## Supplement material for: Development and evaluation of CO<sub>2</sub> transport in MPAS-A v6.3

Tao Zheng<sup>1</sup>, Sha Feng<sup>2</sup>, Kenneth J. Davis<sup>2</sup>, Sandip Pal<sup>3</sup>, and Josep Anton Morguí<sup>4</sup>

<sup>1</sup>Department of Geography & Institute of Great Lake Research, Central Michigan University, Mount Pleasant, MI. USA <sup>2</sup>Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA. USA <sup>3</sup>Department of Geosciences, Texas Tech University, Lubbock, TX. USA

<sup>4</sup>Environmental Science and Technology Institute, Universitat Autònoma de Barcelona, ICTA-UAB, Bellaterra, Spain

Correspondence to: Tao Zheng (zheng1t@cmich.edu)



Figure S 1. Model domain of WRF-Chem 27-km resolution simulations covering the four ACT aircraft campaign seasons (Feng et al., 2020).



Figure S 2. MPAS simulated equivalent potential temperature  $\theta_e$  and wind vector at model's 6<sup>th</sup> vertical level (approximately 400m above surface) on 4 August, 2016. The three panels are 06:00, 12:00, and 18:00 UTC respectively.



Figure S 3. Location of the 457 radiosonde stations used for validating horizontal wind fields of MPAS simulations during the ACT campaign seasons (2016-2018) and the month of January and July of 2014.

| Station | Bias<br>IFS 9km | Bias<br>IFS 80km | STDE<br>IFS 9km | STDE<br>IFS 80km | RMSE<br>IFS 9km | RMSE<br>IFS 80km | Bias<br>MPAS | STDE<br>MPAS | RMSE<br>MPAS | Num |
|---------|-----------------|------------------|-----------------|------------------|-----------------|------------------|--------------|--------------|--------------|-----|
| alt     | -2.14           | -2.09            | 0.61            | 0.61             | 2.23            | 2.18             | 1.68         | 2.55         | 3.05         | 655 |
| brw     | -1.45           | -1.55            | 1.19            | 1.14             | 1.88            | 1.92             | 0.90         | 1.30         | 1.58         | 715 |
| cby     | -1.51           | -1.30            | 0.58            | 0.56             | 1.62            | 1.42             | 1.65         | 0.82         | 1.84         | 72  |
| inu     | 0.50            | 0.36             | 2.04            | 2.45             | 2.11            | 2.47             | -0.19        | 3.36         | 3.36         | 688 |
| pal     | -0.89           | 0.32             | 2.13            | 3.44             | 2.31            | 3.46             | 5.58         | 6.90         | 8.87         | 588 |
| bck     | 0.93            | 1.21             | 1.45            | 1.37             | 1.73            | 1.83             | 1.34         | 2.34         | 2.70         | 744 |
| chl     | 0.50            | 0.68             | 1.70            | 1.91             | 1.77            | 2.02             | 1.58         | 1.53         | 2.20         | 587 |
| llb     | -1.77           | -1.59            | 3.19            | -3.32            | 3.65            | 3.69             | 3.03         | 7.94         | 8.50         | 312 |
| etl     | -0.67           | -0.17            | 1.53            | 1.71             | 1.68            | 1.72             | 1.32         | 2.94         | 3.22         | 743 |
| mhd     | -1.11           | 2.34             | 4.75            | 1.03             | 1.52            | 5.30             | 0.46         | 1.17         | 1.26         | 313 |
| wao     | -0.68           | -0.01            | 3.24            | 3.26             | 3.31            | 3.26             | 7.07         | 4.97         | 8.64         | 139 |
| ces     | -2.39           | -1.27            | 441             | 4.71             | 5.02            | 4.88             | 4.17         | 9.58         | 10.45        | 657 |
| est     | -1.20           | -1.08            | 2.09            | 1.93             | 2.41            | 2.21             | 2.01         | 4.94         | 5.33         | 738 |
| fsd     | -0.73           | -0.40            | 1.24            | 1.29             | 1.44            | 1.35             | 2.02         | 3.04         | 3.65         | 744 |
| cps     | -0.58           | 0.06             | 1.32            | 1.49             | 1.44            | 1.49             | 3.29         | 4.32         | 5.43         | 673 |
| esp     | 1.01            | 4.43             | 3.71            | 4.93             | 3.84            | 6.62             | -1.11        | 7.03         | 7.12         | 585 |
| kas     | 0.67            | 8.45             | 4.39            | 6.57             | 4.44            | 10.71            | 20.84        | 8.57         | 22.53        | 374 |
| ssl     | 3.21            | 18.72            | 4.87            | 15.00            | 5.83            | 23.99            | 21.34        | 14.77        | 25.96        | 509 |
| hun     | -6.58           | -2.68            | 5.52            | 5.64             | 8.59            | 6.24             | 1.62         | 8.78         | 8.93         | 727 |
| jfj     | 0.08            | 12.47            | 2.53            | 9.29             | 2.53            | 15.55            | 7.27         | 5.84         | 9.33         | 717 |
| lef     | -0.78           | -0.49            | 1.47            | 1.51             | 1.67            | 1.59             | 0.12         | 2.42         | 2.43         | 744 |
| puy     | 2.39            | 6.11             | 3.91            | 8.29             | 4.58            | 10.30            | 8.40         | 7.64         | 11.36        | 700 |
| amt     | 0.01            | -0.50            | 2.68            | 2.77             | 2.68            | 2.81             | 3.49         | 5.02         | 6.12         | 738 |
| egb     | -1.13           | -1.66            | 5.14            | 5.33             | 5.26            | 5.58             | 7.95         | 8.58         | 11.70        | 580 |
| wsa     | -1.24           | -0.82            | 1.22            | 1.43             | 1.74            | 1.65             | 1.22         | 2.66         | 2.93         | 741 |
| vac     | -0.13           | 1.82             | 1.10            | 1.82             | 1.10            | 2.28             | -1.24        | 0.97         | 1.57         | 86  |
| tpd     | -0.01           | 0.81             | 3.11            | 3.20             | 3.11            | 3.30             | 7.36         | 7.61         | 10.59        | 741 |
| dec     | 11.13           | 7.43             | 11.42           | 7.31             | 15.95           | 10.42            | 8.13         | 9.33         | 12.37        | 382 |
| hdp     | 1.48            | 16.83            | 2.73            | 10.25            | 3.10            | 19.71            | 1.22         | 2.42         | 2.71         | 664 |
| spl     | 2.28            | 2.72             | 3.23            | 3.50             | 3.95            | 4.43             | 0.67         | 1.87         | 1.99         | 665 |
| gic     | -1.88           | 1.69             | 5.28            | 4.43             | 5.60            | 4.74             | 4.63         | 7.46         | 8.78         | 741 |
| nwr     | 0.76            | 1.56             | 1.45            | 3.40             | 1.64            | 3.74             | 2.16         | 1.65         | 2.72         | 693 |
| ryo     | 3.05            | 3.88             | 4.99            | 6.05             | 5.84            | 7.19             | 2.29         | 4.29         | 4.87         | 684 |
| snp     | 3.05            | 9.66             | 3.97            | 10.87            | 5.01            | 14.54            | 3.08         | 3.21         | 4.45         | 744 |
| wgc     | -0.58           | -0.60            | 4.92            | 5.71             | 4.95            | 5.74             | -3.59        | 6.74         | 7.63         | 744 |
| sgc     | 1.31            | 10.31            | 5.61            | 9.62             | 5.76            | 14.10            | 2.78         | 4.71         | 5.47         | 680 |
| sct     | -0.13           | 0.42             | 3.61            | 3.83             | 3.62            | 3.85             | -0.27        | 3.63         | 3.64         | 739 |

**Table S 1.** Comparison of ECWMF IFS  $CO_2$  simulated hourly  $CO_2$  statistics with MPAS results for the month of January 2014. RMSE, STDE, and Bias of IFS 9km and 80km are reproduced from supplement Table S1 of Agusti-Panareda et al. (2019) with permission.

 Table S 1. Continued from Table S1.

| Station | Bias    | Bias     | STDE    | STDE     | RMSE    | RMSE     | Bias  | STDE | RMSE | Num |
|---------|---------|----------|---------|----------|---------|----------|-------|------|------|-----|
|         | IFS 9km | IFS 80km | IFS 9km | IFS 80km | IFS 9km | IFS 80km | MPAS  | MPAS | MPAS |     |
| wkt     | 0.06    | 0.22     | 2.34    | 2.38     | 2.34    | 2.39     | 0.59  | 2.05 | 2.14 | 709 |
| izo     | 0.01    | 0.63     | 2.80    | 0.98     | 2.80    | 1.16     | 1.59  | 1.26 | 2.02 | 686 |
| yon     | -0.40   | -0.62    | 1.22    | 1.43     | 1.28    | 1.56     | 1.19  | 2.47 | 2.75 | 744 |
| mnm     | -0.34   | -0.25    | 0.77    | 0.71     | 0.84    | 0.76     | 0.30  | 1.15 | 1.18 | 743 |
| mlo     | -0.35   | 0.68     | 0.78    | 1.05     | 0.85    | 1.25     | 0.36  | 0.63 | 0.72 | 712 |
| smo     | -1.10   | -0.81    | 0.93    | 0.97     | 1.44    | 1.26     | 0.40  | 0.99 | 1.07 | 675 |
| cpt     | -1.11   | 1.86     | 0.60    | 6.02     | 1.26    | 6.30     | -0.49 | 0.69 | 0.84 | 461 |
| ams     | -1.20   | -1.27    | 0.26    | 0.27     | 1.22    | 1.30     | -0.77 | 0.53 | 0.93 | 727 |
| cgo     | -0.69   | -1.39    | 2.46    | 4.25     | 2.56    | 4.77     | -1.75 | 3.36 | 3.79 | 744 |
| cya     | -1.14   | -1.14    | 0.36    | 0.36     | 1.19    | 1.19     | -0.54 | 0.47 | 0.71 | 730 |
| syo     | -1.09   | -1.15    | 0.14    | 0.15     | 1.10    | 1.16     | -0.32 | 0.30 | 0.45 | 724 |
| spo     | -1.10   | -1.10    | 0.18    | 0.19     | 1.12    | 1.12     | -0.27 | 0.23 | 0.36 | 714 |

| Station | Bias    | Bias     | STDE    | STDE     | RMSE    | RMSE     | Bias   | STDE  | RMSE  | Num |
|---------|---------|----------|---------|----------|---------|----------|--------|-------|-------|-----|
|         | IFS 9km | IFS 80km | IFS 9km | IFS 80km | IFS 9km | IFS 80km | MPAS   | MPAS  | MPAS  |     |
| alt     | -0.93   | -1.36    | 1.05    | 1.17     | 1.40    | 1.80     | -0.59  | 1.41  | 1.53  | 504 |
| brw     | -0.85   | -0.68    | 2.06    | 2.20     | 2.23    | 2.31     | -1.03  | 3.21  | 3.37  | 708 |
| cby     | -0.67   | -1.83    | 3.07    | 3.50     | 3.15    | 3.95     | -2.25  | 6.47  | 6.85  | 722 |
| inu     | -1.40   | -2.54    | 3.98    | 5.07     | 4.22    | 5.67     | 3.73   | 9.50  | 10.21 | 741 |
| pal     | 2.03    | 4.40     | 6.13    | 10.86    | 6.45    | 11.72    | 2.79   | 9.98  | 10.37 | 427 |
| bck     | 10.36   | 34.84    | 38.58   | 79.33    | 39.95   | 86.65    | 6.82   | 27.79 | 28.61 | 733 |
| chl     | -0.09   | -0.77    | 4.45    | 4.61     | 4.45    | 4.67     | 0.91   | 7.09  | 7.15  | 744 |
| llb     | -10.09  | -7.88    | 14.30   | 13.39    | 17.50   | 15.53    | -1.11  | 21.94 | 21.97 | 112 |
| etl     | -3.59   | -4.90    | 7.02    | 7.48     | 7.88    | 8.94     | -4.96  | 9.18  | 10.43 | 674 |
| mhd     | -2.27   | -0.40    | 5.63    | 6.52     | 6.07    | 6.53     | -2.76  | 2.49  | 3.72  | 168 |
| wao     | -4.01   | -3.44    | 8.33    | 7.12     | 9.24    | 7.91     | -5.42  | 12.83 | 13.93 | 587 |
| ces     | -3.49   | -2.93    | 7.76    | 7.97     | 8.51    | 8.50     | -5.14  | 9.13  | 10.48 | 667 |
| est     | 0.35    | 0.50     | 8.62    | 9.37     | 8.63    | 9.38     | 10.86  | 22.11 | 24.63 | 295 |
| fsd     | -3.51   | -4.59    | 8.96    | 9.23     | 9.62    | 10.31    | -0.69  | 9.57  | 9.59  | 738 |
| cps     | -2.98   | -3.85    | 7.03    | 7.52     | 7.64    | 8.45     | 3.19   | 9.82  | 10.32 | 743 |
| esp     | 0.28    | -6.53    | 5.69    | 10.09    | 5.70    | 12.01    | -2.06  | 11.55 | 11.74 | 526 |
| kas     | -1.01   | 7.42     | 4.17    | 15.93    | 4.29    | 17.57    | 12.27  | 23.37 | 26.39 | 558 |
| ssl     | -0.11   | 9.63     | 8.99    | 18.56    | 8.99    | 20.91    | 17.69  | 30.96 | 35.65 | 736 |
| hun     | -6.61   | -5.61    | 7.87    | 7.43     | 10.28   | 9.32     | 0.29   | 14.92 | 14.92 | 744 |
| jfj     | -5.23   | -5.48    | 3.60    | 10.60    | 6.35    | 11.93    | 0.92   | 8.39  | 8.44  | 269 |
| lef     | 3.88    | 2.53     | 6.22    | 6.05     | 7.33    | 6.56     | -4.58  | 9.50  | 10.54 | 733 |
| puy     | 0.75    | 4.88     | 7.19    | 12.36    | 7.23    | 13.29    | 12.24  | 34.35 | 36.46 | 677 |
| amt     | 2.60    | -0.94    | 8.24    | 7.95     | 8.64    | 8.00     | 8.93   | 22.81 | 24.50 | 665 |
| egb     | -1.24   | -6.52    | 13.31   | 15.61    | 13.37   | 16.92    | 9.97   | 22.62 | 24.73 | 392 |
| wsa     | 0.95    | 0.41     | 4.66    | 5.60     | 4.76    | 5.62     | -0.57  | 5.85  | 5.88  | 744 |
| vac     | 2.85    | 6.98     | 5.22    | 12.04    | 5.95    | 13.91    | 3.85   | 11.47 | 12.10 | 741 |
| tpd     | -1.20   | -2.44    | 14.31   | 13.12    | 14.37   | 13.34    | 7.38   | 20.21 | 21.52 | 743 |
| dec     | 7.78    | 11.01    | 10.37   | 11.97    | 12.96   | 16.26    | 2.97   | 11.73 | 12.10 | 381 |
| hdp     | 4.11    | 27.16    | 4.36    | 25.67    | 5.99    | 37.37    | 1.34   | 4.60  | 4.79  | 596 |
| spl     | 8.73    | 20.16    | 6.34    | 16.93    | 10.79   | 26.32    | 5.23   | 10.51 | 11.74 | 643 |
| gic     | -10.88  | -6.14    | 17.13   | 14.08    | 20.30   | 15.36    | -12.39 | 24.16 | 27.15 | 239 |
| nwr     | 3.63    | 11.03    | 3.68    | 15.20    | 5.17    | 18.78    | 3.20   | 6.13  | 6.91  | 613 |
| bao     | 1.05    | -1.43    | 5.69    | 6.55     | 5.79    | 6.70     | -1.85  | 8.35  | 8.55  | 651 |
| ryo     | 18.51   | 10.77    | 27.89   | 17.28    | 33.48   | 20.36    | -2.35  | 12.06 | 12.28 | 684 |
| snp     | 24.15   | 37.81    | 16.55   | 30.11    | 29.28   | 48.33    | 17.63  | 23.83 | 29.64 | 744 |
| wgc     | 1.57    | 1.37     | 2.75    | 2.81     | 3.17    | 3.13     | -3.39  | 3.03  | 4.55  | 144 |
| sgc     | 5.47    | 14.61    | 5.71    | 12.54    | 8.09    | 19.25    | -1.81  | 5.13  | 5.44  | 617 |
| sct     | 3.90    | 4.21     | 7.82    | 7.31     | 8.73    | 8.43     | 1.81   | 8.42  | 8.61  | 720 |

**Table S 2.** Same as Table S1, but for the month of July 2014. RMSE, STDE, and Bias of IFS 9km and 80km are reproduced from supplement Table S1 of Agusti-Panareda et al. (2019) with permission.

| Station | Bias    | Bias     | STDE    | STDE     | RMSE    | RMSE     | Bias  | STDE | RMSE | Num |
|---------|---------|----------|---------|----------|---------|----------|-------|------|------|-----|
|         | IFS 9km | IFS 80km | IFS 9km | IFS 80km | IFS 9km | IFS 80km | MPAS  | MPAS | MPAS |     |
| wkt     | 4.75    | 4.90     | 4.32    | 3.93     | 6.42    | 6.28     | -0.29 | 5.79 | 5.80 | 742 |
| izo     | 4.65    | -1.84    | 3.82    | 2.22     | 6.01    | 2.88     | -2.53 | 3.08 | 3.99 | 720 |
| yon     | 0.61    | 0.26     | 1.98    | 1.58     | 2.07    | 1.60     | -0.90 | 1.98 | 2.17 | 718 |
| mnm     | 0.33    | 0.27     | 0.98    | 0.97     | 1.04    | 1.00     | 0.06  | 1.79 | 1.79 | 739 |
| mlo     | 0.83    | -0.52    | 1.22    | 1.60     | 1.47    | 1.68     | 0.35  | 1.07 | 1.12 | 692 |
| smo     | -0.26   | -0.34    | 0.80    | 0.87     | 0.84    | 0.93     | -0.45 | 0.94 | 1.04 | 692 |
| cpt     | -0.12   | -0.82    | 0.93    | 5.91     | 0.94    | 5.97     | -0.23 | 1.11 | 1.14 | 501 |
| ams     | -0.90   | -1.03    | 0.28    | 0.29     | 0.94    | 1.07     | -0.46 | 0.44 | 0.64 | 668 |
| cgo     | -0.55   | -0.41    | 1.56    | 2.42     | 1.66    | 2.45     | 0.42  | 1.64 | 1.69 | 734 |
| cya     | -0.95   | -1.01    | 0.29    | 0.29     | 0.99    | 1.05     | -1.98 | 0.52 | 2.05 | 744 |
| syo     | -0.92   | -0.97    | 0.14    | 0.13     | 0.93    | 0.98     | -0.45 | 0.34 | 0.57 | 744 |
| spo     | -0.83   | -0.88    | 0.16    | 0.15     | 0.85    | 0.89     | -0.35 | 0.23 | 0.42 | 713 |

 Table S 2. Continued from Table S2

## References

Agusti-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Munoz-Sabater, J., Barre, J., Curcoll, R., Engelen, R., Langerock, B., Law, R. M., Loh, Z., Anton Morgui, J., Parrington, M., Pench, V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., Warneke, T., and Wunch, D.: Modelling CO2 weather - why horizontal resolution matters, Atmospheric Chemistry and Physics, 19, 7347–7376, doi:10.5194/acp-19-7347-2019, 2019.

5

Feng, S., Lauvaux, T., Barkley, Z. R, D. k. J., Butler, M. B., Deng, A., Gaudet, B., and D., S.: Full WRF-Chem output in support of the NASA Atmospheric Carbon and Transport (ACT)-America project (7/1/2016 – 7/31/2019). The Pennsylvania State University Data Commons, University Park, Pennsylvania, USA, doi:10.26208/49kd-b637, https://doi.org/10.26208/49kd-b637, 2020.