicting categorical
415	24-h avg PM _{2.5} can be found when the threshold changes from 15 $\mu g~m^{\text{-3}}$ to 12 $\mu g~m^{\text{-3}}$:
416	the FAR decreases from 80.1 $\%$ to 70.3 $\%,$ and the H increases from 52.8 $\%$ to 57.6 $\%.$
417	However, the FAR is high (over 90%) and the H is much lower under the threshold of

418	35.5 μ g m ⁻³ . It is because most of the false alarms occur when observed 24-h avg PM _{2.5}
419	are lower than 20 μg m $^{-3}$ and the predicted values are higher than 20 μg m $^{-3}.$ It shows the
420	poorer performance in correctly capturing the category of "Unhealthy for Sensitive
421	Groups" due to the significant overprediction of PM _{2.5} in cooler months.
422	Major RT-AQF systems over the world were comprehensively reviewed in
423	(Zhang et al., 2012a, 2012b). Here we include a comparison with the more recent air
424	quality forecasting studies The overview of assessment studies of the other air quality
425	forecasting studies from Canada (Moran et al., 2018; Russell et al., 2019), Europe
426	(Struzewska et al., 2016; D'Allura et al., 2018; Podrascanin, 2019; Stortini et al., 2020),
427	East Asia (Lyu et al., 2017; Zhou et al., 2017; Peng et al., 2018; Ha et al., 2020), and
428	CONUS (Kang et al., 2010; Zhang et al., 2016; Lee et al., 2017). Table S3 summarizes
429	air quality forecasting skills reported in the literature along with that from this work. For
430	those studies with data assimilation in air quality forecasting, the performance from the
431	raw results without data assimilation are presented. The performance in predicting O_3 and
432	PM vary largely between model systems. The discrete and categorical performance in O_3
433	prediction is not significantly better than that in PM prediction. O3 tends to be slightly
434	overpredicted in an annual base or for the warmer months. The annual NMB and Corr for
435	O_3 over the North America are 1.4% and 0.76 for 2010 in Moran et al. (2018), while they
436	are 1.0% and 0.73 in this study. However, the performance in $PM_{2.5}$ prediction varies
437	largely from our study. The PM2.5 for warmer months were moderately overpredicted in

438	Russel et al. (2019), with the MBs ranging from 3.2 to 5.5 μ g m ⁻³ . The categorical
439	performance of GFSv15-CMAQv5.0.2 in predicting MDA8 O_3 is similar with that of the
440	previous NAQFC (Kang et al., 2010), in which the FAR and H are ~68 % and ~31% for
441	"Unhealthy for Sensitive Groups", and the H is ~47% for "Moderate" category,
442	respectively. The H for $PM_{2.5}$ also decreased largely from ~46% for "Moderate" to ~21%
443	for "Unhealthy for Sensitive Groups" category, and the FAR was over 90% for the
444	"Unhealthy for Sensitive Groups" category in Kang et al. (2010). The overpredicted
445	$PM_{2.5}$ was also found when using the historical 2005 NEI in forecast for Jan 2015 (Lee et
446	al., 2017). The performance was improved by updates of 2011 NEI and real-time dust and
447	wild fire emissions. It indicates the needs of improving our emission inventory. As for the
448	categorical performance in regions other than CONUS, the air quality standards vary
449	(Oliveri Conti et al., 2017). For example, National Ambient Air Quality Standards
450	(NAAQSs), the Ambient Air Quality and Cleaner Air for Europe (CAFE) Directive
451	(2008/50/EC), and the national ambient air quality standard (GB 3095-2012) are set up
452	by U.S., Europe, and China, respectively. Metrics also vary between studies. The primary
453	forecasting products are O_3 and PM_{10} from some forecasting systems instead of O_3 and
454	$PM_{2.5}$ in this study. The threshold for categorical evaluation of O_3 used in D'Allura et al
455	(2018) was 83.0 μ g m ⁻³ . The applied metrics of the False Alarm Ratio and Probability of
456	Detection (POD) were defined the same as the FAR and H used in our study. The FAR
457	and POD were 36.14% and 71.16%, respectively. The categorical evaluation of $PM_{2.5}$ in

458	Ha et al. (2020) was applied for four categories: (1) 0-15 μ g m ⁻³ , (2) 16-50 μ g m ⁻³ , (3)
459	51-100 μ g m ⁻³ , and (4) >100 μ g m ⁻³ . The overall FAR and Detection Rate for four
460	categories are 59.0% and 36.1%, respectively. Although the metrics of FAR and
461	Detection Rate were defined for four categories, rather than every single category as for
462	this study, the categorical performance is comparable with our results. In general, the
463	discrete and categorical performance of O_3 forecast in this study is comparable that of the
464	air quality forecasting systems in many regions of the world. However, the PM forecasts
465	vary largely between studies. While our GFSv15-CMAQv5.0.2 system shows consistent
466	performance with the systems covering CONUS, the high FAR and low H for "Unhealthy
467	for Sensitive Groups" category with higher thresholds indicate that the categorical
468	performance could be further improved by addressing the significant overprediction
469	during cooler months in this study.
470	
471	3.4 Region-specific evaluation
472	As discussed in section 3.2, biases in predicted O_3 and $PM_{2.5}$ vary from region to
473	region. To further analyze the region-specific performance of the GFSv15-CMAQv5.0.2
474	system, evaluation for 10 regions within CONUS is conducted. By identifying the
475	detailed characteristics of region-specific biases and indicating the underlying causes for
476	such biases, this section aims to help the NAQFC to improve its forecast ability for
477	specific regions.

478	Figure 6 shows the annual model performance for MDA8 O_3 and 24-h avg PM _{2.5}
479	in the 10 CONUS regions. In section 3.2, a slight underprediction of MDA8 O ₃ on annual
480	basis was found over the CONUS. MDA8 O3 is underpredicted in most of the regions
481	except regions 2, 4, and 6 (Fig. 6a). The overpredictions in regions 4 and 6 are mostly
482	from the large biases near the coast area during O_3 season. Correlations between
483	predictions and observations in most of the regions are higher than 0.6, except for 0.55 in
484	region 4 and 0.50 in region 7. Poor performance in regions 4 and 7 is illustrated by the
485	Taylor Diagram (Fig. 6b). Small Corr and NSD, result in the markers of regions 4 and 7
486	laying farthest from the reference point. The amplitude of variability of the predicted
487	MDA8 O ₃ are smaller than observed values in all the regions, especially in regions 4 and
488	7. The performance in region 2 is the best, with smallest MB/NMB, highest Corr, and
489	similar variability in predictions and observations. The time series of the MDA8 O_3 for
490	the 10 regions during 2019 is shown in Fig. S6. Regions 1, 2, 4, and 6 show different
491	results for the O ₃ season and non-O ₃ season: GFSv15-CMAQv5.0.2 tends to overpredict
492	MDA8 O ₃ during the O ₃ season and underpredicts during the non-O ₃ season. The
493	underprediction during spring months, which is indicated in section 3.2, can be also
494	found in most of the regions with obvious gaps between observed and predicted curves in
495	March and April. The lowest O_3 predictions occur at 5 am local standard time (LST) in
496	most of the regions (Fig. S7). For regions 4 and 6, significant overprediction occurs not
497	only during the O_3 season for MDA8 O_3 (which mainly occurs during the daytime) but

498	also during the nighttime. During the non- O_3 season, the biases in predicting MDA8 O_3
499	for regions 4 and 6 are small and consistent with good daytime predictions. However, O_3
500	is still overpredicted during the nighttime in these regions, associated with the collapse of
501	the boundary layer and difficulty in simulating its time and magnitude (Hu et al., 2013;
502	Cuchiara et al., 2014; Pleim et al., 2016).

Consistent with the analysis in section 3.2, PM_{2.5} is significantly overpredicted in 503 504 most of the regions except in regions 4, 6, and 9 (Fig. 6c). The underprediction during warmer months, likely due to missing sources and mechanisms for BSOA, compensate 505 506 for the annual biases in regions 4 and 6, leading to smaller MBs/NMBs but low correlations in these regions. The variability in predictions is much larger than in 507 508 observations, with the NSDs >1 for all regions (Fig. 6d). The forecast system has best 509 performance in region 9 with an NSD of 1.2, an NMB of -12.0 %, and a Corr of 0.40. 510 Figure S8 shows the time series of 24-h avg PM_{2.5} in the 10 CONUS regions. The gaps 511 between observed and predicted curves are large in cooler months, but the 512 GFSv15-CMAQv5.0.2 system has relatively good performance in warmer months for most of the regions. Less overprediction is found in regions 6 and 9 during cooler months, 513 and those regions generally show the best performance (see Taylor Diagram). The 514 515 different biases across the regions further indicate that multiple factors likely contribute to them. 516

517

4. Discussion

519 4.1 Meteorology-chemistry relationships

520	We further quantify the meteorology-chemistry relationships by conducting the
521	region-specific evaluation of the meteorological variables. The regional performance for
522	the major variables is shown in Fig. S9. The regional biases in T2 predictions show high
523	correlation with the regional biases in MDA8 O ₃ . It indicates that the cold biases in the
524	Midwest (including region 5) and the warm biases near the Gulf coast (including regions
525	of 4 and 6) are important factors for the O_3 underprediction and overprediction in those
526	regions, respectively. The O ₃ -temperature relationship was found (S. Sillman and Samson,
527	1995; Sillman, 1999). O ₃ is expected to increase with increasing temperature within
528	specific range of temperature (Bloomer et al., 2009; Shen et al., 2016). The surface
529	MDA8 O ₃ -temperature relationship was found at approximately 3-6 ppb K ⁻¹ in the
530	eastern US (Rasmussen et al., 2012). According to such relationships, the biases in T2
531	predictions could explain large portion of the O ₃ biases. Heavy convective precipitation
532	and tropical cyclones have large impact in the southeastern US, which covers mainly
533	regions 4 and 6. Therefore, the performance in precipitation predictions is lower in those
534	two regions comparing to other regions as we discussed the model performance in
535	capturing short-term heavy rains during summer seasons in section 3.1. Meanwhile, the
536	performance in wind predictions in regions 4 and 6 is relatively poor. Such performance
537	in the meteorological predictions is consistent with the mixed performance in $PM_{2.5}$

538	prediction in regions 4 and 6. The between simulated and observed meteorological
539	variables, mainly in precipitations and wind, can be attributed to the poor temporal
540	agreement shown as correlations of predicted PM _{2.5} in those two regions.
541	
542	4.2 Major biases in O ₃ predictions
543	Prediction and simulation of O_3 in coastal or marine areas are impacted by
544	halogens chemistry and emissions (Adams and Cox, 2002; Sarwar et al., 2012; Liu et al.,
545	2018), including bromine and iodine chemistry (Foster et al., 2001; Sarwar et al., 2015;
546	Yang et al., 2020) and oceanic halogen emissions (Watanabe, 2005; Tegtmeier et al.,
547	2015; He et al., 2016). CMAQ v5.0.2 has only simple chlorine chemistry for CB05
548	mechanisms, and the reduction of O_3 by reaction with bromine and iodine is not included
549	in CMAQ v5.0.2. Iodide-mediated O ₃ deposition over seawater and detailed marine
550	halogen chemistry has been found to reduce O ₃ by 1-4 ppb near the coast (Gantt et al.,
551	2017), suggesting the missing halogen chemistry and O_3 deposition processes contribute
552	to overpredicted O_3 in coastal and marine areas seen here. Coastal and marine areas are
553	also impacted by air-sea interaction processes, which are simply represented in the
554	current meteorological models without coupling oceanic models (He et al., 2018; Zhang

et al., 2019c,d). For example, coastal O₃ mixing ratios are impacted by predicted sea

surface temperatures and land-sea breezes through their influence on chemical reaction

conditions and diffusion processes. As discussed in Section 3.1 and 4.1, the

558 GFSv15-CMAQv5.0.2 system has poorer performance in predicting the meteorological variables in regions of 4 and 6, which could contribute to biases in O₃ predictions directly 559 or indicate missing land-sea breezes and thus missing transport effects in the 560 GFSv15-CMAQv5.0.2 air quality forecasting system. 561 In addition to the impact of meteorological biases and missing halogen chemistry 562 on the O₃ overprediction near Gulf coast, the overestimated VOC emission could enhance 563 the O₃ biases. The anthropogenic VOCs emissions continuously decrease from historical 564 NEIs to 2016 NEI 565 566 (http://views.cira.colostate.edu/wiki/wiki/10202/inventory-collaborative-2016v1-emissio ns-modeling-platform). We compare the VOCs emissions between 2016 NEI and the 567 emissions used in this study. The difference in the elevated source of pt_oilgas are shown 568 569 in Fig. S10. The Gulf coast is impacted by the oil and gas sector due to the oil and gas fields, and the exploration activity near it. By comparing the newer NEI to the current 570 NEI we used in the system, we found that the overestimation of the VOCs could be one 571 572 aspect to the O₃ overprediction near the Gulf Coast. Because we only project the SO₂ and NO_X from 2005 NEI to 2019 but we do not project the VOCs for the elevated sources. 573 The monthly VOCs emissions from pt oilgas sector for July in regions 4 and 6 are 574 2876.0 tons month⁻¹, while they are 2497.0 tons month⁻¹ in 2016 NEI. The reduction 575 mainly locates along the coastline, where the significant overprediction takes place. It 576

indicates the complicated effect of meteorological biases, missing gas-phase chemistry, and the overestimation of emissions on the O_3 prediction in these regions.

579	The O ₃ concentration is underpredicted for the Northeast, Mid-Atlantic, Midwest,
580	Mountainous states, and the Northwest (mainly corresponding to the regions 1, 3, 5, 8,
581	and 9) during non- O_3 season. Large difference in dry deposition algorithms between
582	CMAQ v5.0.2 and other common parameterizations was reported (Park et al., 2014; Wu
583	et al., 2018). Large discrepancy between modeled dry deposition velocity of O ₃ by
584	CMAQ v5.0.2 and the observation during winter was shown and attributed to the
585	deposition to snow surface. Improvement was indicated in revising the treatment of
586	deposition to snow, vegetation, and bare ground in CMAQ v5.0.2. Lower deposition to
587	snow was found to improve the consistency between the O_3 deposition modeled by
588	CMAQ v5.0.2 and the observations. Therefore, the dry deposition module in v5.0.2 needs
589	to be updated and improved for more accurate representation of low-moderate O ₃ mixing
590	ratios (Appel et al., 2020). For the cases in this study, the predicted snow cover for the
591	months of Jan and Apr in winter and spring are shown in Fig. 7a and 7b. The
592	underpredicted O ₃ during non-O ₃ season may be caused by the overestimated O ₃
593	deposition to snow in the northern regions, corresponding to the previous regions 1, 3, 5,
594	8, and 9. The mixed effects of the temperature- O_3 relationship discussed above and the
595	large deposition to snow contribute to the moderate O ₃ underpredictions.

598	Major biases in PM _{2.5} prediction are distinguished for warmer and cooler months
599	in section 3. To further analyze the underlying causes for varied patterns and performance
600	on season- and region-specific basis, diurnal evaluations for $PM_{2.5}$ and chemical
601	components of $PM_{2.5}$ during O_3 season and non- O_3 season are shown in Fig. 8. The
602	GFSv15-CMAQv5.0.2 has a large seasonal variation in diurnal PM _{2.5} , inconsistent with
603	the observation. While $PM_{2.5}$ is underpredicted during daytime in regions 4, 6, 8, and 9
604	during O ₃ season, PM _{2.5} is always overpredicted across the day during non-O ₃ season
605	except for region 9. Increased OC, particulate nitrates, soil and unspecified coarse mode
606	components contribute to most of the increase in predicted total $PM_{2.5}$. The general cold
607	biases over CONUS, especially in region 5, could make the GFSv15-CMAQv5.0.2
608	system predict higher nitrate particulates, leading to larger increase in $PM_{2.5}$ from O_3
609	season to non- O_3 season. Emissions vary from month to month in the year (Fig. S11a).
610	Larger emissions for NH_3 , NO_x , VOC , primary coarse PM, and primary $PM_{2.5}$ are in O_3
611	season compared to non-O3 season. Primary organic carbons (POC) emissions are higher
612	in O_3 season. Changes in emissions are not fully consistent with the changes in $PM_{2.5}$
613	components, indicating other biases or uncertainty could also contribute to the significant
614	overprediction during non-O ₃ season. For example, the implementation of bidirectional
615	flux of NH ₃ and the boundary layer mixing processes under more stable condition (during
616	non-O ₃ season) in GFSv15-CMAQv5.0.2 system need to be further studied. Pleim et al.,

617	(2013, 2019) found that the NH ₃ fluxes and concentrations could be better simulated and
618	the monthly variations of NH_3 concentrations were larger comparing to the raw model by
619	implementing the bidirectional flux of NH_3 . The absolute biases for diurnal $PM_{2.5}$ are
620	generally larger during nighttime in most of the regions, except for region 9. It is
621	consistent with the analysis by Appel et al. (2013), which suggested that the efforts of
622	improving nighttime mixing in CMAQ v5.0 be further needed, further indicating the need
623	for improvements of CMAQ in predicting dispersion and mixing of air pollutants under
624	stable boundary layer conditions. The forecast system gives the highest PM predictions at
625	two peaks during the day: 6 am and 7 pm in O_3 season and 7 am and 8 pm in non- O_3
626	season at LST, respectively corresponding to the shifting between daylight saving time
627	and LST. The two diurnal peaks are caused by the diurnal pattern of emissions (Fig.
628	S11b). PM are mostly emitted during the daytime of 6 am to 6 pm. With the development
629	of boundary layer during the daytime, surface $PM_{2.5}$ concentrations will be reduced by
630	the diffusion. During the dawn and dusk, the boundary layer transits between stable and
631	well mixed conditions. The increased emission and secondary production of $PM_{2.5}$ will be
632	accumulated within the boundary layer, causing the high peaks during dawn and dusk.
633	The variation in predicted $PM_{2.5}$ composition between cooler and warmer months
634	indicates that major seasonal biases are caused by multiple factors. We introduce the
635	AQS dataset for evaluation of daily $PM_{2.5}$ composition to provide additional insight into
636	the specific reasons. Figure 9 shows the biases of the key $PM_{2.5}$ composition for the

637	cooler month of Jan and warmer month of Jul. While the overall mean biases of $PM_{2.5}$
638	composition, including elemental carbon (EC), ammonium (NH_4^+), and nitrate (NO_3^-) are
639	within $\pm 0.5~\mu g~m^{\text{-}3}$ for all months of the year, the major biases in $PM_{2.5}$ predictions are
640	mostly contributed by organic carbon (OC), soil components (SOIL), and sulfate (SO_4^{2-}) .
641	The soil components are estimated using the Interagency Monitoring of Protected Visual
642	Environments (IMPROVE) equation and specific constituents (Appel et al., 2013).
643	During a cooler month, the significant overprediction in $PM_{2.5}$ is mainly attributed to the
644	overprediction in OC and SOIL. During warmer months, the overprediction of SOIL and
645	sulfate compensate for the overall underprediction in OC in v5.0.2, leading to the
646	moderate PM _{2.5} underprediction in the Southeast but slight overprediction in the Midwest,
647	Mid-Atlantic, and the Northeast. These high $PM_{2.5}$ SOIL concentrations are consistent in
648	spatial characteristics with large emissions of anthropogenic primary $PM_{2.5}$, and primary
649	coarse PM in the Midwest, Northeast, and the Northwest. The underprediction in $PM_{2.5}$
650	OC during summer compensate the overestimation in dust during cooler months,
651	resulting in the overall biases with an annual NMB of 30.0%.
652	The large emissions of anthropogenic primary coarse PM, as well as the
653	wind-blown dust are the major sources for predicted PM _{2.5} SOIL components. Appel et al.
654	(2013) indicated CMAQ overpredicted soil components in the eastern United States
655	partially due to the anthropogenic fugitive dust and wind-blown dust emissions. The
656	overprediction in PM _{2.5} soil compositions by our forecast system could be mainly

657	attributed to the overestimation of the anthropogenic fugitive dust emission because the
658	meteorological conditions were not included in processing the anthropogenic fugitive
659	dust sector. The dust-related components of aluminum, calcium, iron, titanium, silicon,
660	and coarse mode particles are overestimated in the regions with snow and precipitation,
661	especially during winter, early spring, and late autumn with snow cover in the north,
662	which contributes to the $PM_{2.5}$ overprediction, with more significant temporal-spatial
663	pattern in the north U.S. during cooler months.

664 An adjustment of precipitation and snow cover for fugitive dust was implemented 665 in the operational NAQFC. The dust-related PM emissions will be clean up using a factor of 0.01 when the snow cover is higher than 25% or the hourly precipitation is higher than 666 0.1 mm hr⁻¹ before they are used as input for CMAO v5.0.2 forecast. We conduct a 667 668 sensitivity simulation for Jan 2019 using the GFSv15-CMAQv5.0.2 system with the adjustment implemented in the operational NAQFC. Figure 7c shows the PM_{2.5} 669 overprediction in the northern regions 1, 2, 5, and 10 during Jan is largely improved 670 671 corresponding to the spatial-temporal characteristics of snow cover. The monthly MB and NMB for Jan improves from 5.5 μ g m⁻³ and 66.9% to 2.1 μ g m⁻³ and 24.0%, respectively. 672 The improvement is mainly attributed to the decrease in overpredictions in $PM_{2.5}$ soil 673 components, with MBs decreased from 3.3 μ g m⁻³ to 1.2 μ g m⁻³ for Jan (Fig. 7d). The 674 overprediction in the Northeast and Northwest during spring is expected to be improved 675 by the suppression of the fugitive dust by the snow during early spring. This indicates the 676

677	importance of including the meteorological forecast in processing the emission of
678	anthropogenic fugitive dust. It should be calculated inline or be adjusted by the
679	meteorological forecast.

680	In CMAQ v5.0.2, the primary organic aerosol (POA) is processed as non-volatile.
681	The emissions of semivolatile and intermediate volatility organic compounds (S/IVOCs)
682	and their contributions to the secondary organic aerosol (SOA) are not accounted for in
683	the aerosol module. In the recent versions of CMAQ, two approaches linked to POA
684	sources have been implemented. One introduces semi-volatile partitioning and gas-phase
685	oxidation of POA emissions. The other one (called pcSOA) accounts for multiple missing
686	sources of anthropogenic SOA formation, including potential missing oxidation pathways
687	and emissions of IVOCs. These two improvements lead to increased organic carbon
688	concentration in summer but decreased level in winter. The changes vary by season as a
689	result of differences in volatility (as dictated by temperature and boundary layer height)
690	and reaction rate between winter and summer. Therefore, the missing S/IVOCs and
691	related SOA chemistry in v5.0.2 are key reasons for the OC overprediction and
692	underprediction during cooler and warmer months, respectively.

5. Conclusion

695	In this work, the air quality forecast for the year 2019 predicted by the
696	offline-coupled GFSv15-CMAQv5.0.2 system is comprehensively evaluated. The
697	GFSv15-CMAQv5.0.2 system is found to perform well in predicting surface
698	meteorological variables (temperature, relative humidity, and wind) and O ₃ but has mixed
699	performance for $PM_{2.5}$. Moderate cold biases and wet biases are found in spring season,
700	especially in March. While the GFSv15-CMAQv5.0.2 system can generally capture the
701	monthly accumulated precipitation compared to remote sensing and ensemble datasets,
702	temporal distributions of hourly precipitation show less consistency with in-situ
703	monitoring data.
704	MDA8 O ₃ is slightly overpredicted and underpredicted in ozone and non-O ₃
705	seasons, respectively. The significant overprediction near the Gulf Coast is associated
706	with the missing halogen chemistry, overestimated emission of precursors, and the poorer
707	performance in meteorological performance, which could be attributed to the missing of
708	model representation of the air-sea interaction processes. It compensates for
709	underprediction in the West and Midwest in O3 season for nation-wide metrics. A slight
710	underprediction is found during non-O ₃ season, indicating the impact of cold biases of T2
711	and the overestimated dry deposition to the snow surface. GFSv15-CMAQv5.0.2 has
712	poorer performance in predicting $PM_{2.5}$, comparing to the performance for O_3 . Significant
713	overpredictions are found in cooler months, especially in winter. The largest
714	overprediction is shown in the Midwest, the states of Washington, and Oregon, due
715	mainly to high concentrations of predicted fine fugitive, coarse mode, and OC
-----	---
716	compositions. The lacking suppression of snow cover on anthropogenic fugitive dust
717	emission and the non-volatile approach for POA emission contribute major portion of the
718	overprediction in winter. Meanwhile, the forecasting system may be improved through
719	updating the emissions inventory used (i.e., NEI 2014) to NEI 2016v2 or NEI 2017 which
720	are more presentative to the year of 2019 in the next development of next-generation
721	NAQFC.
722	Categorical evaluation indicates that the GFSv15-CMAQv5.0.2 can capture well
723	the air quality classification of "Moderate" described by the AQI. However, the
724	categorical performance is poorer for $PM_{2.5}$ at the "unhealthy for sensitive groups"
725	threshold due mainly to the significant overprediction during the cooler months.
726	Region-specific evaluation further discusses the biases and underlying causes in the 10
727	USEPA defined regions in CONUS. An update from CMAQ v5.0.2 to v5.3.1 is expected
728	to alleviate potential errors in missing sources and mechanisms for SOA formation. The
729	variations of performance in between O ₃ and non-O ₃ seasons, as well as during the
730	daytime and nighttime, indicate further studies need to be conducted to improve boundary
731	layer mixing processes within GFSv15-CMAQv5.0.2. The varied region-specific
732	performance indicates that improvements, such as bias corrections, should be considered
733	individually from region to region in the following development of the next generation
734	NAQFC.

735	We have used bias analyses in this work to identify several areas of weakness in
736	GFSv15-CMAQv5.0.2 system for further improvement and development of
737	next-generation NAQFC. The ability of FV3-based GFS in driving the real-time air
738	quality forecasting is demonstrated. Further studies are still needed for improving the
739	accuracy in meteorological forecast, the emissions, the aerosol chemistry, and the
740	boundary layer mixing for the future GFS-FV3-CMAQ system.
741	
742	Supplement
743	The supplement related to this article is available in
744	gmd-2020-272_supplement.pdf
745	
746	Code and data availability
747	The documentation and source code of CMAQ v5.0.2 are available at
748	doi:10.5281/zenodo.1079898. The GFS forecasts in grib2 format are available at
749	https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system
750	-gfs. The GFS forecast inputs in binary (NEMSIO) format and the coupler used in this
751	study for the GFSv15-CMAQv5.0.2 system are available upon request. The AIRNow
752	data is available for download through the AirNow-Tech website
753	(http://www.airnowtech.org). The CASTNET data is available for download from

754	https://java.epa.g	ov/castnet/clearsession.do	. The METAR	data is	available for	download
-----	--------------------	----------------------------	-------------	---------	---------------	----------

- from https://madis.ncep.noaa.gov. The GPCP data is available through NOAA website
- 756 (https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly).
- 757 The CCPA precipitation is available from
- 758 https://www.nco.ncep.noaa.gov/pmb/products/gens. The MODIS_MOD04 dataset is
- available at dx.doi.org/10.5067/MODIS/MOD04_L2.006. The data processing and
- analysis scripts are available upon request.

762 Author contribution

YZ and DT defined the scope and focus of the manuscript and designed the model simulations. XC and YZ developed the paper outline and structure. PL, JH, YT, and JM performed the forecast simulations. YT generated the emissions and PC generated the lateral boundary conditions for the model simulations. XC performed the model evaluation and drafted the manuscript. XC and KW developed postprocessing and statistical scripts. HP, BM, and DK assisted in analysis of region-specific biases. YZ, HP, DK, BM, JH, PC, PL, DT, and KW reviewed the manuscript.

771 Competing interests

The authors declare that they have no conflict of interest.

774 Acknowledgements

775	This project is sponsored by NOAA Office of Weather and Air Quality through
776	grant #NA19OAR4590084 at North Carolina State University, #NA20OAR4590259 at
777	Northeastern University and #NA19OAR4590085 at George Mason University. Thanks
778	to Fanglin Yang for providing information regarding GFS v15. High performance
779	computing at Northeastern University was support by the Stampede XSEDE high
780	performance computing support under the NSF ACI 1053575.
781	
782	Disclaimer
782 783	Disclaimer The scientific results and conclusions, as well as any views or opinions expressed
782 783 784	Disclaimer The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the author(s) and do not necessarily reflect the views of NOAA or the
782 783 784 785	Disclaimer The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the author(s) and do not necessarily reflect the views of NOAA or the Department of Commerce. The views expressed in this document are solely those of the
782 783 784 785 786	Disclaimer The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the author(s) and do not necessarily reflect the views of NOAA or the Department of Commerce. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the U.S. EPA. EPA does not endorse any
782 783 784 785 786 787	Disclaimer The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the author(s) and do not necessarily reflect the views of NOAA or the Department of Commerce. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the U.S. EPA. EPA does not endorse any products or commercial services mentioned in this publication.

789 **References**

Adams, J. W. and Cox, R. A.: Halogen chemistry of the marine boundary layer, J. Phys.

791 IV, 12(10), 105–124, doi:10.1051/jp4:20020455, 2002.

792	Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L.,
793	Akhtar, F. and Roselle, S. J.: Evaluation of dust and trace metal estimates from the
794	Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev.,
795	6(4), 883–899, doi:10.5194/gmd-6-883-2013, 2013.
796	Appel, K. W., Bash, J., Fahey, K., Foley, K., Gilliam, R., Hogrefe, C., Hutzell, W., Kang,
797	D., Mathur, R., Murphy, B., Napelenok, S., Nolte, C., Pleim, J., Pouliot, G., Pye, H.,
798	Ran, L., Roselle, S., Sarwar, G., Schwede, D., Sidi, F., Spero, T. and Wong, D.: The
799	Community Multiscale Air Quality (CMAQ) Model Versions 5.3 and 5.3.1: System
800	Updates and Evaluation, Geosci. Model Dev. Discuss., 1-41,
801	doi:10.5194/gmd-2020-345, 2020.
802	Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of
803	the UCLA general circulation model, 1977.

Arakawa, A. and Schubert, W. H.: Interaction of a Cumulus Cloud Ensemble with the

Large-Scale Environment, Part I, J. Atmos. Sci., 31(3), 674–701,

- doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2, 1974.
- 807 Barnes, L. R., Schultz, D. M., Gruntfest, E. C., Hayden, M. H. and Benight, C. C.:
- 808 Corrigendum: False alarm rate or false alarm ratio?, Weather Forecast., 24(5),
- 809 1452–1454, doi:10.1175/2009WAF2222300.1, 2009.

810	Binkowski, F. S., Arunachalam, S., Adelman, Z. and Pinto, J. P.: Examining photolysis
811	rates with a prototype online photolysis module in CMAQ, J. Appl. Meteorol.
812	Climatol., 46(8), 1252-1256, doi:10.1175/JAM2531.1, 2007.
813	Black, T. L.: The New NMC Mesoscale Eta Model: Description and Forecast Examples,
814	Weather Forecast., 9(2), 265–278,
815	doi:10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2, 1994.
816	Bloomer, B. J., Stehr, J. W., Piety, C. A., Salawitch, R. J. and Dickerson, R. R.: Observed
817	relationships of ozone air pollution with temperature and emissions, Geophys. Res.
818	Lett., 36(9), doi:10.1029/2009GL037308, 2009.

- 819 Byun, D. and Schere, K. L.: Review of the governing equations, computational
- algorithms, and other components of the models-3 community multiscale air quality

821 (CMAQ) modeling system, Appl. Mech. Rev., 59(1–6), 51–77,

.

- doi:10.1115/1.2128636, 2006.
- 823 Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. O., Sarwar, G., Pinder, R. W.,

Pouliot, G. A. and Houyoux, M.: Model representation of secondary organic aerosol

- in CMAQv4.7, Environ. Sci. Technol., 44(22), 8553–8560, doi:10.1021/es100636q,
 2010.
- 827 Carlton, A. G., Pye, H. O. T., Baker, K. R. and Hennigan, C. J.: Additional Benefits of
- 828 Federal Air-Quality Rules: Model Estimates of Controllable Biogenic Secondary

- 829 Organic Aerosol, Environ. Sci. Technol., 52(16), 9254–9265,
- doi:10.1021/acs.est.8b01869, 2018.
- 831 Chen, F., Janjić, Z. and Mitchell, K.: Impact of atmospheric surface-layer
- parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model,
- Boundary-Layer Meteorol., 85(3), 391–421, doi:10.1023/A:1000531001463, 1997.
- Chuang, M. T., Zhang, Y. and Kang, D.: Application of WRF/Chem-MADRID for
- real-time air quality forecasting over the Southeastern United States, Atmos.
- Environ., 45(34), 6241–6250, doi:10.1016/j.atmosenv.2011.06.071, 2011.
- 837 Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J.,
- 838 Cady-Pereira, K., Boukabara, S. and Brown, P. D.: Atmospheric radiative transfer
- modeling: A summary of the AER codes, J. Quant. Spectrosc. Radiat. Transf., 91(2),
- 840 233–244, doi:10.1016/j.jqsrt.2004.05.058, 2005.
- 841 Cuchiara, G. C., Li, X., Carvalho, J. and Rappenglück, B.: Intercomparison of planetary
- boundary layer parameterization and its impacts on surface ozone concentration in
- the WRF/Chem model for a case study in houston/texas, Atmos. Environ., 96,
- 844 175–185, doi:10.1016/j.atmosenv.2014.07.013, 2014.
- B45 D'Allura, A., Costa, M. P. and Silibello, C.: Qualearia: European and national scale air
- quality forecast system performance evaluation, Int. J. Environ. Pollut., 64(1–3),
- 847 110–124, doi:10.1504/IJEP.2018.099152, 2018.

848	Eder, B., Kang, D., Mathur, R., Yu, S. and Schere, K.: An operational evaluation of the
849	Eta-CMAQ air quality forecast model, Atmos. Environ., 40(26), 4894–4905,
850	doi:10.1016/j.atmosenv.2005.12.062, 2006.
851	Eder, B., Kang, D., Mathur, R., Pleim, J., Yu, S., Otte, T. and Pouliot, G.: A performance
852	evaluation of the National Air Quality Forecast Capability for the summer of 2007,
853	Atmos. Environ., 43(14), 2312–2320, doi:10.1016/j.atmosenv.2009.01.033, 2009.
854	Emery, C., Jung, J., Koo, B., Yarwood, G.: Improvements to CAMx Snow Cover

855 Treatments and Carbon Bond Chemical Mechanism for Winter Ozone. Final report

656 for Utah DAQ, project UDAQ PO 480 5200000001, 2015.

- 857 Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G. and Kumar, N.:
- 858 Recommendations on statistics and benchmarks to assess photochemical model
- performance, J. Air Waste Manag. Assoc., 67(5), 582–598,
- doi:10.1080/10962247.2016.1265027, 2017.
- Foster, K. L., Plastridge, R. A., Bottenheim, J. W., Shepson, P. B., Finlayson-Pitts, B. J.

and Spicer, C. W.: The role of Br2 and Brcl in surface ozone destruction at polar

sunrise, Science (80-.)., 291(5503), 471–474, doi:10.1126/science.291.5503.471,

864 2001.

- Gantt, B., Sarwar, G., Xing, J., Simon, H., Schwede, D., Hutzell, W. T., Mathur, R. and
- 866 Saiz-Lopez, A.: The Impact of Iodide-Mediated Ozone Deposition and Halogen

- 867 Chemistry on Surface Ozone Concentrations Across the Continental United States,
- 868 Environ. Sci. Technol., 51(3), 1458–1466, doi:10.1021/acs.est.6b03556, 2017.
- 869 Grell, G. A.: Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations,
- 870 Mon. Weather Rev., 121(3), 764–787,
- doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2, 1993.
- Ha, S., Liu, Z., Sun, W., Lee, Y. and Chang, L.: Improving air quality forecasting with
- the assimilation of GOCI aerosol optical depth (AOD) retrievals during the
- KORUS-AQ period, Atmos. Chem. Phys., 20(10), 6015–6036,
- doi:10.5194/acp-20-6015-2020, 2020.
- 876 He, J., He, R. and Zhang, Y.: Impacts of Air-sea Interactions on Regional Air Quality

877 Predictions Using a Coupled Atmosphere-ocean Model in Southeastern U.S.,

- Aerosol Air Qual. Res., 18(4), 1044–1067, doi:10.4209/aaqr.2016.12.0570, 2018.
- He, P., Bian, L., Zheng, X., Yu, J., Sun, C., Ye, P. and Xie, Z.: Observation of surface
- ozone in the marine boundary layer along a cruise through the Arctic Ocean: From
- offshore to remote, Atmos. Res., 169, 191–198, doi:10.1016/j.atmosres.2015.10.009,
- 882 2016.
- Hou, D., Charles, M., Luo, Y., Toth, Z., Zhu, Y., Krzysztofowicz, R., Lin, Y., Xie, P.,
- Seo, D. J., Pena, M. and Cui, B.: Climatology-calibrated precipitation analysis at fine
 scales: Statistical adjustment of stage IV toward CPC gauge-based analysis, J.

886	Hydrometeorol., 15(6), 2542–2557, doi:10.1175/JHM-D-11-0140.1, 2014.
-----	--

887	Hu, X. M., Klein, P. M. and Xue, M.: Evaluation of the updated YSU planetary boundary
888	layer scheme within WRF for wind resource and air quality assessments, J. Geophys.
889	Res. Atmos., 118(18), 10,490-10,505, doi:10.1002/jgrd.50823, 2013.
890	Huang, J., McQueen, J., Wilczak, J., Djalalova, I., Stajner, I., Shafran, P., Allured, D.,
891	Lee, P., Pan, L., Tong, D., Huang, HC., DiMego, G., Upadhayay, S. and Delle
892	Monache, L.: Improving NOAA NAQFC PM 2.5 Predictions with a Bias Correction
893	Approach, Weather Forecast., 32(2), 407–421, doi:10.1175/WAF-D-16-0118.1,
894	2017.
895	Huang, J., McQueen, J., Shafran, P., Huang, H., Kain, J., Tang, Y., Lee, P., Stajner, I. and
896	Tirado-Delgado, J.: Development and evaluation of offline coupling of FV3-based
897	GFS with CMAQ at NOAA, the 17th CMAS Conference, UNC-Chapel Hill, NC,
898	22-24 October 2018, 2018.
899	Huang, J., McQueen, J., Yang, B., Shafran, P., Pan, L., Huang, H., Bhattacharjee, P.,
900	Tang, Y., Campbell, P., Tong, D., Lee, P., Stajner, I., Kain, J., Tirado-Delgado, J.
901	and Koch, D.: Impact of global scale FV3 versus regional scale NAM meteorological
902	driver model predictions on regional air quality forecasting. The 100th AGU Fall
903	Meeting, San Francisco, CA, 9-13 December 2019, 2019.

904 Iacono, M. J., Mlawer, E. J., Clough, S. A. and Morcrette, J.-J.: Impact of an improved

46

- 905 longwave radiation model, RRTM, on the energy budget and thermodynamic
- 906 properties of the NCAR community climate model, CCM3, J. Geophys. Res. Atmos.,
- 907 105(D11), 14873–14890, doi:10.1029/2000JD900091, 2000.
- 908 Kang, D., Eder, B. K., Stein, A. F., Grell, G. A., Peckham, S. E. and Mc Henry, J.: The
- 909 New England Air Quality Forecasting Pilot Program: Development of an Evaluation
- 910 Protocol and Performance Benchmark, J. Air Waste Manag. Assoc., 55(12),
- 911 1782–1796, doi:10.1080/10473289.2005.10464775, 2005.
- 912 Kang, D., Mathur, R., Rao, S. T. and Yu, S.: Bias adjustment techniques for improving

ozone air quality forecasts, J. Geophys. Res., 113(D23), D23308,

- 914 doi:10.1029/2008JD010151, 2008.
- 915 Kang, D., Mathur, R. and Trivikrama Rao, S.: Assessment of bias-adjusted PM 2.5 air
- 916 quality forecasts over the continental United States during 2007, Geosci. Model Dev.,
- 917 3(1), 309–320, doi:10.5194/gmd-3-309-2010, 2010a.
- 918 Kang, D., Mathur, R. and Trivikrama Rao, S.: Real-time bias-adjusted O3 and PM2.5 air

quality index forecasts and their performance evaluations over the continental United

- States, Atmos. Environ., 44(18), 2203–2212, doi:10.1016/j.atmosenv.2010.03.017,
 2010b.
- Lee, P., Ngan, F., Kim, H., Tong, D., Tang, Y., Chai, T., Saylor, R., Stein, A., Byun, D.,
- 923 Tsidulko, M., McQueen, J. and Stajner, I.: Incremental Development of Air Quality

924	Forecasting System with Off-Line/On-Line Capability: Coupling CMAQ to NCEP
925	National Mesoscale Model, in Air Pollution Modeling and its Application XXI, pp.
926	187–192, Springer, Dordrecht., 2011.
927	Lee, P., McQueen, J., Stajner, I., Huang, J., Pan, L., Tong, D., Kim, H., Tang, Y.,
928	Kondragunta, S., Ruminski, M., Lu, S., Rogers, E., Saylor, R., Shafran, P., Huang,
929	HC., Gorline, J., Upadhayay, S. and Artz, R.: NAQFC Developmental Forecast
930	Guidance for Fine Particulate Matter (PM 2.5), Weather Forecast., 32(1), 343–360,
931	doi:10.1175/waf-d-15-0163.1, 2017.
932	Levy, R. and Hsu, C.: MODIS Atmosphere L2 Aerosol Product. NASA MODIS
933	Adaptive Processing System, Goddard Space Flight Center, USA:
934	http://dx.doi.org/10.5067/MODIS/MOD04_L2.006, 2015.
935	Liu, Y., Fan, Q., Chen, X., Zhao, J., Ling, Z., Hong, Y., Li, W., Chen, X., Wang, M. and
936	Wei, X.: Modeling the impact of chlorine emissions from coal combustion and
937	prescribed waste incineration on tropospheric ozone formation in China, Atmos.
938	Chem. Phys., 18(4), 2709–2724, doi:10.5194/acp-18-2709-2018, 2018.
939	Lu, CH., da Silva, A., Wang, J., Moorthi, S., Chin, M., Colarco, P., Tang, Y.,
940	Bhattacharjee, P. S., Chen, SP., Chuang, HY., Juang, HM. H., McQueen, J. and
941	Iredell, M.: The implementation of NEMS GFS Aerosol Component (NGAC)
942	Version 1.0 for global dust forecasting at NOAA/NCEP, Geosci. Model Dev., 9(5),

943 1905–1919, doi:10.5194/gmd-9-1905-2016, 2016.

- 944 Lyu, B., Zhang, Y. and Hu, Y.: Improving PM2.5 Air Quality Model Forecasts in China
- Using a Bias-Correction Framework, Atmosphere (Basel)., 8(12), 147,
- 946 doi:10.3390/atmos8080147, 2017.
- 947 Mathur, R., Yu, S., Kang, D. and Schere, K. L.: Assessment of the wintertime
- 948 performance of developmental particulate matter forecasts with the Eta-Community
- Multiscale Air Quality modeling system, J. Geophys. Res., 113(D2), D02303,
- 950 doi:10.1029/2007JD008580, 2008.
- 951 McHenry, J. N., Ryan, W. F., Seamn, N. L., Coats, C. J., Pudykiewicz, J., Arunachalam,
- 952 S. and Vukovich, J. M.: A real-time eulerian photochemical model forecast system,
- 953 Bull. Am. Meteorol. Soc., 85(4), 525–548, doi:10.1175/BAMS-85-4-525, 2004.
- 954 McKeen, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Hsie, E.-Y., Gong, W.,
- Bouchet, V., Menard, S., Moffet, R., McHenry, J., McQueen, J., Tang, Y.,
- 956 Carmichael, G. R., Pagowski, M., Chan, A., Dye, T., Frost, G., Lee, P. and Mathur,
- 957 R.: Assessment of an ensemble of seven real-time ozone forecasts over eastern North
- America during the summer of 2004, J. Geophys. Res., 110(D21), D21307,
- 959 doi:10.1029/2005JD005858, 2005.
- 960 McKeen, S., Chung, S. H., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Gong, W.,
- Bouchet, V., Moffet, R., Tang, Y., Carmichael, G. R., Mathur, R. and Yu, S.:

962	Evaluation of several PM 2.5 forecast models using data collected during the
963	ICARTT/NEAQS 2004 field study, J. Geophys. Res. Atmos., 112(D10),
964	doi:10.1029/2006JD007608, 2007.
965	McKeen, S., Grell, G., Peckham, S., Wilczak, J., Djalalova, I., Hsie, EY., Frost, G.,
966	Peischl, J., Schwarz, J., Spackman, R., Holloway, J., de Gouw, J., Warneke, C.,
967	Gong, W., Bouchet, V., Gaudreault, S., Racine, J., McHenry, J., McQueen, J., Lee, P.,
968	Tang, Y., Carmichael, G. R. and Mathur, R.: An evaluation of real-time air quality
969	forecasts and their urban emissions over eastern Texas during the summer of 2006
970	Second Texas Air Quality Study field study, J. Geophys. Res., 114(12), D00F11,
971	doi:10.1029/2008JD011697, 2009.
972	Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A.: Radiative
973	transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for
974	the longwave, J. Geophys. Res. D Atmos., 102(14), 16663-16682,
975	doi:10.1029/97jd00237, 1997.
976	Moran, M. D., Lupu, A., Zhang, J., Savic-Jovcic, V. and Gravel, S.: A comprehensive
977	performance evaluation of the next generation of the canadian operational regional
978	air quality deterministic prediction system, in Springer Proceedings in Complexity,
979	pp. 75-81, Springer., 2018.

980 Murphy, B. N., Woody, M. C., Jimenez, J. L., Carlton, A. M. G., Hayes, P. L., Liu, S.,

981	Ng, N. L., Russell, L. M., Setyan, A., Xu, L., Young, J., Zaveri, R. A., Zhang, Q. and
982	Pye, H. O. T.: Semivolatile POA and parameterized total combustion SOA in
983	CMAQv5.2: Impacts on source strength and partitioning, Atmos. Chem. Phys.,
984	17(18), 11107–11133, doi:10.5194/acp-17-11107-2017, 2017.
985	National Centers for Environmental Prediction: The Global Forecast System (GFS) -
986	Global Spectral Model (GSM). Retrieved from
987	https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/documentation.
988	php, last access: May 2020, 2019a.
989	National Centers for Environmental Prediction: FV3: The GFDL Finite-Volume
990	Cubed-Sphere Dynamical Core, Retrieved from
991	https://vlab.ncep.noaa.gov/web/fv3gfs, last access: May 2020, 2019b.
992	Oliveri Conti, G., Heibati, B., Kloog, I., Fiore, M. and Ferrante, M.: A review of AirQ
993	Models and their applications for forecasting the air pollution health outcomes,
994	Environ. Sci. Pollut. Res., 24(7), 6426–6445, doi:10.1007/s11356-016-8180-1, 2017.
995	Otte, T. L., Pouliot, G., Pleim, J. E., Young, J. O., Schere, K. L., Wong, D. C., Lee, P. C.
996	S., Tsidulko, M., McQueen, J. T., Davidson, P., Mathur, R., Chuang, HY., DiMego,
997	G. and Seaman, N. L.: Linking the Eta Model with the Community Multiscale Air
998	Quality (CMAQ) Modeling System to Build a National Air Quality Forecasting
999	System, Weather Forecast., 20(3), 367–384, doi:10.1175/WAF855.1, 2005.

1000	Park, R. J., Hong, S. K., Kwon, HA., Kim, S., Guenther, A., Woo, JH. and Loughner,
1001	C. P.: An evaluation of ozone dry deposition simulations in East Asia, Atmos. Chem.
1002	Phys., 14(15), 7929–7940, doi:10.5194/acp-14-7929-2014, 2014.
1003	Patrick, C., Tang, Y., Lee, P., Baker, B., Tong, D., Saylor, R., Huang, J., Huang, H.,
1004	McQueen, J. and Stajne, I.: An Improved National Air Quality Forecasting
1005	Capability Using the NOAA Global Forecast System Version 16. In preparation,
1006	2020.
1007	Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X. and Chu, K.: The
1008	impact of multi-species surface chemical observation assimilation on air quality
1009	forecasts in China, Atmos. Chem. Phys., 18(23), 17387-17404,
1010	doi:10.5194/acp-18-17387-2018, 2018.
1011	Pleim, J., Gilliam, R., Appel, W. and Ran, L.: Recent Advances in Modeling of the
1012	Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model
1013	BT - Air Pollution Modeling and its Application XXIV, in Air Pollution Modeling
1014	and its Application XXIV, edited by D. G. Steyn and N. Chaumerliac, pp. 391–396,

- 1015 Springer International Publishing, Cham., 2016.
- 1016 Pleim, J. E., Bash, J. O., Walker, J. T. and Cooter, E. J.: Development and evaluation of
- 1017 an ammonia bidirectional flux parameterization for air quality models, J. Geophys.
- 1018 Res. Atmos., 118(9), 3794–3806, doi:10.1002/jgrd.50262, 2013.

1019	Pleim, J. E., Ran, L., Appel, W., Shephard, M. W. and Cady-Pereira, K.: New
1020	Bidirectional Ammonia Flux Model in an Air Quality Model Coupled With an
1021	Agricultural Model, J. Adv. Model. Earth Syst., 11(9), 2934–2957,
1022	doi:10.1029/2019MS001728, 2019.
1023	Podrascanin, Z.: Setting-up a Real-Time Air Quality Forecasting system for Serbia: a
1024	WRF-Chem feasibility study with different horizontal resolutions and emission
1025	inventories, Environ. Sci. Pollut. Res., 26(17), 17066–17079,
1026	doi:10.1007/s11356-019-05140-y, 2019.
1027	Putman, W. M. and Lin, S. J.: Finite-volume transport on various cubed-sphere grids, J
1028	Comput. Phys., 227(1), 55-78, doi:10.1016/j.jcp.2007.07.022, 2007.
1029	Pye, H. O., Luecken, D. J., Xu, L., Boyd, C. M., Ng, N. L., Baker, K. R., Ayres, B. R.,
1030	Bash, J. O., Baumann, K., Carter, W. P., Edgerton, E., Fry, J. L., Hutzell, W. T.,
1031	Schwede, D. B. and Shepson, P. B.: Modeling the Current and Future Roles of
1032	Particulate Organic Nitrates in the Southeastern United States, Env. Sci Technol,
1033	49(24), 14195–14203, doi:10.1021/acs.est.5b03738, 2015.

- 1034 Pye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L., Lin, Y. H., Surratt, J. D.,
- 1035 Zhang, Z. F., Gold, A., Luecken, D. J., Hutzell, W. T., Jaoui, M., Offenberg, J. H.,
- 1036 Kleindienst, T. E., Lewandowski, M. and Edney, E. O.: Epoxide Pathways Improve
- 1037 Model Predictions of Isoprene Markers and Reveal Key Role of Acidity in Aerosol

1038	Formation, Env. Sci Technol, 47(19), 11056–11064, doi:10.1021/es402106h, 2013.
1039	Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., Weber, R.,
1040	Vasilakos, P., Wyat Appel, K., Hapsari Budisulistiorini, S., Surratt, J. D., Nenes, A.,
1041	Hu, W., Jimenez, J. L., Isaacman-Vanwertz, G., Misztal, P. K. and Goldstein, A. H.:
1042	On the implications of aerosol liquid water and phase separation for organic aerosol
1043	mass, Atmos. Chem. Phys., 17(1), 343-369, doi:10.5194/acp-17-343-2017, 2017.
1044	Pye, H. O. T., Zuend, A., Fry, J. L., Isaacman-VanWertz, G., Capps, S. L., Appel, K. W.,
1045	Foroutan, H., Xu, L., Ng, N. L. and Goldstein, A. H.: Coupling of organic and
1046	inorganic aerosol systems and the effect on gas–particle partitioning in
1047	the southeastern US, Atmos. Chem. Phys., 18(1), 357–370,
1048	doi:10.5194/acp-18-357-2018, 2018.
1049	Pye, H. O. T., D'Ambro, E. L., Lee, B. H., Schobesberger, S., Takeuchi, M., Zhao, Y.,
1050	Lopez-Hilfiker, F., Liu, J., Shilling, J. E., Xing, J., Mathur, R., Middlebrook, A. M.,
1051	Liao, J., Welti, A., Graus, M., Warneke, C., de Gouw, J. A., Holloway, J. S., Ryerson,
1052	T. B., Pollack, I. B. and Thornton, J. A.: Anthropogenic enhancements to production
1053	of highly oxygenated molecules from autoxidation, Proc. Natl. Acad. Sci. U. S. A.,

- 1054 116(14), 6641–6646, doi:10.1073/pnas.1810774116, 2019.
- 1055 Russell, M., Hakami, A., Makar, P. A., Akingunola, A., Zhang, J., Moran, M. D. and
- 1056 Zheng, Q.: An evaluation of the efficacy of very high resolution air-quality

- 1057 modelling over the Athabasca oil sands region, Alberta, Canada, Atmos. Chem.
- 1058 Phys., 19(7), 4393–4417, doi:10.5194/acp-19-4393-2019, 2019.
- 1059 Ryan, W. F.: The air quality forecast rote: Recent changes and future challenges, J. Air
- 1060 Waste Manage. Assoc., 66(6), 576–596, doi:10.1080/10962247.2016.1151469, 2016.
- 1061 Sarwar, G., Fahey, K., Napelenok, S., Roselle, S. and Mathur, R.: Examining the impact
- 1062 of CMAQ model updates on aerosol sulfate predictions, the 10th Annual CMAS
- 1063 Models-3 User's Conference, Chapel Hill, NC, October 2011, 2011.
- 1064 Sarwar, G., Simon, H., Bhave, P. and Yarwood, G.: Examining the impact of
- 1065 heterogeneous nitryl chloride production on air quality across the United States,
- 1066 Atmos. Chem. Phys., 12(14), 6455–6473, doi:10.5194/acp-12-6455-2012, 2012.
- 1067 Sarwar, G., Gantt, B., Schwede, D., Foley, K., Mathur, R. and Saiz-Lopez, A.: Impact of
- 1068 Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over
- the Northern Hemisphere, Environ. Sci. Technol., 49(15), 9203–9211,
- doi:10.1021/acs.est.5b01657, 2015.
- 1071 Schwede, D., Pouliot, G. and Pierce, T.: CHANGES TO THE BIOGENIC EMISSIONS
- 1072 INVENTORY SYSTEM VERSION 3 (BEIS3). [online] Available from:
- 1073 https://www.cmascenter.org/conference/2005/abstracts/2_7.pdf (Accessed 28 June
 1074 2020), 2005.
- 1075 Shen, L., Mickley, L. J. and Gilleland, E.: Impact of increasing heat waves on U.S. ozone

- 1076 episodes in the 2050s: Results from a multimodel analysis using extreme value
- 1077 theory, Geophys. Res. Lett., 43(8), 4017–4025, doi:10.1002/2016GL068432, 2016.
- 1078 Sillman, S.: The relation between ozone, NO(x) and hydrocarbons in urban and polluted
- 1079 rural environments, Atmos. Environ., 33(12), 1821–1845,
- 1080 doi:10.1016/S1352-2310(98)00345-8, 1999.
- 1081 Sillman, S. and Samson, P. J.: Impact of temperature on oxidant photochemistry in urban
- 1082 polluted rural and remote environments, J. Geophys. Res., 100(D6), 11497–11508,
- 1083 doi:10.1029/94jd02146, 1995.
- 1084 Simon, H., and Bhave, P. V.: Simulating the degree of oxidation in atmospheric organic
- 1085 particles. Environmental Science and Technology, 46(1), 331–339.
- 1086 https://doi.org/10.1021/es202361w, 2012.
- 1087 Spiridonov, V., Jakimovski, B., Spiridonova, I. and Pereira, G.: Development of air
- 1088 quality forecasting system in Macedonia, based on WRF-Chem model, Air Qual.
- 1089 Atmos. Heal., 12(7), 825–836, doi:10.1007/s11869-019-00698-5, 2019.
- 1090 Stajner, I., Davidson, P., Byun, D., McQueen, J., Draxler, R., Dickerson, P. and Meagher,
- 1091 J.: US National Air Quality Forecast Capability: Expanding Coverage to Include
- 1092 Particulate Matter, in Air Pollution Modeling and its Application XXI, pp. 379–384,
- 1093 Springer, Dordrecht., 2011.
- 1094 Stein, A. F., Lamb, D. and Draxler, R. R.: Incorporation of detailed chemistry into a

- 1095 three-dimensional Lagrangian-Eulerian hybrid model: Application to regional
- 1096 tropospheric ozone, Atmos. Environ., 34(25), 4361–4372,
- doi:10.1016/S1352-2310(00)00204-1, 2000.
- 1098 Stortini, M., Arvani, B. and Deserti, M.: Operational forecast and daily assessment of the
- 1099 air quality in Italy: A copernicus-CAMS downstream service, Atmosphere (Basel).,
- 1100 11(5), 447, doi:10.3390/ATMOS11050447, 2020.
- 1101 Struzewska, J., Kaminski, J. W. and Jefimow, M.: Application of model output statistics
- to the GEM-AQ high resolution air quality forecast, Atmos. Res., 181, 186–199,
- doi:10.1016/j.atmosres.2016.06.012, 2016.
- 1104 Tang, Y., Chai, T., Pan, L., Lee, P., Tong, D., Kim, H.-C. and Chen, W.: Using optimal
- interpolation to assimilate surface measurements and satellite AOD for ozone and
- 1106 PM _{2.5}: A case study for July 2011, J. Air Waste Manage. Assoc., 65(10),
- 1107 1206–1216, doi:10.1080/10962247.2015.1062439, 2015.
- 1108 Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., Kumar, R., Delle Monache,
- 1109 L., Tong, D. and Kim, H.-C.: A case study of aerosol data assimilation with the
- 1110 Community Multi-scale Air Quality Model over the contiguous United States using
- 1111 3D-Var and optimal interpolation methods, Geosci. Model Dev., 10(12), 4743–4758,
- doi:10.5194/gmd-10-4743-2017, 2017.
- 1113 Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J.

1114	Geophys. Res. Atmos., 106(D7), 7183–7192, doi:10.1029/2000JD900719, 2001.
1115	Tegtmeier, S., Ziska, F., Pisso, I., Quack, B., Velders, G. J. M., Yang, X. and Krüger, K.:
1116	Oceanic bromoform emissions weighted by their ozone depletion potential, Atmos.
1117	Chem. Phys., 15(23), 13647–13663, doi:10.5194/acp-15-13647-2015, 2015.
1118	United States Environmental Protection Agency: CMAQ (Version 5.02) [Software].
1119	Available from https://zenodo.org/record/1079898, 2014.
1120	Wang, K., Yahya, K., Zhang, Y., Hogrefe, C., Pouliot, G., Knote, C., Hodzic, A., San
1121	Jose, R., Perez, J. L., Jiménez-Guerrero, P., Baro, R., Makar, P. and Bennartz, R.: A
1122	multi-model assessment for the 2006 and 2010 simulations under the Air Quality
1123	Model Evaluation International Initiative (AQMEII) Phase 2 over North America:
1124	Part II. Evaluation of column variable predictions using satellite data, Atmos.
1125	Environ., 115, 587–603, doi:10.1016/j.atmosenv.2014.07.044, 2015.
1126	Watanabe, K.: Measurements of ozone concentrations on a commercial vessel in the
1127	marine boundary layer over the northern North Pacific Ocean, J. Geophys. Res.,
1128	110(D11), D11310, doi:10.1029/2004JD005514, 2005.
1129	Wu, Z., Schwede, D. B., Vet, R., Walker, J. T., Shaw, M., Staebler, R. and Zhang, L.:
1130	Evaluation and Intercomparison of Five North American Dry Deposition Algorithms
1131	at a Mixed Forest Site, J. Adv. Model. Earth Syst., 10(7), 1571–1586,
1132	doi:10.1029/2017MS001231, 2018.

- 1133 Xu, L., Pye, H. O. T., He, J., Chen, Y., Murphy, B. N. and Ng, N. L.: Experimental and
- 1134 model estimates of the contributions from biogenic monoterpenes and sesquiterpenes
- to secondary organic aerosol in the southeastern United States, Atmos. Chem. Phys.,
- 1136 18(17), 12613–12637, doi:10.5194/acp-18-12613-2018, 2018.
- 1137 Yang, F.: GDAS/GFS V15.0.0 Upgrades for Q2FY2019, Retrieved from
- 1138 https://www.emc.ncep.noaa.gov/users/Alicia.Bentley/fv3gfs/updates/EMC_CCB_FV3GFS_
- 1139 9-24-18.pdf, last access: May 2020, 2019.
- 1140 Yang, X., Blechschmidt, A.-M., Bognar, K., McClure–Begley, A., Morris, S.,
- 1141 Petropavlovskikh, I., Richter, A., Skov, H., Strong, K., Tarasick, D., Uttal, T.,
- 1142 Vestenius, M. and Zhao, X.: Pan-Arctic surface ozone: modelling vs measurements,
- 1143 Atmos. Chem. Phys. Discuss., 1–33, doi:10.5194/acp-2019-984, 2020.
- 1144 Yarwood, G., Rao, S., Yocke, M. and Whitten, G.: Updates to the Carbon Bond Chemical
- 1145 Mechanism: CB05. Final Report to the US EPA, RT-0400675. Yocke and Company,
- 1146 Novato, CA, 2005.
- 1147 Yarwood, G., Whitten, G.Z., Jung, J., Heo, G. and Allen, D.T.: Development, evaluation
- and testing of version 6 of the Carbon Bond chemical mechanism (CB6), Final report
- to the Texas Commission on Environmental Quality, Work Order No.
- 1150 582-7-84005-FY10-26, 2010.
- 1151 Žabkar, R., Honzak, L., Skok, G., Forkel, R., Rakovec, J., Ceglar, A. and Žagar, N.:

1152	Evaluation of the high resolution WRF-Chem (v3.4.1) air quality forecast and its
1153	comparison with statistical ozone predictions, Geosci. Model Dev, 8, 2119–2137,
1154	doi:10.5194/gmd-8-2119-2015, 2015.
1155	Zhang, C., Xue, M., Supinie, T. A., Kong, F., Snook, N., Thomas, K. W., Brewster, K.,
1156	Jung, Y., Harris, L. M. and Lin, S.: How Well Does an FV3-Based Model Predict
1157	Precipitation at a Convection-Allowing Resolution? Results From CAPS Forecasts
1158	for the 2018 NOAA Hazardous Weather Test Bed With Different Physics
1159	Combinations, Geophys. Res. Lett., 46(6), 3523-3531, doi:10.1029/2018GL081702,
1160	2019a.
1161	Zhang, X., Kondragunta, S., Da Silva, A., Lu, S., Ding, H., Li, F. and Zhu, Y.: THE
1162	BLENDED GLOBAL BIOMASS BURNING EMISSIONS PRODUCT FROM
1163	MODIS AND VIIRS Observations (GBBEPx). [online] Available from:
1164	https://www.ospo.noaa.gov/Products/land/gbbepx/docs/GBBEPx_ATBD.pdf
1165	(Accessed 28 June 2020b), 2019b.
1166	Zhang, Y., Liu, P., Pun, B. and Seigneur, C.: A comprehensive performance evaluation of
1167	MM5-CMAQ for the Summer 1999 Southern Oxidants Study episode—Part I:
1168	Evaluation protocols, databases, and meteorological predictions, Atmos. Environ.,
1169	40(26), 4825–4838, doi:10.1016/j.atmosenv.2005.12.043, 2006.
1170	Zhang, Y., Vijayaraghavan, K., Wen, XY., Snell, H. E. and Jacobson, M. Z.: Probing

- into regional ozone and particulate matter pollution in the United States: 1. A 1 year
- 1172 CMAQ simulation and evaluation using surface and satellite data, J. Geophys. Res.,
- 1173 114(D22), D22304, doi:10.1029/2009JD011898, 2009.
- 1174 Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C. and Baklanov, A.: Real-time air quality
- forecasting, part I: History, techniques, and current status, Atmos. Environ., 60,
- 1176 632–655, doi:10.1016/j.atmosenv.2012.06.031, 2012a.
- 1177 Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C. and Baklanov, A.: Real-time air quality
- 1178 forecasting, Part II: State of the science, current research needs, and future prospects,

1179 Atmos. Environ., 60, 656–676, doi:10.1016/j.atmosenv.2012.02.041, 2012b.

1180 Zhang, Y., Hong, C., Yahya, K., Li, Q., Zhang, Q. and He, K.: Comprehensive evaluation

of multi-year real-time air quality forecasting using an online-coupled

- 1182 meteorology-chemistry model over southeastern United States, Atmos. Environ., 138,
- 1183 162–182, doi:10.1016/j.atmosenv.2016.05.006, 2016.
- 1184 Zhang, Y., Jena, C., Wang, K., Paton-Walsh, C., Guérette, É.-A., Utembe, S., Silver, J. D.

and Keywood, and M.: Multiscale Applications of Two Online-Coupled

- 1186 Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part I:
- 1187 Model Description and WRF/Chem-ROMS Evaluation Using Surface and Satellite
- 1188 Data and Sensitivity to Spatial Grid Resolutions, Atmosphere (Basel)., 10(4), 189,
- doi:10.3390/atmos10040189, 2019c.

1190	Zhang, Y., Wang, K., Jena, C., Paton-Walsh, C., Guérette, É. A., Utembe, S., Silver, J. D.
1191	and Keywood, M.: Multiscale applications of two online-coupled
1192	meteorology-chemistry models during recent field campaigns in Australia, Part II:
1193	Comparison of WRF/Chem and WRF/Chem-ROMS and impacts of air-sea
1194	interactions and boundary conditions, Atmosphere (Basel)., 10(4), 210,
1195	doi:10.3390/ATMOS10040210, 2019d.
1196	Zhou, G., Xu, J., Xie, Y., Chang, L., Gao, W., Gu, Y. and Zhou, J.: Numerical air quality
1197	forecasting over eastern China: An operational application of WRF-Chem, Atmos.
1198	Environ., 153, 94–108, doi:10.1016/j.atmosenv.2017.01.020, 2017.
1199	Zhu, Y. and Luo, Y.: Precipitation Calibration Based on the Frequency-Matching Method,
1200	Weather Forecast., 30(5), 1109–1124, doi:10.1175/WAF-D-13-00049.1, 2015.

Tables and Figures

Attribute	Model Configuration											
Forecast period	JanDec., 2019											
Domain	Continental U.S.											
Resolution	Horizontal: 12 km (442×265); Vertical: 35 layers											
	Physical Options											
Shortwave/longwave radiation	The Rapid Radiative Transfer Method for GCMs											
Planetary boundary layer (PBL)	Hybrid eddy-diffusivity mass-flux (EDMF) PBL											
Land surface	Noah Land Surface Model (LSM)											
Microphysics	A more advanced GFDL microphysics scheme											
Cumulus	The Simplified Arakawa-Schubert (SAS) deep convection											
	Chemical Options											
Photolysis	In-line method (Binkowski et al., 2007)											
	The Carbon Bond mechanism version 5 with active chlorine											
Gas-phase chemistry	chemistry and updated toluene mechanism (CB05tucl)											
	(Yarwood et al., 2005; Sarwar et al., 2012)											
Aqueous-phase chemistry	AQCHEM (Sarwar et al., 2011)											
	AERO6 with nonvolatile POA (Carlton et al., 2010; Simon et											
Aerosoi module	al., 2012; Appel et al., 2013)											

Table 1. Configuration of GFSv15-CMAQv5.0.2 system

Table 2. Performance statistics of meteorological forecasts

Datasets				CA	STNET		METAR								
Variable	Period	Mean	Mean	MB	RMSE	NMB,	NME,	Corr	Mean	Mean	MB	RMSE	NMB,	NME,	Corr
		Obs.	Sim.			%	%		Obs.	Sim.			%	%	
	DJF	-0.1	-0.5	-0.4	2.6	-588	-2850	0.96	2.7	2.6	-0.1	2.5	-3.1	69.3	0.97
	MAM	9.9	9.4	-0.5	2.4	-5.2	18.2	0.97	12.3	11.9	-0.4	2.3	-3.0	14.0	0.97
T2, °C	JJA	21.5	21.4	-0.2	2.4	-0.8	8.6	0.93	23.4	23.1	-0.3	3 2.3	-1.2	7.5	0.93
	SON	11.5	11.3	-0.2	2.6	-2.0	16.1	0.97	13.8	13.8	0.1	2.3	0.4	12.6	0.98
	Annual	10.9	10.6	-0.3	2.5	-3.0	17.0	0.98	13.2	13.0	-0.2	2 2.3	-1.3	13.1	0.98
	DJF	69.1	71.9	2.8	14.3	4.0	15.1	0.74	74.1	74.4	0.4	13.3	0.5	13.4	0.76
RH2 %	MAM	62.7	66.1	3.4	14.2	5.4	16.6	0.82	67.4	70.1	2.7	13.8	4.0	15.5	0.81
K112, 70	JJA	55.0	53.3	-1.7	12.2	-3.2	16.4	0.89	67.0	67.3	0.3	3 13.1	0.5	14.8	0.84
	SON	59.0	57.6	-1.4	13.0	-2.4	16.1	0.87	68.7	67.0	-1.7	13.2	-2.5	14.5	0.83

	Annual	61.4	62.2	0.8	13.5	1.3	16.0	0.85	68.8	69.3	0.4	13.2	0.8	14.4	0.83
	DJF	2.5	3.0	0.5	2.0	18.7	56.7	0.59	3.3	3.7	0.4	2.0	10.8	43.5	0.71
WS10	MAM	2.8	3.4	0.6	2.1	22.2	55.6	0.60	3.6	4.0	0.4	2.0	10.3	42.5	0.71
w S10, m s ⁻¹	JJA	2.4	3.0	0.6	1.9	24.5	60.9	0.51	2.8	3.3	0.5	1.9	17.0	52.6	0.62
	SON	2.6	3.1	0.5	2.0	20.4	58.6	0.57	4.0	4.1	0.2	1.8	4.2	33.1	0.69
	Annual	2.6	3.1	0.6	2.0	21.5	57.9	0.57	3.4	3.7	0.4	1.9	10.7	41.8	0.72
10	DJF	187.2	189.4	2.2	69.4	1.2	26.4	0.81	158.0	164.3	6.4	60.7	4.0	25.5	0.90
	MAM	184.6	186.5	1.9	68.1	1.0	26.1	0.81	159.9	163.6	3.7	60.7	2.3	25.4	0.89
wD10,	JJA	186.7	188.8	2.1	73.0	1.1	28.5	0.77	146.8	147.8	1.0	69.9	0.7	33.9	0.86
degree	SON	181.8	183.9	2.1	71.3	1.1	28.1	0.79	190.9	196.6	5.7	42.1	3.0	14.5	0.92
	Annual	185.0	187.1	2.1	70.5	1.1	27.3	0.80	162.5	166.6	4.1	59.1	2.5	23.9	0.89
	DJF	1.0	0.6	-0.4	1.7	-42.5	86.1	0.26	1.3	0.7	-0.6	3.5	-44.4	77.4	0.15
Precip, mm hr ⁻¹	MAM	1.1	0.6	-0.6	2.0	-51.1	86.3	0.22	1.8	0.7	-1.0	7.5	-58.6	85.6	0.07
	JJA	2.2	0.5	-1.7	4.7	-77.8	93.9	0.11	2.6	0.7	-1.9	7.6	-74.5	91.6	0.04
	SON	1.3	0.6	-0.7	2.4	-54.4	86.2	0.24	1.8	0.8	-1.0	8.8	-56.4	83.8	0.07
	Annual	1.3	0.6	-0.7	2.5	-55.4	87.9	0.18	1.8	0.7	-1.1	7.0	-59.1	85.0	0.07

T2: temperature at 2-m; RH2: relative humidity at 2-m; WS10: wind speed at 10-m; WD10: wind direction

at 10-m; Precip: precipitation; DJF: winter; MAM: spring; JJA: summer; SON: autumn; MB: mean bias;

RMSE: root mean square error; NMB: normalized mean bias; NME: normalized mean error; Corr:

correlation coefficient; Obs.: Observation; Sim.: Prediction.

Table 3. Performance statistics of chemical variables against AIRNow dataset

MDA8 O ₃ , ppb										24-h avg PM _{2.5} , μg m ⁻³						
Period	Mean Obs.	Mean Sim.	MB I	MB RMSE NMB,% NME,%		Corr	Period	Mean Obs.	Mean Sim.	MB 1	RMSE N	MB,% N	ME,%	Corr		
Jan	32.1	32.0	-0.1	7.2	-0.4	17.2	0.58	Jan	8.2	13.8	5.5	11.5	66.9	92.3	0.35	
Feb	36.4	35.5	-0.9	7.8	-2.5	16.7	0.58	Feb	7.9	12.5	4.6	10.0	58.0	81.5	0.53	
Mar	44.9	40.4	-4.5	8.7	-10.0	15.8	0.56	Mar	7.8	11.0	3.2	9.2	41.2	69.0	0.40	
Apr	46.4	43.1	-3.3	7.7	-7.1	13.3	0.62	Apr	6.3	8.0	1.7	6.3	27.9	61.6	0.33	
May	44.1	42.7	-1.4	7.8	-3.3	13.9	0.67	May	6.7	6.9	0.2	4.7	3.3	49.3	0.26	
Jun	45.7	43.9	-1.8	10.9	-4.0	18.3	0.59	Jun	7.1	6.8	-0.3	5.4	-4.2	47.1	0.22	
Jul	44.3	46.6	2.3	9.5	5.2	16.6	0.72	Jul	8.4	8.5	0.1	11.8	1.0	59.8	0.28	
Aug	43.7	46.9	3.2	9.4	7.3	16.4	0.74	Aug	7.2	6.9	-0.3	4.0	-4.7	40.2	0.33	

Sept	42.5	45.6	3.1	8.0	7.2	14.4	0.79 Sept	7.0	7.6	0.6	4.7	8.5	44.2	0.48
Oct	37.0	40.4	3.4	7.8	9.3	15.8	0.80 Oct	6.6	9.6	3.0	9.0	44.7	73.2	0.36
Nov	34.2	35.9	1.8	7.6	5.2	16.5	0.72 Nov	8.9	13.2	4.2	9.8	47.2	72.1	0.48
Dec	31.7	33.5	1.8	7.8	5.6	18.6	0.68 Dec	8.8	13.9	5.1	10.8	57.9	82.5	0.51
O ₃ -seas	44-1	45 1	1.0	0.2	2.5	16.0	DJF	8.3	13.4	5.1	10.8	61.0	85.5	0.46
on	44.1	43.1	1.0	9.2	2.3	10.0	0.09 MAM	6.9	8.6	1.7	7.0	24.8	60.4	0.36
Non							JJA	7.6	7.4	-0.2	7.8	-2.5	49.5	0.27
O ₃ -seas	37.7	37.5	-0.2	7.8	-0.4	16.0	0.72 SON	7.5	10.1	2.6	8.1	34.4	63.8	0.46
OII														
Annual	40.5	40.9	0.4	8.5	1.0	16.0	0.73 Annual	7.6	9.9	2.3	8.5	30.0	65.2	0.41

MDA8 O3: maximum daily average 8-h ozone; 24-h avg PM2.5: 24-hour average PM2.5.

Figures

Figure 1. Taylor diagram with variance, Corr, and NMB for meteorological variables (T2, RH2, WS10, WD10, and Precip) against CASTNET and METAR dataset

Figure 2. Spatial distribution of forecasted MDA8, MB, and NMB during O₃ and winter season. Observation from AIRNow is shown as filled circles in the overlay plots of concentrations

Figure 3. Forecasted seasonal daily PM_{2.5} by GFSv15-CMAQv5.0.2 overlaid

observations from AIRNow and MB against observations from AIRNow

Figure 4. Monthly AOD from MODIS (left), predicted AOD from

GFSv15-CMAQv5.0.2 (middle), and predicted surface 24-h avg PM_{2.5} (right)

Figure 5. Categorical evaluation of MDA8 and 24-h avg PM_{2.5}

Figure 6. Annual performance of MDA8 in 10 CONUS regions (a); Taylor Diagram for annual performance of MDA8 (b); Annual performance of 24-h avg $PM_{2.5}$ in 10 CONUS regions (c); Taylor Diagram for annual performance of 24-h avg $PM_{2.5}$. Outliers represent regions with NSDs >3.5 (d)

Figure 7. The predicted average snow cover for (a) Jan and (b) Apr. (c) The difference in NMBs by adjusting anthropogenic fugitive dust emission. Positive values stand for improvement in biases with NMBs closer to 0.

Figure 8. Diurnal $PM_{2.5}$ in: (a) O_3 season for regions 1 to 5; (b) Non- O_3 season for regions 1 to 5; (c) O_3 season for regions 6 to 10; (d) Non- O_3 season for region 6 to 10. Solid curves are observed values and dash curves are predicted values. Average of predicted $PM_{2.5}$ and components of $PM_{2.5}$ within CONUS in: (e) O_3 season, and (f) Non- O_3 season

Figure 9. Mean biases in PM_{2.5} compositions: (a) OC for Jan, (b) OC for Jul, (c) SOIL for Jan, (d) SOIL for Jul, (e) sulfate for Jan, and (f) sulfate for Jul

Annual Performance of MET fields from GFSv15-CMAQv502

Figure 1. Taylor diagram (Taylor, 2001) with Normalized Standardized Deviations (NSD), Corr, and NMB for meteorological variables (T2, RH2, WS10, WD10, and Precip) against CASTNET and METAR dataset. The REF marker at x-axis represents a referred perfect performance. The closer each variable is to the REF marker, the better performance the forecast system has for that variable

Figure 2. Spatial distribution of forecasted MDA8, MB, and NMB during O_3 and non- O_3 season. Observation from AIRNow is shown as filled circles in the overlay plots of

concentrations

Figure 3. Forecasted seasonal daily $PM_{2.5}$ by GFSv15-CMAQv5.0.2 overlaid

observations from AIRNow and MB against observations from AIRNow

Figure 4. Monthly AOD from MODIS (left), predicted AOD from GFSv15-CMAQv5.0.2 (middle), and predicted surface 24-h avg PM_{2.5} (right)

Figure 5. Categorical evaluation of MDA8 and 24-h avg PM_{2.5}: (a) scatter plot of predicted and observed MDA8. The scatters are categorized into 4 areas using the threshold of 55 ppb for both observation and prediction; (b) scatter plot of predicted and observed 24-h avg PM_{2.5}. The scatters are categorized into 4 areas using the threshold of 12 µg m⁻³ for both observation and prediction; (c) False Alarm Ratio (FAR) and Hit Rate

(H) in 4 categories for forecasts of MDA8 and 24-h avg $PM_{2.5}$.

Figure 6. Annual performance of MDA8 in 10 CONUS regions (a); Taylor Diagram for annual performance of MDA8 (b); Annual performance of 24-h avg PM_{2.5} in 10 CONUS regions (c); Taylor Diagram for annual performance of 24-h avg PM_{2.5}. Outliers

represent regions with NSDs >3.5 (d)

Figure 7. The predicted average snow cover for (a) Jan and (b) Apr. (c) The difference in NMBs of PM_{2.5} by adjusting PM emission for Jan. Positive values stand for improvement in biases with NMBs closer to 0. (d) MBs in PM_{2.5} soil composition with adjustment of PM emission for Jan.

Figure 8. Diurnal PM_{2.5} in: (a) O₃ season for regions 1 to 5; (b) Non-O₃ season for regions 1 to 5; (c) O₃ season for regions 6 to 10; (d) Non-O₃ season for region 6 to 10.
Solid curves are observed values and dash curves are predicted values. Average of predicted PM_{2.5} and components of PM_{2.5} within CONUS in: (e) O₃ season, and (f)

Non-O₃ season.

Figure 9. Mean biases in PM_{2.5} compositions: (a) OC for Jan, (b) OC for Jul, (c) SOIL for Jan, (d) SOIL for Jul, (e) sulfate for Jan, and (f) sulfate for Jul