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Abstract 22 

As a candidate for Tthe next-generation National Air Quality Forecast Capability 23 

(NAQFC), will use tthe meteorological forecasty from Global Forecast System with the 24 

new Finite Volume Cube-Sphere dynamical core (GFS-FV3) will be applied to drive the 25 

chemical evolution of gases and particles described by the Community Multiscale Air 26 

Quality modelling system version 5.3 (CMAQ v5.3). CMAQ v5.0.2, a historical version 27 

of CMAQ, has been coupled with the North American Mesoscale Forecast System (NAM) 28 

model in the current operational NAQFC. An experimental version of the NAQFC based 29 

on the offline-coupled GFS-FV3 version 15 with CMAQv5.0.2 modeling system 30 

(GFSv15-CMAQv5.0.2), has been developed by the National Oceanic and Atmospheric 31 

Administration (NOAA) to provide real-time air quality forecasts over the contiguous 32 

United States (CONUS) since 2018. In this work, comprehensive region-specific, 33 

time-specific, and categorical evaluations are conducted for meteorological and chemical 34 

forecasts from the offline-coupled GFSv15-CMAQv5.0.2 for the year 2019. The forecast 35 

system shows good overall performance in forecasting meteorological variables with the 36 

annual mean biases of -0.2 °C  for temperature at 2-m, 0.4% for relative humidity at 2-m, 37 

and 0.4 m s-1 for wind speed at 10-m against the METeorological Aerodrome Reports 38 

(METAR) dataset. Larger biases occur in seasonal and monthly mean forecasts, 39 

particularly in spring. Although the monthly accumulated precipitation forecasts show 40 

generally consistent spatial distributions with those from the remote sensing and 41 
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ensemble datasets, moderate-to-large biases exist in hourly precipitation forecasts against 42 

the Clean Air Status and Trends Network (CASTNET) and METAR. While the forecast 43 

system performs well in forecasting ozone (O3) throughout the year and fine particles 44 

with a diameter of 2.5 ɛm or less (PM2.5) for warm months (May-September), it 45 

significantly overpredicts annual-mean concentrations of PM2.5..This is due mainly to the 46 

high predicted concentrations of fine fugitive, and coarse-mode, and nitrate particle 47 

components. Underpredictions in the southeastern U.S. and California during summer are 48 

attributed to missing sources and mechanisms of secondary organic aerosol formation 49 

from biogenic volatile organic compounds (VOCs) and semi- or intermediate-VOCs. This 50 

work demonstrates the ability of FV3-based GFS in driving the air quality forecasting. It 51 

identifies possible underlying causes for systematic region- and time-specific model 52 

biases, which will  provide a scientific basis for further development of the 53 

next-generation NAQFC, in particular, derivation of the science-based bias correction 54 

methods to improve forecasting skill for O3 and PM2.5.  55 

 56 

1. Introduction  57 

Three-dimensional air quality models (3-D AQMs) have been widely applied in 58 

real time air quality forecasting (RT-AQF) since the 1990s in the U.S. (Stein et al., 2000; 59 

McHenry et al., 2004; Zhang et al., 2012a). The developments and applications of the 60 

national air quality forecasting systems based on 3-D AQMs were conducted in the 2000s 61 
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(Kang et al., 2005; Otte et al., 2005; McKeen et al., 2005, 2007, 2009). Since then, 62 

improvements and significant progress have been achieved in RT-AQF through the 63 

further development of AQMs and the use of advanced techniques. For example, more air 64 

pollutants in the products, more detailed gas-phase chemical mechanisms and aerosol 65 

chemistry, and the implementation of chemical data assimilation were available (Zhang et 66 

al., 2012b; Lee et al., 2017). Various AQMs, coupled with meteorological models in 67 

either an online or offline manner, were developed and applied in RT-AQF (e.g., Chuang 68 

et al., 2011; Lee et al., 2011; Ģabkar et al., 2015; Ryan, 2016). The early version of the 69 

National Air Quality Forecast Capability (NAQFC) was jointly developed by the U.S. 70 

National Oceanic and Atmospheric Administration (NOAA) and the U.S. Environmental 71 

Protection Agency (EPA) to provide forecasts of ozone (O3) over the northeastern U.S. 72 

(Eder et al., 2006). Since the first operational version over the contiguous United States 73 

(CONUS) (Eder et al., 2009), the NAQFC has been continuously updated and developed 74 

to provide more forecasting products (including O3, smoke, dust, and particulate matter 75 

with a diameter of 2.5 ɛm or less (PM2.5)) with increasing accuracy (Mathur et al., 2008; 76 

Stajner et al., 2011; Lee et al., 2017).  77 

The forecast skill of a historical NAQFC, which was based on the North 78 

American Mesoscale Forecast System (NAM) model (Black, 1994) and the Community 79 

Multiscale Air Quality Modeling System version 4.6 (CMAQ v4.6), over CONUS during 80 

year 2008 was evaluated by Kang et al. (2010a) for operational O3 and experimental 81 



5 
 

PM2.5 products. Overall, maximum 8-h O3 was slightly overpredicted over the CONUS 82 

during the summer, with the mean bias (MB), normalized mean bias (NMB), and 83 

correlation coefficient (Corr) of 3.2 ppb, 6.8 %, and 0.65, respectively. The performance 84 

of predicted daily mean PM2.5 varied: with an underprediction during the warm season 85 

and an overprediction in the cool season. The MBs and NMBs during warm/cool seasons 86 

were -2.3/4.5 µg m-3 and -19.6%/45.1%, respectively. The current version of the U.S. 87 

NOAAôs operational NAQFC has provided the air quality forecast to the public for O3 88 

and PM2.5 at a horizontal grid resolution of 12 km over CONUS since 2015. It is currently 89 

based on the CMAQ v5.0.2 (released May 2014) (U.S. EPA, 2014) coupled offline with 90 

the NAM model. Daily mean PM2.5 was underpredicted during warm months (May and 91 

July 2014) and overpredicted during a cool month (January 2015) over CONUS still 92 

persist (Lee et al., 2017).  93 

Efforts have been made to reduce the seasonal and region-specific biases in the 94 

historical and current NAQFC. Development and implementation of an analog ensemble 95 

bias correction approach was applied to the operational NAQFC to improve forecast 96 

performance in PM2.5 predictions (Huang et al., 2017). Kang et al. (2008, 2010) 97 

investigated the Kalman Filter (KF) bias-adjustment technique for operational use in the 98 

NAQFC system. The KF bias-adjusted forecasts showed significant improvement in both 99 

O3 and PM2.5 for discrete and categorical evaluations. However, limitations in the 100 

underlying models and the bias correction/adjustment approaches need further 101 



6 
 

improvement. Characterizing the current NAQFC forecasting skill and identifying the 102 

underlying causes for region- and time-specific biases can result in further development 103 

of the NAQFC system and improved pollutant predictions. 104 

As NOAA Environmental Modeling Center (EMC) has transitioned to devote its 105 

full resources towards the development of an ensemble model based on the Finite 106 

Volume Cube-Sphere Dynamical Core (FV3), the NAM has been no longer updated since 107 

March 2017. The FV3 dynamic core will eventually replace all current NOAA National 108 

Centers for Environmental Prediction (NCEP) mesoscale models used for forecasting. 109 

The FV3 dynamical core was implemented in the operational Global Forecast System as 110 

version 15 (GFS v15) in July 2019.  111 

The NOAA National Weather Service (NWS) is currently coordinating an effort 112 

to inline a regional scale meteorological model basing on the same FV3 dynamic core as 113 

that in GFS v15 to be coupled with an atmospheric chemistry model partially based on 114 

CMAQ. The inline system is expected to be the next generation of NAQFC, and to be 115 

implemented a few years in the future. An interim system, offline coupling the recent 116 

CMAQ with FV3-based GFS, is considered as a candidate NAQFC to replace the current 117 

NAM-CMAQ system before the inline system is applied in the operational air quality 118 

forecasting. To support this new development of the interim NAQFC, a prototype of the 119 

offline-coupled GFS v15 with CMAQv5.0.2 (GFSv15-CMAQv5.0.2) has been developed 120 
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and applied by the NOAA for RT-AQF over CONUS since 2018 (Huang et al., 2018, 121 

2019, 2020).  122 

In the next generation NAQFC, the NAM will be replaced by the Finite Volume 123 

Cube-Sphere Dynamical Core (FV3), the dynamical core in Global Forecast System 124 

(GFS). To support this new development, a prototype of the offline-coupled GFS version 125 

15 (v15) with CMAQv5.0.2 (GFSv15-CMAQv5.0.2) has been developed and applied by 126 

the NOAA for RT-AQF over CONUS since 2018 (Huang et al., 2018, 2019, 2020). In 127 

this work, the meteorological and air quality forecasts from the offline-coupled 128 

GFSv15-CMAQv5.0.2 system are comprehensively evaluated for the year of 2019. The 129 

main objectives of this work are to: (1) evaluate the forecast skills of the experimental 130 

prototype of the GFSv15-CMAQv5.0.2 system; (2) identify the major model biases, in 131 

particular, systematic biases and persistent region- and time-specific biases in major 132 

species; (3) investigate underlying causes for the biases to provide a scientific basis for 133 

improving the model representations of chemical processes and developing science-based 134 

bias correction methods for O3 and PM2.5 forecastsinvestigate underlying causes for the 135 

biases to provide a scientific basis for improving the model representations of chemical 136 

processes and developing science-based bias correction methods for O3 and PM2.5 137 

forecasts. This work will support NAQFCôs further development and improvement 138 

through enhancing its forecasting abilities and generating a benchmark for the operational 139 

version of next-generationinterim NAQFC that is being developed by NOAA based on 140 
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the offline-coupled GFS-FV3 v16 with CMAQ v5.3 (NACC-CMAQ) (Campbell et al., 141 

2020). Eventually, the latest version of CMAQ (version 5.3), which has updates in 142 

gas-phase chemistry (Yarwood et al., 2010; Emery et al., 2015; Luecken et al., 2019), 143 

lightning nitric oxide (LNO) production schemes (Kang et al., 2019a, 2019b), and 144 

secondary aerosol formation (in particular, secondary organic aerosol) (e.g., Pye et al., 145 

2013, 2017; Murphy et al., 2017) among others, will be coupled with GFS-FV3 v16 and 146 

be implemented into the interim operational NAQFC. 147 

 148 

2. Model system and evaluation protocols  149 

2.1 Description and configuration of offline-coupled GFSv15-CMAQv5.0.2  150 

FV3 is a dynamical core for atmospheric numerical models developed by the 151 

Geophysical Fluid Dynamics Laboratory (GFDL) (Putman and Lin, 2007). It is a modern 152 

and extended version of the original FV core with a cubed-sphere grid design and more 153 

computationally efficient solvers. It was selected for implementation into the GFS as the 154 

next generation dynamical core in 2016 (Zhang et al., 2019a). The GFS-FV3 v15 (GFS 155 

v15) has been operational since June 2019. The GFS v15 uses the Rapid Radiative 156 

Transfer Method for GCMs (RRTMG) scheme for shortwave/longwave radiation 157 

(Mlawer et al., 1997; Iacono et al., 2000; Clough et al., 2005), the Hybrid 158 

eddy-diffusivity mass-flux (EDMF) scheme for Planetary Boundary Layer (PBL) 159 
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(National Centers for Environmental Prediction, 2019a), the Noah Land Surface Model 160 

(LSM) scheme for land surface option (Chen et al., 1997), the Simplified 161 

Arakawa-Schubert (SAS) deep convection for cumulus parameterization (Arakawa et al., 162 

1974; Grell, 1993), and a more advanced GFDL microphysics scheme for microphysics 163 

(National Centers for Environmental Prediction, 2019b). An interface preprocessor has 164 

been developed by NOAA to interpolate data, transfer coordinates, and convert the GFS 165 

v15 outputs into the data format required by CMAQv5.0.2 (Huang et al., 2018, 2019). 166 

The original outputs from GFS v15, which have a horizontal grid with 13-km resolution 167 

and a Lagrangian vertical coordinate with 64 layers in NEMSIO format, are processed to 168 

Lambert-Conformal Conic projection by PREMAQ, a preprocessor, to recast the 169 

meteorological fields for CMAQ into an Arakawa C-staggering grid (Arakawa and Lamb, 170 

1977) with a 12-km horizontal resolution and 35 vertical layers (Table 1). The first 72 171 

hours in 12:00 UTC forecast cycles from GFS v15 are used to drive the air quality 172 

forecast by the offline-coupled GFSv15-CMAQv5.0.2 system.  173 

CMAQ has been continuously developed by the U.S. EPA since the 1990s (Byun 174 

and Schere, 2006) and has been significantly updated in many atmospheric processes 175 

since then. Chemical boundary conditions for the GFSv15-CMAQv5.0.2 system are 176 

mainly from the global 3-D model of atmospheric chemistry driven by meteorological 177 

input from the Goddard Earth Observing System (GEOS-Chem). The lateral boundary 178 

condition for dust is from the outputs of NEMS GFS Aerosol Component (NGAC) (Lu et 179 
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al., 2016). The area sources from National Emissions Inventory of year 2014 version 2 180 

(NEI 2014v2), point sources from NEI 2005 with projected sulfur dioxide (SO2) and 181 

nitrogen oxide (NOX) to year 2019, and U.S. EPAôs MOVES 2014 mobile sources along 182 

with the biomass burning emission inventory from the Blended Global Biomass Burning 183 

Emissions Product system (GBBEPx) (Zhang et al., 2019b) are processed by Sparse 184 

Matrix Operator Kerner Emissions (SMOKE) model and the PREMAQ for CMAQ. 185 

Biogenic emissions are calculated inline by Biogenic Emission Inventory System (BEIS) 186 

version 3.14 (Schwede et al., 2005). Sea-salt emission is parameterized within CMAQ 187 

v5.0.2. While the deposition velocities are calculated inline, the fertilizer ammonia 188 

bi-directional flux for in-line emissions and deposition velocities is turned off. Detailed 189 

configurations of photolysis, gas-phase chemistry, aqueous chemistry, and aerosol 190 

chemistry for CMAQ v5.0.2 are listed in Table 1.The anthropogenic emissions from area, 191 

mobile, and point sources in National Emissions Inventory of year 2014 version 2 (NEI 192 

2014v2) are processed by the Sparse Matrix Operator Kernel Emissions (SMOKE) 193 

modeling system. The onroad mobile sources include all emissions from motor vehicles 194 

that operate on roadways such as passenger cars, motorcycles, minivans, sport-utility 195 

vehicles, light-duty trucks, heavy-duty trucks, and buses. Onroad mobile source 196 

emissions were processed using emission factors output from the Motor Vehicle 197 

Emissions Simulator (MOVES). SMOKE uses a combination of vehicle activity data, 198 

emission factors from MOVES, meteorology data, and temporal allocation information to 199 
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estimate hourly, gridded onroad emissions. The nonroad, agriculture, anthropogenic 200 

fugitive dust, non-elevated oil-gas, residential wood combustion, and other sectors are 201 

included in the area sources. The sectors of airports, commercial marine vessel (CMV), 202 

electric generating units (pt_egu), point sources related to oil and gas production 203 

(pt_oilgas), point sources that are not EGUs nor related to oil and gas (ptnonipm), and 204 

point sources outside US (pt_other) are included in the point sources. The sulfur dioxide 205 

(SO2) and nitrogen oxide (NOX) from point sources in NEI 2005 are projected to year 206 

2019 following the methods used in Tang et al., (2015, 2017). The biomass burning 207 

emission inventory from the Blended Global Biomass Burning Emissions Product system 208 

(GBBEPx) (Zhang et al., 2019b) is impletemented for the forecast of forest fires. The 209 

GBBEPx fire emission is treated as one type of point source. Its heat flux is derived from 210 

satellite retrieved fire radiative power (FRP) to drive fire plume rise. The GBBEPx is a 211 

near real time fire dataset. The fire emission implemented in the current forecast cycle 212 

comes from the historical fire observation, typically 1-2 day behind. In this system, we 213 

use landuse information to classify fires into forest fire and other burning such as 214 

agriculture burning. We assume only forest fire can last longer than 24 hours. We assume 215 

the forest fire emission will continue on day 2 and beyond. Other types of fires will be 216 

dropped. The plume rise of the point source will be driven by the meteorology and 217 

allocated to the 35 elevated layers in GFSv15-CMAQv5.0.2 system by the PREMAQ 218 

preprocessing system. Biogenic emissions are calculated inline by Biogenic Emission 219 
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Inventory System (BEIS) version 3.14 (Schwede et al., 2005). Sea-salt emission is 220 

parameterized within CMAQ v5.0.2. While the deposition velocities are calculated inline, 221 

the fertilizer ammonia bi-directional flux for in-line emissions and deposition velocities is 222 

turned off. Detailed configurations of photolysis, gas-phase chemistry, aqueous chemistry, 223 

and aerosol chemistry for CMAQ v5.0.2 are listed in Table 1. 224 

2.2 Datasets and evaluation protocols 225 

Comprehensive evaluation of the GFSv15-CMAQv5.0.2 forecasting system is 226 

conducted for both meteorological and chemical variables for year 2019, including 227 

discrete, categorical, and region-specific evaluations. The products in the first 24-hour of 228 

each 72-hour forecast cycle are extracted and combined as a continuous, annual forecast. 229 

The evaluation of meteorological variables is carried out for those results from PREMAQ 230 

in GFSv15-CMAQv5.0.2 system. Detailed information for datasets used in this study is 231 

listed in Table S1. Observed hourly temperature at 2-meters (T2), relative humidity at 232 

2-meters (RH2), precipitation (Precip), wind direction at 10-meters (WD10), and wind 233 

speed at 10-meters (WS10) are obtained from the Clean Air Status and Trends Network 234 

(CASTNET) and the METeorological Aerodrome Reports (METAR) datasets. The 235 

majority of CASTNET sites are suburban and rural sites. Approximately 1900 METAR 236 

sites over CONUS are used in this study (Fig. S1). For evaluation of precipitation, a 237 

threshold of Ó0.1 mm hr-1 is used for valid records because the CASTNET and METAR 238 

have different definitions of 0.0 mm hr-1 values. In CASTNET, the records without any 239 
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precipitation are filled as 0.0 mm hr-1, the same as those records with negligible 240 

precipitation. However, in METAR, the records without any precipitation are left as 241 

blank, the same as an invalid record. The negligible precipitation is recorded as 0.0 mm 242 

hr-1. 243 

The air quality forecasting products are evaluated include hourly O3, hourly PM2.5, 244 

maximum daily 8-hour average O3 (MDA8 O3), and daily average PM2.5 (24-h avg PM2.5) 245 

for chemical forecast. The AIRNow dataset is used for observed hourly O3 and PM2.5. It 246 

is a near real time (NRT) dataset which has preliminary We utilize the Quality 247 

Assurance/Quality Control (QA/QC) information from the AIRNow dataset for to 248 

filtering the invalid records quality control (QC). Many abnormal records are not quality 249 

controlled completely. To filter the abnormal records, the thresholds of 120 ppb and 100 250 

µg m -3 for O3 and PM2.5 are used, respectively. Remote sensing data from the Global 251 

Precipitation Climatology Project (GPCP) and the Climatology­Calibrated Precipitation 252 

Analysis (CCPA) (Hou et al., 2014; Zhu and Luo, 2015) datasets are also used for 253 

evaluation of precipitation. GPCP is a global precipitation dataset with a spatial 254 

resolution of 0.25 degree and a monthly temporal resolution. The CCPA uses linear 255 

regression and downscaling techniques to generate analysis product of precipitation from 256 

two datasets: the National Centers for Environmental Prediction (NCEP) CPC Unified 257 

Global Daily Gauge Analysis and the NCEP EMC Stage IV multi-sensor quantitative 258 

precipitation estimations (QPEs). The CCPA product with a spatial resolution in 0.125 259 
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degree and temporal resolution of an hour is used in this study. Satellite-based Aerosol 260 

Optical Depth (AOD) at 550 nm from Moderate Resolution Imaging Spectroradiometer 261 

(MODIS) Terra platform (Levy et al., 2015) is used for the evaluation of monthly AOD. 262 

The statistic measures such as mean bias, the root mean square error (RMSE), the 263 

normalized mean bias, the normalized mean error (NME), and the correlation coefficient 264 

are used, more details about evaluation protocols are referring to Zhang et al. (2009, 265 

2016). The Taylor diagram (Taylor, 2001), which includes the correlations, NMBs, and 266 

the normalized standard deviations (NSD), is used to present the overall performance 267 

(Wang et al., 2015). The NMBs Ò 15% and NMEs Ò 30% by Zhang et al. (2006) and 268 

NMBs (Ò 15% and Ò 30%), NMEs (Ò 25% and Ò 50%), and Corr (>0.5 and >0.4) for 269 

MDA8 O3 and 24-h PM2.5, respectively, by Emery et al. (2017) are considered as 270 

performance criteria. Monthly, seasonal, and annual statistics and analysis are included. 271 

Seasonal analysis for O3 is separated into O3-season (May-September) and non-O3ozone 272 

season (January-April and October-December). Analysis for ten CONUS regions, defined 273 

by U.S. EPA (www.epa.gov/aboutepa), are included and listed in Fig. S1c.. 274 

The metrics of False Alarm Ratio (FAR) and the Hit Rate (H) are used (Kang et 275 

al., 2005; Barnes et al., 2009) for categorical evaluation. Observed and forecasted MDA8 276 

O3 and 24-h avg PM2.5 are divided into four classes based on whether the predicted and/or 277 

observed data fall above or below the AQI thresholds: (a) observed values Ò thresholds 278 

and predicted values > thresholds; (b) observed and predicted values > thresholds; (c) 279 
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observed and predicted values Ò thresholds; (d) observed values > thresholds and 280 

predicted values Ò thresholds. The FAR and H are defined in Eq. (1) and Eq. (2):  281 

      (1) 282 

        (2). 283 

 284 

 285 

3.  Evaluation of model forecast skills 286 

3.1 Evaluation of meteorological forecasts 287 

Discrete performance evaluation is conducted for post-processed meteorological 288 

fields from the GFSv15-CMAQv5.0.2 system (Table 2). The GFS v15 can predict well 289 

the boundary layer meteorological variables. It has overall cold biases and wet biases for 290 

annual T2 and RH2 in 2019, respectively. It also overpredicts WS10, and underpredicts 291 

hourly precipitation. Despite CASTNET siting being slightly different from that of 292 

METAR, the annual and most of the seasonal performance for the model show similar 293 

pattern in terms of bias for both the CASTNET and METAR networks. Mean biases of 294 

T2 are mostly within ±0.5 degree Celsius except those in February and March against 295 

CASTNET (Table S2). Underprediction is generally larger against CASTNET than 296 

METAR. For spatial distribution of MB for seasonal T2 against METAR (Fig. S21), cold 297 
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biases are mainly found in the Midwest and West U.S. where most of the CASTNET sites 298 

are located. GFS v15 usually underpredicts T2 in West Coast, the Mountain States, and 299 

the Midwest. Overpredictions of T2 in the states of Kansas, Oklahoma, the areas near the 300 

East Coast, and the Gulf Coast offset some underpredictions, resulting in smaller mean 301 

biases but similar RMSE for the model against METAR compared to that against 302 

CASTNET. The difference between observed T2 from the two datasets is larger in cooler 303 

months than warmer months. The largest underpredictions occur in the spring (MAM) 304 

season. In general, GFS v15 underpredicts T2 for both CASTNET and METAR, 305 

consistent with cold biases found in other studies using GFS v15 (e.g., Yang, 2019). Such 306 

underpredictions will affect chemical forecasts, especially the forecast of O3. Consistent 307 

with the overall underpredictions of T2, GFS v15 overpredicts RH2 in general. The 308 

largest overprediction is found in spring (MBs of 3.4% and 2.7% with CASTNET and 309 

METAR, respectively), corresponding to the largest underprediction of T2 in spring 310 

(MBs of -0.5 °C and -0.4 °C  with CASTNET and METAR, respectively). GFS v15 311 

shows moderately good performance predicting wind. The annual MB and NMB of 312 

WS10 against METAR are 0.4 m s-1 and 10.7 %, respectively. A larger overprediction of 313 

WS10 is found with CASTNET than other datasets (Zhang et al., 2016). 314 

GFSv15-CMAQv5.0.2 also gives higher overpredictions for CASTNET compared to 315 

METAR. The largest biases in wind speed are found in summer. GFSv15-CMAQv5.0.2 316 
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gives the largest cold biases, wet biases in spring, indicating the necessity of improving 317 

model performance in such seasons in future GFS-FV3 development. 318 

By adopting the threshold of Ó0.1 mm hr-1, performance against the CASTNET 319 

and METAR show similar results: a large underprediction in hourly precipitation. 320 

Predicted monthly accumulated precipitation (Fig. S2) shows consistency in spatial 321 

distribution with observations from CCPA (Fig. S3) and GPCP (Fig. S4S3). The high 322 

precipitation in the Southeast are captured well in spring while the high precipitation in 323 

the Midwest and South are captured well in other seasons. It indicates that 324 

GFSv15-CMAQv5.0.2 has good performance in capturing the spatial distributions of 325 

accumulated precipitation but has poor performance in predicting hourly precipitation. 326 

The precipitation from the original FV3 outputs are recorded as 6-h accumulated 327 

precipitations. Artificial errors were introduced to the forecast by an issue in precipitation 328 

preprocessing during the early stage development of the GFSv15-CMAQv5.0.2 system. 329 

The precipitation at first hour of the 6-h cycle would be dropped occasionally. We 330 

corrected this issue and the hourly precipitation still shows large underprediction against 331 

surface monitoring networks (Figure S4). It indicates the difficulty for the forecast system 332 

in capturing the temporal precipitation, especially during summer. During the summer 333 

season, the discrepancy in capturing the short-term heavy rainfall worsens the model 334 

performance in predicting hourly precipitation. Besides, we use the threshold of 0.1 mm 335 

hr-1 to filter the valid records. If the model predicts precipitation that did not occur, the 336 
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record will be excluded into the statistics calculation. However, all the predicted 337 

precipitation is counted in the spatial evaluation against the ensemble datasets of GPCP 338 

and CCPA. Therefore, the spatial performance of monthly accumulated precipitation 339 

shows better agreement than its of hourly statistics. 340 

In the current version of the experimental GFSv15-CMAQv5.0.2 system, the 341 

precipitation from original GFS v15 output is artificially spread out over time during the 342 

preprocessing by the interface preprocessor due to the interpolation using a temporal 343 

allocation algorithm. Short rains are interpolated into adjacent time steps (Fig. S5). Such 344 

an algorithm leads the model and measurements being more consistent for monthly 345 

accumulated precipitation than for discrete hourly precipitation from GFS v15 (which 346 

will be resolved by NOAA in the next version of NAQFC based on the GFSv16-CMAQ 347 

forecasting system).  348 

An overall comparison of performance with CASTNET and METAR datasets is 349 

performed using a Taylor diagram (Fig. 21). The normalized standardized deviations 350 

(NSDs), Corrs, and NMBs are considered. The NSDs are ratios of variance of predicted 351 

values to variance of observed values, following the equations by Wang et al. (2015). The 352 

NSDs represent the amplitude of variability. With the NSDs closer to 1, the predicted 353 

values have closer variance as the observed values. Consistent with other analysis in this 354 

section, larger biases and lower correlation in model wind speed and wind direction are 355 

found for CASTNET compared to METAR. The amplitude of variability of WS10 356 
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against CASTNET is overpredicted (with the NSD larger than 1), while it is 357 

underpredicted against METAR. Because of the post-processing smearing of hourly 358 

precipitation, the variance of predicted precipitation is smaller than the observed one, 359 

leading to very small NSDs for precipitation. The location of the T2 and RH2 points near 360 

the REF marker in the Taylor diagram indicates that the GFSv15-CMAQv5.0.2 is 361 

capturing the magnitude and variability of these variables well. 362 

 363 

3.2 Evaluation of Overall performance of chemical forecast over the CONUS 364 

Performance of chemical forecasts (i.e. O3 and PM2.5) are evaluated on monthly, 365 

seasonal, and annual timescales for the studied period of 2019. Performance of the 366 

MDA8 O3 and the 24-h average PM2.5 (24-h avg PM2.5) are considered as the primary 367 

objectives. Categorical performance evaluations for MDA8 O3 and 24-h avg PM2.5 are 368 

also conducted. Table 3 shows the discrete statistics of predicted MDA8 O3 and 24-h avg 369 

PM2.5 against AIRNow. 370 

The GFSv15-CMAQv5.0.2 has good performance for MDA8 O3 on a seasonal 371 

and annual basis with MBs Ò ±1 .0 ppb, NMB Ò 2.5 %, and NME Ò 20%. The monthly 372 

NMBs/NMEs are within ±15 %/25 %, respectively. Moderate Slight overpredictions and 373 

underpredictions are found in both seasons with MB of 0.91.0 and -0.29 ppb, respectively. 374 

The largest underprediction is found in spring months, especially in March. 375 
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Underprediction of MDA8 O3 in spring months is consistent with the largest 376 

underprediction of T2 in spring. The ozone temperature relationship was found and 377 

studied by previous researches (S. Sillman and Samson, 1995; Sillman, 1999). O3 is 378 

expected to increase with increasing temperature within specific range of temperature 379 

(Bloomer et al., 2009; Shen et al., 2016). It indicates biases in predicted T2 could be one 380 

of the reasons for the corresponding biases in O3 prediction. Predicted MDA8 O3 is lower 381 

than observed values in major parts of the Midwest and West regions during the O3 382 

season (Fig. 3 2and S7), which is consistent with underprediction of T2 in summer. But 383 

GFSv15-CMAQv5.0.2 gives very high O3 in the southeastern U.S., especially in areas 384 

near the Gulf Coast. Such overpredictions compensate for moderate underpredictions in 385 

Midwest and West, causing an overall overprediction in overall CONUS. In the non-O3 386 

season, GFSv15-CMAQv5.0.2 can forecast well the spatial variations of MDA8 O3 with 387 

overall underpredictions in the Northeast.Prediction and simulation of O3 in coastal or 388 

marine areas are impacted by halogens chemistry and emissions (Adams and Cox, 2002; 389 

Sarwar et al., 2012; Liu et al., 2018), including bromine and iodine chemistry (Foster et 390 

al., 2001; Sarwar et al., 2015; Yang et al., 2020) and oceanic halogen emissions 391 

(Watanabe, 2005; Tegtmeier et al., 2015; He et al., 2016). CMAQ v5.0.2 has only simple 392 

chlorine chemistry for CB05 mechanisms, and the reduction of O3 by reaction with 393 

bromine and iodine is not included in CMAQ v5.0.2. Iodide-mediated O3 deposition over 394 

seawater and detailed marine halogen chemistry has been found to reduce O3 by 1-4 ppb 395 
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near the coast (Gantt et al., 2017), suggesting the missing halogen chemistry and O3 396 

deposition processes contribute to overpredicted O3 in coastal and marine areas seen here. 397 

Coastal and marine areas are also impacted by air-sea interaction processes, which are 398 

simply represented in the current meteorological models without coupling oceanic 399 

models (He et al., 2018; Zhang et al., 2019c,d). For example, coastal O3 mixing ratios are 400 

impacted by predicted sea surface temperatures and land-sea breezes through their 401 

influence on chemical reaction conditions and diffusion processes. As discussed in 402 

Section 3.1, T2 is moderately overestimated near the Gulf Coast during summer, which 403 

could contribute to biases in O3 predictions directly or indicate missing land-sea breezes 404 

and thus missing transport effects in the GFSv15-CMAQv5.0.2 air quality forecasting 405 

system. In the non-O3 season, GFSv15-CMAQv5.0.2 can forecast well the spatial 406 

variations of MDA8 O3 with overall underpredictions in the Northeast. 407 

Unlike the good performance for O3, GFSv15-CMAQv5.0.2 gives significant 408 

overpredictions for 24-h avg PM2.5 with annual MB, NMB, and NME of 2.2 µg m-3, 409 

29.0%, and 65.3%, respectively (Table 3). The MBs and NMBs range from -0.2 µg m-3 to 410 

5.0 µg m-3, and -2.6 % to 59.7 % across the four seasons. With the exception of 411 

California and the Southeast, predicted 24-h avg PM2.5 shows overprediction during most 412 

of the year in spring, autumn, and winter (Fig. 43). Moderate underpredictions of PM2.5 413 

are found in California during spring, autumn, and summer, and are found in the 414 

Southeast during summer. Using the historical emission inventories from NEI 2005 and 415 
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NEI 2014 instead of the latest version of NEI 2017 is one of the reasons for the 416 

overpredictions of PM2.5 concentrations in 2019. The significant overprediction mainly 417 

occur in the northern regions during cooler months, indicating it is underlying with 418 

systematical biases. The annual emission of primary PM2.5 and coarse mode PM (PMC) 419 

are shown in Fig. S5. As an important surrogate for the fugitive dust, the spatial 420 

distribution of large PMC emission is associated with the regions which have the 421 

significant overprediction in cooler months. In reality, the meteorological conditions 422 

could largely impact the amount and characteristics of anthropogenic fugitive dust. For 423 

example, the snow cover and the soil moisture are important factors in calculating the 424 

dust emissions in SMOKE. However, the anthropogenic fugitive dust implemented in this 425 

GFSv15-CMAQv5.0.2 system was not adjusted by the precipitation and snow cover. It 426 

will lead to a significant overestimation in the anthropogenic dust emission. The impact 427 

of the meteorological factor on anthropogenic fugitive dust emission and the PM2.5 428 

prediction will be further discussed in discussion section 4.  429 

Moderate underpredictions of PM2.5 are found in California in spring, autumn, and 430 

summer. Murphy et al. (2017) found that secondary organic aerosols (SOA) generated 431 

from anthropogenic combustion emissions were important missing PM sources in 432 

California prior to CMAQ v5.2. Higher predicted PM2.5, typically SOA, in California is 433 

expected in the future using GFS-FV3-CMAQv5.3. The largest underpredictions of PM2.5 434 

occur in the Southeast in summer. Biogenic volatile organic compounds (BVOCs) and 435 
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biogenic SOA (BSOA) are most active in Southeast region in summer. Many missing 436 

sources and mechanisms for SOA formation from BVOCs have been identified in recent 437 

years (Pye et al., 2013, 2015, 2017; Xu et al., 2018) and have resulted in significant 438 

improvements in predicting SOA in the Southeast using CMAQ v5.1 through v5.3. 439 

Anthropogenic emissions and aerosol inorganic compounds were found to have impacts 440 

on BSOA (Carlton et al., 2018; Pye et al., 2018, 2019). Such interactions and 441 

mechanisms are not represented sufficiently in CMAQ v5.0.2, further enhancing the 442 

biases in predicted PM2.5 in the Southeast.  In general, updating NAQFC with CMAQ 443 

v5.3 is expected to reduce the biases in California and the Southeast. Evaluation of 444 

predicted AOD against observations from MODIS is shown in Fig. 4. High predicted 445 

AOD in the Midwest during cooler months show consistency with MODIS and 446 

correspond to high surface PM2.5 predictions. High predicted AOD are missing in 447 

California, corresponding to underprediction of surface PM2.5 in California. In summer 448 

months, AOD is largely underpredicted in California and the Southeast, which may be 449 

caused by the previously mentioned missing sources of SOA. 450 

 451 

3.3 Categorical Evaluation 452 

Categorical evaluation is conducted to quantify the accuracy of the 453 

GFSv15-CMAQv5.0.2 system in predicting events in which the air pollutants exceed 454 

moderate or unhealthy categories for the U.S. air quality index (AQI) (www.airnow.gov). 455 
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The scatter plots for predicted and observed MDA8 O3 and 24-h avg PM2.5 are shown in 456 

Fig. 5a and Fig. 5b, respectively. The metrics of False Alarm Ratio (FAR) and the Hit 457 

Rate (H) are used (Kang et al., 2005; Barnes et al., 2009). The scatter plots for predicted 458 

and observed MDA8 O3 and 24-h avg PM2.5 are shown in Fig. 5a and Fig. 5b, 459 

respectively. The plots are divided into four areas based on whether the predicted and/or 460 

observed data fall above or below the AQI thresholds: (a) observed values Ò thresholds 461 

and predicted values > thresholds; (b) observed and predicted values > thresholds; (c) 462 

observed and predicted values Ò thresholds; (d) observed values > thresholds and 463 

predicted values Ò thresholds. The FAR and H are defined in Eq. (1) and Eq. (2):  464 

      (1) 465 

        (2). 466 

Numbers of the scatters in the four areas (a) to (d) are indicated in the Eqs. (1) and 467 

(2) in section 2.2equations. The higher the FAR is, the more GFSv15-CMAQv5.0.2 468 

overpredicts the AQI leading to false air quality warnings. The higher the H is, 469 

exceedances are more successfully captured by the GFSv15-CMAQv5.0.2 system. In this 470 

study, the thresholds for two categories of ñModerateò and ñUnhealthy for Sensitive 471 

Groupsò are considered. Since 2018, they are defined as 55 ppb and 70 ppb for MDA8 O3 472 

and 12 µg m-3 and 35.5 µg m -3 for 24-h avg PM2.5. For comparison with previous studies, 473 

the historical thresholds are also included into the evaluation: 60 ppb and 75 ppb for 474 
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MDA8 O3 and 15 µg m-3 and 35 µg m-3 for 24-h avg PM2.5. The metrics in four 475 

categories, corresponding to four thresholds, are shown in Fig. 5c. Categorical 476 

performance under stricter AQI standards is better than under historical standards. For 477 

example, the FAR decreases from 4748.8 4 % to 41.1 4 %, and the H increases from 478 

4042.3 7 % to 4345.9 8 % with the ñModerateò thresholds change from 60 ppb to 55 ppb. 479 

It could be due to the better performance of the forecast system for values closer to the 480 

annual average level (~40 ppb). The scatters are more discrete for extreme values (Fig. 481 

5a). When the thresholds of MDA8 O3 are closer to the average level, the categorical 482 

performance increases. The categorical performance of GFSv15-CMAQv5.0.2 in 483 

predicting MDA8 O3 is close to the performance of the previous NAQFC (Kang et al., 484 

2010). Similar improvement in the FAR and H for predicting categorical 24-h avg PM2.5 485 

can be found when the threshold changes from 15 µg m-3 to 12 µg m-3: the FAR 486 

decreases from 79.780.1 % to 70.31 %, and the H increases from 51.952.8 % to 57.0 6 %. 487 

However, the FAR is high (over 90%) and the H is much lower under the threshold of 488 

35.5 µg m-3. It is because most of the false alarms occur when observed 24-h avg PM2.5 489 

are lower than 20 µg m-3 and the predicted values are higher than 20 µg m-3
 (Fig. 5b). It 490 

shows the poorer performance in correctly capturing the category of ñUnhealthy for 491 

Sensitive Groupsò due to the significant overprediction of PM2.5 in cooler months. 492 

Major RT-AQF systems over the world were comprehensively reviewed in 493 

(Zhang et al., 2012a, 2012b). Here we include a comparison with the more recent air 494 
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quality forecasting studies The overview of assessment studies of the other air quality 495 

forecasting studies from Canada (Moran et al., 2018; Russell et al., 2019), Europe 496 

(Struzewska et al., 2016; DôAllura et al., 2018; Podrascanin, 2019; Stortini et al., 2020), 497 

East Asia (Lyu et al., 2017; Zhou et al., 2017; Peng et al., 2018; Ha et al., 2020), and 498 

CONUS (Kang et al., 2010; Zhang et al., 2016; Lee et al., 2017). Table S3 summarizes 499 

air quality forecasting skills reported in the literature along with that from this work. For 500 

those studies with data assimilation in air quality forecasting, the performance from the 501 

raw results without data assimilation are presented. The performance in predicting O3 and 502 

PM vary largely between model systems. The discrete and categorical performance in O3 503 

prediction is not significantly better than that in PM prediction. O3 tends to be slightly 504 

overpredicted in an annual base or for the warmer months. The annual NMB and Corr for 505 

O3 over the North America are 1.4% and 0.76 for 2010 in Moran et al. (2018), while they 506 

are 1.0% and 0.73 in this study. However, the performance in PM2.5 prediction varies 507 

largely from our study. The PM2.5 for warmer months were moderately overpredicted in 508 

Russel et al. (2019), with the MBs ranging from 3.2 to 5.5 µg m-3. The categorical 509 

performance of GFSv15-CMAQv5.0.2 in predicting MDA8 O3 is similar with that of the 510 

previous NAQFC (Kang et al., 2010), in which the FAR and H are ~68 % and ~31% for 511 

ñUnhealthy for Sensitive Groupsò, and the H is ~47% for ñModerateò category, 512 

respectively. The H for PM2.5 also decreased largely from ~46% for ñModerateò to ~21% 513 

for ñUnhealthy for Sensitive Groupsò category, and the FAR was over 90% for the 514 
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ñUnhealthy for Sensitive Groupsò category in Kang et al. (2010). The overpredicted 515 

PM2.5 was also found when using the historical 2005 NEI in forecast for Jan 2015 (Lee et 516 

al., 2017). The performance was improved by updates of 2011 NEI and real-time dust and 517 

wild fire emissions. It indicates the needs of improving our emission inventory. As for the 518 

categorical performance in regions other than CONUS, the air quality standards vary 519 

(Oliveri Conti et al., 2017). For example, National Ambient Air Quality Standards 520 

(NAAQSs), the Ambient Air Quality and Cleaner Air for Europe (CAFE) Directive 521 

(2008/50/EC), and the national ambient air quality standard (GB 3095-2012) are set up 522 

by U.S., Europe, and China, respectively. Metrics also vary between studies. The primary 523 

forecasting products are O3 and PM10 from some forecasting systems instead of O3 and 524 

PM2.5 in this study. The threshold for categorical evaluation of O3 used in DôAllura et al 525 

(2018) was 83.0 µg m-3. The applied metrics of the False Alarm Ratio and Probability of 526 

Detection (POD) were defined the same as the FAR and H used in our study. The FAR 527 

and POD were 36.14% and 71.16%, respectively. The categorical evaluation of PM2.5 in 528 

Ha et al. (2020) was applied for four categories: (1) 0-15 µg m -3, (2) 16-50 µg m -3, (3) 529 

51-100 µg m -3, and (4) >100 µg m-3. The overall FAR and Detection Rate for four 530 

categories are 59.0% and 36.1%, respectively. Although the metrics of FAR and 531 

Detection Rate were defined for four categories, rather than every single category as for 532 

this study, the categorical performance is comparable with our results. In general, the 533 

discrete and categorical performance of O3 forecast in this study is comparable that of the 534 
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air quality forecasting systems in many regions of the world. However, the PM forecasts 535 

vary largely between studies. While our GFSv15-CMAQv5.0.2 system shows consistent 536 

performance with the systems covering CONUS, the high FAR and low H for ñUnhealthy 537 

for Sensitive Groupsò category with higher thresholds indicate that the categorical 538 

performance could be further improved by addressing the significant overprediction 539 

during cooler months in this study. 540 

 541 

Evaluation of predicted AOD against observations from MODIS is shown in Fig. 542 

6. High predicted AOD in the Midwest during cooler months show consistency with 543 

MODIS and correspond to high surface PM2.5 predictions. High predicted AOD are 544 

missing in California, corresponding to underprediction of surface PM2.5 in California. In 545 

summer months, AOD is largely underpredicted in California and the Southeast region, 546 

which may be caused by the previously mentioned missing sources of SOA.  547 

To further analyze the major source for spatial and temporal biases in predicted 548 

PM2.5, key chemical components of PM2.5 in January, July, and August are depicted in 549 

Fig. 7. Extremely high particulate sulfate and organic carbon, generated by large wildfires, 550 

are carried in from the north boundary in July. The forecast spatial pattern agrees well 551 

with the observed AOD in July. High concentrations of PM2.5 associated with soil 552 

components, unspecified coarse mode components, and high particulate NO3
-
 553 

concentrations are major contributors to the high PM2.5 in the Midwest. The soil 554 

Formatted: Font color: Red

Formatted: Indent: First line:  1.25 cm



29 
 

components are estimated using the Interagency Monitoring of Protected Visual 555 

Environments (IMPROVE) equation and specific constituents (Appel et al., 2013). These 556 

high concentrations are caused by large emissions of anthropogenic primary PM2.5, 557 

primary coarse PM, ammonia (NH3), and NOx in the Midwest (Fig. S6). The large 558 

emissions of anthropogenic primary course PM, as well as the wind-blown dust are the 559 

major sources for soil components and unspecified coarse mode components. Appel et al. 560 

(2013) also indicated CMAQ overpredicts soil components, sources of which include 561 

fugitive and wind-blown dust, in the eastern United States.  562 

 563 

3.3 4 Region-specific evaluation 564 

As discussed in section 3.2, biases in predicted O3 and PM2.5 vary from region to 565 

region. To further analyze the region-specific performance of the GFSv15-CMAQv5.0.2 566 

system, evaluation for 10 regions within CONUS is conducted. By identifying the 567 

detailed characteristics of region-specific biases and indicating the underlying causes for 568 

such biases, this section aims to help the NAQFC to improve its forecast ability for 569 

specific regions. A science-based bias correction method will be developed for the 570 

operational GFS-FV3-CMAQ system in the future. This section can also contribute to 571 

hypotheses that may serve as a scientific basis for future bias correction methods. 572 
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Figureure 8 6 shows the annual model performance for MDA8 O3 and 24-h avg 573 

PM2.5 in the 10 CONUS regions. In section 3.2, a slight underprediction of MDA8 O3 on 574 

annual basis was found over the CONUS. MDA8 O3 is underpredicted in most of the 575 

regions except regions 2, 4, and 6 (Fig. 8a6a). The overpredictions in regions 4 and 6 are 576 

mostly from the large biases near the coast area during O3 season. Correlations between 577 

predictions and observations in most of the regions are higher than 0.6, except for 0.55 in 578 

region 4 and 0.50 in region 7. Poor performance in regions 4 and 7 is illustrated by the 579 

Taylor Diagram (Fig. 8b6b). Small Corr and NSD, result in the markers of regions 4 and 580 

7 laying farthest from the reference point. The amplitude of variability of the predicted 581 

MDA8 O3 are smaller than observed values in all the regions, especially in regions 4 and 582 

7. The performance in region 2 is the best, with smallest MB/NMB, highest Corr, and 583 

similar variability in predictions and observations. The time series of the MDA8 O3 for 584 

the 10 regions during 2019 is shown in Fig. S7S6. Regions 1, 2, 4, and 6 show different 585 

results for the O3 season and non-O3 season: GFSv15-CMAQv5.0.2 tends to overpredict 586 

MDA8 O3 during the O3 season and underpredicts during the non-O3 season. The 587 

underprediction during spring months, which is indicated in section 3.2, can be also 588 

found in most of the regions with obvious gaps between observed and predicted curves in 589 

March and April . The lowest O3 predictions occur at 5 am local standard time (LST) in 590 

most of the regions (Fig. S8S7). For regions 4 and 6, significant overprediction occurs not 591 

only during the O3 season for MDA8 O3 (which mainly occurs during the daytime) but 592 
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also during the nighttime. During the non-O3 season, the biases in predicting MDA8 O3 593 

for regions 4 and 6 are small and consistent with good daytime predictions. However, O3 594 

is still overpredicted during the nighttime in these regions, associated with the collapse of 595 

the boundary layer and difficulty in simulating its time and magnitude (Hu et al., 2013; 596 

Cuchiara et al., 2014; Pleim et al., 2016). 597 

Consistent with the analysis in section 3.2, PM2.5 is significantly overpredicted in 598 

most of the regions except in regions 4, 6, and 9 (Fig. 8c6c). The underprediction during 599 

warmer months, likely due to missing sources and mechanisms for BSOA, compensate 600 

for the annual biases in regions 4 and 6, leading to smaller MBs/NMBs but low 601 

correlations in these regions. The variability in predictions is much larger than in 602 

observations, with the NSDs >1 for all regions (Fig. 8d6d). The forecast system has best 603 

performance in region 9 with an NSD of 1.2, an NMB of -12.0 %, and a Corr of 0.40.. As 604 

discussed in section 3.2, the performance of predicted PM2.5 in region 9 is expected to be 605 

further improved with the updates in CMAQ v5.3, specifically the representation of 606 

anthropogenic SOA. 607 

 FigureFigure S89 shows the time series of 24-h avg PM2.5 in the 10 CONUS 608 

regions. The gaps between observed and predicted curves are large in cooler months, but 609 

the GFSv15-CMAQv5.0.2 system has relatively good performance in warmer months for 610 

most of the regions. Less overprediction is found in regions 6, 8, and 9 during cooler 611 

months, and those regions generally show the best performance (see Taylor Diagram). 612 
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The different biases across the regions further indicate that multiple factors likely 613 

contribute to them. To further analyze the underlying causes for varied patterns and 614 

performance on season- and region-specific basis, diurnal evaluations for PM2.5 and 615 

chemical components of PM2.5 during O3 season and non-O3 season are shown in Fig. 9. 616 

The GFSv15-CMAQv5.0.2 has a large seasonal variation in diurnal PM2.5, inconsistent 617 

with the observation. While PM2.5 is underpredicted during daytime in regions 4, 6, 8, 618 

and 9 during O3 season, PM2.5 is always overpredicted across the day during non-O3 619 

season except for region 9. Increased OC, particulate nitrates, soil and unspecified coarse 620 

mode components contribute to most of the increase in predicted total PM2.5. The general 621 

cold biases over CONUS, especially in region 5, could make the GFSv15-CMAQv5.0.2 622 

system predict higher nitrate particulates, leading to larger increase in PM2.5 from O3 623 

season to non-O3 season. Emissions vary from month to month in the year (Fig. S10). 624 

Larger emissions for NH3, NOx, VOC, primary coarse PM, and primary PM2.5 are in O3 625 

season compared to non-O3 season. Primary organic carbons (POC) emissions are higher 626 

in O3 season. Changes in emissions are not fully consistent with the changes in PM2.5 627 

components, indicating other biases or uncertainty could also contribute to the significant 628 

overprediction during non-O3 season. For example, the implementation of bidirectional 629 

flux of NH3 and the boundary layer mixing processes under more stable condition (during 630 

non-O3 season) in GFSv15-CMAQv5.0.2 system need to be further studied. Pleim et al., 631 

(2013, 2019) found that the NH3 fluxes and concentrations could be better simulated and 632 
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the monthly variations of NH3 concentrations were larger comparing to the raw model by 633 

implementing the bidirectional flux of NH3. The absolute biases for diurnal PM2.5 are 634 

generally larger during nighttime in most of the regions, except for region 9. It is 635 

consistent with the analysis by Appel et al. (2013), which suggested that the efforts of 636 

improving nighttime mixing in CMAQ v5.0 be further needed, further indicating the need 637 

for improvements of CMAQ in predicting dispersion and mixing of air pollutants under 638 

stable boundary layer conditions.  639 

 640 

4. Discussion  641 

4.1 Meteorology-chemistry relationships 642 

We further quantify the meteorology-chemistry relationships by conducting the 643 

region-specific evaluation of the meteorological variables. The regional performance for 644 

the major variables is shown in Fig. S9. The regional biases in T2 predictions show high 645 

correlation with the regional biases in MDA8 O3. It indicates that the cold biases in the 646 

Midwest (including region 5) and the warm biases near the Gulf coast (including regions 647 

of 4 and 6) are important factors for the O3 underprediction and overprediction in those 648 

regions, respectively. The O3-temperature relationship was found (S. Sillman and Samson, 649 

1995; Sillman, 1999). O3 is expected to increase with increasing temperature within 650 

specific range of temperature (Bloomer et al., 2009; Shen et al., 2016). The surface 651 
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MDA8 O3-temperature relationship was found at approximately 3-6 ppb K-1 in the 652 

eastern US (Rasmussen et al., 2012). According to such relationships, the biases in T2 653 

predictions could explain large portion of the O3 biases. Heavy convective precipitation 654 

and tropical cyclones have large impact in the southeastern US, which covers mainly 655 

regions 4 and 6. Therefore, the performance in precipitation predictions is lower in those 656 

two regions comparing to other regions as we discussed the model performance in 657 

capturing short-term heavy rains during summer seasons in section 3.1. Meanwhile, the 658 

performance in wind predictions in regions 4 and 6 is relatively poor. Such performance 659 

in the meteorological predictions is consistent with the mixed performance in PM2.5 660 

prediction in regions 4 and 6. The between simulated and observed meteorological 661 

variables, mainly in precipitations and wind, can be attributed to the poor temporal 662 

agreement shown as correlations of predicted PM2.5 in those two regions. 663 

 664 

4.2 Major biases in O3 predictions 665 

Prediction and simulation of O3 in coastal or marine areas are impacted by 666 

halogens chemistry and emissions (Adams and Cox, 2002; Sarwar et al., 2012; Liu et al., 667 

2018), including bromine and iodine chemistry (Foster et al., 2001; Sarwar et al., 2015; 668 

Yang et al., 2020) and oceanic halogen emissions (Watanabe, 2005; Tegtmeier et al., 669 

2015; He et al., 2016). CMAQ v5.0.2 has only simple chlorine chemistry for CB05 670 

mechanisms, and the reduction of O3 by reaction with bromine and iodine is not included 671 
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in CMAQ v5.0.2. Iodide-mediated O3 deposition over seawater and detailed marine 672 

halogen chemistry has been found to reduce O3 by 1-4 ppb near the coast (Gantt et al., 673 

2017), suggesting the missing halogen chemistry and O3 deposition processes contribute 674 

to overpredicted O3 in coastal and marine areas seen here. Coastal and marine areas are 675 

also impacted by air-sea interaction processes, which are simply represented in the 676 

current meteorological models without coupling oceanic models (He et al., 2018; Zhang 677 

et al., 2019c,d). For example, coastal O3 mixing ratios are impacted by predicted sea 678 

surface temperatures and land-sea breezes through their influence on chemical reaction 679 

conditions and diffusion processes. As discussed in Section 3.1 and 4.1, the 680 

GFSv15-CMAQv5.0.2 system has poorer performance in predicting the meteorological 681 

variables in regions of 4 and 6, which could contribute to biases in O3 predictions directly 682 

or indicate missing land-sea breezes and thus missing transport effects in the 683 

GFSv15-CMAQv5.0.2 air quality forecasting system.  684 

In addition to the impact of meteorological biases and missing halogen chemistry 685 

on the O3 overprediction near Gulf coast, the overestimated VOC emission could enhance 686 

the O3 biases. The anthropogenic VOCs emissions continuously decrease from historical 687 

NEIs to 2016 NEI 688 

(http://views.cira.colostate.edu/wiki/wiki/10202/inventory-collaborative-2016v1-emissio689 

ns-modeling-platform). We compare the VOCs emissions between 2016 NEI and the 690 

emissions used in this study. The difference in the elevated source of pt_oilgas are shown 691 
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in Fig. S10. The Gulf coast is impacted by the oil and gas sector due to the oil and gas 692 

fields, and the exploration activity near it. By comparing the newer NEI to the current 693 

NEI we used in the system, we found that the overestimation of the VOCs could be one 694 

aspect to the O3 overprediction near the Gulf Coast. Because we only project the SO2 and 695 

NOX from 2005 NEI to 2019 but we do not project the VOCs for the elevated sources. 696 

The monthly VOCs emissions from pt_oilgas sector for July in regions 4 and 6 are 697 

2876.0 tons month-1, while they are 2497.0 tons month-1 in 2016 NEI. The reduction 698 

mainly locates along the coastline, where the significant overprediction takes place. It 699 

indicates the complicated effect of meteorological biases, missing gas-phase chemistry, 700 

and the overestimation of emissions on the O3 prediction in these regions. 701 

The O3 concentration is underpredicted for the Northeast, Mid-Atlantic, Midwest, 702 

Mountainous states, and the Northwest (mainly corresponding to the regions 1, 3, 5, 8, 703 

and 9) during non-O3 season. Large difference in dry deposition algorithms between 704 

CMAQ v5.0.2 and other common parameterizations was reported (Park et al., 2014; Wu 705 

et al., 2018). Large discrepancy between modeled dry deposition velocity of O3 by 706 

CMAQ v5.0.2 and the observation during winter was shown and attributed to the 707 

deposition to snow surface. Improvement was indicated in revising the treatment of 708 

deposition to snow, vegetation, and bare ground in CMAQ v5.0.2. Lower deposition to 709 

snow was found to improve the consistency between the O3 deposition modeled by 710 

CMAQ v5.0.2 and the observations. Therefore, the dry deposition module in v5.0.2 needs 711 
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to be updated and improved for more accurate representation of low-moderate O3 mixing 712 

ratios (Appel et al., 2020). For the cases in this study, the predicted snow cover for the 713 

months of Jan and Apr in winter and spring are shown in Fig. 7a and 7b. The 714 

underpredicted O3 during non-O3 season may be caused by the overestimated O3 715 

deposition to snow in the northern regions, corresponding to the previous regions 1, 3, 5, 716 

8, and 9. The mixed effects of the temperature-O3 relationship discussed above and the 717 

large deposition to snow contribute to the moderate O3 underpredictions. 718 

 719 

4.3 Major biases in PM2.5 predictions 720 

Major biases in PM2.5 prediction are distinguished for warmer and cooler months 721 

in section 3. To further analyze the underlying causes for varied patterns and performance 722 

on season- and region-specific basis, diurnal evaluations for PM2.5 and chemical 723 

components of PM2.5 during O3 season and non-O3 season are shown in Fig. 8. The 724 

GFSv15-CMAQv5.0.2 has a large seasonal variation in diurnal PM2.5, inconsistent with 725 

the observation. While PM2.5 is underpredicted during daytime in regions 4, 6, 8, and 9 726 

during O3 season, PM2.5 is always overpredicted across the day during non-O3 season 727 

except for region 9. Increased OC, particulate nitrates, soil and unspecif ied coarse mode 728 

components contribute to most of the increase in predicted total PM2.5. The general cold 729 

biases over CONUS, especially in region 5, could make the GFSv15-CMAQv5.0.2 730 

system predict higher nitrate particulates, leading to larger increase in PM2.5 from O3 731 
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season to non-O3 season. Emissions vary from month to month in the year (Fig. S11a). 732 

Larger emissions for NH3, NOx, VOC, primary coarse PM, and primary PM2.5 are in O3 733 

season compared to non-O3 season. Primary organic carbons (POC) emissions are higher 734 

in O3 season. Changes in emissions are not fully consistent with the changes in PM2.5 735 

components, indicating other biases or uncertainty could also contribute to the significant 736 

overprediction during non-O3 season. For example, the implementation of bidirectional 737 

flux of NH3 and the boundary layer mixing processes under more stable condition (during 738 

non-O3 season) in GFSv15-CMAQv5.0.2 system need to be further studied. Pleim et al., 739 

(2013, 2019) found that the NH3 fluxes and concentrations could be better simulated and 740 

the monthly variations of NH3 concentrations were larger comparing to the raw model by 741 

implementing the bidirectional flux of NH3. The absolute biases for diurnal PM2.5 are 742 

generally larger during nighttime in most of the regions, except for region 9. It is 743 

consistent with the analysis by Appel et al. (2013), which suggested that the efforts of 744 

improving nighttime mixing in CMAQ v5.0 be further needed, further indicating the need 745 

for improvements of CMAQ in predicting dispersion and mixing of air pollutants under 746 

stable boundary layer conditions. The forecast system gives the highest PM predictions at 747 

two peaks during the day: 6 am and 7 pm in O3 season and 7 am and 8 pm in non-O3 748 

season at LST, respectively corresponding to the shifting between daylight saving time 749 

and LST. The two diurnal peaks are caused by the diurnal pattern of emissions (Fig. 750 

S11b). PM are mostly emitted during the daytime of 6 am to 6 pm. With the development 751 
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of boundary layer during the daytime, surface PM2.5 concentrations will be reduced by 752 

the diffusion. During the dawn and dusk, the boundary layer transits between stable and 753 

well mixed conditions. The increased emission and secondary production of PM2.5 will be 754 

accumulated within the boundary layer, causing the high peaks during dawn and dusk.  755 

The variation in predicted PM2.5 composition between cooler and warmer months 756 

indicates that major seasonal biases are caused by multiple factors. We introduce the 757 

AQS dataset for evaluation of daily PM2.5 composition to provide additional insight into 758 

the specific reasons. Figure 9 shows the biases of the key PM2.5 composition for the 759 

cooler month of Jan and warmer month of Jul. While the overall mean biases of PM2.5 760 

composition, including elemental carbon (EC), ammonium (NH4
+), and nitrate (NO3

-) are 761 

within ±0 .5 µg m-3 for all months of the year, the major biases in PM2.5 predictions are 762 

mostly contributed by organic carbon (OC), soil components (SOIL), and sulfate (SO4
2-). 763 

The soil components are estimated using the Interagency Monitoring of Protected Visual 764 

Environments (IMPROVE) equation and specific constituents (Appel et al., 2013). 765 

During a cooler month, the significant overprediction in PM2.5 is mainly attributed to the 766 

overprediction in OC and SOIL. During warmer months, the overprediction of SOIL and 767 

sulfate compensate for the overall underprediction in OC in v5.0.2, leading to the 768 

moderate PM2.5 underprediction in the Southeast but slight overprediction in the Midwest, 769 

Mid-Atlantic, and the Northeast. These high PM2.5 SOIL concentrations are consistent in 770 

spatial characteristics with large emissions of anthropogenic primary PM2.5, and primary 771 
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coarse PM in the Midwest, Northeast, and the Northwest. The underprediction in PM2.5 772 

OC during summer compensate the overestimation in dust during cooler months, 773 

resulting in the overall biases with an annual NMB of 30.0%.  774 

The large emissions of anthropogenic primary coarse PM, as well as the 775 

wind-blown dust are the major sources for predicted PM2.5 SOIL components. Appel et al. 776 

(2013) indicated CMAQ overpredicted soil components in the eastern United States 777 

partially due to the anthropogenic fugitive dust and wind-blown dust emissions. The 778 

overprediction in PM2.5 soil compositions by our forecast system could be mainly 779 

attributed to the overestimation of the anthropogenic fugitive dust emission because the 780 

meteorological conditions were not included in processing the anthropogenic fugitive 781 

dust sector. The dust-related components of aluminum, calcium, iron, titanium, silicon, 782 

and coarse mode particles are overestimated in the regions with snow and precipitation, 783 

especially during winter, early spring, and late autumn with snow cover in the north, 784 

which contributes to the PM2.5 overprediction, with more significant temporal-spatial 785 

pattern in the north U.S. during cooler months.  786 

An adjustment of precipitation and snow cover for fugitive dust was implemented 787 

in the operational NAQFC. The dust-related PM emissions will be clean up using a factor 788 

of 0.01 when the snow cover is higher than 25% or the hourly precipitation is higher than 789 

0.1 mm hr-1 before they are used as input for CMAQ v5.0.2 forecast. We conduct a 790 

sensitivity simulation for Jan 2019 using the GFSv15-CMAQv5.0.2 system with the 791 
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adjustment implemented in the operational NAQFC. Figure 7c shows the PM2.5 792 

overprediction in the northern regions 1, 2, 5, and 10 during Jan is largely improved 793 

corresponding to the spatial-temporal characteristics of snow cover. The monthly MB and 794 

NMB for Jan improves from 5.5 µg m-3 and 66.9% to 2.1 µg m-3 and 24.0%, respectively. 795 

The improvement is mainly attributed to the decrease in overpredictions in PM2.5 soil 796 

components, with MBs decreased from 3.3 µg m -3 to 1.2 µg m-3 for Jan (Fig. 7d). The 797 

overprediction in the Northeast and Northwest during spring is expected to be improved 798 

by the suppression of the fugitive dust by the snow during early spring. This indicates the 799 

importance of including the meteorological forecast in processing the emission of 800 

anthropogenic fugitive dust. It should be calculated inline or be adjusted by the 801 

meteorological forecast. 802 

In CMAQ v5.0.2, the primary organic aerosol (POA) is processed as non-volatile. 803 

The emissions of semivolatile and intermediate volatility organic compounds (S/IVOCs) 804 

and their contributions to the secondary organic aerosol (SOA) are not accounted for in 805 

the aerosol module. In the recent versions of CMAQ, two approaches linked to POA 806 

sources have been implemented. One introduces semi-volatile partitioning and gas-phase 807 

oxidation of POA emissions. The other one (called pcSOA) accounts for multiple missing 808 

sources of anthropogenic SOA formation, including potential missing oxidation pathways 809 

and emissions of IVOCs. These two improvements lead to increased organic carbon 810 

concentration in summer but decreased level in winter. The changes vary by season as a 811 
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result of differences in volatility (as dictated by temperature and boundary layer height) 812 

and reaction rate between winter and summer. Therefore, the missing S/IVOCs and 813 

related SOA chemistry in v5.0.2 are key reasons for the OC overprediction and 814 

underprediction during cooler and warmer months, respectively.  815 

 816 

4.5. Conclusion  817 

In this work, the air quality forecast for the year 2019 predicted by the 818 

offline-coupled GFSv15-CMAQv5.0.2 system is comprehensively evaluated. The 819 

GFSv15-CMAQv5.0.2 system is found to perform well in predicting surface 820 

meteorological variables (temperature, relative humidity, and wind) and O3 but has mixed 821 

performance for PM2.5. Moderate cold biases and wet biases are found in spring season, 822 

especially in March. While the GFSv15-CMAQv5.0.2 system can generally capture the 823 

monthly accumulated precipitation compared to remote sensing and ensemble datasets, 824 

temporal distributions of hourly precipitation show less consistency with in-situ 825 

monitoring data, which is attributed to the interpolation and post-processing in the 826 

offline-coupling interface preprocessor.  827 

MDA8 O3 is slightly overpredicted and underpredicted in ozone and non-O3ozone 828 

seasons, respectively. The cold biases of T2 contribute to the underprediction of MDA8 829 

O3 in spring. The significant overprediction near the Gulf Coast, which is is caused 830 
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byassociated with the missing halogen chemistry, overestimated emission of precursors, 831 

and the poorer performance in meteorological performance, which could be attributed to 832 

the missing of model representation of the air-sea interaction processes., It compensates 833 

for underprediction in the West and Midwest in O3 season for nation-wide metrics. A 834 

slight underprediction is found during non-O3 season, indicating the impact of cold biases 835 

of T2 and the overestimated dry deposition to the snow surface. GFSv15-CMAQv5.0.2 836 

has poorer performance in predicting PM2.5, comparing to the performance for O3. 837 

Significant overpredictions are found in spring, autumn, and wintercooler months, 838 

especially in winter. with tThe largest overprediction is shown in the Midwest, the states 839 

of WA,Washington, and Oregon, due mainly to high concentrations of predicted soilfine 840 

fugitive, unspecified coarse mode, and OC compositions and nitrate components. The 841 

lacking suppression of snow cover on anthropogenic fugitive dust emission and the 842 

non-volatile approach for POA emission contribute major portion of the overprediction in 843 

winter.The overall cold biases in the Region 5/Midwest could contribute to higher 844 

predicted nitrate particulate matter but overprediction of PM2.5 in the region is likely 845 

driven by sources containing trace metals such as anthropogenic fugitive dust and 846 

wind-blown dust. Meanwhile, Tthe forecasting system may be improved through 847 

updating the emissions inventory used (i.e., NEI 2014) to NEI 2016v2 or NEI 2017 which 848 

are more presentative to the year of 2019 in the next development of next-generation 849 

NAQFC.  850 
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Categorical evaluation indicates that the GFSv15-CMAQv5.0.2 can capture well 851 

the air quality classification of ñModerateò described by the AQI. However, the 852 

categorical performance is poorer for PM2.5 at the ñunhealthy for sensitive groupsò 853 

threshold due mainly to the significant overprediction during the cooler months. 854 

Region-specific evaluation further discusses the biases and underlying causes in the 10 855 

USEPA defined regions in CONUS. An update from CMAQ v5.0.2 to v5.3.1 is expected 856 

to alleviate potential errors in missing sources and mechanisms for SOA formation. The 857 

variations of performance in between O3 and non-O3 seasons, as well as during the 858 

daytime and nighttime, indicate further studies need to be conducted to improve boundary 859 

layer mixing processes within GFSv15-CMAQv5.0.2. The varied region-specific 860 

performance indicates that improvements, such as bias corrections, should be considered 861 

individually from region to region in the following development of the next generation 862 

NAQFC. 863 

We have used bias analyses in this work to identify several areas of weakness in 864 

GFSv15-CMAQv5.0.2 system for further improvement and development of 865 

next-generation NAQFC. The ability of FV3-based GFS in driving the real-time air 866 

quality forecasting is demonstrated. Further studies are still needed for improving the 867 

accuracy in meteorological forecast, the emissions, the aerosol chemistry, and the 868 

boundary layer mixing for the future GFS-FV3-CMAQ system. Our work and the further 869 
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studies can provide information and scientific basis for the development and implement 870 

of a science-based bias correction method in next-generation NAQFC. 871 
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Supplement 873 

The supplement related to this article is available in 874 
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The documentation and source code of CMAQ v5.0.2 are available at 878 

doi:10.5281/zenodo.1079898. The GFS forecasts in grib2 format are available at 879 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system880 

-gfs. The GFS forecast inputs in binary (NEMSIO) format and the coupler used in this 881 

study for the GFSv15-CMAQv5.0.2 system are available upon request. The AIRNow 882 

data is available for download through the AirNow-Tech website 883 

(http://www.airnowtech.org). The CASTNET data is available for download from 884 

https://java.epa.gov/castnet/clearsession.do. The METAR data is available for download 885 

from https://madis.ncep.noaa.gov. The GPCP data is available through NOAA website 886 

(https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly). 887 
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https://www.nco.ncep.noaa.gov/pmb/products/gens. The MODIS_MOD04 dataset is 889 
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Tables and Figures 

Table 1. Configuration of GFSv15-CMAQv5.0.2 system 

Attribute  Model Configuration 

Forecast period Jan.-Dec., 2019 

Domain Continental U.S. 

Resolution Horizontal: 12 km (442×265); Vertical: 35 layers 

Physical Options 

Shortwave/longwave radiation The Rapid Radiative Transfer Method for GCMs  

Planetary boundary layer (PBL) Hybrid eddy-diffusivity mass-flux (EDMF) PBL  

Land surface Noah Land Surface Model (LSM)  

Microphysics A more advanced GFDL microphysics scheme  

Cumulus The Simplifi ed Arakawa-Schubert (SAS) deep convection  

Chemical Options 

Photolysis In-line method (Binkowski et al., 2007) 

Gas-phase chemistry 

The Carbon Bond mechanism version 5 with active chlorine 

chemistry and updated toluene mechanism (CB05tucl) 

(Yarwood et al., 2005; Sarwar et al., 2012) 

Aqueous-phase chemistry AQCHEM (Sarwar et al., 2011) 

Aerosol module 
AERO6 with nonvolatile POA (Carlton et al., 2010; Simon et 

al., 2012; Appel et al., 2013) 

 

Table 2. Performance statistics of meteorological forecasts 

Datasets  CASTNET METAR 

Variable Period 
Mean 

Obs. 

Mean 

Sim. 
MB RMSE 

NMB,

% 

NME,

% 
Corr 

Mean 

Obs. 

Mean 

Sim. 
MB RMSE 

NMB,

% 

NME,

% 
Corr 

T2, °C 

DJF -0.1 -0.5 -0.4 2.6 -588 -2850 0.96 2.7 2.6 -0.1 2.5 -3.1 69.3 0.97 

MAM  9.9 9.4 -0.5 2.4 -5.2 18.2 0.97 12.3 11.9 -0.4 2.3 -3.0 14.0 0.97 

JJA 21.5 21.4 -0.2 2.4 -0.8 8.6 0.93 23.4 23.1 -0.3 2.3 -1.2 7.5 0.93 

SON 11.5 11.3 -0.2 2.6 -2.0 16.1 0.97 13.8 13.8 0.1 2.3 0.4 12.6 0.98 

Annual 10.9 10.6 -0.3 2.5 -3.0 17.0 0.98 13.2 13.0 -0.2 2.3 -1.3 13.1 0.98 

RH2, % 

DJF 69.1 71.9 2.8 14.3 4.0 15.1 0.74 74.1 74.4 0.4 13.3 0.5 13.4 0.76 

MAM  62.7 66.1 3.4 14.2 5.4 16.6 0.82 67.4 70.1 2.7 13.8 4.0 15.5 0.81 

JJA 55.0 53.3 -1.7 12.2 -3.2 16.4 0.89 67.0 67.3 0.3 13.1 0.5 14.8 0.84 

SON 59.0 57.6 -1.4 13.0 -2.4 16.1 0.87 68.7 67.0 -1.7 13.2 -2.5 14.5 0.83 
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Annual 61.4 62.2 0.8 13.5 1.3 16.0 0.85 68.8 69.3 0.4 13.2 0.8 14.4 0.83 

WS10,  

m s-1 

DJF 2.5 3.0 0.5 2.0 18.7 56.7 0.59 3.3 3.7 0.4 2.0 10.8 43.5 0.71 

MAM  2.8 3.4 0.6 2.1 22.2 55.6 0.60 3.6 4.0 0.4 2.0 10.3 42.5 0.71 

JJA 2.4 3.0 0.6 1.9 24.5 60.9 0.51 2.8 3.3 0.5 1.9 17.0 52.6 0.62 

SON 2.6 3.1 0.5 2.0 20.4 58.6 0.57 4.0 4.1 0.2 1.8 4.2 33.1 0.69 

Annual 2.6 3.1 0.6 2.0 21.5 57.9 0.57 3.4 3.7 0.4 1.9 10.7 41.8 0.72 

WD10,  

degree 

DJF 187.2 189.4 2.2 69.4 1.2 26.4 0.81 158.0 164.3 6.4 60.7 4.0 25.5 0.90 

MAM  184.6 186.5 1.9 68.1 1.0 26.1 0.81 159.9 163.6 3.7 60.7 2.3 25.4 0.89 

JJA 186.7 188.8 2.1 73.0 1.1 28.5 0.77 146.8 147.8 1.0 69.9 0.7 33.9 0.86 

SON 181.8 183.9 2.1 71.3 1.1 28.1 0.79 190.9 196.6 5.7 42.1 3.0 14.5 0.92 

Annual 185.0 187.1 2.1 70.5 1.1 27.3 0.80 162.5 166.6 4.1 59.1 2.5 23.9 0.89 

Precip, 

 mm hr-1 

DJF 1.0 0.6 -0.4 1.7 -42.5 86.1 0.26 1.3 0.7 -0.6 3.5 -44.4 77.4 0.15 

MAM  1.1 0.6 -0.6 2.0 -51.1 86.3 0.22 1.8 0.7 -1.0 7.5 -58.6 85.6 0.07 

JJA 2.2 0.5 -1.7 4.7 -77.8 93.9 0.11 2.6 0.7 -1.9 7.6 -74.5 91.6 0.04 

SON 1.3 0.6 -0.7 2.4 -54.4 86.2 0.24 1.8 0.8 -1.0 8.8 -56.4 83.8 0.07 

Annual 1.3 0.6 -0.7 2.5 -55.4 87.9 0.18 1.8 0.7 -1.1 7.0 -59.1 85.0 0.07 

T2: temperature at 2-m; RH2: relative humidity at 2-m; WS10: wind speed at 10-m; WD10: wind direction 

at 10-m; Precip: precipitation; DJF: winter; MAM: spring; JJA: summer; SON: autumn; MB: mean bias; 

RMSE: root mean square error; NMB: normalized mean bias; NME: normalized mean error; Corr: 

correlation coefficient; Obs.: Observation; Sim.: Prediction. 

 

Table 3. Performance statistics of chemical variables against AIRNow dataset 

 MDA8 O3, ppb 24-h avg PM2.5, µg m-3 

Period 
Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr Period 

Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr 

Jan 32.1 32.0 -0.1 7.2 -0.4 17.2 0.58 Jan 8.2 13.8 5.5 11.5 66.9 92.3 0.35 

Feb 36.4 35.5 -0.9 7.8 -2.5 16.7 0.58 Feb 7.9 12.5 4.6 10.0 58.0 81.5 0.53 

Mar 44.9 40.4 -4.5 8.7 -10.0 15.8 0.56 Mar 7.8 11.0 3.2 9.2 41.2 69.0 0.40 

Apr 46.4 43.1 -3.3 7.7 -7.1 13.3 0.62 Apr 6.3 8.0 1.7 6.3 27.9 61.6 0.33 

May 44.1 42.7 -1.4 7.8 -3.3 13.9 0.67 May 6.7 6.9 0.2 4.7 3.3 49.3 0.26 

Jun 45.7 43.9 -1.8 10.9 -4.0 18.3 0.59 Jun 7.1 6.8 -0.3 5.4 -4.2 47.1 0.22 

Jul 44.3 46.6 2.3 9.5 5.2 16.6 0.72 Jul 8.4 8.5 0.1 11.8 1.0 59.8 0.28 

Aug 43.7 46.9 3.2 9.4 7.3 16.4 0.74 Aug 7.2 6.9 -0.3 4.0 -4.7 40.2 0.33 
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Sept 42.5 45.6 3.1 8.0 7.2 14.4 0.79 Sept 7.0 7.6 0.6 4.7 8.5 44.2 0.48 

Oct 37.0 40.4 3.4 7.8 9.3 15.8 0.80 Oct 6.6 9.6 3.0 9.0 44.7 73.2 0.36 

Nov 34.2 35.9 1.8 7.6 5.2 16.5 0.72 Nov 8.9 13.2 4.2 9.8 47.2 72.1 0.48 

Dec 31.7 33.5 1.8 7.8 5.6 18.6 0.68 Dec 8.8 13.9 5.1 10.8 57.9 82.5 0.51 

O3-seas

on 
44.1 45.1 1.0 9.2 2.5 16.0 0.69 

DJF 8.3 13.4 5.1 10.8 61.0 85.5 0.46 

MAM  6.9 8.6 1.7 7.0 24.8 60.4 0.36 

Non 

O3-seas

on 

37.7 37.5 -0.2 7.8 -0.4 16.0 0.72 

JJA 7.6 7.4 -0.2 7.8 -2.5 49.5 0.27 

SON 7.5 10.1 2.6 8.1 34.4 63.8 0.46 

Annual 40.5 40.9 0.4 8.5 1.0 16.0 0.73 Annual 7.6 9.9 2.3 8.5 30.0 65.2 0.41 

MDA8 O3: maximum daily average 8-h ozone; 24-h avg PM2.5: 24-hour average PM2.5. 

 

Figures 

Figure 1. Taylor diagram with variance, Corr, and NMB for meteorological variables (T2, 

RH2, WS10, WD10, and Precip) against CASTNET and METAR dataset 

Figure 2. Spatial distribution of forecasted MDA8, MB, and NMB during O3 and winter 

season. Observation from AIRNow is shown as filled circles in the overlay plots of 

concentrations 

Figure 3. Forecasted seasonal daily PM2.5 by GFSv15-CMAQv5.0.2 overlaid 

observations from AIRNow and MB against observations from AIRNow 

Figure 4. Monthly AOD from MODIS (left), predicted AOD from 

GFSv15-CMAQv5.0.2 (middle), and predicted surface 24-h avg PM2.5 (right) 

Figure 5. Categorical evaluation of MDA8 and 24-h avg PM2.5 
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Figure 6. Annual performance of MDA8 in 10 CONUS regions (a); Taylor Diagram for 

annual performance of MDA8 (b); Annual performance of 24-h avg PM2.5 in 10 CONUS 

regions (c); Taylor Diagram for annual performance of 24-h avg PM2.5. Outliers 

represent regions with NSDs >3.5 (d) 

Figure 7. The predicted average snow cover for (a) Jan and (b) Apr. (c) The difference in 

NMBs by adjusting anthropogenic fugitive dust emission. Positive values stand for 

improvement in biases with NMBs closer to 0. 

Figure 8. Diurnal PM2.5 in: (a) O3 season for regions 1 to 5; (b) Non-O3 season for 

regions 1 to 5; (c) O3 season for regions 6 to 10; (d) Non-O3 season for region 6 to 10. 

Solid curves are observed values and dash curves are predicted values. Average of 

predicted PM2.5 and components of PM2.5 within CONUS in: (e) O3 season, and (f) 

Non-O3 season 

Figure 9. Mean biases in PM2.5 compositions: (a) OC for Jan, (b) OC for Jul, (c) SOIL 

for Jan, (d) SOIL for Jul, (e) sulfate for Jan, and (f) sulfate for Jul 
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Figure 1. Taylor diagram (Taylor, 2001) with Normalized Standardized Deviations 

(NSD), Corr, and NMB for meteorological variables (T2, RH2, WS10, WD10, and 

Precip) against CASTNET and METAR dataset. The REF marker at x-axis represents a 

referred perfect performance. The closer each variable is to the REF marker, the better 

performance the forecast system has for that variable 
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Figure 2. Spatial distribution of forecasted MDA8, MB, and NMB during O3 and non-O3 

season. Observation from AIRNow is shown as filled circles in the overlay plots of 

concentrations 
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Figure 3. Forecasted seasonal daily PM2.5 by GFSv15-CMAQv5.0.2 overlaid 

observations from AIRNow and MB against observations from AIRNow 


