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Abstract 22 

As a candidate for the next-generation National Air Quality Forecast Capability 23 

(NAQFC), the meteorological forecast from Global Forecast System with the new Finite 24 

Volume Cube-Sphere dynamical core (GFS-FV3) will be applied to drive the chemical 25 

evolution of gases and particles described by the Community Multiscale Air Quality 26 

modelling system. CMAQ v5.0.2, a historical version of CMAQ, has been coupled with 27 

the North American Mesoscale Forecast System (NAM) model in the current operational 28 

NAQFC. An experimental version of the NAQFC based on the offline-coupled GFS-FV3 29 

version 15 with CMAQv5.0.2 modeling system (GFSv15-CMAQv5.0.2), has been 30 

developed by the National Oceanic and Atmospheric Administration (NOAA) to provide 31 

real-time air quality forecasts over the contiguous United States (CONUS) since 2018. In 32 

this work, comprehensive region-specific, time-specific, and categorical evaluations are 33 

conducted for meteorological and chemical forecasts from the offline-coupled 34 

GFSv15-CMAQv5.0.2 for the year 2019. The forecast system shows good overall 35 

performance in forecasting meteorological variables with the annual mean biases of 36 

-0.2 °C for temperature at 2-m, 0.4% for relative humidity at 2-m, and 0.4 m s-1 for wind 37 

speed at 10-m against the METeorological Aerodrome Reports (METAR) dataset. Larger 38 

biases occur in seasonal and monthly mean forecasts, particularly in spring. Although the 39 

monthly accumulated precipitation forecasts show generally consistent spatial 40 

distributions with those from the remote sensing and ensemble datasets, 41 
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moderate-to-large biases exist in hourly precipitation forecasts against the Clean Air 42 

Status and Trends Network (CASTNET) and METAR. While the forecast system 43 

performs well in forecasting ozone (O3) throughout the year and fine particles with a 44 

diameter of 2.5 μm or less (PM2.5) for warm months (May-September), it significantly 45 

overpredicts annual-mean concentrations of PM2.5..This is due mainly to the high 46 

predicted concentrations of fine fugitive, and coarse-mode particle components. 47 

Underpredictions in the southeastern U.S. and California during summer are attributed to 48 

missing sources and mechanisms of secondary organic aerosol formation from biogenic 49 

volatile organic compounds (VOCs) and semi- or intermediate-VOCs. This work 50 

demonstrates the ability of FV3-based GFS in driving the air quality forecasting. It 51 

identifies possible underlying causes for systematic region- and time-specific model 52 

biases, which will provide a scientific basis for further development of the 53 

next-generation NAQFC.  54 

 55 

1. Introduction 56 

Three-dimensional air quality models (3-D AQMs) have been widely applied in 57 

real time air quality forecasting (RT-AQF) since the 1990s in the U.S. (Stein et al., 2000; 58 

McHenry et al., 2004; Zhang et al., 2012a). The developments and applications of the 59 

national air quality forecasting systems based on 3-D AQMs were conducted in the 2000s 60 

(Kang et al., 2005; Otte et al., 2005; McKeen et al., 2005, 2007, 2009). Since then, 61 
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improvements and significant progress have been achieved in RT-AQF through the 62 

further development of AQMs and the use of advanced techniques. For example, more air 63 

pollutants in the products, more detailed gas-phase chemical mechanisms and aerosol 64 

chemistry, and the implementation of chemical data assimilation were available (Zhang et 65 

al., 2012b; Lee et al., 2017). Various AQMs, coupled with meteorological models in 66 

either an online or offline manner, were developed and applied in RT-AQF (e.g., Chuang 67 

et al., 2011; Lee et al., 2011; Žabkar et al., 2015; Ryan, 2016). The early version of the 68 

National Air Quality Forecast Capability (NAQFC) was jointly developed by the U.S. 69 

National Oceanic and Atmospheric Administration (NOAA) and the U.S. Environmental 70 

Protection Agency (EPA) to provide forecasts of ozone (O3) over the northeastern U.S. 71 

(Eder et al., 2006). Since the first operational version over the contiguous United States 72 

(CONUS) (Eder et al., 2009), the NAQFC has been continuously updated and developed 73 

to provide more forecasting products (including O3, smoke, dust, and particulate matter 74 

with a diameter of 2.5 μm or less (PM2.5)) with increasing accuracy (Mathur et al., 2008; 75 

Stajner et al., 2011; Lee et al., 2017).  76 

The forecast skill of a historical NAQFC, which was based on the North 77 

American Mesoscale Forecast System (NAM) model (Black, 1994) and the Community 78 

Multiscale Air Quality Modeling System version 4.6 (CMAQ v4.6), over CONUS during 79 

year 2008 was evaluated by Kang et al. (2010a) for operational O3 and experimental 80 

PM2.5 products. Overall, maximum 8-h O3 was slightly overpredicted over the CONUS 81 



5 
 

during the summer, with the mean bias (MB), normalized mean bias (NMB), and 82 

correlation coefficient (Corr) of 3.2 ppb, 6.8 %, and 0.65, respectively. The performance 83 

of predicted daily mean PM2.5 varied: with an underprediction during the warm season 84 

and an overprediction in the cool season. The MBs and NMBs during warm/cool seasons 85 

were -2.3/4.5 µg m-3 and -19.6%/45.1%, respectively. The current version of the U.S. 86 

NOAA’s operational NAQFC has provided the air quality forecast to the public for O3 87 

and PM2.5 at a horizontal grid resolution of 12 km over CONUS since 2015. It is currently 88 

based on the CMAQ v5.0.2 (released May 2014) (U.S. EPA, 2014) coupled offline with 89 

the NAM model. Daily mean PM2.5 was underpredicted during warm months (May and 90 

July 2014) and overpredicted during a cool month (January 2015) over CONUS still 91 

persist (Lee et al., 2017).  92 

Efforts have been made to reduce the seasonal and region-specific biases in the 93 

historical and current NAQFC. Development and implementation of an analog ensemble 94 

bias correction approach was applied to the operational NAQFC to improve forecast 95 

performance in PM2.5 predictions (Huang et al., 2017). Kang et al. (2008, 2010) 96 

investigated the Kalman Filter (KF) bias-adjustment technique for operational use in the 97 

NAQFC system. The KF bias-adjusted forecasts showed significant improvement in both 98 

O3 and PM2.5 for discrete and categorical evaluations. However, limitations in the 99 

underlying models and the bias correction/adjustment approaches need further 100 

improvement. Characterizing the current NAQFC forecasting skill and identifying the 101 
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underlying causes for region- and time-specific biases can result in further development 102 

of the NAQFC system and improved pollutant predictions. 103 

As NOAA Environmental Modeling Center (EMC) has transitioned to devote its 104 

full resources towards the development of an ensemble model based on the Finite 105 

Volume Cube-Sphere Dynamical Core (FV3), the NAM has been no longer updated since 106 

March 2017. The FV3 dynamic core will eventually replace all current NOAA National 107 

Centers for Environmental Prediction (NCEP) mesoscale models used for forecasting. 108 

The FV3 dynamical core was implemented in the operational Global Forecast System as 109 

version 15 (GFS v15) in July 2019.  110 

The NOAA National Weather Service (NWS) is currently coordinating an effort 111 

to inline a regional scale meteorological model basing on the same FV3 dynamic core as 112 

that in GFS v15 to be coupled with an atmospheric chemistry model partially based on 113 

CMAQ. The inline system is expected to be the next generation of NAQFC, and to be 114 

implemented a few years in the future. An interim system, offline coupling the recent 115 

CMAQ with FV3-based GFS, is considered as a candidate NAQFC to replace the current 116 

NAM-CMAQ system before the inline system is applied in the operational air quality 117 

forecasting. To support this new development of the interim NAQFC, a prototype of the 118 

offline-coupled GFS v15 with CMAQv5.0.2 (GFSv15-CMAQv5.0.2) has been developed 119 

and applied by the NOAA for RT-AQF over CONUS since 2018 (Huang et al., 2018, 120 

2019, 2020). In this work, the meteorological and air quality forecasts from the 121 
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offline-coupled GFSv15-CMAQv5.0.2 system are comprehensively evaluated for the 122 

year of 2019. The main objectives of this work are to: (1) evaluate the forecast skills of 123 

the experimental prototype of the GFSv15-CMAQv5.0.2 system; (2) identify the major 124 

model biases, in particular, systematic biases and persistent region- and time-specific 125 

biases in major species; (3) investigate underlying causes for the biases to provide a 126 

scientific basis for improving the model representations of chemical processes and 127 

developing science-based bias correction methods for O3 and PM2.5 forecasts. This work 128 

will support NAQFC’s further development and improvement through enhancing its 129 

forecasting abilities and generating a benchmark for the interim NAQFC that is being 130 

developed by NOAA based on the offline-coupled GFS-FV3 v16 with CMAQ v5.3 131 

(NACC-CMAQ) (Campbell et al., 2020). Eventually, the latest version of CMAQ 132 

(version 5.3), which has updates in gas-phase chemistry (Yarwood et al., 2010; Emery et 133 

al., 2015; Luecken et al., 2019), lightning nitric oxide (LNO) production schemes (Kang 134 

et al., 2019a, 2019b), and secondary aerosol formation (in particular, secondary organic 135 

aerosol) (e.g., Pye et al., 2013, 2017; Murphy et al., 2017) among others, will be coupled 136 

with GFS-FV3 v16 and be implemented into the interim operational NAQFC. 137 

 138 

2. Model system and evaluation protocols  139 

2.1 Description and configuration of offline-coupled GFSv15-CMAQv5.0.2  140 
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FV3 is a dynamical core for atmospheric numerical models developed by the 141 

Geophysical Fluid Dynamics Laboratory (GFDL) (Putman and Lin, 2007). It is a modern 142 

and extended version of the original FV core with a cubed-sphere grid design and more 143 

computationally efficient solvers. It was selected for implementation into the GFS as the 144 

next generation dynamical core in 2016 (Zhang et al., 2019a). The GFS-FV3 v15 (GFS 145 

v15) has been operational since June 2019. The GFS v15 uses the Rapid Radiative 146 

Transfer Method for GCMs (RRTMG) scheme for shortwave/longwave radiation 147 

(Mlawer et al., 1997; Iacono et al., 2000; Clough et al., 2005), the Hybrid 148 

eddy-diffusivity mass-flux (EDMF) scheme for Planetary Boundary Layer (PBL) 149 

(National Centers for Environmental Prediction, 2019a), the Noah Land Surface Model 150 

(LSM) scheme for land surface option (Chen et al., 1997), the Simplified 151 

Arakawa-Schubert (SAS) deep convection for cumulus parameterization (Arakawa et al., 152 

1974; Grell, 1993), and a more advanced GFDL microphysics scheme for microphysics 153 

(National Centers for Environmental Prediction, 2019b). An interface preprocessor has 154 

been developed by NOAA to interpolate data, transfer coordinates, and convert the GFS 155 

v15 outputs into the data format required by CMAQv5.0.2 (Huang et al., 2018, 2019). 156 

The original outputs from GFS v15, which have a horizontal grid with 13-km resolution 157 

and a Lagrangian vertical coordinate with 64 layers in NEMSIO format, are processed to 158 

Lambert-Conformal Conic projection by PREMAQ, a preprocessor, to recast the 159 

meteorological fields for CMAQ into an Arakawa C-staggering grid (Arakawa and Lamb, 160 
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1977) with a 12-km horizontal resolution and 35 vertical layers (Table 1). The first 72 161 

hours in 12:00 UTC forecast cycles from GFS v15 are used to drive the air quality 162 

forecast by the offline-coupled GFSv15-CMAQv5.0.2 system.  163 

CMAQ has been continuously developed by the U.S. EPA since the 1990s (Byun 164 

and Schere, 2006) and has been significantly updated in many atmospheric processes 165 

since then. Chemical boundary conditions for the GFSv15-CMAQv5.0.2 system are 166 

mainly from the global 3-D model of atmospheric chemistry driven by meteorological 167 

input from the Goddard Earth Observing System (GEOS-Chem). The lateral boundary 168 

condition for dust is from the outputs of NEMS GFS Aerosol Component (NGAC) (Lu et 169 

al., 2016). The anthropogenic emissions from area, mobile, and point sources in National 170 

Emissions Inventory of year 2014 version 2 (NEI 2014v2) are processed by the Sparse 171 

Matrix Operator Kernel Emissions (SMOKE) modeling system. The onroad mobile 172 

sources include all emissions from motor vehicles that operate on roadways such as 173 

passenger cars, motorcycles, minivans, sport-utility vehicles, light-duty trucks, 174 

heavy-duty trucks, and buses. Onroad mobile source emissions were processed using 175 

emission factors output from the Motor Vehicle Emissions Simulator (MOVES). 176 

SMOKE uses a combination of vehicle activity data, emission factors from MOVES, 177 

meteorology data, and temporal allocation information to estimate hourly, gridded onroad 178 

emissions. The nonroad, agriculture, anthropogenic fugitive dust, non-elevated oil-gas, 179 

residential wood combustion, and other sectors are included in the area sources. The 180 
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sectors of airports, commercial marine vessel (CMV), electric generating units (pt_egu), 181 

point sources related to oil and gas production (pt_oilgas), point sources that are not 182 

EGUs nor related to oil and gas (ptnonipm), and point sources outside US (pt_other) are 183 

included in the point sources. The sulfur dioxide (SO2) and nitrogen oxide (NOX) from 184 

point sources in NEI 2005 are projected to year 2019 following the methods used in Tang 185 

et al., (2015, 2017). The biomass burning emission inventory from the Blended Global 186 

Biomass Burning Emissions Product system (GBBEPx) (Zhang et al., 2019b) is 187 

impletemented for the forecast of forest fires. The GBBEPx fire emission is treated as one 188 

type of point source. Its heat flux is derived from satellite retrieved fire radiative power 189 

(FRP) to drive fire plume rise. The GBBEPx is a near real time fire dataset. The fire 190 

emission implemented in the current forecast cycle comes from the historical fire 191 

observation, typically 1-2 day behind. In this system, we use landuse information to 192 

classify fires into forest fire and other burning such as agriculture burning. We assume 193 

only forest fire can last longer than 24 hours. We assume the forest fire emission will 194 

continue on day 2 and beyond. Other types of fires will be dropped. The plume rise of the 195 

point source will be driven by the meteorology and allocated to the 35 elevated layers in 196 

GFSv15-CMAQv5.0.2 system by the PREMAQ preprocessing system. Biogenic 197 

emissions are calculated inline by Biogenic Emission Inventory System (BEIS) version 198 

3.14 (Schwede et al., 2005). Sea-salt emission is parameterized within CMAQ v5.0.2. 199 

While the deposition velocities are calculated inline, the fertilizer ammonia bi-directional 200 
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flux for in-line emissions and deposition velocities is turned off. Detailed configurations 201 

of photolysis, gas-phase chemistry, aqueous chemistry, and aerosol chemistry for CMAQ 202 

v5.0.2 are listed in Table 1. 203 

2.2 Datasets and evaluation protocols 204 

Comprehensive evaluation of the GFSv15-CMAQv5.0.2 forecasting system is 205 

conducted for both meteorological and chemical variables for year 2019, including 206 

discrete, categorical, and region-specific evaluations. The products in the first 24-hour of 207 

each 72-hour forecast cycle are extracted and combined as a continuous, annual forecast. 208 

The evaluation of meteorological variables is carried out for those results from PREMAQ 209 

in GFSv15-CMAQv5.0.2 system. Detailed information for datasets used in this study is 210 

listed in Table S1. Observed hourly temperature at 2-meters (T2), relative humidity at 211 

2-meters (RH2), precipitation (Precip), wind direction at 10-meters (WD10), and wind 212 

speed at 10-meters (WS10) are obtained from the Clean Air Status and Trends Network 213 

(CASTNET) and the METeorological Aerodrome Reports (METAR) datasets. The 214 

majority of CASTNET sites are suburban and rural sites. Approximately 1900 METAR 215 

sites over CONUS are used in this study (Fig. S1). For evaluation of precipitation, a 216 

threshold of ≥0.1 mm hr-1 is used for valid records because the CASTNET and METAR 217 

have different definitions of 0.0 mm hr-1 values. In CASTNET, the records without any 218 

precipitation are filled as 0.0 mm hr-1, the same as those records with negligible 219 

precipitation. However, in METAR, the records without any precipitation are left as 220 
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blank, the same as an invalid record. The negligible precipitation is recorded as 0.0 mm 221 

hr-1. 222 

The air quality forecasting products are evaluated include hourly O3, hourly PM2.5, 223 

maximum daily 8-hour average O3 (MDA8 O3), and daily average PM2.5 (24-h avg PM2.5) 224 

for chemical forecast. The AIRNow dataset is used for observed hourly O3 and PM2.5. We 225 

utilize the Quality Assurance/Quality Control (QA/QC) information from the AIRNow 226 

dataset for to filtering the invalid records. Remote sensing data from the Global 227 

Precipitation Climatology Project (GPCP) and the ClimatologyCalibrated Precipitation 228 

Analysis (CCPA) (Hou et al., 2014; Zhu and Luo, 2015) datasets are also used for 229 

evaluation of precipitation. GPCP is a global precipitation dataset with a spatial 230 

resolution of 0.25 degree and a monthly temporal resolution. The CCPA uses linear 231 

regression and downscaling techniques to generate analysis product of precipitation from 232 

two datasets: the National Centers for Environmental Prediction (NCEP) CPC Unified 233 

Global Daily Gauge Analysis and the NCEP EMC Stage IV multi-sensor quantitative 234 

precipitation estimations (QPEs). The CCPA product with a spatial resolution in 0.125 235 

degree and temporal resolution of an hour is used in this study. Satellite-based Aerosol 236 

Optical Depth (AOD) at 550 nm from Moderate Resolution Imaging Spectroradiometer 237 

(MODIS) Terra platform (Levy et al., 2015) is used for the evaluation of monthly AOD. 238 

The statistic measures such as mean bias, the root mean square error (RMSE), the 239 

normalized mean bias, the normalized mean error (NME), and the correlation coefficient 240 
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are used, more details about evaluation protocols are referring to Zhang et al. (2009, 241 

2016). The Taylor diagram (Taylor, 2001), which includes the correlations, NMBs, and 242 

the normalized standard deviations (NSD), is used to present the overall performance 243 

(Wang et al., 2015). The NMBs ≤ 15% and NMEs ≤ 30% by Zhang et al. (2006) and 244 

NMBs (≤ 15% and ≤ 30%), NMEs (≤ 25% and ≤ 50%), and Corr (>0.5 and >0.4) for 245 

MDA8 O3 and 24-h PM2.5, respectively, by Emery et al. (2017) are considered as 246 

performance criteria. Monthly, seasonal, and annual statistics and analysis are included. 247 

Seasonal analysis for O3 is separated into O3-season (May-September) and non-O3 season 248 

(January-April and October-December). Analysis for ten CONUS regions, defined by 249 

U.S. EPA (www.epa.gov/aboutepa), are included and listed in Fig. S1c. 250 

The metrics of False Alarm Ratio (FAR) and the Hit Rate (H) are used (Kang et 251 

al., 2005; Barnes et al., 2009) for categorical evaluation. Observed and forecasted MDA8 252 

O3 and 24-h avg PM2.5 are divided into four classes based on whether the predicted and/or 253 

observed data fall above or below the AQI thresholds: (a) observed values ≤ thresholds 254 

and predicted values > thresholds; (b) observed and predicted values > thresholds; (c) 255 

observed and predicted values ≤ thresholds; (d) observed values > thresholds and 256 

predicted values ≤ thresholds. The FAR and H are defined in Eq. (1) and Eq. (2):  257 

      (1) 258 

        (2). 259 
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 260 

3.  Evaluation of model forecast skills 261 

3.1 Evaluation of meteorological forecasts 262 

Discrete performance evaluation is conducted for post-processed meteorological 263 

fields from the GFSv15-CMAQv5.0.2 system (Table 2). The GFS v15 can predict well 264 

the boundary layer meteorological variables. It has overall cold biases and wet biases for 265 

annual T2 and RH2 in 2019, respectively. It also overpredicts WS10, and underpredicts 266 

hourly precipitation. Despite CASTNET siting being slightly different from that of 267 

METAR, the annual and most of the seasonal performance for the model show similar 268 

pattern in terms of bias for both the CASTNET and METAR networks. Mean biases of 269 

T2 are mostly within ±0.5 degree Celsius except those in February and March against 270 

CASTNET (Table S2). Underprediction is generally larger against CASTNET than 271 

METAR. For spatial distribution of MB for seasonal T2 against METAR (Fig. S2), cold 272 

biases are mainly found in the Midwest and West U.S. where most of the CASTNET sites 273 

are located. GFS v15 usually underpredicts T2 in West Coast, the Mountain States, and 274 

the Midwest. Overpredictions of T2 in the states of Kansas, Oklahoma, the areas near the 275 

East Coast, and the Gulf Coast offset some underpredictions, resulting in smaller mean 276 

biases but similar RMSE for the model against METAR compared to that against 277 

CASTNET. The difference between observed T2 from the two datasets is larger in cooler 278 

months than warmer months. The largest underpredictions occur in the spring (MAM) 279 
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season. In general, GFS v15 underpredicts T2 for both CASTNET and METAR, 280 

consistent with cold biases found in other studies using GFS v15 (e.g., Yang, 2019). Such 281 

underpredictions will affect chemical forecasts, especially the forecast of O3. Consistent 282 

with the overall underpredictions of T2, GFS v15 overpredicts RH2 in general. The 283 

largest overprediction is found in spring (MBs of 3.4% and 2.7% with CASTNET and 284 

METAR, respectively), corresponding to the largest underprediction of T2 in spring 285 

(MBs of -0.5 °C and -0.4 °C with CASTNET and METAR, respectively). GFS v15 286 

shows moderately good performance predicting wind. The annual MB and NMB of 287 

WS10 against METAR are 0.4 m s-1 and 10.7 %, respectively. A larger overprediction of 288 

WS10 is found with CASTNET than other datasets (Zhang et al., 2016). 289 

GFSv15-CMAQv5.0.2 also gives higher overpredictions for CASTNET compared to 290 

METAR. The largest biases in wind speed are found in summer. GFSv15-CMAQv5.0.2 291 

gives the largest cold biases, wet biases in spring, indicating the necessity of improving 292 

model performance in such seasons in future GFS-FV3 development. 293 

By adopting the threshold of ≥0.1 mm hr-1, performance against the CASTNET 294 

and METAR show similar results: a large underprediction in hourly precipitation. 295 

Predicted monthly accumulated precipitation shows consistency in spatial distribution 296 

with observations from CCPA and GPCP (Fig. S3). The high precipitation in the 297 

Southeast are captured well in spring while the high precipitation in the Midwest and 298 

South are captured well in other seasons. It indicates that GFSv15-CMAQv5.0.2 has good 299 
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performance in capturing the spatial distributions of accumulated precipitation but has 300 

poor performance in predicting hourly precipitation. The precipitation from the original 301 

FV3 outputs are recorded as 6-h accumulated precipitations. Artificial errors were 302 

introduced to the forecast by an issue in precipitation preprocessing during the early stage 303 

development of the GFSv15-CMAQv5.0.2 system. The precipitation at first hour of the 304 

6-h cycle would be dropped occasionally. We corrected this issue and the hourly 305 

precipitation still shows large underprediction against surface monitoring networks 306 

(Figure S4). It indicates the difficulty for the forecast system in capturing the temporal 307 

precipitation, especially during summer. During the summer season, the discrepancy in 308 

capturing the short-term heavy rainfall worsens the model performance in predicting 309 

hourly precipitation. Besides, we use the threshold of 0.1 mm hr-1 to filter the valid 310 

records. If the model predicts precipitation that did not occur, the record will be excluded 311 

into the statistics calculation. However, all the predicted precipitation is counted in the 312 

spatial evaluation against the ensemble datasets of GPCP and CCPA. Therefore, the 313 

spatial performance of monthly accumulated precipitation shows better agreement than 314 

its of hourly statistics. 315 

An overall comparison of performance with CASTNET and METAR datasets is 316 

performed using a Taylor diagram (Fig. 1). The normalized standardized deviations 317 

(NSDs), Corrs, and NMBs are considered. The NSDs are ratios of variance of predicted 318 

values to variance of observed values, following the equations by Wang et al. (2015). The 319 
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NSDs represent the amplitude of variability. With the NSDs closer to 1, the predicted 320 

values have closer variance as the observed values. Consistent with other analysis in this 321 

section, larger biases and lower correlation in model wind speed and wind direction are 322 

found for CASTNET compared to METAR. The amplitude of variability of WS10 323 

against CASTNET is overpredicted (with the NSD larger than 1), while it is 324 

underpredicted against METAR. Because of the post-processing smearing of hourly 325 

precipitation, the variance of predicted precipitation is smaller than the observed one, 326 

leading to very small NSDs for precipitation. The location of the T2 and RH2 points near 327 

the REF marker in the Taylor diagram indicates that the GFSv15-CMAQv5.0.2 is 328 

capturing the magnitude and variability of these variables well. 329 

 330 

3.2 Overall performance of chemical forecast over the CONUS 331 

Performance of chemical forecasts (i.e. O3 and PM2.5) are evaluated on monthly, 332 

seasonal, and annual timescales for the studied period of 2019. Performance of the 333 

MDA8 O3 and the 24-h average PM2.5 (24-h avg PM2.5) are considered as the primary 334 

objectives. Categorical performance evaluations for MDA8 O3 and 24-h avg PM2.5 are 335 

also conducted. Table 3 shows the discrete statistics of predicted MDA8 O3 and 24-h avg 336 

PM2.5 against AIRNow. 337 
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The GFSv15-CMAQv5.0.2 has good performance for MDA8 O3 on a seasonal 338 

and annual basis with MBs ≤ ±1.0 ppb, NMB ≤ 2.5 %, and NME ≤ 20%. The monthly 339 

NMBs/NMEs are within ±15 %/25 %, respectively. Slight overpredictions and 340 

underpredictions are found in both seasons with MB of 1.0 and -0.2 ppb, respectively. 341 

The largest underprediction is found in spring months, especially in March. 342 

Underprediction of MDA8 O3 in spring months is consistent with the largest 343 

underprediction of T2 in spring. It indicates biases in predicted T2 could be one of the 344 

reasons for the corresponding biases in O3 prediction. Predicted MDA8 O3 is lower than 345 

observed values in major parts of the Midwest and West regions during the O3 season 346 

(Fig. 2), which is consistent with underprediction of T2 in summer. But 347 

GFSv15-CMAQv5.0.2 gives very high O3 in the southeastern U.S., especially in areas 348 

near the Gulf Coast. Such overpredictions compensate for moderate underpredictions in 349 

Midwest and West, causing an overall overprediction in overall CONUS. In the non-O3 350 

season, GFSv15-CMAQv5.0.2 can forecast well the spatial variations of MDA8 O3 with 351 

overall underpredictions in the Northeast. 352 

Unlike the good performance for O3, GFSv15-CMAQv5.0.2 gives significant 353 

overpredictions for 24-h avg PM2.5 with annual MB, NMB, and NME of 2.2 µg m-3, 354 

29.0%, and 65.3%, respectively (Table 3). The MBs and NMBs range from -0.2 µg m-3 to 355 

5.0 µg m-3, and -2.6 % to 59.7 % across the four seasons. With the exception of 356 

California and the Southeast, predicted 24-h avg PM2.5 shows overprediction during most 357 
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of the year in spring, autumn, and winter (Fig. 3). Moderate underpredictions of PM2.5 are 358 

found in California during spring, autumn, and summer, and are found in the Southeast 359 

during summer. Using the historical emission inventories from NEI 2005 and NEI 2014 360 

instead of the latest version of NEI 2017 is one of the reasons for the overpredictions of 361 

PM2.5 concentrations in 2019. The significant overprediction mainly occur in the northern 362 

regions during cooler months, indicating it is underlying with systematical biases. The 363 

annual emission of primary PM2.5 and coarse mode PM (PMC) are shown in Fig. S5. As 364 

an important surrogate for the fugitive dust, the spatial distribution of large PMC 365 

emission is associated with the regions which have the significant overprediction in 366 

cooler months. In reality, the meteorological conditions could largely impact the amount 367 

and characteristics of anthropogenic fugitive dust. For example, the snow cover and the 368 

soil moisture are important factors in calculating the dust emissions in SMOKE. However, 369 

the anthropogenic fugitive dust implemented in this GFSv15-CMAQv5.0.2 system was 370 

not adjusted by the precipitation and snow cover. It will lead to a significant 371 

overestimation in the anthropogenic dust emission. The impact of the meteorological 372 

factor on anthropogenic fugitive dust emission and the PM2.5 prediction will be further 373 

discussed in discussion section 4.  374 

Murphy et al. (2017) found that secondary organic aerosols (SOA) generated from 375 

anthropogenic combustion emissions were important missing PM sources in California 376 

prior to CMAQ v5.2. The largest underpredictions of PM2.5 occur in the Southeast in 377 
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summer. Biogenic volatile organic compounds (BVOCs) and biogenic SOA (BSOA) are 378 

most active in Southeast region in summer. Many missing sources and mechanisms for 379 

SOA formation from BVOCs have been identified in recent years (Pye et al., 2013, 2015, 380 

2017; Xu et al., 2018) and have resulted in significant improvements in predicting SOA 381 

in the Southeast using CMAQ v5.1 through v5.3. Anthropogenic emissions and aerosol 382 

inorganic compounds were found to have impacts on BSOA (Carlton et al., 2018; Pye et 383 

al., 2018, 2019). Such interactions and mechanisms are not represented sufficiently in 384 

CMAQ v5.0.2, further enhancing the biases in predicted PM2.5 in the Southeast. 385 

Evaluation of predicted AOD against observations from MODIS is shown in Fig. 4. High 386 

predicted AOD in the Midwest during cooler months show consistency with MODIS and 387 

correspond to high surface PM2.5 predictions. High predicted AOD are missing in 388 

California, corresponding to underprediction of surface PM2.5 in California. In summer 389 

months, AOD is largely underpredicted in California and the Southeast, which may be 390 

caused by the previously mentioned missing sources of SOA. 391 

 392 

3.3 Categorical Evaluation 393 

Categorical evaluation is conducted to quantify the accuracy of the 394 

GFSv15-CMAQv5.0.2 system in predicting events in which the air pollutants exceed 395 

moderate or unhealthy categories for the U.S. air quality index (AQI) (www.airnow.gov). 396 

The scatter plots for predicted and observed MDA8 O3 and 24-h avg PM2.5 are shown in 397 
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Fig. 5a and Fig. 5b, respectively. Numbers of the scatters in the four areas (a) to (d) are 398 

indicated in the Eqs. (1) and (2) in section 2.2. The higher the FAR is, the more 399 

GFSv15-CMAQv5.0.2 overpredicts the AQI leading to false air quality warnings. The 400 

higher the H is, exceedances are more successfully captured by the 401 

GFSv15-CMAQv5.0.2 system. In this study, the thresholds for two categories of 402 

“Moderate” and “Unhealthy for Sensitive Groups” are considered. Since 2018, they are 403 

defined as 55 ppb and 70 ppb for MDA8 O3 and 12 µg m-3 and 35.5 µg m-3 for 24-h avg 404 

PM2.5. For comparison with previous studies, the historical thresholds are also included 405 

into the evaluation: 60 ppb and 75 ppb for MDA8 O3 and 15 µg m-3 and 35 µg m-3 for 406 

24-h avg PM2.5. The metrics in four categories, corresponding to four thresholds, are 407 

shown in Fig. 5c. Categorical performance under stricter AQI standards is better than 408 

under historical standards. For example, the FAR decreases from 48.4 % to 41.4 %, and 409 

the H increases from 42.7 % to 45.8 % with the “Moderate” thresholds change from 60 410 

ppb to 55 ppb. It could be due to the better performance of the forecast system for values 411 

closer to the annual average level (~40 ppb). The scatters are more discrete for extreme 412 

values. When the thresholds of MDA8 O3 are closer to the average level, the categorical 413 

performance increases. Similar improvement in the FAR and H for predicting categorical 414 

24-h avg PM2.5 can be found when the threshold changes from 15 µg m-3 to 12 µg m-3: 415 

the FAR decreases from 80.1 % to 70.3 %, and the H increases from 52.8 % to 57.6 %. 416 

However, the FAR is high (over 90%) and the H is much lower under the threshold of 417 



22 
 

35.5 µg m-3. It is because most of the false alarms occur when observed 24-h avg PM2.5 418 

are lower than 20 µg m-3 and the predicted values are higher than 20 µg m-3. It shows the 419 

poorer performance in correctly capturing the category of “Unhealthy for Sensitive 420 

Groups” due to the significant overprediction of PM2.5 in cooler months. 421 

Major RT-AQF systems over the world were comprehensively reviewed in 422 

(Zhang et al., 2012a, 2012b). Here we include a comparison with the more recent air 423 

quality forecasting studies The overview of assessment studies of the other air quality 424 

forecasting studies from Canada (Moran et al., 2018; Russell et al., 2019), Europe 425 

(Struzewska et al., 2016; D’Allura et al., 2018; Podrascanin, 2019; Stortini et al., 2020), 426 

East Asia (Lyu et al., 2017; Zhou et al., 2017; Peng et al., 2018; Ha et al., 2020), and 427 

CONUS (Kang et al., 2010; Zhang et al., 2016; Lee et al., 2017). Table S3 summarizes 428 

air quality forecasting skills reported in the literature along with that from this work. For 429 

those studies with data assimilation in air quality forecasting, the performance from the 430 

raw results without data assimilation are presented. The performance in predicting O3 and 431 

PM vary largely between model systems. The discrete and categorical performance in O3 432 

prediction is not significantly better than that in PM prediction. O3 tends to be slightly 433 

overpredicted in an annual base or for the warmer months. The annual NMB and Corr for 434 

O3 over the North America are 1.4% and 0.76 for 2010 in Moran et al. (2018), while they 435 

are 1.0% and 0.73 in this study. However, the performance in PM2.5 prediction varies 436 

largely from our study. The PM2.5 for warmer months were moderately overpredicted in 437 
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Russel et al. (2019), with the MBs ranging from 3.2 to 5.5 µg m-3. The categorical 438 

performance of GFSv15-CMAQv5.0.2 in predicting MDA8 O3 is similar with that of the 439 

previous NAQFC (Kang et al., 2010), in which the FAR and H are ~68 % and ~31% for 440 

“Unhealthy for Sensitive Groups”, and the H is ~47% for “Moderate” category, 441 

respectively. The H for PM2.5 also decreased largely from ~46% for “Moderate” to ~21% 442 

for “Unhealthy for Sensitive Groups” category, and the FAR was over 90% for the 443 

“Unhealthy for Sensitive Groups” category in Kang et al. (2010). The overpredicted 444 

PM2.5 was also found when using the historical 2005 NEI in forecast for Jan 2015 (Lee et 445 

al., 2017). The performance was improved by updates of 2011 NEI and real-time dust and 446 

wild fire emissions. It indicates the needs of improving our emission inventory. As for the 447 

categorical performance in regions other than CONUS, the air quality standards vary 448 

(Oliveri Conti et al., 2017). For example, National Ambient Air Quality Standards 449 

(NAAQSs), the Ambient Air Quality and Cleaner Air for Europe (CAFE) Directive 450 

(2008/50/EC), and the national ambient air quality standard (GB 3095-2012) are set up 451 

by U.S., Europe, and China, respectively. Metrics also vary between studies. The primary 452 

forecasting products are O3 and PM10 from some forecasting systems instead of O3 and 453 

PM2.5 in this study. The threshold for categorical evaluation of O3 used in D’Allura et al 454 

(2018) was 83.0 µg m-3. The applied metrics of the False Alarm Ratio and Probability of 455 

Detection (POD) were defined the same as the FAR and H used in our study. The FAR 456 

and POD were 36.14% and 71.16%, respectively. The categorical evaluation of PM2.5 in 457 
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Ha et al. (2020) was applied for four categories: (1) 0-15 µg m-3, (2) 16-50 µg m-3, (3) 458 

51-100 µg m-3, and (4) >100 µg m-3. The overall FAR and Detection Rate for four 459 

categories are 59.0% and 36.1%, respectively. Although the metrics of FAR and 460 

Detection Rate were defined for four categories, rather than every single category as for 461 

this study, the categorical performance is comparable with our results. In general, the 462 

discrete and categorical performance of O3 forecast in this study is comparable that of the 463 

air quality forecasting systems in many regions of the world. However, the PM forecasts 464 

vary largely between studies. While our GFSv15-CMAQv5.0.2 system shows consistent 465 

performance with the systems covering CONUS, the high FAR and low H for “Unhealthy 466 

for Sensitive Groups” category with higher thresholds indicate that the categorical 467 

performance could be further improved by addressing the significant overprediction 468 

during cooler months in this study. 469 

 470 

3.4 Region-specific evaluation 471 

As discussed in section 3.2, biases in predicted O3 and PM2.5 vary from region to 472 

region. To further analyze the region-specific performance of the GFSv15-CMAQv5.0.2 473 

system, evaluation for 10 regions within CONUS is conducted. By identifying the 474 

detailed characteristics of region-specific biases and indicating the underlying causes for 475 

such biases, this section aims to help the NAQFC to improve its forecast ability for 476 

specific regions.  477 
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Figure 6 shows the annual model performance for MDA8 O3 and 24-h avg PM2.5 478 

in the 10 CONUS regions. In section 3.2, a slight underprediction of MDA8 O3 on annual 479 

basis was found over the CONUS. MDA8 O3 is underpredicted in most of the regions 480 

except regions 2, 4, and 6 (Fig. 6a). The overpredictions in regions 4 and 6 are mostly 481 

from the large biases near the coast area during O3 season. Correlations between 482 

predictions and observations in most of the regions are higher than 0.6, except for 0.55 in 483 

region 4 and 0.50 in region 7. Poor performance in regions 4 and 7 is illustrated by the 484 

Taylor Diagram (Fig. 6b). Small Corr and NSD, result in the markers of regions 4 and 7 485 

laying farthest from the reference point. The amplitude of variability of the predicted 486 

MDA8 O3 are smaller than observed values in all the regions, especially in regions 4 and 487 

7. The performance in region 2 is the best, with smallest MB/NMB, highest Corr, and 488 

similar variability in predictions and observations. The time series of the MDA8 O3 for 489 

the 10 regions during 2019 is shown in Fig. S6. Regions 1, 2, 4, and 6 show different 490 

results for the O3 season and non-O3 season: GFSv15-CMAQv5.0.2 tends to overpredict 491 

MDA8 O3 during the O3 season and underpredicts during the non-O3 season. The 492 

underprediction during spring months, which is indicated in section 3.2, can be also 493 

found in most of the regions with obvious gaps between observed and predicted curves in 494 

March and April. The lowest O3 predictions occur at 5 am local standard time (LST) in 495 

most of the regions (Fig. S7). For regions 4 and 6, significant overprediction occurs not 496 

only during the O3 season for MDA8 O3 (which mainly occurs during the daytime) but 497 
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also during the nighttime. During the non-O3 season, the biases in predicting MDA8 O3 498 

for regions 4 and 6 are small and consistent with good daytime predictions. However, O3 499 

is still overpredicted during the nighttime in these regions, associated with the collapse of 500 

the boundary layer and difficulty in simulating its time and magnitude (Hu et al., 2013; 501 

Cuchiara et al., 2014; Pleim et al., 2016). 502 

Consistent with the analysis in section 3.2, PM2.5 is significantly overpredicted in 503 

most of the regions except in regions 4, 6, and 9 (Fig. 6c). The underprediction during 504 

warmer months, likely due to missing sources and mechanisms for BSOA, compensate 505 

for the annual biases in regions 4 and 6, leading to smaller MBs/NMBs but low 506 

correlations in these regions. The variability in predictions is much larger than in 507 

observations, with the NSDs >1 for all regions (Fig. 6d). The forecast system has best 508 

performance in region 9 with an NSD of 1.2, an NMB of -12.0 %, and a Corr of 0.40. 509 

Figure S8 shows the time series of 24-h avg PM2.5 in the 10 CONUS regions. The gaps 510 

between observed and predicted curves are large in cooler months, but the 511 

GFSv15-CMAQv5.0.2 system has relatively good performance in warmer months for 512 

most of the regions. Less overprediction is found in regions 6 and 9 during cooler months, 513 

and those regions generally show the best performance (see Taylor Diagram). The 514 

different biases across the regions further indicate that multiple factors likely contribute 515 

to them.  516 

 517 
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4. Discussion  518 

4.1 Meteorology-chemistry relationships 519 

We further quantify the meteorology-chemistry relationships by conducting the 520 

region-specific evaluation of the meteorological variables. The regional performance for 521 

the major variables is shown in Fig. S9. The regional biases in T2 predictions show high 522 

correlation with the regional biases in MDA8 O3. It indicates that the cold biases in the 523 

Midwest (including region 5) and the warm biases near the Gulf coast (including regions 524 

of 4 and 6) are important factors for the O3 underprediction and overprediction in those 525 

regions, respectively. The O3-temperature relationship was found (S. Sillman and Samson, 526 

1995; Sillman, 1999). O3 is expected to increase with increasing temperature within 527 

specific range of temperature (Bloomer et al., 2009; Shen et al., 2016). The surface 528 

MDA8 O3-temperature relationship was found at approximately 3-6 ppb K-1 in the 529 

eastern US (Rasmussen et al., 2012). According to such relationships, the biases in T2 530 

predictions could explain large portion of the O3 biases. Heavy convective precipitation 531 

and tropical cyclones have large impact in the southeastern US, which covers mainly 532 

regions 4 and 6. Therefore, the performance in precipitation predictions is lower in those 533 

two regions comparing to other regions as we discussed the model performance in 534 

capturing short-term heavy rains during summer seasons in section 3.1. Meanwhile, the 535 

performance in wind predictions in regions 4 and 6 is relatively poor. Such performance 536 

in the meteorological predictions is consistent with the mixed performance in PM2.5 537 
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prediction in regions 4 and 6. The between simulated and observed meteorological 538 

variables, mainly in precipitations and wind, can be attributed to the poor temporal 539 

agreement shown as correlations of predicted PM2.5 in those two regions. 540 

 541 

4.2 Major biases in O3 predictions 542 

Prediction and simulation of O3 in coastal or marine areas are impacted by 543 

halogens chemistry and emissions (Adams and Cox, 2002; Sarwar et al., 2012; Liu et al., 544 

2018), including bromine and iodine chemistry (Foster et al., 2001; Sarwar et al., 2015; 545 

Yang et al., 2020) and oceanic halogen emissions (Watanabe, 2005; Tegtmeier et al., 546 

2015; He et al., 2016). CMAQ v5.0.2 has only simple chlorine chemistry for CB05 547 

mechanisms, and the reduction of O3 by reaction with bromine and iodine is not included 548 

in CMAQ v5.0.2. Iodide-mediated O3 deposition over seawater and detailed marine 549 

halogen chemistry has been found to reduce O3 by 1-4 ppb near the coast (Gantt et al., 550 

2017), suggesting the missing halogen chemistry and O3 deposition processes contribute 551 

to overpredicted O3 in coastal and marine areas seen here. Coastal and marine areas are 552 

also impacted by air-sea interaction processes, which are simply represented in the 553 

current meteorological models without coupling oceanic models (He et al., 2018; Zhang 554 

et al., 2019c,d). For example, coastal O3 mixing ratios are impacted by predicted sea 555 

surface temperatures and land-sea breezes through their influence on chemical reaction 556 

conditions and diffusion processes. As discussed in Section 3.1 and 4.1, the 557 
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GFSv15-CMAQv5.0.2 system has poorer performance in predicting the meteorological 558 

variables in regions of 4 and 6, which could contribute to biases in O3 predictions directly 559 

or indicate missing land-sea breezes and thus missing transport effects in the 560 

GFSv15-CMAQv5.0.2 air quality forecasting system.  561 

In addition to the impact of meteorological biases and missing halogen chemistry 562 

on the O3 overprediction near Gulf coast, the overestimated VOC emission could enhance 563 

the O3 biases. The anthropogenic VOCs emissions continuously decrease from historical 564 

NEIs to 2016 NEI 565 

(http://views.cira.colostate.edu/wiki/wiki/10202/inventory-collaborative-2016v1-emissio566 

ns-modeling-platform). We compare the VOCs emissions between 2016 NEI and the 567 

emissions used in this study. The difference in the elevated source of pt_oilgas are shown 568 

in Fig. S10. The Gulf coast is impacted by the oil and gas sector due to the oil and gas 569 

fields, and the exploration activity near it. By comparing the newer NEI to the current 570 

NEI we used in the system, we found that the overestimation of the VOCs could be one 571 

aspect to the O3 overprediction near the Gulf Coast. Because we only project the SO2 and 572 

NOX from 2005 NEI to 2019 but we do not project the VOCs for the elevated sources. 573 

The monthly VOCs emissions from pt_oilgas sector for July in regions 4 and 6 are 574 

2876.0 tons month-1, while they are 2497.0 tons month-1 in 2016 NEI. The reduction 575 

mainly locates along the coastline, where the significant overprediction takes place. It 576 
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indicates the complicated effect of meteorological biases, missing gas-phase chemistry, 577 

and the overestimation of emissions on the O3 prediction in these regions. 578 

The O3 concentration is underpredicted for the Northeast, Mid-Atlantic, Midwest, 579 

Mountainous states, and the Northwest (mainly corresponding to the regions 1, 3, 5, 8, 580 

and 9) during non-O3 season. Large difference in dry deposition algorithms between 581 

CMAQ v5.0.2 and other common parameterizations was reported (Park et al., 2014; Wu 582 

et al., 2018). Large discrepancy between modeled dry deposition velocity of O3 by 583 

CMAQ v5.0.2 and the observation during winter was shown and attributed to the 584 

deposition to snow surface. Improvement was indicated in revising the treatment of 585 

deposition to snow, vegetation, and bare ground in CMAQ v5.0.2. Lower deposition to 586 

snow was found to improve the consistency between the O3 deposition modeled by 587 

CMAQ v5.0.2 and the observations. Therefore, the dry deposition module in v5.0.2 needs 588 

to be updated and improved for more accurate representation of low-moderate O3 mixing 589 

ratios (Appel et al., 2020). For the cases in this study, the predicted snow cover for the 590 

months of Jan and Apr in winter and spring are shown in Fig. 7a and 7b. The 591 

underpredicted O3 during non-O3 season may be caused by the overestimated O3 592 

deposition to snow in the northern regions, corresponding to the previous regions 1, 3, 5, 593 

8, and 9. The mixed effects of the temperature-O3 relationship discussed above and the 594 

large deposition to snow contribute to the moderate O3 underpredictions. 595 

 596 
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4.3 Major biases in PM2.5 predictions 597 

Major biases in PM2.5 prediction are distinguished for warmer and cooler months 598 

in section 3. To further analyze the underlying causes for varied patterns and performance 599 

on season- and region-specific basis, diurnal evaluations for PM2.5 and chemical 600 

components of PM2.5 during O3 season and non-O3 season are shown in Fig. 8. The 601 

GFSv15-CMAQv5.0.2 has a large seasonal variation in diurnal PM2.5, inconsistent with 602 

the observation. While PM2.5 is underpredicted during daytime in regions 4, 6, 8, and 9 603 

during O3 season, PM2.5 is always overpredicted across the day during non-O3 season 604 

except for region 9. Increased OC, particulate nitrates, soil and unspecified coarse mode 605 

components contribute to most of the increase in predicted total PM2.5. The general cold 606 

biases over CONUS, especially in region 5, could make the GFSv15-CMAQv5.0.2 607 

system predict higher nitrate particulates, leading to larger increase in PM2.5 from O3 608 

season to non-O3 season. Emissions vary from month to month in the year (Fig. S11a). 609 

Larger emissions for NH3, NOx, VOC, primary coarse PM, and primary PM2.5 are in O3 610 

season compared to non-O3 season. Primary organic carbons (POC) emissions are higher 611 

in O3 season. Changes in emissions are not fully consistent with the changes in PM2.5 612 

components, indicating other biases or uncertainty could also contribute to the significant 613 

overprediction during non-O3 season. For example, the implementation of bidirectional 614 

flux of NH3 and the boundary layer mixing processes under more stable condition (during 615 

non-O3 season) in GFSv15-CMAQv5.0.2 system need to be further studied. Pleim et al., 616 
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(2013, 2019) found that the NH3 fluxes and concentrations could be better simulated and 617 

the monthly variations of NH3 concentrations were larger comparing to the raw model by 618 

implementing the bidirectional flux of NH3. The absolute biases for diurnal PM2.5 are 619 

generally larger during nighttime in most of the regions, except for region 9. It is 620 

consistent with the analysis by Appel et al. (2013), which suggested that the efforts of 621 

improving nighttime mixing in CMAQ v5.0 be further needed, further indicating the need 622 

for improvements of CMAQ in predicting dispersion and mixing of air pollutants under 623 

stable boundary layer conditions. The forecast system gives the highest PM predictions at 624 

two peaks during the day: 6 am and 7 pm in O3 season and 7 am and 8 pm in non-O3 625 

season at LST, respectively corresponding to the shifting between daylight saving time 626 

and LST. The two diurnal peaks are caused by the diurnal pattern of emissions (Fig. 627 

S11b). PM are mostly emitted during the daytime of 6 am to 6 pm. With the development 628 

of boundary layer during the daytime, surface PM2.5 concentrations will be reduced by 629 

the diffusion. During the dawn and dusk, the boundary layer transits between stable and 630 

well mixed conditions. The increased emission and secondary production of PM2.5 will be 631 

accumulated within the boundary layer, causing the high peaks during dawn and dusk.  632 

The variation in predicted PM2.5 composition between cooler and warmer months 633 

indicates that major seasonal biases are caused by multiple factors. We introduce the 634 

AQS dataset for evaluation of daily PM2.5 composition to provide additional insight into 635 

the specific reasons. Figure 9 shows the biases of the key PM2.5 composition for the 636 
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cooler month of Jan and warmer month of Jul. While the overall mean biases of PM2.5 637 

composition, including elemental carbon (EC), ammonium (NH4
+), and nitrate (NO3

-) are 638 

within ±0.5 µg m-3 for all months of the year, the major biases in PM2.5 predictions are 639 

mostly contributed by organic carbon (OC), soil components (SOIL), and sulfate (SO4
2-). 640 

The soil components are estimated using the Interagency Monitoring of Protected Visual 641 

Environments (IMPROVE) equation and specific constituents (Appel et al., 2013). 642 

During a cooler month, the significant overprediction in PM2.5 is mainly attributed to the 643 

overprediction in OC and SOIL. During warmer months, the overprediction of SOIL and 644 

sulfate compensate for the overall underprediction in OC in v5.0.2, leading to the 645 

moderate PM2.5 underprediction in the Southeast but slight overprediction in the Midwest, 646 

Mid-Atlantic, and the Northeast. These high PM2.5 SOIL concentrations are consistent in 647 

spatial characteristics with large emissions of anthropogenic primary PM2.5, and primary 648 

coarse PM in the Midwest, Northeast, and the Northwest. The underprediction in PM2.5 649 

OC during summer compensate the overestimation in dust during cooler months, 650 

resulting in the overall biases with an annual NMB of 30.0%.  651 

The large emissions of anthropogenic primary coarse PM, as well as the 652 

wind-blown dust are the major sources for predicted PM2.5 SOIL components. Appel et al. 653 

(2013) indicated CMAQ overpredicted soil components in the eastern United States 654 

partially due to the anthropogenic fugitive dust and wind-blown dust emissions. The 655 

overprediction in PM2.5 soil compositions by our forecast system could be mainly 656 
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attributed to the overestimation of the anthropogenic fugitive dust emission because the 657 

meteorological conditions were not included in processing the anthropogenic fugitive 658 

dust sector. The dust-related components of aluminum, calcium, iron, titanium, silicon, 659 

and coarse mode particles are overestimated in the regions with snow and precipitation, 660 

especially during winter, early spring, and late autumn with snow cover in the north, 661 

which contributes to the PM2.5 overprediction, with more significant temporal-spatial 662 

pattern in the north U.S. during cooler months.  663 

An adjustment of precipitation and snow cover for fugitive dust was implemented 664 

in the operational NAQFC. The dust-related PM emissions will be clean up using a factor 665 

of 0.01 when the snow cover is higher than 25% or the hourly precipitation is higher than 666 

0.1 mm hr-1 before they are used as input for CMAQ v5.0.2 forecast. We conduct a 667 

sensitivity simulation for Jan 2019 using the GFSv15-CMAQv5.0.2 system with the 668 

adjustment implemented in the operational NAQFC. Figure 7c shows the PM2.5 669 

overprediction in the northern regions 1, 2, 5, and 10 during Jan is largely improved 670 

corresponding to the spatial-temporal characteristics of snow cover. The monthly MB and 671 

NMB for Jan improves from 5.5 µg m-3 and 66.9% to 2.1 µg m-3 and 24.0%, respectively. 672 

The improvement is mainly attributed to the decrease in overpredictions in PM2.5 soil 673 

components, with MBs decreased from 3.3 µg m-3 to 1.2 µg m-3 for Jan (Fig. 7d). The 674 

overprediction in the Northeast and Northwest during spring is expected to be improved 675 

by the suppression of the fugitive dust by the snow during early spring. This indicates the 676 
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importance of including the meteorological forecast in processing the emission of 677 

anthropogenic fugitive dust. It should be calculated inline or be adjusted by the 678 

meteorological forecast. 679 

In CMAQ v5.0.2, the primary organic aerosol (POA) is processed as non-volatile. 680 

The emissions of semivolatile and intermediate volatility organic compounds (S/IVOCs) 681 

and their contributions to the secondary organic aerosol (SOA) are not accounted for in 682 

the aerosol module. In the recent versions of CMAQ, two approaches linked to POA 683 

sources have been implemented. One introduces semi-volatile partitioning and gas-phase 684 

oxidation of POA emissions. The other one (called pcSOA) accounts for multiple missing 685 

sources of anthropogenic SOA formation, including potential missing oxidation pathways 686 

and emissions of IVOCs. These two improvements lead to increased organic carbon 687 

concentration in summer but decreased level in winter. The changes vary by season as a 688 

result of differences in volatility (as dictated by temperature and boundary layer height) 689 

and reaction rate between winter and summer. Therefore, the missing S/IVOCs and 690 

related SOA chemistry in v5.0.2 are key reasons for the OC overprediction and 691 

underprediction during cooler and warmer months, respectively.  692 

 693 

5. Conclusion  694 
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In this work, the air quality forecast for the year 2019 predicted by the 695 

offline-coupled GFSv15-CMAQv5.0.2 system is comprehensively evaluated. The 696 

GFSv15-CMAQv5.0.2 system is found to perform well in predicting surface 697 

meteorological variables (temperature, relative humidity, and wind) and O3 but has mixed 698 

performance for PM2.5. Moderate cold biases and wet biases are found in spring season, 699 

especially in March. While the GFSv15-CMAQv5.0.2 system can generally capture the 700 

monthly accumulated precipitation compared to remote sensing and ensemble datasets, 701 

temporal distributions of hourly precipitation show less consistency with in-situ 702 

monitoring data.  703 

MDA8 O3 is slightly overpredicted and underpredicted in ozone and non-O3 704 

seasons, respectively. The significant overprediction near the Gulf Coast is associated 705 

with the missing halogen chemistry, overestimated emission of precursors, and the poorer 706 

performance in meteorological performance, which could be attributed to the missing of 707 

model representation of the air-sea interaction processes. It compensates for 708 

underprediction in the West and Midwest in O3 season for nation-wide metrics. A slight 709 

underprediction is found during non-O3 season, indicating the impact of cold biases of T2 710 

and the overestimated dry deposition to the snow surface. GFSv15-CMAQv5.0.2 has 711 

poorer performance in predicting PM2.5, comparing to the performance for O3. Significant 712 

overpredictions are found in cooler months, especially in winter. The largest 713 

overprediction is shown in the Midwest, the states of Washington, and Oregon, due 714 
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mainly to high concentrations of predicted fine fugitive, coarse mode, and OC 715 

compositions. The lacking suppression of snow cover on anthropogenic fugitive dust 716 

emission and the non-volatile approach for POA emission contribute major portion of the 717 

overprediction in winter. Meanwhile, the forecasting system may be improved through 718 

updating the emissions inventory used (i.e., NEI 2014) to NEI 2016v2 or NEI 2017 which 719 

are more presentative to the year of 2019 in the next development of next-generation 720 

NAQFC.  721 

Categorical evaluation indicates that the GFSv15-CMAQv5.0.2 can capture well 722 

the air quality classification of “Moderate” described by the AQI. However, the 723 

categorical performance is poorer for PM2.5 at the “unhealthy for sensitive groups” 724 

threshold due mainly to the significant overprediction during the cooler months. 725 

Region-specific evaluation further discusses the biases and underlying causes in the 10 726 

USEPA defined regions in CONUS. An update from CMAQ v5.0.2 to v5.3.1 is expected 727 

to alleviate potential errors in missing sources and mechanisms for SOA formation. The 728 

variations of performance in between O3 and non-O3 seasons, as well as during the 729 

daytime and nighttime, indicate further studies need to be conducted to improve boundary 730 

layer mixing processes within GFSv15-CMAQv5.0.2. The varied region-specific 731 

performance indicates that improvements, such as bias corrections, should be considered 732 

individually from region to region in the following development of the next generation 733 

NAQFC. 734 
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We have used bias analyses in this work to identify several areas of weakness in 735 

GFSv15-CMAQv5.0.2 system for further improvement and development of 736 

next-generation NAQFC. The ability of FV3-based GFS in driving the real-time air 737 

quality forecasting is demonstrated. Further studies are still needed for improving the 738 

accuracy in meteorological forecast, the emissions, the aerosol chemistry, and the 739 

boundary layer mixing for the future GFS-FV3-CMAQ system.  740 
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Tables and Figures 

Table 1. Configuration of GFSv15-CMAQv5.0.2 system 

Attribute Model Configuration 

Forecast period Jan.-Dec., 2019 

Domain Continental U.S. 

Resolution Horizontal: 12 km (442×265); Vertical: 35 layers 

Physical Options 

Shortwave/longwave radiation The Rapid Radiative Transfer Method for GCMs  

Planetary boundary layer (PBL) Hybrid eddy-diffusivity mass-flux (EDMF) PBL  

Land surface Noah Land Surface Model (LSM)  

Microphysics A more advanced GFDL microphysics scheme  

Cumulus The Simplified Arakawa-Schubert (SAS) deep convection  

Chemical Options 

Photolysis In-line method (Binkowski et al., 2007) 

Gas-phase chemistry 

The Carbon Bond mechanism version 5 with active chlorine 

chemistry and updated toluene mechanism (CB05tucl) 

(Yarwood et al., 2005; Sarwar et al., 2012) 

Aqueous-phase chemistry AQCHEM (Sarwar et al., 2011) 

Aerosol module 
AERO6 with nonvolatile POA (Carlton et al., 2010; Simon et 

al., 2012; Appel et al., 2013) 

 

Table 2. Performance statistics of meteorological forecasts 

Datasets  CASTNET METAR 

Variable Period 
Mean 

Obs. 

Mean 

Sim. 
MB RMSE 

NMB,

% 

NME,

% 
Corr 

Mean 

Obs. 

Mean 

Sim. 
MB RMSE 

NMB,

% 

NME,

% 
Corr 

T2, °C 

DJF -0.1 -0.5 -0.4 2.6 -588 -2850 0.96 2.7 2.6 -0.1 2.5 -3.1 69.3 0.97 

MAM 9.9 9.4 -0.5 2.4 -5.2 18.2 0.97 12.3 11.9 -0.4 2.3 -3.0 14.0 0.97 

JJA 21.5 21.4 -0.2 2.4 -0.8 8.6 0.93 23.4 23.1 -0.3 2.3 -1.2 7.5 0.93 

SON 11.5 11.3 -0.2 2.6 -2.0 16.1 0.97 13.8 13.8 0.1 2.3 0.4 12.6 0.98 

Annual 10.9 10.6 -0.3 2.5 -3.0 17.0 0.98 13.2 13.0 -0.2 2.3 -1.3 13.1 0.98 

RH2, % 

DJF 69.1 71.9 2.8 14.3 4.0 15.1 0.74 74.1 74.4 0.4 13.3 0.5 13.4 0.76 

MAM 62.7 66.1 3.4 14.2 5.4 16.6 0.82 67.4 70.1 2.7 13.8 4.0 15.5 0.81 

JJA 55.0 53.3 -1.7 12.2 -3.2 16.4 0.89 67.0 67.3 0.3 13.1 0.5 14.8 0.84 

SON 59.0 57.6 -1.4 13.0 -2.4 16.1 0.87 68.7 67.0 -1.7 13.2 -2.5 14.5 0.83 
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Annual 61.4 62.2 0.8 13.5 1.3 16.0 0.85 68.8 69.3 0.4 13.2 0.8 14.4 0.83 

WS10,  

m s-1 

DJF 2.5 3.0 0.5 2.0 18.7 56.7 0.59 3.3 3.7 0.4 2.0 10.8 43.5 0.71 

MAM 2.8 3.4 0.6 2.1 22.2 55.6 0.60 3.6 4.0 0.4 2.0 10.3 42.5 0.71 

JJA 2.4 3.0 0.6 1.9 24.5 60.9 0.51 2.8 3.3 0.5 1.9 17.0 52.6 0.62 

SON 2.6 3.1 0.5 2.0 20.4 58.6 0.57 4.0 4.1 0.2 1.8 4.2 33.1 0.69 

Annual 2.6 3.1 0.6 2.0 21.5 57.9 0.57 3.4 3.7 0.4 1.9 10.7 41.8 0.72 

WD10,  

degree 

DJF 187.2 189.4 2.2 69.4 1.2 26.4 0.81 158.0 164.3 6.4 60.7 4.0 25.5 0.90 

MAM 184.6 186.5 1.9 68.1 1.0 26.1 0.81 159.9 163.6 3.7 60.7 2.3 25.4 0.89 

JJA 186.7 188.8 2.1 73.0 1.1 28.5 0.77 146.8 147.8 1.0 69.9 0.7 33.9 0.86 

SON 181.8 183.9 2.1 71.3 1.1 28.1 0.79 190.9 196.6 5.7 42.1 3.0 14.5 0.92 

Annual 185.0 187.1 2.1 70.5 1.1 27.3 0.80 162.5 166.6 4.1 59.1 2.5 23.9 0.89 

Precip, 

 mm hr-1 

DJF 1.0 0.6 -0.4 1.7 -42.5 86.1 0.26 1.3 0.7 -0.6 3.5 -44.4 77.4 0.15 

MAM 1.1 0.6 -0.6 2.0 -51.1 86.3 0.22 1.8 0.7 -1.0 7.5 -58.6 85.6 0.07 

JJA 2.2 0.5 -1.7 4.7 -77.8 93.9 0.11 2.6 0.7 -1.9 7.6 -74.5 91.6 0.04 

SON 1.3 0.6 -0.7 2.4 -54.4 86.2 0.24 1.8 0.8 -1.0 8.8 -56.4 83.8 0.07 

Annual 1.3 0.6 -0.7 2.5 -55.4 87.9 0.18 1.8 0.7 -1.1 7.0 -59.1 85.0 0.07 

T2: temperature at 2-m; RH2: relative humidity at 2-m; WS10: wind speed at 10-m; WD10: wind direction 

at 10-m; Precip: precipitation; DJF: winter; MAM: spring; JJA: summer; SON: autumn; MB: mean bias; 

RMSE: root mean square error; NMB: normalized mean bias; NME: normalized mean error; Corr: 

correlation coefficient; Obs.: Observation; Sim.: Prediction. 

 

Table 3. Performance statistics of chemical variables against AIRNow dataset 

 MDA8 O3, ppb 24-h avg PM2.5, µg m-3 

Period 
Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr Period 

Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr 

Jan 32.1 32.0 -0.1 7.2 -0.4 17.2 0.58 Jan 8.2 13.8 5.5 11.5 66.9 92.3 0.35 

Feb 36.4 35.5 -0.9 7.8 -2.5 16.7 0.58 Feb 7.9 12.5 4.6 10.0 58.0 81.5 0.53 

Mar 44.9 40.4 -4.5 8.7 -10.0 15.8 0.56 Mar 7.8 11.0 3.2 9.2 41.2 69.0 0.40 

Apr 46.4 43.1 -3.3 7.7 -7.1 13.3 0.62 Apr 6.3 8.0 1.7 6.3 27.9 61.6 0.33 

May 44.1 42.7 -1.4 7.8 -3.3 13.9 0.67 May 6.7 6.9 0.2 4.7 3.3 49.3 0.26 

Jun 45.7 43.9 -1.8 10.9 -4.0 18.3 0.59 Jun 7.1 6.8 -0.3 5.4 -4.2 47.1 0.22 

Jul 44.3 46.6 2.3 9.5 5.2 16.6 0.72 Jul 8.4 8.5 0.1 11.8 1.0 59.8 0.28 

Aug 43.7 46.9 3.2 9.4 7.3 16.4 0.74 Aug 7.2 6.9 -0.3 4.0 -4.7 40.2 0.33 
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Sept 42.5 45.6 3.1 8.0 7.2 14.4 0.79 Sept 7.0 7.6 0.6 4.7 8.5 44.2 0.48 

Oct 37.0 40.4 3.4 7.8 9.3 15.8 0.80 Oct 6.6 9.6 3.0 9.0 44.7 73.2 0.36 

Nov 34.2 35.9 1.8 7.6 5.2 16.5 0.72 Nov 8.9 13.2 4.2 9.8 47.2 72.1 0.48 

Dec 31.7 33.5 1.8 7.8 5.6 18.6 0.68 Dec 8.8 13.9 5.1 10.8 57.9 82.5 0.51 

O3-seas

on 
44.1 45.1 1.0 9.2 2.5 16.0 0.69 

DJF 8.3 13.4 5.1 10.8 61.0 85.5 0.46 

MAM 6.9 8.6 1.7 7.0 24.8 60.4 0.36 

Non 

O3-seas

on 

37.7 37.5 -0.2 7.8 -0.4 16.0 0.72 

JJA 7.6 7.4 -0.2 7.8 -2.5 49.5 0.27 

SON 7.5 10.1 2.6 8.1 34.4 63.8 0.46 

Annual 40.5 40.9 0.4 8.5 1.0 16.0 0.73 Annual 7.6 9.9 2.3 8.5 30.0 65.2 0.41 

MDA8 O3: maximum daily average 8-h ozone; 24-h avg PM2.5: 24-hour average PM2.5. 

 

Figures 

Figure 1. Taylor diagram with variance, Corr, and NMB for meteorological variables (T2, 

RH2, WS10, WD10, and Precip) against CASTNET and METAR dataset 

Figure 2. Spatial distribution of forecasted MDA8, MB, and NMB during O3 and winter 

season. Observation from AIRNow is shown as filled circles in the overlay plots of 

concentrations 

Figure 3. Forecasted seasonal daily PM2.5 by GFSv15-CMAQv5.0.2 overlaid 

observations from AIRNow and MB against observations from AIRNow 

Figure 4. Monthly AOD from MODIS (left), predicted AOD from 

GFSv15-CMAQv5.0.2 (middle), and predicted surface 24-h avg PM2.5 (right) 

Figure 5. Categorical evaluation of MDA8 and 24-h avg PM2.5 
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Figure 6. Annual performance of MDA8 in 10 CONUS regions (a); Taylor Diagram for 

annual performance of MDA8 (b); Annual performance of 24-h avg PM2.5 in 10 CONUS 

regions (c); Taylor Diagram for annual performance of 24-h avg PM2.5. Outliers 

represent regions with NSDs >3.5 (d) 

Figure 7. The predicted average snow cover for (a) Jan and (b) Apr. (c) The difference in 

NMBs by adjusting anthropogenic fugitive dust emission. Positive values stand for 

improvement in biases with NMBs closer to 0. 

Figure 8. Diurnal PM2.5 in: (a) O3 season for regions 1 to 5; (b) Non-O3 season for 

regions 1 to 5; (c) O3 season for regions 6 to 10; (d) Non-O3 season for region 6 to 10. 

Solid curves are observed values and dash curves are predicted values. Average of 

predicted PM2.5 and components of PM2.5 within CONUS in: (e) O3 season, and (f) 

Non-O3 season 

Figure 9. Mean biases in PM2.5 compositions: (a) OC for Jan, (b) OC for Jul, (c) SOIL 

for Jan, (d) SOIL for Jul, (e) sulfate for Jan, and (f) sulfate for Jul 
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Figure 1. Taylor diagram (Taylor, 2001) with Normalized Standardized Deviations 

(NSD), Corr, and NMB for meteorological variables (T2, RH2, WS10, WD10, and 

Precip) against CASTNET and METAR dataset. The REF marker at x-axis represents a 

referred perfect performance. The closer each variable is to the REF marker, the better 

performance the forecast system has for that variable 
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Figure 2. Spatial distribution of forecasted MDA8, MB, and NMB during O3 and non-O3 

season. Observation from AIRNow is shown as filled circles in the overlay plots of 

concentrations 
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Figure 3. Forecasted seasonal daily PM2.5 by GFSv15-CMAQv5.0.2 overlaid 

observations from AIRNow and MB against observations from AIRNow 
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Figure 4. Monthly AOD from MODIS (left), predicted AOD from 

GFSv15-CMAQv5.0.2 (middle), and predicted surface 24-h avg PM2.5 (right) 
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Figure 5. Categorical evaluation of MDA8 and 24-h avg PM2.5: (a) scatter plot of 

predicted and observed MDA8. The scatters are categorized into 4 areas using the 

threshold of 55 ppb for both observation and prediction; (b) scatter plot of predicted and 

observed 24-h avg PM2.5. The scatters are categorized into 4 areas using the threshold of 

12 µg m-3 for both observation and prediction; (c) False Alarm Ratio (FAR) and Hit Rate 

(H) in 4 categories for forecasts of MDA8 and 24-h avg PM2.5.  
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Figure 6. Annual performance of MDA8 in 10 CONUS regions (a); Taylor Diagram for 

annual performance of MDA8 (b); Annual performance of 24-h avg PM2.5 in 10 CONUS 

regions (c); Taylor Diagram for annual performance of 24-h avg PM2.5. Outliers 

represent regions with NSDs >3.5 (d) 
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Figure 7. The predicted average snow cover for (a) Jan and (b) Apr. (c) The difference in 

NMBs of PM2.5 by adjusting PM emission for Jan. Positive values stand for 

improvement in biases with NMBs closer to 0. (d) MBs in PM2.5 soil composition with 

adjustment of PM emission for Jan. 
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Figure 8. Diurnal PM2.5 in: (a) O3 season for regions 1 to 5; (b) Non-O3 season for 

regions 1 to 5; (c) O3 season for regions 6 to 10; (d) Non-O3 season for region 6 to 10. 

Solid curves are observed values and dash curves are predicted values. Average of 

predicted PM2.5 and components of PM2.5 within CONUS in: (e) O3 season, and (f) 

Non-O3 season. 
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Figure 9. Mean biases in PM2.5 compositions: (a) OC for Jan, (b) OC for Jul, (c) SOIL 

for Jan, (d) SOIL for Jul, (e) sulfate for Jan, and (f) sulfate for Jul 

 

 


