
The referee comments are shown in blue. 

The responses to the comments are shown in black. 

The changes included in the revised manuscript are shown in red. 

 

Reply to Comments from Reviewer #1 

 

Reviewer #1 comments: 

This study uses Global Forecast System with the new Finite Volume Cube-Sphere 

dynamic core (GFS-FV3) to drive the CMAQ v5.0.2 and evaluates the model results 

with observational data. The forecast system shows good agreement in meteorological 

variables and pollutants. This manuscript fits the scope of the journal of Geoscientific 

Model Development. However, more detailed and in-depth descriptions are expected 

in several places (see below comments). 

Response:  

Thank you for your positive comments. Please see below our point-by-point 

responses. 

 

Specific comments 

1. Line27-28: As mentioned here, NAM model is the current meteorological model. 

Can authors explain more in-depth why chose the GFS-FV3? Please also present some 

comparison results between these two models. 

Response: The necessity and urgency to develop a FV3GFS-CMAQ system is owing 

to the retirement of the North American Mesoscale forecasting system (NAM) in the 

NOAA National Weather Service (NWS). The NAM model is no longer being updated 

(as of 2017). The current regional models for providing high-resolution forecast and 

guidance in NWS will be eventually replaced by a FV3-based system by 2023. The 



FV3GFS-CMAQ system studied in this work is essentially a replacement of the 

NAQFC's offline coupled to a meteorological driver system by swapping NAM by 

FV3GFS.  

The meteorological performance from the two systems, NAM and FV3GFS, is 

comparable (see, e.g., https://hmt.noaa.gov/experiments/pdf/WPC-

HMT_WWE_2019_Final_Report.pdf). Huang et al. (2019) and Lee et al. (2020, 

https://www.cmascenter.org/conference/2020/session-presentations10.cfm) provided 

an air-quality-model-specific performance evaluation when a CMAQ-based Chemical 

Transport Model was driven by the NAM and FV3GFS meteorology. Although we did 

not compare performance of NAM versus FV3GFS, the FV3GFS-CMAQ interim 

NAQFC-β system we analyzed in this paper showed an across-board improvement in 

terms of the major chemical evaluation performance statistics than that by the NAM 

driven operational NAQFC.  

To address the reviewer’s comments, we have added a brief summary on the 

comparison of NAM and FV3 based on previous publications and reports, see below: 

the GFS v15 gave lower T2 prediction over CONUS comparing to NAM. While the 

NAM had slightly biased high T2, the GFS v15 had slightly biased low T2 during Aug 

2019. The T2 underprediction was more significant in the Midwest by GFS v15 than 

its by NAM, especially during daytime. During the 2018-19 winter season, the FV3GFS 

had similar statistical scores regarding performance in snowfall prediction. While both 

FV3GFS and NAM gave over-forecasting in accumulated snow under most of 

precipitation type methods, the FV3GFS had larger over-prediction than NAM. It 

indicated FV3GFS had a colder forecast. The authors attributed the larger 

overprediction in snow depth to the consistent cold bias in GFS v15, which was 

identified by NWS through the intercomparison between GFS v14 and v15. 

 

2. Line 50: “semi- or intermediate-VOCs” is mentioned as the missing sources of PM2.5 

in abstract. However, none of the S/I VOCs sources are analyzed in the rest of the 

manuscript. Please double check whether the analysis of this part is omitted. 

Response: We have added some discussions on the impact of missing S/IVOCs and 

https://hmt.noaa.gov/experiments/pdf/WPC-HMT_WWE_2019_Final_Report.pdf
https://hmt.noaa.gov/experiments/pdf/WPC-HMT_WWE_2019_Final_Report.pdf


related SOA chemistry, see our response #2 to the reviewer #2’s comments and also 

see below the revised text in the manuscript: 

In CMAQ v5.0.2, the primary organic aerosol (POA) is processed as non-

volatile. The emissions of semivolatile and intermediate volatility organic compounds 

(S/IVOCs) and their contributions to the secondary organic aerosol (SOA) are not 

accounted for in the aerosol module. In the recent versions of CMAQ, two approaches 

linked to POA sources have been implemented. One introduces semi-volatile 

partitioning and gas-phase oxidation of POA emissions. The other (called pcSOA) 

accounts for multiple missing sources of anthropogenic SOA formation, including 

potential missing oxidation pathways and emissions of IVOCs. These two 

improvements lead to increased organic carbon concentration in summer but decreased 

level in winter. The changes vary by season as a result of differences in volatility (as 

dictated by temperature and boundary layer height) and reaction rate between winter 

and summer. Therefore, the missing S/IVOCs and related SOA chemistry in v5.0.2 are 

key reasons for the OC overprediction and underprediction during cooler and warmer 

months, respectively.  

 

3. Line 173-174: What is the purpose to only extracting the first 24-hour results from 

each 72-hour forecast? If the first 24-hour results are only needed, why still simulate 

the next 48 hours? 

Response: We mainly focus on the first 24-h forecast for the following 3 reasons: 

(1) The experimental GFSv15-CMAQv5.0.2 system is a prototype and still being 

developed. It is not qualified for operational application yet. Thus, the forecast 

results for day-2 (forecast for 25-48h) and day-3 (49-72h) were occasionally 

unavailable due to running issues, system fails, or archive missing, especially 

during the early stage in the application of this forecast system. 

(2) We did the discrete statistics for day-2 performance to compare with the day-1 

performance. Since there were a couple days lacking day-2 and day-3 forecast 

results in Jan, Feb, and Jun, the statistics are not presented for those months in 

case of keeping the apple-to-apple comparison. We found the day-2 

performance are close to the day-1 performance. The difference in MDA8 O3 

predictions are shown in Table R1. The difference in monthly NMBs are up to 



3%, mostly within 1%. Similar day-2 PM2.5 predictions to day-1 PM2.5 

prediction could be also found in Table R2.  

(3) Many of the studies for previous NAQFC forecasting performance focused on 

the day-1 performance (e.g., Kang et al., 2010; Lee et al., 2017). The day-1 

results presented in the manuscript would be more comparable with other 

studies. 

 

Table R1. Performance statistics of MDA8 O3 against AIRNow dataset 

 Day1 performance MDA8 O3, ppb Day2 performance MDA8 O3, ppb 

Period 
Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr Period 

Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr 

Jan 32.1 32.0 -0.1 7.2 -0.4 17.2 0.58 Jan /  /  /  / 
Feb 36.4 35.5 -0.9 7.8 -2.5 16.7 0.58 Feb /  /  /  / 
Mar 44.9 40.4 -4.5 8.7 -10.0 15.8 0.56 Mar 44.9 40.3 -4.6 8.9 -10.2 16.1 0.53 
Apr 46.4 43.1 -3.3 7.7 -7.1 13.3 0.62 Apr 46.4 42.9 -3.5 8.1 -7.5 13.8 0.59 
May 44.1 42.7 -1.4 7.8 -3.3 13.9 0.67 May 44.1 42.2 -1.9 8.3 -4.4 14.8 0.62 
Jun 45.7 43.9 -1.8 10.9 -4.0 18.3 0.59 Jun /  /  /  / 
Jul 44.3 46.6 2.3 9.5 5.2 16.6 0.72 Jul 44.3 46.2 1.9 9.8 4.4 17.1 0.69 

Aug 43.7 46.9 3.2 9.4 7.3 16.4 0.74 Aug 43.7 46.6 2.9 9.7 6.7 16.8 0.71 
Sept 42.5 45.6 3.1 8.0 7.2 14.4 0.79 Sept 42.5 45.1 2.6 8.1 6.1 14.6 0.77 
Oct 37.0 40.4 3.4 7.8 9.3 15.8 0.80 Oct 36.8 40.1 3.3 7.9 9.1 16.0 0.77 
Nov 34.2 35.9 1.8 7.6 5.2 16.5 0.72 Nov 34.1 35.1 1.0 7.7 3.0 16.4 0.69 
Dec 31.7 33.5 1.8 7.8 5.6 18.6 0.68 Dec 29.8 30.6 0.8 8.0 2.8 20.3 0.60 

                

 

Table R2. Performance statistics of 24-h avg PM2.5 against AIRNow dataset 

 Day1 performance 24-h avg PM2.5, µg m-3
 Day2 performance 24-h avg PM2.5, µg m-3 

Period 
Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr Period 

Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr 

Jan 8.2 13.8 5.5 11.5 66.9 92.3 0.35 Jan /  /  /  / 
Feb 7.9 12.5 4.6 10.0 58.0 81.5 0.53 Feb /  /  /  / 
Mar 7.8 11.0 3.2 9.2 41.2 69.0 0.40 Mar 7.8 11.0 3.2 10.4 41.2 71.1 0.36 

Apr 6.3 8.0 1.7 6.3 27.9 61.6 0.33 Apr 6.3 7.5 1.3 5.5 20.1 58.6 0.33 

May 6.7 6.9 0.2 4.7 3.3 49.3 0.26 May 6.7 6.5 -0.2 4.6 -2.7 49.0 0.27 

Jun 7.1 6.8 -0.3 5.4 -4.2 47.1 0.22 Jun /  /  /  / 
Jul 8.4 8.5 0.1 11.8 1.0 59.8 0.28 Jul 8.4 8.0 -0.4 10.5 -4.7 56.1 0.27 

Aug 7.2 6.9 -0.3 4.0 -4.7 40.2 0.33 Aug 7.2 6.8 -0.4 4.1 -5.4 41.0 0.34 

Sept 7.0 7.6 0.6 4.7 8.5 44.2 0.48 Sept 7.0 7.0 0.0 4.3 -0.1 43.2 0.51 

Oct 6.6 9.6 3.0 9.0 44.7 73.2 0.36 Oct 6.6 8.9 2.2 7.5 33.4 67.4 0.36 

Nov 8.9 13.2 4.2 9.8 47.2 72.1 0.48 Nov 8.9 12.8 3.9 9.7 43.3 70.7 0.47 

Dec 8.8 13.9 5.1 10.8 57.9 82.5 0.51 Dec 8.8 13.6 4.8 10.9 54.5 82.1 0.49 

                

 

 

4. Line 192-193: What are the criteria or references for setting this threshold (120 ppb 



and 100 µg m-3 for O3 and PM2.5)? How about those abnormal low data? 

Response: There are many abnormal records in the raw AIRNow data. We calculate the 

record numbers above certain thresholds for O3 and PM2.5. For O3, records above 120, 

160, 200, and 300 ppb are 0.31%, 0.17%, 0.08%, and 0.06% of the total records. For 

PM2.5, records above 100, 200, 300, and 500 µg m-3 are 0.26%, 0.24%, 0.21%, and 0.20% 

of the total records. we chose thresholds of 120 ppb for O3 and 100 µg m-3 for PM2.5 as 

they are much higher than most observed values and provide a reasonable 

representation of outliers, although their selection is more or less arbitrary. We did not 

exclude abnormally low values.  

To address reviewer’s comments, we utilize the Quality Assurance/Quality 

Control information from the AIRNow dataset to filter the invalid records in the revised 

manuscript. The arbitrary thresholds are no longer used. We redo the statistics and the 

updated results are shown in Tables R3 and R4 below. As shown, the changes in 

performance statistics between the two filtering methods are minor, with slightly better 

results by excluding those outliners and abnormal records. Our major conclusions 

remain. We update the figures and the relevant sections accordingly in the revised 

manuscript.  

 

Table R3. Performance statistics of MDA8 O3 against AIRNow dataset 

 MDA8 O3, ppb in GMDD submission MDA8 O3, ppb with updated QC 

Period 
Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr Period 

Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr 

Jan 32.4 32.0 -0.3 7.9 -1.1 18.0 0.52 Jan 32.1 32.0 -0.1 7.2 -0.4 17.2 0.58 

Feb 36.7 35.7 -1.1 8.4 -2.9 17.4 0.53 Feb 36.4 35.5 -0.9 7.8 -2.5 16.7 0.58 

Mar 45.1 40.4 -4.7 8.9 -10.4 16.0 0.55 Mar 44.9 40.4 -4.5 8.7 -10.0 15.8 0.56 

Apr 46.6 43.1 -3.5 8.0 -7.5 13.5 0.61 Apr 46.4 43.1 -3.3 7.7 -7.1 13.3 0.62 

May 44.3 42.7 -1.6 7.9 -3.7 14.0 0.66 May 44.1 42.7 -1.4 7.8 -3.3 13.9 0.67 

Jun 45.9 43.9 -2.0 11.2 -4.4 18.5 0.58 Jun 45.7 43.9 -1.8 10.9 -4.0 18.3 0.59 

Jul 44.5 46.6 2.1 9.7 4.7 16.7 0.70 Jul 44.3 46.6 2.3 9.5 5.2 16.6 0.72 

Aug 43.9 46.9 3.0 9.5 6.8 16.3 0.73 Aug 43.7 46.9 3.2 9.4 7.3 16.4 0.74 

Sept 42.7 45.6 2.9 8.1 6.8 14.5 0.78 Sept 42.5 45.6 3.1 8.0 7.2 14.4 0.79 

Oct 37.2 40.2 3.1 8.0 8.3 15.8 0.77 Oct 37.0 40.4 3.4 7.8 9.3 15.8 0.80 

Nov 34.3 34.8 0.5 8.4 1.6 16.9 0.64 Nov 34.2 35.9 1.8 7.6 5.2 16.5 0.72 

Dec 30.7 31.2 0.5 9.0 1.6 20.5 0.49 Dec 31.7 33.5 1.8 7.8 5.6 18.6 0.68 

O3-

season 
44.3 45.1 0.9 9.4 2.0 16.0 0.67 

O3-

season 
44.1 45.1 1.0 9.2 2.5 16.0 0.69 

Non O3-

season 
38.2 37.4 -0.9 8.4 -2.3 16.4 0.68 

Non O3-

season 
37.7 37.5 -0.2 7.8 -0.4 16.0 0.72 

Annual 41.1 41.0 -0.1 8.9 -0.1 16.2 0.70 Annual 40.5 40.9 0.4 8.5 1.0 16.0 0.73 

 



Table R4. Performance statistics of 24-h avg PM2.5 against AIRNow dataset 

 24-h avg PM2.5, µg m-3 in GMDD submission 24-h avg PM2.5, µg m-3 with updated QC 

Period 
Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr Period 

Mean 

Obs. 

Mean 

Sim. 
MB RMSE NMB,% NME,% Corr 

Jan 8.3 13.8 5.5 11.4 66.4 92.4 0.34 Jan 8.2 13.8 5.5 11.5 66.9 92.3 0.35 

Feb 8.0 12.5 4.5 10.0 55.9 81.0 0.51 Feb 7.9 12.5 4.6 10.0 58.0 81.5 0.53 

Mar 7.9 11.0 3.1 9.4 39.6 68.9 0.38 Mar 7.8 11.0 3.2 9.2 41.2 69.0 0.40 

Apr 6.3 8.0 1.7 6.6 26.5 62.0 0.30 Apr 6.3 8.0 1.7 6.3 27.9 61.6 0.33 

May 6.8 6.9 0.2 5.0 2.3 49.8 0.23 May 6.7 6.9 0.2 4.7 3.3 49.3 0.26 

Jun 7.2 6.8 -0.4 5.6 -5.1 47.4 0.20 Jun 7.1 6.8 -0.3 5.4 -4.2 47.1 0.22 

Jul 8.3 8.5 0.1 11.7 1.7 59.9 0.30 Jul 8.4 8.5 0.1 11.8 1.0 59.8 0.28 

Aug 7.3 6.9 -0.4 4.1 -5.2 40.4 0.33 Aug 7.2 6.9 -0.3 4.0 -4.7 40.2 0.33 

Sept 7.0 7.6 0.5 4.7 7.6 44.4 0.48 Sept 7.0 7.6 0.6 4.7 8.5 44.2 0.48 

Oct 6.7 9.5 2.8 8.6 41.7 71.9 0.35 Oct 6.6 9.6 3.0 9.0 44.7 73.2 0.36 

Nov 9.0 13.2 4.2 9.8 46.7 72.0 0.48 Nov 8.9 13.2 4.2 9.8 47.2 72.1 0.48 

Dec 8.8 13.8 5.0 11.0 56.6 82.9 0.49 Dec 8.8 13.9 5.1 10.8 57.9 82.5 0.51 

DJF 8.4 13.4 5.0 10.8 59.7 85.6 0.45 DJF 8.3 13.4 5.1 10.8 61.0 85.5 0.46 

MAM 7.0 8.6 1.6 7.2 23.5 60.6 0.33 MAM 6.9 8.6 1.7 7.0 24.8 60.4 0.36 

JJA 7.6 7.4 -0.2 7.9 -2.6 49.7 0.26 JJA 7.6 7.4 -0.2 7.8 -2.5 49.5 0.27 

SON 7.5 10.0 2.5 8.0 33.0 63.4 0.45 SON 7.5 10.1 2.6 8.1 34.4 63.8 0.46 

Annual 7.6 9.8 2.2 8.6 29.0 65.3 0.40 Annual 7.6 9.9 2.3 8.5 30.0 65.2 0.41 

 

5. Line 259-263: What is this “artificial temporal allocation algorithm”? Please 

introduce more details about this algorithm. 

Response: The “artificial temporal allocation algorithm” means the calculation in 

preprocessing from accumulated precipitation, which is recorded originally in GFS v15 

outputs, to hourly precipitation, which will be used by CMAQ model. To address 

reviewer’s comments, we provide a more detailed description in the revised manuscript 

as follows: 

The precipitation from the original FV3 outputs are recorded as 6-h accumulated 

precipitations. Artificial errors were introduced to the forecast by an issue in 

precipitation preprocessing during the early stage development of the GFSv15-

CMAQv5.0.2 system. The precipitation at first hour of the 6-h cycle would be dropped 

occasionally. We corrected this issue and the hourly precipitation still shows large 

underprediction against surface monitoring networks. It indicates the difficulty for the 

forecast system in capturing the temporal precipitation, especially during summer 

(Figure S4). During the summer season, the discrepancy in capturing the short-term 

heavy rainfall worsens the model performance in predicting hourly precipitation. 

Besides, we use the threshold of 0.1 mm hr-1 to filter the valid records. If the model 

predicts precipitation that did not occur, the record will be excluded into the statistics 

calculation. However, all the predicted precipitation is counted in the spatial evaluation 



against the ensemble datasets of GPCP and CCPA. Therefore, the spatial performance 

of monthly accumulated precipitation shows better agreement than its of hourly 

statistics. 

In general, the relatively poor performance of the forecast system in capturing 

the precipitation at the same hours with the observation is the major cause for the large 

underprediction in hourly statistics.  

 

6. Line 335: What is “Higher predicted PM2.5, typically SOA, in California is expected 

in the future using GFS-FV3-CMAQv5.3.” means? Does it mean that GFS-FV3-

CMAQv5.3 would predict higher concentrations than GFSv15-CMAQv5.0.2 for PM2.5? 

If so, what leads to these higher concentrations in GFS-FV3-CMAQv5.3? An updated 

mechanism or some updated PM sources? Which one is more important for the PM2.5 

prediction? 

Response: As discussed in the comment #2, the GFS-CMAQv5.3 system is expected to 

give higher predicted SOA in California during summer compared to the current 

GFSv15-CMAQv5.0.2 system. The primary PM emissions generally decrease from 

previous NEI to the more recent NEI. Some previews and intercomparison could be 

seen at http://views.cira.colostate.edu/wiki/wiki/10202/inventory-collaborative-

2016v1-emissions-modeling-platform. However, the updated chemical mechanism 

also includes enhanced SOA formation from anthropogenic and biogenic sources, and 

is one of the key factors in improving the underestimation of organic aerosol in CA 

during summer 2010. Therefore, the updated mechanism would be more important for 

the PM2.5 underprediction in those areas. 

 

7. Line 347-359: It’s better to move the method introduction to the section 2. 

Response: The method for categorical evaluation has been moved to section 2 now. 

 

8. Line 383-385: As mentioned above, GFS-FV3-CMAQv5.3 will have higher PM2.5 

concentrations. Since the significant overprediction of PM2.5 leads the poor 

performance in capturing the category of “Unhealthy for Sensitive Groups” in cooler 

months mentioned here, whether the updated system GFS-FV3-CMAQv5.3 would 

have worse prediction? Can authors provide any suggestion to avoid this? 

Response: The combined effect of semivolatile POA and pcSOA tends to decrease 

http://views.cira.colostate.edu/wiki/wiki/10202/inventory-collaborative-2016v1-emissions-modeling-platform
http://views.cira.colostate.edu/wiki/wiki/10202/inventory-collaborative-2016v1-emissions-modeling-platform


organic aerosol in winter. In addition to the semivolatile POA and pcSOA mentioned 

above, monoterpene SOA was also updated in CMAQv5.3. The impact of updated 

monoterpene SOA chemistry is more significant during summer because the BVOC 

emissions are much more reactive in summer than other months in southeastern US 

(Pye et al., 2018, 2019). Therefore, the POA and SOA updates in v5.3 are likely to lead 

to improvements at all times of year. The revised discussion is added in the main text. 

Please refer to the text in red in the response #2 in the reviewer #2 comments.  

 

9. Section 3.3: What is the difference of the meteorological prediction among regions? 

Please introduce it. It would be helpful to explain the pollutant prediction bias in 

different region.  

Response: The regional performance of meteorological prediction and its relationship 

with the chemical prediction are added in the revised text: 

We further quantify the meteorology-chemistry relationships by conducting the 

region-specific evaluation of the meteorological variables. The regional performance 

for the major variables is shown in Figure S9. The regional biases in T2 predictions 

show high consistency with the regional biases in MDA8 O3. It indicates that the cold 

biases in the Midwest (including region 5) and the warm biases near the Gulf coast 

(including regions of 4 and 6) are important factors for the O3 underprediction and 

overprediction in those regions, respectively. The ozone temperature relationship was 

found (S. Sillman and Samson, 1995; Sillman, 1999). O3 is expected to increase with 

increasing temperature within specific range of temperature (Bloomer et al., 2009; Shen 

et al., 2016). The surface MDA8 O3-temperature relationship was found at 

approximately 3-6 ppb K-1 in the eastern US (Rasmussen et al., 2012). According to 

such relationships, the biases in T2 predictions could explain large portion of the O3 

biases. Heavy convective precipitation and tropical cyclones occur more often in the 

southeastern US, where are mainly regions of 4 and 6. Therefore, the performance in 

precipitation predictions are lower in those two regions comparing to other regions as 

we have shown the model has relatively poor performance in capturing short-term 

heavy rains during summer seasons in section 3.1. Meanwhile, the performance in wind 

predictions in regions 4 and 6 is relatively poor. Such performance in the 

meteorological predictions is consistent with the mixed performance in PM2.5 

prediction in regions 4 and 6. The discrepancy in meteorological inputs, mainly in 

precipitations and wind, can be attributes to the low temporal agreement shown as 



correlations of predicted PM2.5 in those two regions. 

 

Technical corrections 

1. Line 1: “GFSv15-FV3-CMAQv5.0.2” should be “GFSv15-CMAQv5.0.2” to be 

consistent with the expression in other part of the manuscript.  

Response: The FV3 dynamical core was firstly implemented in the operational GFS 

starting at v15. To include the complete information of the model versions in the 

manuscript title per the requirement of submission on Geoscientific Model 

Development, we incorporate the abbreviation of “GFSv15-FV3-CMAQv5.0.2” for the 

air quality forecasting system: GFS v15 with FV3 dynamical core offline coupling with 

CMAQ v5.0.2.  

 

2. Line 214:215: the term “ozone season” should be rewrite as “O3-season” to be 

consistent with the expression in other part of the manuscript.  

Response: The sentence is reworded as “O3-season”. 

 

3. Line 419: the term “overpredicted” should be “underpredicted”.  

Response: The sentence is corrected. 

 

4. Line 539: “nemsio” should be “NEMSIO” to be consistent with the expression in 

other part of the manuscript.  

Response: The “nemsio” is reworded as “NEMSIO”. 

 

5. Figure 2, Figure 8b and 8d: Some labels and lines are overlap. Please modify these 

pictures and make it clearer.  

Response: The labels in these figures are adjusted to be shown more clearly. 

 

6. Figure 8: The serial number of the figure ((a), (b), (c), (d)) should be in front of the 

title.  

Response: The serial numbers are adjusted to be in front of the title. 

 

7. Figure 8a, 8c: The term “CONUS” should be “Overall”.  

Response: The labels for the term “CONUS” in these two figures are reworded as 



“Overall”. 

 

8. Figure 9b, 9d: Part of the labels of the figure is missing. Please modify it. 

Response: Figure 9 is adjusted to show the labels completely. 

 

  



 

Reply to Comments from Reviewer #2 

 

Reviewer #2 comments: 

This contribution details a region-specific, time-specific, and categorical evaluation of 

the meteorological and chemical forecasts from the offline-coupled GFSv15-

CMAQv5.0.2 for the year 2019. This manuscript fits the scope of the journal of 

Geoscientific Model Development. However, the manuscript has important limitations. 

Although the paper is well organised and detailed, the results shown in the paper are, 

in my opinion, not sufficiently original and new to merit publication in this specific 

journal.  

Response:  

Thank you for your constructive comments. Please see below point-by-point 

responses. 

 

Major comments 

1. My main objection focuses on the fact that it is not clearly stated which elements of 

the study are genuinely new and original and which echo the findings of previous 

studies. I cannot clearly state either new methodology developed or any new results, 

apart from applying state-of-the-art validation methods to a new set of simulations with 

the GFSv15-CMAQv5.0.2. 

 

Response:  

Compared to previous publications in the literature, there are several new and 

unique aspects of our work. 

Firstly, the historical and current NAQFC are based on the NAM-CMAQ 

system. However, the NAM has been no longer updated since March 2017, as NOAA 

Environmental Modeling Center (EMC) has transitioned to devote its full resources 

towards the development of an ensemble model based on the FV3 dynamical core. The 

FV3-based system will eventually replace all current NOAA National Centers for 

Environmental Prediction (NCEP) mesoscale models used for forecasting. The next 

generation NAQFC will be based on the FV3. The NOAA National Weather Service 

(NWS) is currently coordinating an effort to inline a regional scale meteorological 



model basing on the same dynamic core as that in FV3GFS to be coupled with an 

atmospheric chemistry model partially based on CMAQ. The implementation of this 

inline system NAQFC is expected a few years in the future. Therefore, the system in 

this study is an important interim operational air quality forecasting capability the 

nation will have before the future inline system matures to be operational. The forecast 

skill of the interim FV3GFS-CMAQ system we analyzed in this work could also 

provide as a benchmark for the future inline system. 

Secondly, while the FV3-based GFS v15 showed similar and even better 

performance compared to the previous GFS v14 

(https://www.emc.ncep.noaa.gov/users/meg/fv3gfs/) and the NAM 

(https://hmt.noaa.gov/experiments/pdf/WPC-HMT_WWE_2019_Final_Report.pdf), 

air quality forecasting driven by FV3-based meteorology has not been fully evaluated. 

This is the first evaluation paper for the FV3GFS-CMAQ forecasting system, and 

demonstrates the ability of FV3-based GFSv15 to drive the air quality forecast.  

Thirdly, an updated study is needed because previous journal publications for 

NAQFC were based on older versions of CMAQ (v4.6 or v4.7) and historical 2005 and 

2011 NEIs (Kang et al., 2010a, 2010b; Garner et al., 2015; Bray et al., 2017; Huang et 

al., 2017; Lee et al., 2017; Pan et al., 2020). In our work, we implement 2014 NEI 

emission, GBBEPx fire emission, initial and lateral boundary conditions, and a CMAQ 

version closer to those in the current operational NAQFC thus allowing for the results 

and findings to be more directly transferable to the current NAQFC and inform further 

development of the future FV3-based NAQFC. 

To further address the reviewer comments, we reorganize our manuscript in the 

revision. A section is added for detailed discussion of the processes and causes 

attributing to the biases. The analysis summarized in the evaluation section of the 

previous manuscript are incorporated and expanded for detailed analysis in the 

discussion section. Here we describe the major items added in the discussion section. 

We focus more on the impact of meteorology-chemistry relationship and the chemical 

processes on the model biases. Firstly, the meteorology-chemistry relationship is 

further quantified by adding the region-specific analysis of meteorological biases. 

Secondly, the discussion for major biases in O3 and PM2.5 prediction is enhanced.  

For O3: The underpredicted O3 during non-O3 season was neglected in our 

previous manuscript. We include the temperature-O3 relationship to quantify the impact 

of cold biases on the O3 underprediction in the regions of 1, 3, 5, and 10, and on the 

https://hmt.noaa.gov/experiments/pdf/WPC-HMT_WWE_2019_Final_Report.pdf


overprediction in regions of 4 and 6 near the Gulf coast. While the cold biases could 

explain certain portion of the MDA8 O3 underprediction, the dry deposition algorithm 

of O3 to snow cover in CMAQ v5.0.2 is discussed for further contribution to the 

underprediction in the northern regions during winter and early spring. In addition to 

the temperature-O3 relationships, the significant O3 overprediction near the Gulf coast 

would be associated with the missing halogen chemistry and the overestimated 

emissions from oil-gas sources. 

For PM2.5: By this point, more and more observation datasets have been 

available. For example, most of the daily PM2.5 composition observations from Air 

Quality System (AQS) dataset are available for the entire 2019 now. We include them 

into further analysis and discussion for the manuscript. The contributions of the OC, 

sulfate, and dust compositions to the PM2.5 biases are quantified. Our findings are better 

supported by the additional evidence. These additional datasets and analysis help us to 

dig deeper into understanding the PM2.5 biases and their causes instead of referring 

previous studies to support our analysis in the original manuscript.  

Our study supports the future development of the FV3GFS-CMAQ system and 

even the operational NAQFC, which has similar model settings and inputs with the 

system evaluated in this study. For example, by introducing the evaluation of PM2.5 

compositions, we found the overestimation in dust compositions is one of the major 

sources for the PM2.5 overprediction in cooler months. We further conduct a sensitivity 

simulation by implementing an adjustment for suppressing the fugitive dust by snow 

cover, which was implemented in the operational NAQFC of the NAM-CMAQv5.0.2 

system in 2020. We found that the suppression and adjustment could improve the model 

performance during cooler months. It further indicates the need of further development 

and improvement for the NAQFC. 

 

2. Furthermore, objective (3) states that one of the aims of the manuscript is to 

"investigate underlying causes for the biases to provide a scientific basis for improving 

the model representations of chemical processes and developing science-based bias 

correction methods for O3 and PM2.5 forecasts.". However, after reading the manuscript, 

I don’t find any specific section of the manuscript devoted to understanding the 

physicschemical processes causing over- or underproduction of air quality parameters 

(apart from some general comments). The authors should deepen into the processes 

leading the levels of air pollution so that objective (3) can really be achieved. 



 

Response:  

A discussion section is added for deepening the analysis of the underlying 

causes in three aspects: (1) Meteorology-chemistry relationships, (2) Causes for major 

biases in O3 predictions, and (3) Causes for major biases in PM2.5 predictions. The 

revised text is listed below: 

We further quantify the meteorology-chemistry relationships by conducting the 

region-specific evaluation of the meteorological variables. The regional performance 

for major variables is shown in Figure S9. The regional biases in T2 predictions show 

high correlation with the regional biases in MDA8 O3. It indicates that the cold biases 

in the Midwest (including region 5) and the warm biases near the Gulf coast (including 

regions of 4 and 6) are important factors for the O3 underprediction and overprediction 

in those regions, respectively. The O3-temperature relationship was found (S. Sillman 

and Samson, 1995; Sillman, 1999). O3 is expected to increase with increasing 

temperature within specific range of temperature (Bloomer et al., 2009; Shen et al., 

2016). The surface MDA8 O3-temperature relationship was found at approximately 3-

6 ppb K-1 in the eastern US (Rasmussen et al., 2012). According to such relationships, 

the biases in T2 predictions could explain large portion of the O3 biases. Heavy 

convective precipitation and tropical cyclones occur more often in the southeastern US, 

which covers mainly regions 4 and 6. Therefore, the performance in precipitation 

predictions is worse in those two regions comparing to other regions as we have shown 

the model has relatively poor performance in capturing short-term heavy rains during 

summer seasons in section 3.1. Meanwhile, the performance in wind predictions in 

regions 4 and 6 is relatively poor. Such performance in the meteorological predictions 

is consistent with the mixed performance in PM2.5 prediction in regions 4 and 6. The 

discrepancy between simulated and observed meteorological variables, mainly in 

precipitations and wind, can be attributed to the poor temporal agreement shown as 

correlations of predicted PM2.5 in those two regions. 

In the original submission, we focus on the significant O3 overprediction near 

the Gulf coast during O3-season. In the revised manuscript, we analyze likely causes 

for additional model biases, e.g., underpredictions in the Northeast, Mid-Atlantic, 

Midwest, Mountainous states, and the Northwest (mainly corresponding to the regions 

1, 3, 5, 8, and 9) during non-O3 season as follows: 



The O3 concentration is underforecasted for the Northeast, Mid-Atlantic, 

Midwest, Mountainous states, and the Northwest (mainly corresponding to the regions 

1, 3, 5, 8, and 9) during non-O3 season. Large difference in dry deposition algorithms 

between CMAQ v5.0.2 and other common parameterizations was reported (Park et al., 

2014; Wu et al., 2018). Large discrepancy between modeled dry deposition velocity of 

O3 by CMAQ v5.0.2 and the observation during winter was shown and attributed to the 

deposition to snow surface. Improvement was indicated in revising the treatment of 

deposition to snow, vegetation, and bare ground in CMAQ v5.0.2. Lower deposition to 

snow was found to improve the consistency between the O3 deposition modeled by 

CMAQ v5.0.2 and the observations. Therefore, the dry deposition module in v5.0.2 

needs to be updated and improved for more accurate representation of low-moderate 

O3 mixing ratios (Appel et al., 2020). For the cases in this study, the snow cover for the 

months of Jan and Apr in winter and spring is shown in Figure 7a and 7b. The 

underpredicted O3 during non-O3 season may be caused by the overestimated O3 

deposition to snow in the northern regions, corresponding to the previous regions 1, 3, 

5, 8, and 9. The mixed effects of the temperature-O3 relationship discussed above and 

the large deposition to snow contribute to the moderate O3 underpredictions. 

In the original manuscript, we conducted part of the analyses for the PM2.5 

biases and the causes based on referring to some previous studies and several 

speculations. By introducing the additional AQS dataset into our evaluation, we can 

gain further insights into the specific reasons for the PM2.5 biases: 

 The variation in predicted PM2.5 composition between cooler and warmer 

months indicates that major seasonal biases are caused by multiple factors. We 

introduce the AQS dataset for evaluation of daily PM2.5 composition to provide 

additional insights into the specific reasons. Figure 9 shows the biases of the key PM2.5 

composition for the cooler month of Jan and warmer month of Jul. While the overall 

mean biases of PM2.5 composition, including elemental carbon (EC), ammonium 

(NH4
+), and nitrate (NO3

-) are within ±0.5 µg m-3 for all months of the year, the major 

biases in PM2.5 predictions are mostly contributed by organic carbon (OC), soil 

components (SOIL), and sulfate (SO4
2-). The soil components are estimated using the 

Interagency Monitoring of Protected Visual Environments (IMPROVE) equation and 

specific constituents (Appel et al., 2013). During a cooler month, the significant 

overprediction in PM2.5 is mainly attributed to the overprediction in OC and SOIL. 



During warmer months, the overprediction of SOIL and sulfate compensate for the 

overall underprediction in OC in v5.0.2, leading to the moderate PM2.5 underprediction 

in the Southeast but slight overprediction in the Midwest, Mid-Atlantic, and the 

Northeast. These high PM2.5 SOIL concentrations are consistent in spatial 

characteristics with large emissions of anthropogenic primary PM2.5, and primary 

coarse PM in the Midwest, Northeast, and the Northwest (Fig. S6). The underprediction 

in PM2.5 OC during summer compensate the overestimation in dust during cooler 

months, resulting in the overall biases with an annual NMB of 30%.  

The large emissions of anthropogenic primary coarse PM, as well as the wind-

blown dust are the major sources for predicted PM2.5 SOIL components. Appel et al. 

(2013) indicated CMAQ overpredicted soil components in the eastern United States 

partially due to the anthropogenic fugitive dust and wind-blown dust emissions. The 

overprediction in PM2.5 soil compositions by our forecast system could be mainly 

attributed to the overestimation of the anthropogenic fugitive dust emission because the 

meteorological conditions were not included in processing the anthropogenic fugitive 

dust sector. The dust-related components of aluminum, calcium, iron, titanium, silicon, 

and coarse mode particles are overestimated in the regions with snow and precipitation, 

especially during winter, early spring, and late autumn with snow cover in the north, 

which contributes to the PM2.5 overprediction, with more significant temporal-spatial 

pattern in the northern U.S. during cooler months.  

In CMAQ v5.0.2, the primary organic aerosol (POA) is processed as non-

volatile. The emissions of semivolatile and intermediate volatility organic compounds 

(S/IVOCs) and their contributions to the secondary organic aerosol (SOA) are not 

accounted for in the aerosol module. In the recent versions of CMAQ, two approaches 

linked to POA sources have been implemented. One introduces semi-volatile 

partitioning and gas-phase oxidation of POA emissions. The other (called pcSOA) 

accounts for multiple missing sources of anthropogenic SOA formation, including 

potential missing oxidation pathways and emissions of IVOCs. These two 

improvements lead to increased organic carbon concentrations in summer but decreased 

level in winter. The changes vary by season as a result of differences in volatility (as 

dictated by temperature and boundary layer height) and reaction rate between winter 

and summer. Therefore, the missing S/IVOCs and related SOA chemistry in v5.0.2 are 

key reasons for the OC overprediction and underprediction during cooler and warmer 



months, respectively.  

 The detailed analysis for the underlying cause by the uncertainty and biases in 

emissions of anthropogenic fugitive dust will be discussed further in the discussion 

section and in the response to the “other comment #2 by Reviewer 2”. 

In general, we reorganize the evaluation and the discussion sections. The 

discussion of relationships between the meteorological factors and the chemical 

performance are further enhanced. The physical drivers are linked with the biases in air 

pollutant predictions more deeply. The discussion of the model chemistry is expanded 

in more detail.  

 

3. Despite the large number of statistical figures presented, I have the very personal 

opinion that the authors do not take the advantage of the compiled information to point 

to the specific causes for model biases. 

Response:  

We agree that some of the presented figures and materials were not well 

interpreted to informative messages to the readers. For example, the evaluation of 

monthly accumulated precipitation is shown in three figures (Figures S2 to S4 in the 

original submission). But the main purpose of those three figures in the original 

manuscript was only to indicate that the GFSv15-CMAQv5.0.2 system has better 

agreement in the spatial characteristics than the temporal variations. We revise the 

presentation of the evaluation of accumulated precipitation as Figure S3. The 

performance and the spatial patterns of the monthly accumulated precipitation during 

four seasons are more straightforward. Meanwhile, the findings from the evaluation 

section 3 are further discussed in section 4 in details. We closely link the meteorological 

drivers to the analysis for chemical biases as we indicated in the response of comment 

#2. The cold biases shown in Figure S2 are further discussed in section 4.1. Additional 

information and analysis are added in section 4.2 to address the major biases in O3 

predictions shown in Figures 2 and 6. Furthermore, the information and description for 

Figure 7 in the original manuscript are revised and enhanced in section 4.3 by 

introducing the evaluation of PM2.5 against AQS dataset. The original Figure 9 is further 

supported by the additional analysis of seasonal variation of PM2.5 composition and the 

diurnal emissions as indicated in the response to major comment #2 and other comment 

#2. 



In general, we reorganize some figures to make them more concise. We deepen 

the analysis by providing additional supporting material for several speculations in the 

revised discussion section.  

 

Other comments 

1. The authors should compare the skills of the model (categorical evaluation) with 

other published model studies, in order to have a flavor of the behavior of the model 

when compared to other forecasting systems worldwide. 

Response:  

Major RT-AQF systems over the world were comprehensively reviewed in 

(Zhang et al., 2012a, 2012b). Here we include a comparison with the more recent air 

quality forecasting studies from Canada (Moran et al., 2018; Russell et al., 2019), 

Europe (Struzewska et al., 2016; D’Allura et al., 2018; Podrascanin, 2019; Stortini et 

al., 2020), East Asia (Lyu et al., 2017; Zhou et al., 2017; Peng et al., 2018; Ha et al., 

2020), and CONUS (Kang et al., 2010; Zhang et al., 2016; Lee et al., 2017). We 

summarize the performance in these studies in a table in the supplementary material. 

As for the categorical performance, the air quality standards vary in different regions 

(Oliveri Conti et al., 2017). For example, National Ambient Air Quality Standards 

(NAAQSs), the Ambient Air Quality and Cleaner Air for Europe (CAFE) Directive 

(2008/50/EC), and the national ambient air quality standard (GB 3095-2012) are set up 

by U.S., Europe, and China, respectively. Therefore, the definition of the categorical 

metrics may vary between regions even with the same metric name. Their categorical 

performance are discussed specifically in the revised text: 

Table S3 summarizes air quality forecasting skills reported in the literature 

along with that from this work. For those studies with data assimilation in air quality 

forecasting, the performance from the raw results without data assimilation are 

presented. The performance in predicting O3 and PM varies largely between model 

systems. The discrete and categorical performance in O3 prediction is not significantly 

better than that in PM prediction. O3 tends to be slightly overpredicted in an annual 

base or for the warmer months. The annual NMB and Corr for O3 over the North 

America are 1.4% and 0.76 for 2010 in Moran et al. (2018), while they are 1.0% and 

0.73 in this study. However, the performance in PM2.5 prediction varies largely from 

our study. The PM2.5 for warmer months were moderately overpredicted in Russel et al. 



(2019), with the MBs ranging from 3.2 to 5.5 µg m-3. The categorical performance of 

GFSv15-CMAQv5.0.2 in predicting MDA8 O3 is similar with that of the previous 

NAQFC (Kang et al., 2010), in which the FAR and H are ~68 % and ~31% for 

“Unhealthy for Sensitive Groups”, and the H is ~47% for “Moderate” category, 

respectively. The H for PM2.5 also decreased largely from ~46% for “Moderate” to ~21% 

for “Unhealthy for Sensitive Groups” category, and the FAR was over 90% for the 

“Unhealthy for Sensitive Groups” category in Kang et al. (2010). The overpredicted 

PM2.5 was also found when using the historical 2005 NEI in forecast for Jan 2015 (Lee 

et al., 2017). The performance was improved by updates of 2011 NEI and real-time 

dust and wildfire emissions. It indicates the needs of improving our emission inventory. 

As for the categorical performance in regions other than CONUS, the air quality 

standards vary (Oliveri Conti et al., 2017). For example, National Ambient Air Quality 

Standards (NAAQSs), the Ambient Air Quality and Cleaner Air for Europe (CAFE) 

Directive (2008/50/EC), and the national ambient air quality standard (GB 3095-2012) 

are set up by U.S., Europe, and China, respectively. Metrics also vary between studies. 

The primary forecasting products are O3 and PM10 from some forecasting systems 

instead of O3 and PM2.5 in this study. The threshold for categorical evaluation of O3 

used in D’Allura et al (2018) was 83.0 µg m-3. The applied metrics of the False Alarm 

Ratio and Probability of Detection (POD) were defined the same as the FAR and H 

used in our study. The FAR and POD were 36.14% and 71.16%, respectively. The 

categorical evaluation of PM2.5 in Ha et al. (2020) was applied for four categories: (1) 

0-15 µg m-3, (2) 16-50 µg m-3, (3) 51-100 µg m-3, and (4) >100 µg m-3. The overall 

FAR and Detection Rate for four categories are 59.0% and 36.1%, respectively. 

Although the metrics of FAR and Detection Rate were defined for four categories, 

rather than every single category as for this study, the categorical performance is 

comparable with our results. In general, the discrete and categorical performance of O3 

forecast in this study is comparable that of the air quality forecasting systems in many 

regions of the world. However, the PM forecasts vary largely between studies. While 

our GFSv15-CMAQv5.0.2 system shows consistent performance with the systems 

covering CONUS, the high FAR and low H for “Unhealthy for Sensitive Groups” 

category with higher thresholds indicate that the categorical performance could be 

further improved by addressing the significant overprediction during cooler months in 

this study. 

 



2. Emissions are really important in forecasting system; however, this manuscript lacks 

information about the emissions used (time series, spatial patterns, seasonal behavior, 

etc). The authors should explain in a higher degree of detail how emissions are 

considered and implemented in the forecasting system. 

Response:  

We expand the introduction of how we prepare and implement the emission into 

the GFSv15-CMAQv5.0.2 system in the methodology section 2: 

 The anthropogenic emissions from area, mobile, and point sources in National 

Emissions Inventory of year 2014 version 2 (NEI 2014v2) are processed by the Sparse 

Matrix Operator Kernel Emissions (SMOKE) modeling system. The onroad mobile 

sources include all emissions from motor vehicles that operate on roadways such as 

passenger cars, motorcycles, minivans, sport-utility vehicles, light-duty trucks, heavy-

duty trucks, and buses. Onroad mobile source emissions are processed using emission 

factors output from the Motor Vehicle Emissions Simulator (MOVES). SMOKE uses 

a combination of vehicle activity data, emission factors from MOVES, meteorology 

data, and temporal allocation information to estimate hourly, gridded onroad emissions. 

The nonroad, agriculture, anthropogenic fugitive dust, non-elevated oil-gas, residential 

wood combustion, and other sectors are included in the area sources. The sectors of 

airports, commercial marine vessel (CMV), electric generating units (pt_egu), point 

sources related to oil and gas production (pt_oilgas), point sources that are not EGUs 

nor related to oil and gas (ptnonipm), and point sources outside US (pt_other) are 

included in the point sources. The sulfur dioxide (SO2) and nitrogen oxide (NOX) from 

point sources in NEI 2005 are projected to year 2019 following the methods used in 

Tang et al. (2015, 2017). The biomass burning emission inventory from the Blended 

Global Biomass Burning Emissions Product system (GBBEPx) (Zhang et al., 2019b) is 

impletemented for the forecast of forest fires. The GBBEPx fire emission is treated as 

one type of point source. Its heat flux is derived from satellite retrieved fire radiative 

power (FRP) to drive fire plume rise. The GBBEPx is a near real time fire dataset. The 

fire emission implemented in the current forecast cycle comes from the historical fire 

observation, typically 1-2 day behind. In this system, we use landuse information to 

classify fires into forest fire and other burning such as agriculture burning. We assume 

only forest fire can last longer than 24 hours. We assume the forest fire emission will 

continue on day 2 and beyond. Other types of fires will be dropped as we assume few 

of them could continue beyond day 2. The plume rise of the point source is driven by 



the meteorology and allocated to the 35 elevated layers in GFSv15-CMAQv5.0.2 

system by the PREMAQ preprocessing system. Biogenic emissions are calculated 

inline by Biogenic Emission Inventory System (BEIS) version 3.14 (Schwede et al., 

2005). Sea-salt emission is parameterized within CMAQ v5.0.2. While the deposition 

velocities are calculated inline, the fertilizer ammonia bi-directional flux for in-line 

emissions and deposition velocities is turned off.  

The impact of the emissions on the biases in O3 prediction is added in the revised 

text: 

In addition to the impact of meteorological biases and missing halogen 

chemistry on the O3 overprediction near Gulf coast, the overestimated VOC emission 

could increase O3 biases. The anthropogenic VOCs emissions continuously decrease 

from historical NEIs to 2016 NEI 

(http://views.cira.colostate.edu/wiki/wiki/10202/inventory-collaborative-2016v1-

emissions-modeling-platform). We compare the VOCs emissions between 2016 NEI 

and the emissions used in this study. Figure S10 shows the difference in the elevated 

source of pt_oilgas. The Gulf coast is impacted by the oil and gas sector due to the oil 

and gas fields, and the exploration activity near it. By comparing the 2016 NEI to the 

current emissions we used in the system, we found that the overestimation of the VOCs 

emissions could be one aspect to the O3 overprediction near the Gulf Coast. We only 

project the SO2 and NOx from 2005 NEI to 2019 and we do not project the VOCs for 

the elevated sources. The monthly VOCs emissions from pt_oilgas sector for July in 

regions 4 and 6 are 2876.0 tons month-1, while they are 2497.0 tons month-1 in 2016 

NEI. The reduction mainly locates along the coastline, where the significant 

overprediction takes place. It indicates the complicated effect of meteorological biases, 

missing gas-phase chemistry, and the overestimation of emissions on the O3 prediction 

in such area. 

While the diurnal characteristics of the emissions with the revised Figure S11 

are added in the revised manuscript to understand the diurnal PM2.5 biases, additional 

analyses are conducted for specific issues below: 

During cooler months, the significantly overpredicted PM2.5 is mainly attributed 

to the emission of anthropogenic fugitive dust. In reality, the meteorological conditions 

could largely impact the amount and characteristics of anthropogenic fugitive dust. For 

example, the snow cover and the soil moisture are important factors in calculating the 

dust emissions in SMOKE. However, the anthropogenic fugitive dust implemented in 



this GFSv15-CMAQv5.0.2 system was not adjusted by the precipitation and snow 

cover. The large emissions of anthropogenic primary coarse PM, as well as the wind-

blown dust are the major sources for predicted PM2.5 SOIL components. Appel et al. 

(2013) indicated CMAQ overpredicted soil components in the eastern United States 

partially due to the anthropogenic fugitive dust and wind-blown dust emissions. The 

overprediction in PM2.5 soil compositions by our forecast system could be mainly 

attributed to the overestimation of the anthropogenic fugitive dust emission because the 

meteorological conditions were not included in processing the anthropogenic fugitive 

dust sector. The dust-related components of aluminum, calcium, iron, titanium, silicon, 

and coarse mode particles are overestimated in the regions with snow and precipitation, 

especially during winter, early spring, and late autumn with snow cover in the north. 

Thus, it contributes to the PM2.5 overprediction, with more significantly temporal-

spatial pattern in the north U.S. during cooler months.  

An adjustment of precipitation and snow cover for fugitive dust was 

implemented in the operational NAQFC. The dust-related PM emissions will be clean 

up using a factor of 0.01 when the snow cover is higher than 25% or the hourly 

precipitation is higher than 0.1 mm hr-1 before they are used as input for CMAQ v5.0.2 

forecast. We conduct a sensitivity simulation for Jan 2019 using the GFSv15-

CMAQv5.0.2 system with the adjustment implemented in the operational NAQFC. 

Figure 7c shows the PM2.5 overprediction in the northern regions 1, 2, 5, and 10 during 

Jan is largely improved corresponding to the spatial-temporal characteristics of snow 

cover. The monthly MB and NMB for Jan improves from 5.5 µg m-3 and 66.9% to 2.1 

µg m-3 and 24.0%, respectively. The improvement is mainly attributed to the decrease 

in overpredictions in PM2.5 soil components, with MBs decreased from 3.3 µg m-3 to 

1.2 µg m-3 for Jan (Fig. 7d). The overprediction in the Northeast and Northwest during 

spring is expected to be improved by the suppression of the fugitive dust by the snow 

during early spring. This indicates the importance of including the meteorological 

forecast in processing the emission of anthropogenic fugitive dust. It should be 

calculated inline or be adjusted by the meteorological forecast. 

 

 


