
Reply to Comments from Reviewer #2 

 

The referee comments are shown in blue. 

The responses to the comments are shown in black. 

The text included in the revised manuscript are shown in red. 

 

Reviewer #2 comments: 

This contribution details a region-specific, time-specific, and categorical evaluation of 

the meteorological and chemical forecasts from the offline-coupled GFSv15-

CMAQv5.0.2 for the year 2019. This manuscript fits the scope of the journal of 

Geoscientific Model Development. However, the manuscript has important limitations. 

Although the paper is well organised and detailed, the results shown in the paper are, 

in my opinion, not sufficiently original and new to merit publication in this specific 

journal.  

Response:  

Thank you for your constructive comments. Please see below point-by-point 

responses. 

 

Major comments 

1. My main objection focuses on the fact that it is not clearly stated which elements of 

the study are genuinely new and original and which echo the findings of previous 

studies. I cannot clearly state either new methodology developed or any new results, 

apart from applying state-of-the-art validation methods to a new set of simulations with 

the GFSv15-CMAQv5.0.2. 

 

Response:  

Compared to previous publications in the literature, there are several new and 

unique aspects of our work. 

Firstly, the historical and current NAQFC are based on the NAM-CMAQ 

system. However, the NAM has been no longer updated since March 2017, as NOAA 

Environmental Modeling Center (EMC) has transitioned to devote its full resources 

towards the development of an ensemble model based on the FV3 dynamical core. The 

FV3-based system will eventually replace all current NOAA National Centers for 



Environmental Prediction (NCEP) mesoscale models used for forecasting. The next 

generation NAQFC will be based on the FV3. The NOAA National Weather Service 

(NWS) is currently coordinating an effort to inline a regional scale meteorological 

model basing on the same dynamic core as that in FV3GFS to be coupled with an 

atmospheric chemistry model partially based on CMAQ. The implementation of this 

inline system NAQFC is expected a few years in the future. Therefore, the system in 

this study is an important interim operational air quality forecasting capability the 

nation will have before the future inline system matures to be operational. The forecast 

skill of the interim FV3GFS-CMAQ system we analyzed in this work could also 

provide as a benchmark for the future inline system. 

Secondly, while the FV3-based GFS v15 showed similar and even better 

performance compared to the previous GFS v14 

(https://www.emc.ncep.noaa.gov/users/meg/fv3gfs/) and the NAM 

(https://hmt.noaa.gov/experiments/pdf/WPC-HMT_WWE_2019_Final_Report.pdf), 

air quality forecasting driven by FV3-based meteorology has not been fully evaluated. 

This is the first evaluation paper for the FV3GFS-CMAQ forecasting system, and 

demonstrates the ability of FV3-based GFSv15 to drive the air quality forecast.  

Thirdly, an updated study is needed because previous journal publications for 

NAQFC were based on older versions of CMAQ (v4.6 or v4.7) and historical 2005 and 

2011 NEIs (Kang et al., 2010a, 2010b; Garner et al., 2015; Bray et al., 2017; Huang et 

al., 2017; Lee et al., 2017; Pan et al., 2020). In our work, we implement 2014 NEI 

emission, GBBEPx fire emission, initial and lateral boundary conditions, and a CMAQ 

version closer to those in the current operational NAQFC thus allowing for the results 

and findings to be more directly transferable to the current NAQFC and inform further 

development of the future FV3-based NAQFC. 

To further address the reviewer comments, we reorganize our manuscript in the 

revision. A section is added for detailed discussion of the processes and causes 

attributing to the biases. The analysis summarized in the evaluation section of the 

previous manuscript are incorporated and expanded for detailed analysis in the 

discussion section. Here we describe the major items added in the discussion section. 

We focus more on the impact of meteorology-chemistry relationship and the chemical 

processes on the model biases. Firstly, the meteorology-chemistry relationship is 

further quantified by adding the region-specific analysis of meteorological biases. 

Secondly, the discussion for major biases in O3 and PM2.5 prediction is enhanced.  

https://hmt.noaa.gov/experiments/pdf/WPC-HMT_WWE_2019_Final_Report.pdf


For O3: The underpredicted O3 during non-O3 season was neglected in our 

previous manuscript. We include the temperature-O3 relationship to quantify the impact 

of cold biases on the O3 underprediction in the regions of 1, 3, 5, and 10, and on the 

overprediction in regions of 4 and 6 near the Gulf coast. While the cold biases could 

explain certain portion of the MDA8 O3 underprediction, the dry deposition algorithm 

of O3 to snow cover in CMAQ v5.0.2 is discussed for further contribution to the 

underprediction in the northern regions during winter and early spring. In addition to 

the temperature-O3 relationships, the significant O3 overprediction near the Gulf coast 

would be associated with the missing halogen chemistry and the overestimated 

emissions from oil-gas sources. 

For PM2.5: By this point, more and more observation datasets have been 

available. For example, most of the daily PM2.5 composition observations from Air 

Quality System (AQS) dataset are available for the entire 2019 now. We include them 

into further analysis and discussion for the manuscript. The contributions of the OC, 

sulfate, and dust compositions to the PM2.5 biases are quantified. Our findings are better 

supported by the additional evidence. These additional datasets and analysis help us to 

dig deeper into understanding the PM2.5 biases and their causes instead of referring 

previous studies to support our analysis in the original manuscript.  

Our study supports the future development of the FV3GFS-CMAQ system and 

even the operational NAQFC, which has similar model settings and inputs with the 

system evaluated in this study. For example, by introducing the evaluation of PM2.5 

compositions, we found the overestimation in dust compositions is one of the major 

sources for the PM2.5 overprediction in cooler months. We further conduct a sensitivity 

simulation by implementing an adjustment for suppressing the fugitive dust by snow 

cover, which was implemented in the operational NAQFC of the NAM-CMAQv5.0.2 

system in 2020. We found that the suppression and adjustment could improve the model 

performance during cooler months. It further indicates the need of further development 

and improvement for the NAQFC. 

 

2. Furthermore, objective (3) states that one of the aims of the manuscript is to 

"investigate underlying causes for the biases to provide a scientific basis for improving 

the model representations of chemical processes and developing science-based bias 

correction methods for O3 and PM2.5 forecasts.". However, after reading the manuscript, 

I don’t find any specific section of the manuscript devoted to understanding the 



physicschemical processes causing over- or underproduction of air quality parameters 

(apart from some general comments). The authors should deepen into the processes 

leading the levels of air pollution so that objective (3) can really be achieved. 

 

Response:  

A discussion section is added for deepening the analysis of the underlying 

causes in three aspects: (1) Meteorology-chemistry relationships, (2) Causes for major 

biases in O3 predictions, and (3) Causes for major biases in PM2.5 predictions. The 

revised text is listed below: 

We further quantify the meteorology-chemistry relationships by conducting the 

region-specific evaluation of the meteorological variables. The regional performance 

for major variables is shown in Figure S9. The regional biases in T2 predictions show 

high correlation with the regional biases in MDA8 O3. It indicates that the cold biases 

in the Midwest (including region 5) and the warm biases near the Gulf coast (including 

regions of 4 and 6) are important factors for the O3 underprediction and overprediction 

in those regions, respectively. The O3-temperature relationship was found (S. Sillman 

and Samson, 1995; Sillman, 1999). O3 is expected to increase with increasing 

temperature within specific range of temperature (Bloomer et al., 2009; Shen et al., 

2016). The surface MDA8 O3-temperature relationship was found at approximately 3-

6 ppb K-1 in the eastern US (Rasmussen et al., 2012). According to such relationships, 

the biases in T2 predictions could explain large portion of the O3 biases. Heavy 

convective precipitation and tropical cyclones occur more often in the southeastern US, 

which covers mainly regions 4 and 6. Therefore, the performance in precipitation 

predictions is worse in those two regions comparing to other regions as we have shown 

the model has relatively poor performance in capturing short-term heavy rains during 

summer seasons in section 3.1. Meanwhile, the performance in wind predictions in 

regions 4 and 6 is relatively poor. Such performance in the meteorological predictions 

is consistent with the mixed performance in PM2.5 prediction in regions 4 and 6. The 

discrepancy between simulated and observed meteorological variables, mainly in 

precipitations and wind, can be attributed to the poor temporal agreement shown as 

correlations of predicted PM2.5 in those two regions. 

In the original submission, we focus on the significant O3 overprediction near 

the Gulf coast during O3-season. In the revised manuscript, we analyze likely causes 



for additional model biases, e.g., underpredictions in the Northeast, Mid-Atlantic, 

Midwest, Mountainous states, and the Northwest (mainly corresponding to the regions 

1, 3, 5, 8, and 9) during non-O3 season as follows: 

The O3 concentration is underforecasted for the Northeast, Mid-Atlantic, 

Midwest, Mountainous states, and the Northwest (mainly corresponding to the regions 

1, 3, 5, 8, and 9) during non-O3 season. Large difference in dry deposition algorithms 

between CMAQ v5.0.2 and other common parameterizations was reported (Park et al., 

2014; Wu et al., 2018). Large discrepancy between modeled dry deposition velocity of 

O3 by CMAQ v5.0.2 and the observation during winter was shown and attributed to the 

deposition to snow surface. Improvement was indicated in revising the treatment of 

deposition to snow, vegetation, and bare ground in CMAQ v5.0.2. Lower deposition to 

snow was found to improve the consistency between the O3 deposition modeled by 

CMAQ v5.0.2 and the observations. Therefore, the dry deposition module in v5.0.2 

needs to be updated and improved for more accurate representation of low-moderate 

O3 mixing ratios (Appel et al., 2020). For the cases in this study, the snow cover for the 

months of Jan and Apr in winter and spring is shown in Figure 7a and 7b. The 

underpredicted O3 during non-O3 season may be caused by the overestimated O3 

deposition to snow in the northern regions, corresponding to the previous regions 1, 3, 

5, 8, and 9. The mixed effects of the temperature-O3 relationship discussed above and 

the large deposition to snow contribute to the moderate O3 underpredictions. 

In the original manuscript, we conducted part of the analyses for the PM2.5 

biases and the causes based on referring to some previous studies and several 

speculations. By introducing the additional AQS dataset into our evaluation, we can 

gain further insights into the specific reasons for the PM2.5 biases: 

 The variation in predicted PM2.5 composition between cooler and warmer 

months indicates that major seasonal biases are caused by multiple factors. We 

introduce the AQS dataset for evaluation of daily PM2.5 composition to provide 

additional insights into the specific reasons. Figure 9 shows the biases of the key PM2.5 

composition for the cooler month of Jan and warmer month of Jul. While the overall 

mean biases of PM2.5 composition, including elemental carbon (EC), ammonium 

(NH4
+), and nitrate (NO3

-) are within ±0.5 µg m-3 for all months of the year, the major 

biases in PM2.5 predictions are mostly contributed by organic carbon (OC), soil 

components (SOIL), and sulfate (SO4
2-). The soil components are estimated using the 



Interagency Monitoring of Protected Visual Environments (IMPROVE) equation and 

specific constituents (Appel et al., 2013). During a cooler month, the significant 

overprediction in PM2.5 is mainly attributed to the overprediction in OC and SOIL. 

During warmer months, the overprediction of SOIL and sulfate compensate for the 

overall underprediction in OC in v5.0.2, leading to the moderate PM2.5 underprediction 

in the Southeast but slight overprediction in the Midwest, Mid-Atlantic, and the 

Northeast. These high PM2.5 SOIL concentrations are consistent in spatial 

characteristics with large emissions of anthropogenic primary PM2.5, and primary 

coarse PM in the Midwest, Northeast, and the Northwest (Fig. S6). The underprediction 

in PM2.5 OC during summer compensate the overestimation in dust during cooler 

months, resulting in the overall biases with an annual NMB of 30%.  

The large emissions of anthropogenic primary coarse PM, as well as the wind-

blown dust are the major sources for predicted PM2.5 SOIL components. Appel et al. 

(2013) indicated CMAQ overpredicted soil components in the eastern United States 

partially due to the anthropogenic fugitive dust and wind-blown dust emissions. The 

overprediction in PM2.5 soil compositions by our forecast system could be mainly 

attributed to the overestimation of the anthropogenic fugitive dust emission because the 

meteorological conditions were not included in processing the anthropogenic fugitive 

dust sector. The dust-related components of aluminum, calcium, iron, titanium, silicon, 

and coarse mode particles are overestimated in the regions with snow and precipitation, 

especially during winter, early spring, and late autumn with snow cover in the north, 

which contributes to the PM2.5 overprediction, with more significant temporal-spatial 

pattern in the northern U.S. during cooler months.  

In CMAQ v5.0.2, the primary organic aerosol (POA) is processed as non-

volatile. The emissions of semivolatile and intermediate volatility organic compounds 

(S/IVOCs) and their contributions to the secondary organic aerosol (SOA) are not 

accounted for in the aerosol module. In the recent versions of CMAQ, two approaches 

linked to POA sources have been implemented. One introduces semi-volatile 

partitioning and gas-phase oxidation of POA emissions. The other (called pcSOA) 

accounts for multiple missing sources of anthropogenic SOA formation, including 

potential missing oxidation pathways and emissions of IVOCs. These two 

improvements lead to increased organic carbon concentrations in summer but decreased 

level in winter. The changes vary by season as a result of differences in volatility (as 



dictated by temperature and boundary layer height) and reaction rate between winter 

and summer. Therefore, the missing S/IVOCs and related SOA chemistry in v5.0.2 are 

key reasons for the OC overprediction and underprediction during cooler and warmer 

months, respectively.  

 The detailed analysis for the underlying cause by the uncertainty and biases in 

emissions of anthropogenic fugitive dust will be discussed further in the discussion 

section and in the response to the “other comment #2 by Reviewer 2”. 

In general, we reorganize the evaluation and the discussion sections. The 

discussion of relationships between the meteorological factors and the chemical 

performance are further enhanced. The physical drivers are linked with the biases in air 

pollutant predictions more deeply. The discussion of the model chemistry is expanded 

in more detail.  



 

Figure S9. Annual performance for 10 regions in predicting meteorological variables 

of temperature at 2-m (T2), relative humidity at 2-m (RH2), precipitation, and wind 

speed at 10-m (WS10) 



 

Figure 7. The predicted average snow cover for (a) Jan and (b) Apr. (c) The difference 

in NMBs of PM2.5 by adjusting anthropogenic fugitive dust emission for Jan. Positive 

values stand for improvement in biases with NMBs closer to 0. (d) MBs in PM2.5 soil 

composition with adjustment of AFD emission for Jan. 



 

Figure 9. Mean biases in PM2.5: (a) OC for Jan, (b) OC for Jul, (c) SOIL for Jan, (d) 

SOIL for Jul, (e) sulfate for Jan, and (f) sulfate for Jul 

  

3. Despite the large number of statistical figures presented, I have the very personal 

opinion that the authors do not take the advantage of the compiled information to point 

to the specific causes for model biases. 

Response:  

We agree that some of the presented figures and materials were not well 

interpreted to informative messages to the readers. For example, the evaluation of 

monthly accumulated precipitation is shown in three figures (Figures S2 to S4 in the 

original submission). But the main purpose of those three figures in the original 

manuscript was only to indicate that the GFSv15-CMAQv5.0.2 system has better 

agreement in the spatial characteristics than the temporal variations. We revise the 

presentation of the evaluation of accumulated precipitation as Figure S3. The 



performance and the spatial patterns of the monthly accumulated precipitation during 

four seasons are more straightforward. Meanwhile, the findings from the evaluation 

section 3 are further discussed in section 4 in details. We closely link the meteorological 

drivers to the analysis for chemical biases as we indicated in the response of comment 

#2. The cold biases shown in Figure S2 are further discussed in section 4.1. Additional 

information and analysis are added in section 4.2 to address the major biases in O3 

predictions shown in Figures 2 and 6. Furthermore, the information and description for 

Figure 7 in the original manuscript are revised and enhanced in section 4.3 by 

introducing the evaluation of PM2.5 against AQS dataset. The original Figure 9 is further 

supported by the additional analysis of seasonal variation of PM2.5 composition and the 

diurnal emissions as indicated in the response to major comment #2 and other comment 

#2. 

In general, we reorganize some figures to make them more concise. We deepen 

the analysis by providing additional supporting material for several speculations in the 

revised discussion section.  

 

 



Figure S3. Monthly accumulated precipitation for four seasons by the GFSv15-

CMAQv5.0.2 prediction, CCPA observation, and GPCP observation 

 

Other comments 

1. The authors should compare the skills of the model (categorical evaluation) with 

other published model studies, in order to have a flavor of the behavior of the model 

when compared to other forecasting systems worldwide. 

Response:  

Major RT-AQF systems over the world were comprehensively reviewed in 

(Zhang et al., 2012a, 2012b). Here we include a comparison with the more recent air 

quality forecasting studies from Canada (Moran et al., 2018; Russell et al., 2019), 

Europe (Struzewska et al., 2016; D’Allura et al., 2018; Podrascanin, 2019; Stortini et 

al., 2020), East Asia (Lyu et al., 2017; Zhou et al., 2017; Peng et al., 2018; Ha et al., 

2020), and CONUS (Kang et al., 2010; Zhang et al., 2016; Lee et al., 2017). We 

summarize the performance in these studies in a table in the supplementary material. 

As for the categorical performance, the air quality standards vary in different regions 

(Oliveri Conti et al., 2017). For example, National Ambient Air Quality Standards 

(NAAQSs), the Ambient Air Quality and Cleaner Air for Europe (CAFE) Directive 

(2008/50/EC), and the national ambient air quality standard (GB 3095-2012) are set up 

by U.S., Europe, and China, respectively. Therefore, the definition of the categorical 

metrics may vary between regions even with the same metric name. Their categorical 

performance are discussed specifically in the revised text: 

Table S3 summarizes air quality forecasting skills reported in the literature 

along with that from this work. For those studies with data assimilation in air quality 

forecasting, the performance from the raw results without data assimilation are 

presented. The performance in predicting O3 and PM varies largely between model 

systems. The discrete and categorical performance in O3 prediction is not significantly 

better than that in PM prediction. O3 tends to be slightly overpredicted in an annual 

base or for the warmer months. The annual NMB and Corr for O3 over the North 

America are 1.4% and 0.76 for 2010 in Moran et al. (2018), while they are 1.0% and 

0.73 in this study. However, the performance in PM2.5 prediction varies largely from 

our study. The PM2.5 for warmer months were moderately overpredicted in Russel et al. 

(2019), with the MBs ranging from 3.2 to 5.5 µg m-3. The categorical performance of 

GFSv15-CMAQv5.0.2 in predicting MDA8 O3 is similar with that of the previous 



NAQFC (Kang et al., 2010), in which the FAR and H are ~68 % and ~31% for 

“Unhealthy for Sensitive Groups”, and the H is ~47% for “Moderate” category, 

respectively. The H for PM2.5 also decreased largely from ~46% for “Moderate” to ~21% 

for “Unhealthy for Sensitive Groups” category, and the FAR was over 90% for the 

“Unhealthy for Sensitive Groups” category in Kang et al. (2010). The overpredicted 

PM2.5 was also found when using the historical 2005 NEI in forecast for Jan 2015 (Lee 

et al., 2017). The performance was improved by updates of 2011 NEI and real-time 

dust and wildfire emissions. It indicates the needs of improving our emission inventory. 

As for the categorical performance in regions other than CONUS, the air quality 

standards vary (Oliveri Conti et al., 2017). For example, National Ambient Air Quality 

Standards (NAAQSs), the Ambient Air Quality and Cleaner Air for Europe (CAFE) 

Directive (2008/50/EC), and the national ambient air quality standard (GB 3095-2012) 

are set up by U.S., Europe, and China, respectively. Metrics also vary between studies. 

The primary forecasting products are O3 and PM10 from some forecasting systems 

instead of O3 and PM2.5 in this study. The threshold for categorical evaluation of O3 

used in D’Allura et al (2018) was 83.0 µg m-3. The applied metrics of the False Alarm 

Ratio and Probability of Detection (POD) were defined the same as the FAR and H 

used in our study. The FAR and POD were 36.14% and 71.16%, respectively. The 

categorical evaluation of PM2.5 in Ha et al. (2020) was applied for four categories: (1) 

0-15 µg m-3, (2) 16-50 µg m-3, (3) 51-100 µg m-3, and (4) >100 µg m-3. The overall 

FAR and Detection Rate for four categories are 59.0% and 36.1%, respectively. 

Although the metrics of FAR and Detection Rate were defined for four categories, 

rather than every single category as for this study, the categorical performance is 

comparable with our results. In general, the discrete and categorical performance of O3 

forecast in this study is comparable that of the air quality forecasting systems in many 

regions of the world. However, the PM forecasts vary largely between studies. While 

our GFSv15-CMAQv5.0.2 system shows consistent performance with the systems 

covering CONUS, the high FAR and low H for “Unhealthy for Sensitive Groups” 

category with higher thresholds indicate that the categorical performance could be 

further improved by addressing the significant overprediction during cooler months in 

this study. 

 

Table S3. Summary of forecasting skills of air quality forecasting systems 



Reference Region Model 

System 

Period Polluta

nt 

Performance 

Moran et 

al., 2018 

Canada/Nort

h America 

GEM-

MACH 

2010 O3 NMB=1.4%, R=0.76 

PM2.5 NMB=-0.6%, R=0.58 

Russell et 

al., 2019 

Canada GEM-

MACH 

Aug-Sept 

2013 

O3 MB=5.7 to 10.9 ppb, 

RMSE=9.7 to 16.0 ppb, 

Corr=0.50 to 0.74 

PM2.5 MB=3.2 to 5.5 µg m-3, 

RMSE=5.7 to 8.8 µg m-3, 

Corr=0.20 to 0.47 

Struzewska 

et al., 2016 

Poland GEM-AQ Nov 2011 

to Sep 

2013 

O3 MB=12.8 to 25.6 µg m-3, 

RMSE=24.6 to 28.7 µg m-3, 

Corr=0.48 to 0.62 

PM2.5 MB=-9.6 to -1.86 µg m-3, 

RMSE=24.8 to 34.1 µg m-3, 

Corr=0.48 to 0.58 

D’Allura et 

al., 2018 

Italy WRF/RAM

S-FARM 

2015 O3 FAR=36.1%, POD= 71.2%, 

threshold=83 µg m-3 

PM10 FAR=20.0%, POD= 27.3%, 

threshold=33 µg m-3 

Podrascani

n, 2019 

Serbia WRF/Chem August 

2016 

O3 MB=1.6 to 9.3 µg m-3, 

NMB=3.0 to 17.2%, 

Corr=0.45 to 0.50 

PM10 MB=-15.2 to -14.3 µg m-3, 

NMB=-74.0 to -56.1%, Corr=-

0.01 to 0.18 

Stortini et 

al., 2020 

Italy CHIMERE October 

2019 

O3 MB=11.0 to 16.9 µg m-3, 

RMSE=19.3 to 28.0 µg m-3, 

Corr=0.63 to 0.78 

PM10 MB=-8.2 to -4.9 µg m-3, 

RMSE=11.4 to 13.0 ug m-3, 

Corr=0.72 to 0.76, FAR=43-

44%, POD= 6-22% 

Lyu et al., 

2017 

China WRF-

CMAQ 

2014-2016 PM2.5 NME=49%, RMSE=32.2 ug 

m-3, R2=0.46 

Zhou et al., 

2017 

China WRF/Chem 2014-2015 MDA8 

O3 

MB=18.9 ppb, NMB=77%, 

RMSE=27.9 ppb, Corr=0.63 

PM2.5 MB=-12.0 µg m-3,NMB=-9%, 

RMSE=35.8 µg m-3, 

Corr=0.67 

Peng et al., 

2018 

China WRF/Chem 6 to 16 

October 

2014 

O3 MB=-31.0 µg m-3, 

RMSE=50.8 µg m-3, 

Corr=0.46 

PM2.5 MB=-34.1 µg m-3, 

RMSE=92.1 µg m-3, 

Corr=0.74 

Ha et al., 

2020 

Korea WRF/Chem May 2016 PM2.5 MAE=12.8, FAR=59.0%, 

Overall_Accuracy=59.7%, 

High_Pollution_Accuracy=35.

6% 

Kang et al., 

2010 

CONUS NAM-

CMAQ 

2008 MDA8 

O3 

HR=~47% for cat 2, ~31% for 

cat 3, FAR=~68% at cat 3 

PM2.5 HR=~46% for cat 2, ~21% for 

cat3, FAR=~91% at cat 3 

Zhang et 

al., 2016 

Southeaster

n US 

WRF/Chem

-MADRID 

2012-2014 

(May–

September

) 

MDA8 

O3 

NMB= 0.0 to 17.0 %, NME= 

22.0 to 27.0 %, Corr= 0.5 

PM2.5 NMB= -4.0 to 15.0 %, NME= 

36.0 to 40.0 %, Corr= 0.3 to 

0.4 



2012-2014 

(Decembe

r-

February) 

MDA8 

O3 

NMB= -17.7 to -9.1 %, NME= 

19.6 to 24.6 %, Corr= 0.0 to 

0.2 

PM2.5 NMB= 0.8 to 8.3 %, NME= 

42.6 to 47.2 %, Corr= 0.3 to 

0.4 

Lee et al., 

2017 

CONUS NAM-

CMAQ 

May and 

Jul 2014 

PM2.5 MB=-2.7 to -1.6 µg m-

3,NME=-35 to -20%, 

RMSE=4.5 to 8.8 µg m-3, 

Corr=0.22 to 0.33 

Jan 2015 PM2.5 MB=1.3 to 3.7 µg m-3, 

NME=13 to 38%, RMSE=6.5 

to 12.6 µg m-3, Corr=0.37 to 

0.38 

This work CONUS FV3GFS-

CMAQ 

2019 MDA8 

O3 

MB=0.4 ppb, NMB=1.0%, 

Corr=0.73. FAR=41.4 % and 

HR=45.8% at cat 2.  

PM2.5 MB=2.3 µg m-3, 

NMB=30.0%, Corr=0.41. 

FAR=70.3% and HR=57.6% 

for cat 2. 

FAR: False Alarm Ratio; POD: Probability of Detection; HR: Hit Rate. 

 

2. Emissions are really important in forecasting system; however, this manuscript lacks 

information about the emissions used (time series, spatial patterns, seasonal behavior, 

etc). The authors should explain in a higher degree of detail how emissions are 

considered and implemented in the forecasting system. 

Response:  

We expand the introduction of how we prepare and implement the emission into 

the GFSv15-CMAQv5.0.2 system in the methodology section 2: 

 The anthropogenic emissions from area, mobile, and point sources in National 

Emissions Inventory of year 2014 version 2 (NEI 2014v2) are processed by the Sparse 

Matrix Operator Kernel Emissions (SMOKE) modeling system. The onroad mobile 

sources include all emissions from motor vehicles that operate on roadways such as 

passenger cars, motorcycles, minivans, sport-utility vehicles, light-duty trucks, heavy-

duty trucks, and buses. Onroad mobile source emissions are processed using emission 

factors output from the Motor Vehicle Emissions Simulator (MOVES). SMOKE uses 

a combination of vehicle activity data, emission factors from MOVES, meteorology 

data, and temporal allocation information to estimate hourly, gridded onroad emissions. 

The nonroad, agriculture, anthropogenic fugitive dust, non-elevated oil-gas, residential 

wood combustion, and other sectors are included in the area sources. The sectors of 

airports, commercial marine vessel (CMV), electric generating units (pt_egu), point 



sources related to oil and gas production (pt_oilgas), point sources that are not EGUs 

nor related to oil and gas (ptnonipm), and point sources outside US (pt_other) are 

included in the point sources. The sulfur dioxide (SO2) and nitrogen oxide (NOX) from 

point sources in NEI 2005 are projected to year 2019 following the methods used in 

Tang et al. (2015, 2017). The biomass burning emission inventory from the Blended 

Global Biomass Burning Emissions Product system (GBBEPx) (Zhang et al., 2019b) is 

impletemented for the forecast of forest fires. The GBBEPx fire emission is treated as 

one type of point source. Its heat flux is derived from satellite retrieved fire radiative 

power (FRP) to drive fire plume rise. The GBBEPx is a near real time fire dataset. The 

fire emission implemented in the current forecast cycle comes from the historical fire 

observation, typically 1-2 day behind. In this system, we use landuse information to 

classify fires into forest fire and other burning such as agriculture burning. We assume 

only forest fire can last longer than 24 hours. We assume the forest fire emission will 

continue on day 2 and beyond. Other types of fires will be dropped as we assume few 

of them could continue beyond day 2. The plume rise of the point source is driven by 

the meteorology and allocated to the 35 elevated layers in GFSv15-CMAQv5.0.2 

system by the PREMAQ preprocessing system. Biogenic emissions are calculated 

inline by Biogenic Emission Inventory System (BEIS) version 3.14 (Schwede et al., 

2005). Sea-salt emission is parameterized within CMAQ v5.0.2. While the deposition 

velocities are calculated inline, the fertilizer ammonia bi-directional flux for in-line 

emissions and deposition velocities is turned off.  

The impact of the emissions on the biases in O3 prediction is added in the revised 

text: 

In addition to the impact of meteorological biases and missing halogen 

chemistry on the O3 overprediction near Gulf coast, the overestimated VOC emission 

could increase O3 biases. The anthropogenic VOCs emissions continuously decrease 

from historical NEIs to 2016 NEI 

(http://views.cira.colostate.edu/wiki/wiki/10202/inventory-collaborative-2016v1-

emissions-modeling-platform). We compare the VOCs emissions between 2016 NEI 

and the emissions used in this study. Figure S10 shows the difference in the elevated 

source of pt_oilgas. The Gulf coast is impacted by the oil and gas sector due to the oil 

and gas fields, and the exploration activity near it. By comparing the 2016 NEI to the 

current emissions we used in the system, we found that the overestimation of the VOCs 

emissions could be one aspect to the O3 overprediction near the Gulf Coast. We only 



project the SO2 and NOx from 2005 NEI to 2019 and we do not project the VOCs for 

the elevated sources. The monthly VOCs emissions from pt_oilgas sector for July in 

regions 4 and 6 are 2876.0 tons month-1, while they are 2497.0 tons month-1 in 2016 

NEI. The reduction mainly locates along the coastline, where the significant 

overprediction takes place. It indicates the complicated effect of meteorological biases, 

missing gas-phase chemistry, and the overestimation of emissions on the O3 prediction 

in such area. 

While the diurnal characteristics of the emissions with the revised Figure S11 

are added in the revised manuscript to understand the diurnal PM2.5 biases, additional 

analyses are conducted for specific issues below: 

During cooler months, the significantly overpredicted PM2.5 is mainly attributed 

to the emission of anthropogenic fugitive dust. In reality, the meteorological conditions 

could largely impact the amount and characteristics of anthropogenic fugitive dust. For 

example, the snow cover and the soil moisture are important factors in calculating the 

dust emissions in SMOKE. However, the anthropogenic fugitive dust implemented in 

this GFSv15-CMAQv5.0.2 system was not adjusted by the precipitation and snow 

cover. The large emissions of anthropogenic primary coarse PM, as well as the wind-

blown dust are the major sources for predicted PM2.5 SOIL components. Appel et al. 

(2013) indicated CMAQ overpredicted soil components in the eastern United States 

partially due to the anthropogenic fugitive dust and wind-blown dust emissions. The 

overprediction in PM2.5 soil compositions by our forecast system could be mainly 

attributed to the overestimation of the anthropogenic fugitive dust emission because the 

meteorological conditions were not included in processing the anthropogenic fugitive 

dust sector. The dust-related components of aluminum, calcium, iron, titanium, silicon, 

and coarse mode particles are overestimated in the regions with snow and precipitation, 

especially during winter, early spring, and late autumn with snow cover in the north. 

Thus, it contributes to the PM2.5 overprediction, with more significantly temporal-

spatial pattern in the north U.S. during cooler months.  

An adjustment of precipitation and snow cover for fugitive dust was 

implemented in the operational NAQFC. The dust-related PM emissions will be clean 

up using a factor of 0.01 when the snow cover is higher than 25% or the hourly 

precipitation is higher than 0.1 mm hr-1 before they are used as input for CMAQ v5.0.2 

forecast. We conduct a sensitivity simulation for Jan 2019 using the GFSv15-

CMAQv5.0.2 system with the adjustment implemented in the operational NAQFC. 



Figure 7c shows the PM2.5 overprediction in the northern regions 1, 2, 5, and 10 during 

Jan is largely improved corresponding to the spatial-temporal characteristics of snow 

cover. The monthly MB and NMB for Jan improves from 5.5 µg m-3 and 66.9% to 2.1 

µg m-3 and 24.0%, respectively. The improvement is mainly attributed to the decrease 

in overpredictions in PM2.5 soil components, with MBs decreased from 3.3 µg m-3  to 

1.2 µg m-3 for Jan (Fig. 7d). The overprediction in the Northeast and Northwest during 

spring is expected to be improved by the suppression of the fugitive dust by the snow 

during early spring. This indicates the importance of including the meteorological 

forecast in processing the emission of anthropogenic fugitive dust. It should be 

calculated inline or be adjusted by the meteorological forecast. 

 

 

Figure S10. Difference of VOC emissions from pt_oilgas sector in 2016 NEI 

comparing to the emissions used in this study  

 

Figure S11. (a) Monthly variation of domain-wide surface emissions, and (b) diurnal 

emissions of fine mode PM 
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