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Abstract.

Chemistry transport models (CTMs) play an important role in understanding fluxes and atmospheric distribution of carbon

dioxide (CO2). They have been widely used for modeling CO2 transport through forward simulations and inferring fluxes

through inversion systems. With the increasing availability of high resolution observations, it has been become possible to

estimate CO2 fluxes at higher spatial resolution. In this work we implemented CO2 transport in Model Prediction Across5

Scales-Atmosphere (MPAS-A). The objective is to use the variable-resolution capability of MPAS-A to enable high resolution

CO2 simulation at limited region with a global model. Treating CO2 as an inert tracer, we implemented in MPAS-A (v6.3) the

CO2 transport processes, including advection, vertical mixing by boundary layer scheme, and convective transport. We first

evaluated the newly implemented model’s tracer mass conservation and then its CO2 simulation accuracy. A one-year (2014)

MPAS-A simulation is evaluated at the global scale using CO2 measurements from 50 near-surface stations and 18 Total Carbon10

Column Observing Network (TCCON) stations. The simulation is also compared with two global models: National Oceanic

and Atmospheric Administration (NOAA) CarbonTracker v2019 (CT2019) and European Center for Medium-Range Weather

Forecasts (ECMWF) Integrated Forecasting System (IFS). A second set of simulation (2016-2018) is used to evaluate MPAS-

A at regional scale using Atmospheric Carbon and Transport-America (ACT-America) aircraft CO2 measurements over the

eastern United States. This simulation is also compared with CT2019 and a 27-km WRF-Chem simulation. The global scale15

evaluations show that MPAS-A is capable of representing the spatial and temporal CO2 variation with comparable level of

accuracy as IFS of similar horizontal resolution. The regional scale evaluations show that MPAS-A is capable of representing

the observed atmospheric CO2 spatial structures related with the mid-latitude synoptic weather system, including the warm

versus cold sector distinction, boundary layer to free troposphere difference, and frontal boundary CO2 enhancement. MPAS-

A’s performance in representing these CO2 spatial structures are comparable with the global model CT2019 and regional model20

WRF-Chem.
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1 Introduction

Carbon dioxide (CO2) is the most important greenhouse gas, and our knowledge about its sources and sinks still have large

gaps. Inversion systems are tools for inferring surface CO2 fluxes based on observations and chemistry transport models

(CTMs). Two types of CTMs are commonly used: global models and regional models. Global models are commonly used

for inferring CO2 fluxes at coarse spatial scales (Patra et al., 2008; Schuh et al., 2019; Jacobson et al., 2007, 2020). With the5

fast increasing number of atmospheric CO2 observations, including those acquired by ground based, airborne, and satellite

instruments, regional inversion system have been developed and applied to estimate carbon fluxes at higher resolution (Gerbig

et al., 2009; Pillai et al., 2012; Lauvaux et al., 2012; Hu et al., 2019; Zheng et al., 2018, 2019).

A major challenge of atmospheric CO2 inversion modeling is how to partition the model-data mismatch (MDM) among the10

transport model error, observation error, and prior flux error (Baker et al., 2006). In the Bayesian inversion framework, the error

covariance matrix R is commonly used to represent the combined error of transport model and observations. While it is impor-

tant to correctly represent the transport model error in an inversion system, it is also important to reduce the error in order to

estimate the fluxes with less uncertainty. One approach to reduce the transport model error is to increase the horizontal resolu-

tion of a simulation. For instance, Feng et al. (2016) found high-resolution WRF-Chem simulation improved CO2 model-data15

comparison because of better resolved planetary boundary layer (PBL) and better representation of spatial variability of CO2

fluxes. In a recent study, Agusti-Panareda et al. (2019) investigated the impacts of transport model’s horizontal resolutions on

simulated CO2 accuracy, and they found that CO2 variability is generally better represented by higher resolution simulations.

Global high resolution CO2 simulations require large computational resources. Regional (limited area) models, which have20

lower computational cost than their global model counterpart at the same horizontal resolution, are often used for high resolu-

tion CO2 transport (Feng et al., 2016; Diaz-Isaac et al., 2019, 2018) and inverse modeling (Sarrat et al., 2007; Gerbig et al.,

2008; Lauvaux et al., 2012; Zheng et al., 2019). However a regional model requires CO2 transported from outside its model

domain to be prescribed. For a CO2 inversion system, having lateral boundaries increase the size of the control vector to be

optimized (Rayner et al., 2019). A number of approaches have been applied to the CO2 lateral boundary problem, such as25

assuming the boundary inflow is perfectly known (Gockede et al., 2010), correcting the lateral boundary condition using ob-

servation prior to inversion (Lauvaux et al., 2012; Schuh et al., 2013), or jointly optimizing flux and lateral boundary condition

(Zheng et al., 2018). When CO2 lateral boundary is optimized, an inversion system adjusts its CO2 fields at the boundary

prescribed by a parent global model in addition to adjusting surface fluxes. This could be problematic for inversion systems

that use satellite derived column averaged CO2 measurements (XCO2) because model-data mismatches in the free troposphere30

(FT) are often originated from outside a regional model’s limited area domain (Feng et al., 2019; Lauvaux and Davis, 2014).

The objective of the present paper is to provide an alternative high-resolution CO2 transport modeling approach to regional

transport models. This approach is to use a global variable-resolution model which allows for local grid refinement that enables
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high resolution simulation over an interested region without incurring the prohibitively high computational cost or the lateral

boundary condition. Variable-resolution through local grid refinement has been widely used in Numerical Weather Prediction

(NWP) models, such as MPAS-A (Skamarock et al., 2012), Ocean-Land-Atmosphere Model (OLAM) (Walko and Avissar,

2008a, b), Energy Exascale Earth System Model (E3SM) (Golaz et al., 2019), and Finite-Volume Cubed-Sphere model (FV3)

(Putman and Lin, 2007). One benefit of local mesh refinement is enabling regional high-resolution modeling without incurring5

the lateral boundary condition and its associated problems, such as solution mismatches between the driving global model and

the evolving regional model (Davies, 2014). Model Prediction Across Scales-Atmosphere (MPAS-A) is a fully compressible

non-hydrostatic global atmospheric model which uses finite-volume numeric solver discretized on centroidal Voronoi mesh

with C-grid staggering of its prognostic variables (Skamarock et al., 2012; Thuburn, 2007; Ringler et al., 2010). The centroidal

Voronoi mesh allows for local refinement and variable-resolution horizontal mesh which can be gradually changed from coarse10

to fine resolutions (Skamarock et al., 2012; Ringler et al., 2008).

To enable CO2 transport modeling, we implemented atmospheric CO2 transport processes, including advection, vertical

mixing by PBL scheme, and convective transport in MPAS-A v6.3. Because the CO2 transport processes are fully integrated

into the model’s meteorological time steps, the resulting MPAS-A CO2 is an online CTM. We used the newly developed model15

to conduct two sets of simulations over a 60-15 km variable-resolution global domain. Then the simulation results are evalu-

ated using an extensive set of airborne observations over the eastern United States and near-surface observations from surface

and tower stations across the globe. The simulation accuracy of MPAS-A is compared with three established CO2 modeling

systems based on the same observational data: WRF-Chem (Skamarock et al., 2008; Feng et al., 2019), Carbontracker (v2019,

CT2019 hereafter) (Jacobson et al., 2020), and ECMWF IFS (Agusti-Panareda et al., 2014, 2019).20

2 Implementation of CO2 transport in MPAS-A

This section describes the major modifications to MPAS-A that we made to implement CO2 tracer transport. We represent CO2

by its dry air mixing ratio (qco2 ) and model its atmospheric transport by adding its continuity equation in MPAS-A following

Eq. 7 of Skamarock et al. (2012).25

∂(ρ̃ qco2)

∂t
=−(∇ · ρ̃ qco2 V)ζ +Fbl +Fcu (1)

where ρ̃= ρd/(∂ζ/∂z), ρd is dry air density, ζ is the vertical coordinate, z is geometric height, t is time, and V = (u,v,w)

is the velocity vector (u, v, and w are the zonal, meridional, and vertical wind respectively). The left hand side of the equation

is the total CO2 time tendency (∂(ρ̃ qco2)/∂t), and the first, second, and third terms on the right hand side represent the con-

tributions from advection, vertical mixing, and convective transport respectively. CO2 tendency from advection is modeled in30
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flux form (Section 2.1), while tendency from vertical mixing (Fbl) and convective transport (Fcu) are modeled in uncoupled

form (∂qco2/∂t) which are coupled to ρ̃ before being added to the total tendency. We choose to implement CO2 vertical mixing

in the Yonsei University (YSU) PBL scheme (Hong et al., 2006), and CO2 convective transport in Kain-Fritsch (KF) scheme

(Kain, 2004) because they are widely used in CTM and have been validated using observations (Borge et al., 2008; Hu et al.,

2010; Kretschmer et al., 2012; Polavarapu et al., 2016). Details of the three terms on the right hand side of Eq. 1 are described in5

the following sections. We note that because the monotonicity constraint in the third-order scalar horizontal advection scheme

(Skamarock and Gassmann, 2011) introduces dissipation MPAS-A does not use any explicit horizontal diffusion for scalar.

Accordingly we did not include horizontal diffusion for CO2.

2.1 CO2 advection10

Advection is the most significant component of CO2 atmospheric transport. Following the example of other scalars in MPAS-A

(Skamarock and Gassmann, 2011), we model CO2 advection as:

(∇ · ρ̃ qco2 V)ζ =
[∂(ρ̃uqco2)

∂x
+
∂(ρ̃vqco2)

∂y

]
ζ

+
∂(ρ̃wqco2)

∂ζ
(2)

The first item on the right hand side enclosed in the square bracket is the CO2 horizontal flux divergence, and second item is

the vertical flux divergence. The horizontal flux divergence is transformed via the divergence theorem into an integral of flux15

over each control volume, which is modeled as:

[∂(ρ̃uqco2)

∂x
+
∂(ρ̃vqco2)

∂y

]
ζ

=
1

Ai

ne∑
e

leFe(VH , ρ̃ qco2) (3)

where e indexes the edges of a cell and ne represents the number of edges the cell has, le is the length of an edge, Ai

is the cell’s areal size, Fe(vH , ρ̃ qco2) is the instantaneous horizontal CO2 flux that crosses the cell edge e, and VH = (u,v)

is the horizontal wind vector. The details of MPAS-A instantaneous horizontal flux calculation can found in Skamarock and20

Gassmann (2011). The vertical CO2 flux divergence in Eq. 2 is calculated using finite difference

∂(ρ̃wqco2)

∂ζ
=

1

∆ζ

[
F (w,ρ̃qco2)k+ 1

2
−F (w,ρ̃qco2)k− 1

2

]
(4)

where F (w,ρ̃qco2) is the vertical CO2 flux that crosses a cell’s vertical face, and k indexes the vertical coordinate.

2.2 CO2 vertical mixing

Like in WRF (Skamarock et al., 2008), a PBL parameterization in MPAS-A treats the vertical mixing of momentum and scalars25

not only in the boundary layer (BL) but in the entire atmospheric column. The YSU scheme (Hong et al., 2006) is one of the

PBL schemes available in MPAS-A 6.3. The present YSU scheme treats vertical mixing of momentum, potential temperature,
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and water species, but not atmospheric tracers. We modified the scheme to treat CO2 vertical mixing.

In the YSU scheme, after the top of BL is determined, the vertical mixing of momentum, potential temperature, and water

vapor are treated separately: above BL, local K-profile approach (Louis, 1979) is used for vertical diffusion of momentum and

scalars (Noh et al., 2003; Hong et al., 2006). Within BL, an entrainment flux at the inversion layer is included for momentum5

and scalars diffusion. In addition, a countergradient mixing term is included for the diffusion of momentum and potential tem-

perature to account for the convective-driven mixing (γc of Eq. 4 in Hong et al. (2006)), but this term is not used for water vapor.

Following the treatment of water vapor, we parameterize CO2 vertical mixing in BL as

∂qco2
∂t

=
∂

∂z

[
Kh(

∂qco2
∂z

)− (w′q′co2)h (
z

h
)3
]

(5)10

where z is the vertical distance to surface, h is BL top height, Kh is vertical eddy diffusivity. Note that this formulation does

not include a countergradient mixing term following the treatment of water vapor in the original YSU scheme (Hong et al.,

2006). The second term in the square bracket of Eq. 5 represents the contribution from CO2 entrainment flux at the inversion

layer, which is parameterized as:

(w′q′co2)h = we∆qco2 |h (6)15

where ∆qco2 |h is the CO2 mixing ratio difference across the inversion layer, and we is the entrainment rate at the inversion

layer calculated by Eq. A11 of Hong et al. (2006). Above BL top, vertical mixing of CO2 is parameterized as:

∂qco2
∂t

=
∂

∂z

[
Kh(

∂qco2
∂z

)

]
(7)

We use the same value for CO2 vertical diffusivity as water vapor. The details of Kh calculation can be found in the appendix

of Hong et al. (2006), and its value is limited between 0.01 and 1000 m2s−1 to prevent too weak or strong vertical mixing. The20

term ∂qco2/∂t from Eqs. 5 is coupled with dry air density before being applied to the continuity equation (Eq. 1).

2.3 CO2 convective transport

For convective transport, we modified the Kain-Fritsch scheme (hereafter KF) (Kain, 2004) to include the CO2 treatment.

KF is a mass-flux convection scheme which rearranges mass in an air column using convective updrafts, downdrafts, and

environmental mass fluxes. Both the updraft and downdraft entrain from and detrain to the environment, thus altering the25

vertical profile of an air column’s thermodynamic properties. We added the CO2 convective transport as:

∂qco2
∂t

=
(Mu +Md)

ρA

∂qco2
∂z

+
Mud

M
(quco2 − qco2) +

Mdd

M
(qdco2 − qco2) (8)
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where qco2 , quco2 , and qdco2 are the CO2 mixing ratio in the environment, updraft, and downdraft respectively, Mu and Md are

the updraft and downdraft mass respectively, ρ is the environment air density, A is the horizontal area of a cell, M = ρAδz is

the mass of environmental air in a grid box, andMud andMdd are the detrainment from the updraft and downdraft respectively.

In the KF scheme, the updraft and downdraft mass and the rates for the entrainment and detrainment are determined by a5

steady-state plume model and a convective available potential energy (CAPE) closure assumption: 90% of the existing CAPE

should be removed by the convection parameterization (Kain and Fritsch, 1990; Fritsch and Chappell, 1980; Kain, 2004).

Because the calculation of the updraft and downdraft mass fluxes is related to a cell’s horizontal area, the KF scheme may

behave differently at different areas of MPAS-A’s variable-resolution grid. The updraft source layers are determined by a

search from the model’s lowest vertical level for a group of consecutive layers that is buoyant and at least 50 hPa deep (Kain,10

2004). The initial value of CO2 mixing ratio in the updraft is modeled as a pressure weighted average of the source layers:

quco2 =
∑
k

δqco2,k δpk
δpk

(9)

where δpk is layer’s pressure depth, and qco2,k is the layer’s CO2 mixing ratio. CO2 mixing ratio of the updraft is modified by

the entrainment of the environmental air through its ascent from its starting level to the cloud top.

quco2 =
quco2Mu + qco2Mue

Mu +Mue
(10)15

whereMue is the updraft entrainment. The initial CO2 mixing ratio of a downdraft (qdco2) is the same as that of the environment

(qco2) at the downdraft starting level and it is modified by entrainment through the downdraft descent:

qdco2 =
qdco2Md + qco2Mde

Md +Mde
(11)

where Mde is the downdraft entrainment.

3 Model evaluation20

In this section we evaluate the newly developed MPAS-A CO2 transport model by comparing its simulation results with

observations and other models. After describing the simulation configuration (Sect. 3.1), we assess the model’s global mass

conservation property (Sect. 3.2). Then we evaluate the model’s CO2 transport accuracy at the global scale using hourly near-

surface CO2 observations from 50 in situ stations and column-averaged CO2 dry air mole fraction (XCO2) measurements

from 18 Total Carbon Column Observing Network (TCCON) stations (Sect. 3.3). Finally, we evaluate MPAS-A at the regional25

scale using high-resolution airborne measurements from ACT campaign over the eastern United States (Sect. 3.4). MPAS-A

CO2 transport are also compared with three established CTMs: NOAA CT2019 (Jacobson et al., 2020), ECMWF IFS (Agusti-

Panareda et al., 2019), and WRF-Chem (Skamarock et al., 2008). In the following model evaluation, we use root mean square
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error (RMSE), bias (µ), and random error (STDE) as the model accuracy metrics:

RMSE =

√√√√ 1

N

N∑
i=1

(mi− oi)2 (12)

µ=
1

N

N∑
i=1

(mi− oi) (13)

5

STDE =

√√√√ 1

N

N∑
i=1

(mi− oi−µ)2 (14)

where oi and mi represent the observed and modeled values respectively.

For model-data intercomparison, MPAS-A model data need to be interpolated to the observation space. Following Patra

et al. (2008), the model is sampled in the horizontal by taking the nearest cell overland. MPAS-A uses a height-based terrrain-10

following vertical coordinate (Skamarock et al., 2012). At a given cell, the height of the kth vertical layer boundary is denoted

as zhk . The height of the layer center is zk = 0.5× (zhk + zhk+1). In MPAS-A, horizontal wind fields are defined at the vertical

layer boundaries and CO2 fields are defined at layer centers. For horizontal wind fields validation using radiosonde data (Sect.

3.3.1), the column profile of air pressure and horizontal wind fields defined at layer boundaries are used to interpolate to the

measurements’ pressure levels. To compare with near-surface CO2 observations from in-situ stations (Sect. 3.3.3) and aircraft15

observations (Sect. 3.4), model CO2 defined at layer centers are interpolated to the measurement heights. Vertical interpolation

and integration for the comparison with TCCON XCO2 are described in Sect. 3.3.4. MPAS-A simulation outputs are saved at

1-hour intervals. For comparison with radiosonde observations and near-surface CO2 observations, no temporal interpolations

are applied: observations are paired with the closest hourly MPAS-A output. For comparison with aircraft observations, the

hourly model outputs that bracket an observation’s time stamp are used for the temporal interpolation.20

3.1 Simulation experiment configuration

For all subsequent simulations, MPAS-A uses a 60-15km variable-resolution global mesh. Figure 1 shows the cell size (in km2)

of the simulation domain, where the highest resolution (15 km) over North America has cell size smaller than 250 km2 which

gradually increases to about 3,600 km2 for the rest of the global domain. On the vertical direction, there are 55 levels spanning

from surface to 30 km above the mean sea level. Model time step is 90 seconds in accordance with the highest (15km) hori-25

zontal resolution. For physical parameterizations, in addition to the modified YSU PBL (Hong et al., 2004) and Kain-Fristch

cumulus schemes (Kain, 2004) described in Section 2, we use RRTMG for longwave and shortwave radiation (Iacono et al.,
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2008), Noah land scheme (Chen and Dudhia, 2001), Monin-Obukhov surface layer scheme, and WRF single-moment 6-class

microphysics scheme (Hong and Lim, 2006). The third-order accuracy advection is used for all scalars and the CO2 tracer. A

summary of the physics parameterizations used in the simulations is given in Table 1.

Initial meteorological fields are generated from the ERA-Interim reanalysis (Dee et al., 2011). To keep model meteorolog-5

ical fields close to the reanalysis, MPAS-A meteorological fields are re-initialized using the analysis at 00:00 UTC each day

throughout a simulation period. CO2 mixing ratio is kept unchanged during the meteorology re-initializations, thus a free-

running simulation. This configuration is the same as that used by Agusti-Panareda et al. (2014, 2019) in their IFS global CO2

simulations. The first CO2 initial condition for a simulation is from CT2019 3◦× 2◦ posterior dry mole fraction product and

surface CO2 fluxes are prepared by interpolating the CT2019 3-hourly 1◦× 1◦ posterior flux product (Jacobson et al., 2020).10

The four components of CT2019 fluxes (biosphere, ocean, fossil fuel, and fire) are interpolated to MPAS-A model grid and

ingested at 3-hour intervals throughout a simulation.

3.2 CO2 mass conservation

For CTM, it is very important to maintain the global CO2 mass conservation (Agusti-Panareda et al., 2017; Polavarapu et al.,15

2016). Because meteorological re-initializations introduce changes in dry air mass, they impact MPAS-A’s global CO2 mass

conservation. We first examine MPAS-A’s inherent mass conservation property through a simulation without the meteorological

re-initializations in Sect. 3.2.1. Then we examine and treat the impacts of the meteorological re-initializations in Sect. 3.2.2.

3.2.1 Mass conservation without meteorology re-initialization

To examine MPAS-A’s mass conservation property, we conducted a MPAS-A simulation that lasts from January 1 to December20

31 2014. The simulation is initialized with the CT2019 CO2 mole fraction and is driven with 3-hourly CT2019 surface CO2

fluxes. Meteorological re-initializations are not applied during the simulation and the model outputs are saved using double-

precision. MPAS-A’s global dry air mass (Mair) is then calculated at 00:00 UTC each day through the one-year simulation

using Eq. 15,

Mair =

L∑
k

(

N∑
i

Aihi,k ρi,k) (15)25

where subscript i indexes the horizontal cell, subscript k indexes the vertical level, Ai is cell size, hi,k is cell height, and ρi,k is

dry air density (kgm−3). After the model’s global dry air mass is calculated at 00:00 UTC each day of the simulation period,

its variation is quantified as a ratio Etair = (M t
air−M0

air)/M
0
air, where M0

air and M t
air are the model’s global dry air mass at

the simulation start (00:00 UTC January 1 2014) and the current time step respectively. The top panel of Fig. 2 shows Etair at

00:00 UTC of each day through the one-year simulation period. The figure shows that the maximal magnitude of Etair is less30
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than 4× 10−12 during the one-year simulation. In comparison, the total dry air mass of ECMWF IFS increases about 0.01%

of its initial value in a 10-day forecast (Diamantakis and Flemming, 2014). Similarly, the Environment and Climate Change

Canada (ECCC) Global Environmental Multiscale (GEM-MACH-GHG) model loses about 0.01% of its initial total dry air

mass in a 10-day forecast (Polavarapu et al., 2016). MPAS-A has a significantly lower global dry air mass variation than the

two global models because its explicit grid point advection scheme conserves mass (Skamarock and Gassmann, 2011) while5

the semi-Lagrangian advection scheme used by IFS and GEM-MACH-GHG does not conserves mass (Williamson, 1990).

Thus, no mass fixer (Diamantakis and Flemming, 2014; Polavarapu et al., 2016) is used in MPAS-A.

MPAS-A’s global CO2 mass (Mco2 ) is calculated using Eq. 16,

Mco2 =

L∑
k

(

N∑
i

Aihi,k ρi,k qi,k) (16)10

where qi,k is the CO2 dry air mixing ratio (kg/kg) and the rest of the terms are the same as in Eq. 15. To assess the global

CO2 mass conservation, Mco2 calculated using Eq. 16 is adjusted for the CO2 mass introduced through the ingestion of the

3-hourly surface CO2 fluxes. For a 3-hour period, total CO2 mass introduced through the surface CO2 fluxes is
∑N
i AiFi∆t,

where Fi is the combined biosphere, ocean, fossil fuel, and fire CO2 fluxes (kgm−2 s−1) at a surface cell, Ai is the cell’s areal

size, N is number of surface cell, and ∆t=3 hours. After the adjustment, the variation of global mass of CO2 is quantified15

as a ratio, Etco2 = (M t
co2 −M

0
co2)/M0

co2 , where M0
co2 and M t

co2 are the global CO2 mass at the initial and current time step

respectively. Etco2 at 00:00 UTC of each day of the simulation period is shown in the lower panel of Fig. 2. The figure shows

that the maximal magnitude of Etco2 is about 10−5. This is much higher compared to Etair and it is due to the strong gradients

caused by surface CO2 flux which challenge the model’s numerical scheme.

3.2.2 CO2 mass conservation during meteorology re-initialization20

When meteorological re-initialization is applied during a simulation, the values of dry air density in MPAS-A are replaced by

values from the initialization files generated from the ERA-Interim reanalysis. In most cases, this will cause dry air den-

sity change which in turn will introduce CO2 mass change if CO2 dry air mixing ratios are kept unchanged during the

re-initialization. To assess this possible change in global CO2 mass, we conducted another one-year long MPAS-A simu-

lation identical to that used in Section 3.2.1 except that meteorological re-initialization is applied at 24-hour intervals dur-25

ing the simulation. The variation of global CO2 mass caused by a meteorological re-initialization is quantified as a ratio

E = (M ′co2 −Mco2)/Mco2 , where Mco2 and M ′co2 are the global CO2 mass before and after a meteorological re-initialization.

The top panel of Fig. 3 shows the value of E at each meteorological re-initialization. The figure indicates that a meteorological

re-initialization could cause a change of more than 0.01% of the global CO2 mass.

30
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To keep the CO2 mass conservation after a meteorological re-initialization, we adjust MPAS-A’s CO2 fields by a spatially

uniform scaling factor: q′i,k = r× qi,k, where qi,k and q′i,k are the CO2 dry air mixing ratio, before and after the adjustment,

respectively. The scaling factor r is calculated as,

r =

∑L
k (
∑N
i Aihi,k ρi,k qi,k)∑L

k (
∑N
i Aihi,k ρ

′
i,k qi,k)

(17)

where the notations are the same as in Eq. 16 except that ρ′i,k is the dry air density after a meteorology re-initialization and ρi,k5

is the value before the re-initialization. To test the effectiveness of this scaling method, the one-year MPAS-A simulation with

meteorological re-initialization was conducted again but this time with the CO2 dry air mixing ratio adjustment applied after

each meteorological re-initialization. The resulting variation in total CO2 mass is plotted in the lower panel of Fig 3. The figure

shows the maximal magnitude of the variation caused by a meteorological re-initialization has been reduced from ∼ 10−4 to

∼ 10−6 of the global CO2 mass. Note the different scales in the y-axis used in the top and bottom panels of Fig. 3.10

An alternative approach to restore mass conservation is to scale CO2 mixing ratio at each grid box individually by

q′i,k =
ρi,k
ρ′i,k
× qi,k (18)

where notation is the same as Eq. 17. This scaling approach can maintain global CO2 mass conservation as allowed by machine

precision but it will introduce artificial spatial variations in CO2 mixing ratio. In the simulations in the following sections, we15

chose to use the first scaling approach to avoid the artificial CO2 mixing ratio variation by accepting the small changes in

global CO2 mass.

3.3 Model evaluation at global scale

In this section, we evaluate the MPAS-A CO2 transport at the global scale. For the model evaluation, MPAS-A was initialized

at 00:00 UTC July 1 2013 and ran till December 31 2014. The model configuration for this simulation is as described in Sect.20

3.1. With the first six-month as model spin-up, we use the one-year simulation of 2014 for the model evaluation. First MPAS-A

simulated horizontal wind fields are evaluated using radiosonde measurements from 457 stations. Then the model’s CO2 fields

are compared with CT2019, near-surface CO2 measurements from 50 stations, and XCO2 retrievals from 18 TCCON stations.

3.3.1 Evaluation of horizontal wind fields25

Accurate meteorological fields are critical for an accurate CO2 transport simulation. Before evaluating the simulated CO2,

we first evaluate the MPAS-A simulated horizontal wind fields considering their importance in CO2 advection. We compare

MPAS-A simulated horizontal wind fields at 12:00 and 00:00 UTC each day of the simulation period with raidosonde observa-

tions from 457 stations located around the globe at four pressure levels:1000, 850, 500, 850, and 200 hPa. Note that because of
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the 24-hourly meteorological re-initialization, the 00:00 and 12:00 UTC simulation results are 12-hour and 24-hour forecasts

respectively. The locations of the 457 radiosonde stations are shown in Fig. S1 of the supplement.

To compare with the similar validation results reported in Agusti-Panareda et al. (2019), the horizontal wind fields evaluation

results for January and July of 2014 are listed in Table 2. The table shows that while the mean difference in wind direction5

decreases with altitude, the mean RMSE vector wind generally increases with altitude, which agree with the IFS validation

results (Agusti-Panareda et al., 2019). At 1000 hPa level, MPAS-A has a slightly lower accuracy than IFS during the same time

period. For instance, MPAS-A’s mean RMSE vector wind at 1000 hPa is 3.83 m/s for January 2014, and IFS results range from

3.2 m/s to 3.75 m/s for its 9 km and 80 km horizontal resolution simulations. For July 2014, the mean RMSE vector wind at

1000 hPa is 3.47 m/s from MPAS-A and 3.0 m/s to 3.6 m/s for the IFS 9 km and 80 km simulations. At upper level, MPAS-A10

has a slightly higher accuracy than IFS: at 500 hPa, MPAS-A mean RMSE vector wind is 3.72 m/s and 3.39 m/s for January

and July of 2014 respectively, while IFS results in 4.0-4.1 m/s and 3.5-3.6 m/s for the same time period.

An important finding of Agusti-Panareda et al. (2019) is that higher horizontal resolution generally leads to higher me-

teorological and CO2 simulation accuracy. To examine the influence of horizontal resolution on MPAS-A’s meteorological15

simulation accuracy, we conducted an additional set of simulation using the identical configuration except that it uses a global

60 km uniform-resolution grid instead of the 60-15 km variable-resolution grid (Fig. 1). Out of the 475 radiosonde stations,

131 are located at 15 km cells in the 60-15 km variable-resolution simulation. These 131 radiosonde stations are all located at

60 km cells in the 60 km uniform-resolution simulation. In Table 3, we calculated and compared horizontal wind accuracy at

these 131 radiosonde stations between the 60 km uniform-resolution simulation (labeled as 60 km) and the 60-15 km variable-20

resolution simulation (labeled as 15 km). The table shows that the horizontal wind fields at these 131 stations are simulated

with considerably higher accuracy on the 15 km grid than its 60 km grid counterpart. For instance at 1000 hPa, the mean RMSE

wind vector for January 2014 is 3.46 m/s and 3.98 m/s at the 15 km and 60 km grids respectively. The values are 3.10 m/s

and 3.64 m/s for July 2014. Table 3 also shows that the difference in the mean RMSE wind vector between the 15 km and 60

km grids is larger near the surface at 850 and 1000 hPa than in the middle and upper troposphere (500 and 200 hPa), which is25

consistent with the findings of Agusti-Panareda et al. (2019). For both January and July at the four pressure levels, the mean

RMSE wind vector at the 131 radiosonde stations at MPAS-A’s 15 km grid is either similar to or slightly lower than the mean

RMSE wind vector of the around 400 stations from the IFS 9 km resolution simulation (Agusti-Panareda et al., 2019).

3.3.2 Comparison of CO2 fields with CarbonTracker

Having established that the horizontal wind fields simulated by MPAS-A are sufficiently accurate, the CO2 fields can be evalu-30

ated. Here we directly compare the simulated XCO2 by MPAS-A and CT2019 at the grid scale. CT2019 (Jacobson et al., 2020)

is an operational carbon data-assimilation system which uses Transport Model 5 (TM5) (Krol et al., 2005) for atmospheric

transport. TM5 is an offline global CTM which includes CO2 advection, deep and shallow convection, and vertical diffusion

in both PBL and FT (Krol et al., 2005). In producing CT2019 CO2 mole fraction (Jacobson et al., 2020), TM5 simulation ran
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over a 3◦× 2◦ global domain.

First, XCO2 are calculated at the native grid for MPAS-A (60-15km) and CT2019 (3◦× 2◦). XCO2 at a given model cell is

calculated as the pressure weighted CO2 dry air mixing ratio.

XCO2 = (

N∑
k=1

pkq
co2
k )/(

N∑
k=1

pk) (19)5

where pk is modeled air pressure at layer k corrected for water vapor, qco2k is CO2 dry air mole fraction at the same level. N

is the number of vertical levels in a model. Then, XCO2 from MPAS-A and CT2019 are regridded from their respective grids

an identical 1× 1◦ grid for a direct comparison. Figure 4 shows the comparison of XCO2 from MPAS-A (top) and CT2019

(middle) and their difference (bottom) for July 1 and December 1 2014 at 00:00 UTC. The figure shows that XCO2 from

MPAS-A and CT2019 are generally consistent at the large scales, but differences exist at small spatial scales. For instance, the10

difference in horizontal resolution between MPAS-A and CT2019 can be clearly observed in XCO2 in July over both north-

east and southern China. In December, MPAS-A has higher XCO2 than CT2019 within the Arctic Circle and southern China.

Overall the differences between MPAS-A and CT2019 are evident. The magnitude of differences are mostly within 3 ppm,

which is similar to the magnitude reported in Polavarapu et al. (2016) for the GEM-MACH-GHG model. Because both models

used the same surface CO2 fluxes, the difference in the simulated CO2 fields is only caused by the different model transport:15

spatial resolution, dynamics, and physical parameterizations. The differences between MPAS-A and CT2019 are expected due

to the differences in the two models’ horizontal resolution, dynamics, and physical parameterizations. Because no CTM can be

expected to have perfect transport, the acceptability of transport is generally judged through comparisons of model simulation

with measurements.

20

3.3.3 Comparison with near-surface CO2 measurements

This section compares MPAS-A simulated CO2 with hourly measurements from 50 stations that were used for the IFS model

evaluation in Agusti-Panareda et al. (2019). The information of the 50 stations, including location, elevation, intake height, ref-

erence, and type is listed Table 4. Like in Agusti-Panareda et al. (2019), only the highest intake level is used at towers that have

multiple intake heights. When multiple observations within an hour are available (such as those with 30-min or shorter time25

interval), they are averaged to yield a single hourly value. For a given station this results in 744 (24×31) hourly measurements

per month at the maximum.

The MPAS-A hourly CO2 statistics, including RMSE, STDE, and bias at the 50 stations are listed in Tables S1 and S2 of the

supplement for January and July of 2014 respectively. For comparison, Tables S1 and S2 also include the statistics from the30

IFS 9 km and 80 km resolution simulations (Agusti-Panareda et al., 2019) at the same sites for the same time periods. Table S1
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shows that RMSE of the MPAS-A simulated hourly CO2 ranges from 0.17 ppm at the SPO station to 16.65 ppm at the KAS

station. In comparison, the IFS simulations also resulted in a much lower RMSE at the SPO than KAS, the latter of which has

a RMSE of 4.44 ppm from the 9 km resolution simulation and 10.71 ppm from the 80 km simulation.

The comparison of RMSE and STDE from MPAS-A and IFS are show in Figs 5 and 6 for January and July of 2014, re-5

spectively. Table 5 uses paired t test to provide a quantitative summary of the hourly CO2 RMSE between MPAS-A and the

IFS 9 km and 80 km simulations. The table shows that for January 2014, the mean RMSE at the 50 stations is 4.20 ppm

from MPAS-A, which is higher than IFS 9 km simulation (3.12 ppm, p= 0.01) and similar to the IFS 80 km simulation (4.94

ppm, p= 0.25). For July 2014, the mean RMSE at the 50 stations is 8.09 ppm from MPAS-A, which is similar to IFS 9 km

simulation (8.04, p= 0.95) and lower than the IFS 80 km simulation (11.77 ppm, p= 0.04). The above comparisons indicate10

that the 60-15 km MPAS-A simulation has a level of accuracy between the IFS 9 km and 80 km simulations.

Agusti-Panareda et al. (2019) found that atmospheric CO2 transport is generally better represented at higher horizontal res-

olutions, and mountain stations display the largest improvement at higher resolution as they directly benefit from the more

realistic orography. There are 12 mountain stations of the 50 stations used for the model validation. Table 6 lists the 12 moun-15

tain stations in two groups: the first group includes the six mountain stations located at the 15 km cells of the MPAS-A’s 60-15

km variable-resolution grid, and the second group includes the other six stations that are located at the 60 km cells of the grid.

The table lists the hourly CO2 RMSE for each of the 12 stations from MPAS-A and IFS 9 km and 80 km simulations are listed

for January and July 2014. The table shows that at each of the six mountain stations located at 15 km cells, MPAS-A has lower

hourly CO2 RMSE than the IFS 9 km simulation for July 2014. For January 2014, MPAS-A has lower RMSE than IFS 9 km20

simulation at five out the six stations (the exception is NWR). In comparison, at the six mountain stations located at its 60 km

cells, MPAS-A has higher hourly CO2 RMSE than IFS 9 km simulation for both January and July of 2014 with the exception

of JFJ for July 2014.

3.3.4 Comparison with TCCON XCO2 measurements25

After the comparison with the near-surface CO2 in the last section, we evaluate MPAS-A CO2 fields using XCO2 measurements

from 18 TCCON sites listed in Table 7. To compare with TCCON retrieved XCO2, smoothed MPAS-A XCO2 is calculated

following Wunch et al. (2010):

Xmodel
CO2

= ca +hTaT (xm−xa) (20)

where Xmodel
CO2

is the smoothed MPAS-A XCO2, ca is the a priori total column, aT is TCCON column averaging kernel, hT30

is a dry-pressure weighting function, xm is MPAS-A CO2 dry mole fraction profile, xa is the a priori CO2 dry mole fraction

profile. The column profile of CO2, air pressure, and water vapor mixing ratio extracted from MPAS-A hourly output are in-
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terpolated to the same vertical grid as xa, and dry-pressure weighting function hT is calculated following O’Dell et al. (2012)

and Eq. A7 of Agusti-Panareda et al. (2014).

At a given TCCON site, averaged hourly XCO2 (denoted as XTCCON
CO2

) is calculated as the mean value of all valid XCO2

retrievals within the hour. XTCCON
CO2

are then matched with the calculated hourly XCO2 from MPAS-A (denoted as Xmodel
CO2

).5

The comparisons ofXmodel
CO2

andXTCCON
CO2

at the 18 TCCON sites for the year of 2014 are shown in Fig. 7. The results indicate

that the observed seasonal variation in TCCON XCO2 are in general well represented by MPAS-A. The hourly average XCO2

comparison between MPAS-A and TCCON are summarized in Table 8. In the table N is the number of data pairs used for

calculating the statistics, including RMSE, bias, and correlation coefficient R. The mean RMSE of the 18 sites is 1.35 ppm,

which is comparable to the IFS simulations (1.02 to 1.25 ppm) Agusti-Panareda et al. (2019). We then calculated the average10

daily XCO2 as the mean value of all the hourly XCO2 within a given day. The statistics of comparison of daily XCO2 between

MPAS-A and TCCON are also included in Table 8. In the table N is the number of average daily XCO2 used for calculating

the statistics. Compared to their hourly counterparts, the average daily XCO2 have both lower RMSEs and higher correlation

coefficients. The mean value of the average daily XCO2 RMSE of the 18 TCCON sites is 1.23 ppm, which is comparable to

IFS simulations (0.97 to 1.25 ppm ) reported in Agusti-Panareda et al. (2019).15

3.4 Model evaluation at regional scale

In this section, we present an evaluation of the MPAS-A CO2 simulation accuracy using an extensive high resolution CO2

observation data acquired through the ACT aircraft campaigns. ACT is a National Aeronautics and Space Administration

(NASA) Earth Venture Suborbital 2 (EVS-2) mission, and its goal is to improve atmospheric inversion estimates of CO2 and

CH4 through extensive airborne measurements over the eastern United Stated during multiple seasons (Davis et al., 2018a).20

Through four campaign seasons from Summer 2016 to Spring 2018 with two research aircraft (C130 and B200), the ACT

project has collected an extensive dataset of highly resolved CO2 measurements in both BL and FT. The duration of the ACT

campaign seasons is given in Table 9. To use ACT airborne CO2 measurements for model evaluation, we conducted a MPAS-A

simulation lasts from January 1 2016 to May 31 2018. The first 6 months are for the model spin-up. The simulation uses the

domain and configurations as described in Section 3.1, and model outputs are saved at 1-hour intervals.25

First we compare MPAS-A simulated horizontal wind fields during the ACT campaign seasons using the same procedure

described in Section 3.3.1. Table 10 lists the statistics of horizontal wind fields evaluation at the four ACT campaign seasons.

The table indicates the same pattern as in 2014 (Table 2): mean RMSE vector wind increases with altitude and mean difference

of wind direction decreases with altitude. The magnitude of the statistics of the four ACT campaign seasons are comparable to30

that of 2014 (Table 2).

Next we use the ACT campaign airborne measurements to evaluate MPAS-A CO2 simulation regarding its overall accuracy

and its performance measured by three model evaluation metrics proposed by Pal et al. (2020). To provide an objective refer-
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ence, we also compare MPAS-A performance with two established CO2 model systems: WRF-Chem (Skamarock et al., 2008)

and CT2019 (Jacobson et al., 2020) using the same set of airborne measurements. WRF-Chem is an online CTM based on the

regional model WRF (Grell et al., 2011; Skamarock et al., 2008). WRF-Chem simulations have been carried out at 27 km hor-

izontal grid (Fig. S2) over North America as a part of the ACT campaign (Feng et al., 2020). The WRF-Chem simulations use

ERA5 reanalysis (Hersbach et al., 2020) for meteorological initial and lateral boundary conditions, CarbonTracker (Jacobson5

et al., 2020) posterior mole fraction for CO2 initial and boundary conditions, and CarbonTracker posterior fluxes for surface

CO2 fluxes. The WRF-Chem simulations use meteorological nudging and 120-hour meteorological re-initialization to keep

meteorological fields close to the reanalysis.

We use the ACT 5-second averaged CO2 measurement dataset (Davis et al., 2018b), which has a horizontal resolution ap-10

proximately 500 m given the average aircraft velocity. MPAS-A simulated CO2 fields are sampled as described in the second

paragraph of Section 3 to match the 5-second airborne data points. WRF-Chem simulated CO2 fields are also interpolated to

match the ACT 5-second data point using the same approach as MPAS-A. CT2019 CO2 used for the evaluation is obtained

from CarbonTracker ObsPack (v5.0) (Masarie et al., 2014), which is the CT2019 posterior mole fraction interpolated to the

ACT 5-second data points.15

For each ACT flight day, CO2 measurements from the two aircraft are combined if both are available, and their correspond-

ing modeled CO2 values from MPAS-A, WRF-Chem, and CT2019 are combined in the same way. With the four seasons

combined, there are a total of 97 flight days (Pal and Davis, 2020), each one presented by an observation-model dataset con-

sisted of observed CO2, modeled CO2 from the three models, along with the time, latitude, longitude, and altitude of each20

observation data point. Using the ACT maneuver flag dataset Pal et al. (2020), we further divide each flight day’s data into two

groups: one for BL and another for FT. For each ACT campaign season, all the BL data-model pairs are combined for each

of the three models for model comparison. Figure 8 shows the Taylor diagram of the model comparison in BL for the four

campaign seasons. N in the title of each figure is the number of model-data pairs used for plotting the diagram. Similarly the

model comparison in FT is summarized in the Taylor diagrams of Fig. 9. A comparison of Figs. 8 and 9 show that all three25

models have higher accuracy (lower RMSE) in FT than BL, which could be attributed to the larger error in the weather forecast

in BL than FT associated with the accuracy of PBL height in the model simulation. Figure 8 shows that in BL, MPAS-A has

higher RMSE and higher standard deviation than CT2019. MPAS-A has more accurate estimation of the observations’ standard

deviation than CT2019 in all but summer 2016. Compared with WRF-Chem, MPAS-A has lower RMSE and more accurate

estimation of the observations’ standard deviation. Figure 9 shows that in FT, MPAS-A has higher RMSE than CT2019 in all30

four campaign seasons and but it has more accurate estimation of the observations’ standard deviation than CT2019 in all but

summer 2016 season. Compared to WRF-Chem, MPAS-A has lower RMSE and more accurate estimation of observations’

standard deviation in all but summer 2016.
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3.4.1 Model representation of CO2 difference between warm and cold sectors

Through analyzing the ACT Summer 2016 campaign data, Pal et al. (2020) identified three consistent features in CO2 mole

fraction and proposed to use these features as transport model assessment metrics. The three features are the differences be-

tween the warm and cold sectors, the difference between BL and FT, and the CO2 enhancement bands in the vicinity of frontal

boundaries. Here and in the next two sections, we evaluate how MPAS-A simulated CO2 represents the three features.5

Using the ACT maneuver flag dataset (Pal et al., 2020), we identified flights that crossed a weather front and their associated

warm and cold sectors. The CO2 mole fraction statistics for the warm and cold sectors are calculated from the aircraft mea-

surements and the modeled CO2 by MPAS-A, WRF-Chem, and CT2019, respectively. The results are shown in Fig. 10, which

summarizes the statistics of CO2 mole fraction differences between the warm and cold sectors measured by 15 front-crossing10

flights: 10 from the summer 2016 season and 5 from the winter 2017 season. The figure confirms that the warm sector has

higher average CO2 mole fraction in BL than the cold sector during summer 2016 as reported by Pal et al. (2020). The figure

also shows that the average CO2 mole fraction in the warm sectors are lower than than the colder sectors in winter 2017,

opposite of summer 2016.

15

Table 11 lists the mean CO2 of the warm sector, cold sectors, and their difference as calculated from the ACT measurements,

MPAS-A, WRF-Chem, and CT2019. The table shows that the MPAS-A simulations are similar to WRF-Chem, and both tend

to have larger CO2 differences between the warm and cold sectors than CT2019. For instance, the 2016-08-08 case where the

observed mean CO2 difference between warm and cold sector is 26.9 ppm, MPAS-A and WRF simulations resulted in 36.9

ppm and 21.2 ppm respectively, while CT2019 resulted in a 15.3 ppm difference. The above evaluation indicates that MPAS-A20

CO2 model is capable of well representing the observed CO2 difference between the warm and cold sectors, and its accuracy

in this respect is comparable to WRF-Chem and CT2019.

3.4.2 Model representation of CO2 vertical difference

The second feature identified by Pal et al. (2020) is the vertical difference of CO2 mole fraction between BL and FT. Dur-25

ing ACT campaign season, two research aircraft (B200 and C130) took many vertical profile measurements during take off,

landing, spiral up and down, and inline ascend and descend maneuvers (Pal, 2019). These profile observations characterize the

vertical variation of the atmospheric CO2 mole fraction. From the vertical profile measurements taken during the summer 2016

season, Pal et al. (2020) calculated the mean CO2 mole fraction in BL and FT, denoted as [CO2]BL and [CO2]FT respectively.

They further defined BL-to-FT CO2 difference as ∆[CO2] = [CO2]BL−[CO2]FT. They found that ∆[CO2] tend to be positive30

in the warm sector and negative in the cold sector. In this section, we evaluate how well MPAS-A represents the BL-to-FT CO2

difference and compare its performance with WRF-Chem and CT2019.
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Using the ACT maneuver flag dataset (Pal et al., 2020), we identified all vertical profiles taken during the four campaign

seasons, from which we selected profiles that meet two criteria: (1) a vertical profile must include at least 20 5-second mea-

surements in BL and 20 measurements in FT; and (2) a vertical profile must extend at least 2 km in the vertical direction. These

two criteria are used to ensure that the resulting [CO2]BL and [CO2]FT are statistically representative. A total of 199 qualified

vertical profiles are identified from the four campaign seasons, including 72 from the summer 2016 season, 27 from winter5

2017, 40 from fall 2017, and 60 from spring 2018. For each of the vertical profiles, ∆[CO2] is calculated for the aircraft CO2

measurements, and the simulated CO2 by MPAS-A, WRF-Chem, and CT2019. We compare ∆[CO2] from the models with

that from the observations to assess how each model represents the observed BL-to-FT CO2 difference. Figure 11 shows the

comparisons grouped by the campaign seasons. The figure indicates a clear distinction in ∆[CO2] between the summer 2016

and the other three seasons: There are a substantial number of both positive and negative ∆[CO2] in the summer 2016 season,10

but the vast majority of cases in the rest of the three campaign seasons have positive ∆[CO2]. The positive BL-to-FT CO2

differences from the winter 2017 season measurements could be at least partially attributable to the lack of CO2 draw-down

during the non-growing season. In comparison, the fall 2017 and spring 2018 seasons have more mixed results probably be-

cause of their partial overlap with the growing season. For the summer 2016 season, vertical profiles with negative ∆[CO2]

(lower mean CO2 in BL than FT) suggest photosynthesis during the growing season, but those with positive ∆[CO2] values15

are probably caused by the interaction between photosynthesis and frontal passage (Pal et al., 2020).

To compare the three models’ accuracy in representing the BL-TO-FT CO2 difference, we calculated the mean absolute

error (MAE) for each model at each season, where AE = |∆[CO2]model−∆[CO2]obs| (the absolute difference in ∆[CO2]

between a model and the ACT observations).20

MAE =
1

N

N∑
i=1

AEi (21)

Table 12 summarize the MAE of the three models for each season. The table shows that MPAS-A has smaller MAE than

CT2019 in fall 2017 (p= 0.04) and a larger MAE in summer 2016 (p= 0.06). The differences between the two models in

the other two seasons are not significant (p≥ 0.23). Compared with WRF-Chem, MPAS-A has smaller MAEs in winter 2017

(p= 0.09) and spring 2018 (p= 0.01) while differences in the other two seasons are not significant (p≥ 0.11). In summary,25

the above model evaluation and comparison demonstrate that MPAS-A CO2 transport model is capable of representing the

aircraft observed CO2 difference between BL and FT at least as accurately as WRF-Chem and CT2019.

3.4.3 Model representation of CO2 enhancement at frontal boundaries

The third feature identified by Pal et al. (2020) in the summer 2016 aircraft measurements is the bands of enhanced CO230

close to frontal boundaries in BL. They found these CO2 enhancement bands are typically about 100 km wide and specu-

lated that it would require a 20-km horizontal resolution model to effectively represent the feature. In this section, we identify
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the frontal boundary CO2 enhancements in the four campaign seasons and examine how well they are represented by MPAS-A.

Using the same approach as Pal et al. (2020), a total of 48 front-crossing constant-altitude flight segments are identified from

the four seasons (15 from Summer 2016, 5 from Winter 2017, 17 from Fall 2017, and 11 from Fall 2018). To evaluate how well

MPAS-A represents the frontal boundary CO2 enhancements and compare its performance with WRF-Chem and CT2019,5

CO2 mole fraction measured by the aircraft and simulated by the three models are plotted together for each of the identified

front-crossing constant-altitude flight segment. Figure 12 includes 8 of the front-crossing flight segments and the full set is

included in Fig. S3 of supplement. For each flight segment in Fig. 12, the pair of vertical dashed lines mark CO2 enhancement

observed by the aircraft along a frontal boundary. The warm and cold sectors associated with the frontal boundary in each flight

are labeled as warm and cold respectively. The figure indicates that frontal boundary CO2 enhancements can be identified in10

most but not all of the cases. For instance, there is not clearly identifiable CO2 enhancement in the B200 flights on 2018-04-23

(Fig. S3).

Figure 12 shows that MPAS-A has a varying degree of success in simulating the frontal boundary CO2 enhancements: it

represents both the timing and the magnitude of the enhancements very well in some cases (2016-08-04 and 2017-10-18 by15

B200), but results in substantial errors in either the timing (2016-07-25 B200) or the magnitude (2017-03-10 C130) in other

cases. The figure also shows that the MPAS-A simulated CO2 is more similar to WRF-Chem than CT2019: CT2019 tends to

substantially underestimate the magnitude of CO2 enhancement while MPAS-A and WRF-Chem tend to overestimate.

Figure 13 shows the MPAS-A simulated equivalent potential temperature (θe) and CO2 mole fraction at 18:00 UTC August20

4, 2016. The sharp boundary in θe indicates a surface cold front extending from southern Colorado northeastward to Wisconsin.

Abrupt horizontal wind direction changes shown in Fig. S4 of the supplement also indicate the cold front and its southeastward

movement. Meteorological measurements taken during the flight (not shown) also confirm the cold front passage. The B200

research aircraft crossed the cold front from southeast to northwest at about 400-500 meters above the ground between 17:15

UTC and 19:15 UTC, and its flight track and timing are marked on Fig. 13. The aircraft measurements show an approximately25

20 ppm enhancement along the front boundary, which can be clearly identified in the MPAS-A simulated CO2 mole fraction

(lower panel of Fig. 13).

Figure 14 compares the three models in their representation of the frontal boundary CO2 variation. The figure shows that

except for summer 2016, MPAS-A has similar level of RMSE as CT2019 and it has more accurate estimation of the ob-30

servations’ standard deviation. As horizontal resolution impacts a model’s ability to represent small scale spatial variability

(Agusti-Panareda et al., 2019), the coarser resolution of CT2019 (1◦× 1◦ over North America) is likely the primary cause

of its underestimation of the frontal boundary CO2 variability. MPAS-A has lower RMSE than WRF-Chem in winter 2017

and spring 2018, and similar RMSE as WRF-Chem in the other two seasons. In all but summer 2016, MPAS-A has more an

accurate estimation of the observations’ standard deviation than WRF-Chem.35
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4 Summary

We implemented the CO2 atmospheric transport processes, including advection, vertical mixing, and convective transport, in

the global variable-resolution model MPAS-A. After the model development details are presented, simulation experiments

designed for model evaluation are described. Two sets of simulations over a 60-15 km variable-resolution global domain are

conducted for model accuracy evaluation using an extensive aircraft measurements over the eastern United States and near-5

surface hourly measurements from surface and tower stations distributed across the globe. Meteorological initial conditions for

these simulations are from the ERA-interim analysis (Dee et al., 2011), and CO2 initial conditions and fluxes are from CT2019

posterior mole fraction and fluxes products (Jacobson et al., 2020). To keep model meteorological fields close to the analysis,

meteorology re-initialization are applied at 24-hour interval throughout the simulation periods. Global CO2 mass conservation

property is assessed by a one-year continuous simulation without meteorology re-initialization and fluxes, and the results show10

that MPAS-A is capable of maintaining total dry air mass conservation to the limit of machine precision. During the one-year

simulation period, the total CO2 mass change is about 10−5 of its initial value. The larger variation of CO2 mass than the

dry air is due to the complex and strong spatial gradient caused by the surface CO2 fluxes. Another one-year simulation with

meteorology re-initialization indicates that changes in dry air density during the re-initialization causes changes in global total

CO2 mass, and a scaling method applied after each re-initialization is able to reduce the change from ∼ 10−4 to ∼ 10−6 of the15

global CO2 mass.

The horizontal wind fields of the 60-15 km variable-resolution MPAS-A simulation are evaluated at four pressure levels at

457 radiosonde stations. Furthermore, a comparison with an additional 60 km uniform-resolution MPAS-A simulation shows

that the accuracy of the horizontal wind fields is substantially higher at the 15 km cells. The accuracy of MPAS-A CO2 trans-20

port is evaluated first at the global scale and then at the regional scale. At the global scale, MPAS-A simulation is evaluated

using CT2019, near-surface hourly CO2 measurements from 50 stations and XCO2 measurements from 18 TCCON stations.

The resulting statistics are compared with the ECMWF IFS 9km and 80 km resolution simulations over the same period con-

ducted by Agusti-Panareda et al. (2019). The comparison indicates that RMSE of the MPAS-A simulation is similar to the 80

km IFS simulation, but larger than the 9 km IFS simulation.25

At the regional scale, a MPAS-A simulation extending from January 1 2016 to June 1 2018 is evaluated using the exten-

sive high-resolution aircraft measurements from four ACT campaign seasons. Compared with a 27 km resolution WRF-Chem

simulation and CT2019 posterior CO2 mole fraction, MPAS-A simulated CO2 achieves a comparable level of accuracy (as

measured by RMSE). Further evaluation using three metrics proposed by Pal et al. (2020) shows that MPAS-A simulation is30

capable of representing the observed CO2 features as accurately as the WRF-Chem simulation and CT2019.

The model evaluations using the airborne and near-surface measurements, indicates that the newly developed MPAS-A CO2

transport model is capable of achieving a comparable level of accuracy with the more established CO2 modeling systems,
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including the regional model system WRF-Chem, the operational assimilation system CT2019, and the lower resolution (80

km) simulation of the ECMWF IFS global CO2 modeling system. Although further improvements are expected, the MPAS-A

CO2 transport model has the potential to contribute to improving our knowledge of atmospheric CO2 transport and fluxes.
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TCCON data can be obtain from https://tccondata.org/. CarbonTrack CO2 flux and posterior mixing ratio data can be obtained
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Figure 1. Variable-resolution 60-15 km global domain for MPAS-A CO2 simulations conducted for model evaluation using aircraft and
near-surface CO2 observations. The highest resolution (15 km) grid covering the most of the North America has cell size less than 250 km2.
The cell sizes (represented by color) gradually increase to about 3,600 km2 for the rest of the global domain.
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Figure 2. Variation of total dry air mass (a) and total CO2 mass (b) as the ratio to their respective starting values during a 1-year continuous
MPAS-A simulation without meteorological re-initialization. The X-axis represents the days of 2014, and the Y-axis the ratio of the total
mass change to the starting values.
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Figure 3. Variation of global CO2 mass as the ratio to its value prior to a meteorological re-initialization during a 1-year MPAS-A simulation
with meteorological re-initializations at 24-hour intervals. The top figure is from the simulation without applying CO2 mixing ratio scaling
as described in Sect. 3.2.2, and the bottom figure is from the simulation with the scaling. In each figure, X-axis represents the days of 2014,
and Y-axis the ratio of global CO2 mass variation to its value prior to a meteorological re-initialization.
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Figure 4. Simulated XCO2 of MPAS-A, CT2019, and their difference at 2014-07-01 and 2014-12-01 00:00 UTC.
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Figure 5. Comparison of model simulated hourly CO2 accuracy (RMSE and STDE) between MPAS-A and IFS at 50 surface and tower
stations. Each open circle in the figures represent a station. Comparison of MPAS-A with the IFS 9 km resolution simulations are in the top
panel (a and b), and comparison with IFS 80 km resolutions simulations are in the top panel (c and d).
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Figure 6. Same as Fig. 5, but July 2014.
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Figure 7. Simulated hourly XCO2 of MPAS-A at 18 TCCON sites for the year of 2014.
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(b) Winter 2017, N=34163
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Figure 8. Taylor diagram for model evaluation using ACT airborne measurements in the boundary layer.
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(a) Summer 2016, N=86182
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(b) Winter 2017, N=69678
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(c) Fall 2017, N=82326
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Figure 9. Taylor diagram for model evaluation using ACT airborne measurements in the free troposphere.
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Figure 10. Box plots comparing mean boundary layer (BL) CO2 mole fraction of the warm sector (red color) and cold sector (blue color) for
15 frontal crossing flights from summer 2016 and winter 2017 ACT campaign seasons. The flight date of each plot is labeled in its title. Data
are combined when both aircraft (C130 and B200) took measurements for a given day. Each sub-figure is separated into four groups by the
dotted lines: the first group is from ACT observations, the second is MPAS-A simulation, the third is WRF-Chem simulation, and the last is
CT2019. In each boxplot, the bottom and top edge of the box represent the 1st (Q1) and 3rd(Q3) quartiles, the horizontal line represent the
median, the ends of the whisker represents Q1-1.5×IQR and Q3+1.5×IQR respectively, where IQR=Q3-Q1.
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Figure 11. The difference of mean CO2 mole fraction between boundary layer (BL) and free troposphere (FT) (∆[CO2] =
[CO2]BL − [CO2]FT) at vertical profiling flight legs. In each subplot, each open circle represents an individual vertical profiling
flight leg, and its values on the X-axis and Y-axis represent its ∆[CO2] value from the aircraft observations and the model simulation
respectively. ∆[CO2] from MPAS-A simulations are the first row, WRF-Chem the second row, and CT2019 the third. The four columns in
the figure are for the four ACT campaign seasons. The number of vertical profiles in each season is labeled in the column title. The vertical
dashed line marks where ∆[CO2] = 0 based on the aircraft measurements.
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Figure 12. Comparison of CO2 mole fraction in frontal-crossing constant altitude flight segments in BL between ACT aircraft measurements
and model simulations. Flight date and aircraft type are labeled in title for each flight leg. X-axis is UTC time, and Y-axis is CO2 mole
fraction (ppm). Aircraft measurements are in black, MPAS-A in red, WRF-Chem in blue, and CT2019 in green. In each figure, the pair of
vertical dashed lines mark CO2 enhancement observed by the aircraft along a frontal boundary, and the warm and cold sectors associated
with the frontal boundary are labeled as warm and cold, respectively.

41



Figure 13. MPAS-A simulated equivalent potential temperature (θe, top panel) and CO2 mole fraction (bottom panel) at 18:00 UTC 4 August
2016. Both figures are plotted at MPAS-A 6th vertical level, which is about 400 meters above the ground.
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(a) Summer 2016, N=12145
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(b) Winter 2017, N=2521
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(c) Fall 2017, N=13850
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(d) Spring 2018, N=8200
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Figure 14. Taylor diagram for model evaluation using ACT airborne measurements from front-crossing flights. For each of the four ACT
campaign seasons, observation-model data pairs from all front-crossing flights are combined. N is the number of data pairs of used for
creating the diagram.

43



Table 1. MPAS-A CO2 transport model configuration.

Parameterization Option Used References
Longwave RRTMG LW Iacono et al. (2008)
Shortwave RRTMG SW Iacono et al. (2008)
PBL YSU Hong et al. (2006)
Surface layer Monin-Obukhov
Land Surface Model Noah Chen and Dudhia (2001)
Cumulus Kain-Fritsch Kain (2004)
Microphysics WRF Single Moment 6-class Hong and Lim (2006)
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Table 2. Evaluation of MPAS-A simulated horizontal wind using NOAA IGRA radiosonde data. Radiosonde data from 457 stations over the
globe are used for the evaluation. Wind speed and direction are compared at 00:00 UTC and 12:00 UTC at four pressure levels (1000, 850,
500, and 200 hPa) for each day of the MPAS-A simulation. The number of data samples (N) are smaller at 1000 hPa because some stations
are located above that pressure level.

Pressure level Mean RMSE Bias Mean difference Number
vector wind (m/s) Wind speed (m/s) Wind direction (◦) of data

Ja
nu

ar
y

20
14

1000 hPa 3.83 0.89 31.00 8,856
850 hPa 4.04 -0.45 23.08 22,369
500 hPa 3.72 -0.50 12.98 23,222
200 hPa 4.38 -0.58 8.36 22,795

Ju
ly

20
14

1000 hPa 3.47 0.27 32.94 7,504
850 hPa 3.56 -0.51 27.12 22,832
500 hPa 3.39 -0.59 17.89 23,745
200 hPa 4.19 -0.55 12.19 23,455
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Table 3. The statistics of MPAS-A simulated horizontal wind validated at radiosonde stations located in North America. In each cell, the first
value is from the 60-15 km variable-resolution grid simulation (labeled as 15 km) and the second is from the 60 km uniform grid simulation
(labeled as 60 km). Note that the number of data at the 850 hPa and 1000 hPa are different between the two simulations because of the
differences in their grids’ topography.

Pressure level Mean RMSE Bias Mean difference Number of data
vector wind (m/s) Wind speed (m/s) Wind direction (◦)

15 km / 60 km 15 km / 60 km 15 km / 60 km 15 km / 60 km

Ja
nu

ar
y

20
14

1000 hPa 3.46 / 3.98 0.84 / 1.02 30.27 / 32.24 2,427 / 1,845
850 hPa 3.42 / 4.08 -0.32 / -0.59 21.58 / 24.70 6,227 / 6,187
500 hPa 3.37 / 3.68 -0.41 / -0.54 13.10 / 13.89 6,659 / 6,659
200 hPa 4.01 / 4.20 -0.44 / -0.53 8.54 / 8.78 6,536 / 6,536

Ju
ly

20
14

1000 hPa 3.10 / 3.64 0.13 / 0.39 32.91 / 33.93 2,778 / 2,027
850 hPa 3.34 / 4.08 -0.35 / -0.60 26.08 / 27.66 6,395 / 6,321
500 hPa 3.26 / 3.68 -0.54 / -0.65 17.46 / 18.25 6,861 / 6,861
200 hPa 3.76 / 4.06 -0.41 / -0.40 10.99 / 11.70 6,808 / 6,808
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Table 4. Continuous in-situ stations used for evaluating MPAS-A CO2 simulation accuracy. NA denotes references that are not available.

Station Latitude longitude altitude intake Reference Type
ID (m a.m.s.l) (m a.g.l)
ALT 82.45 N 62.51 W 200 10 Worthy et al. (2003) remote
BRW 71.32 N 156.61 W 11 16 Peterson et al. (1986) coastal
CBY 69.13 N 105.06 W 35 12 NA continental
INU 68.32 N 133.53 W 113 10 Worthy et al. (2003) continental
PAL 67.97 N 24.12 E 560 5 Hatakka et al. (2003) continental
BCK 62.80 N 116.05 W 179 60 NA continental
CHL 58.74 N 94.07 W 29 60 Worthy et al. (2003) coastal
LLB 54.95 N 112.45 W 540 10 Worthy et al. (2003) continental
ETL 54.35 N 104.99 W 492 105 Worthy et al. (2003) continental
MHD 53.33 N 9.90 W 5 24 Ramonet et al. (2010) coastal
WAO 52.95 N 1.12 E 20 10 Wilson (2013) coastal
CES 51.97 N 4.93 E -1 207 Vermeulen et al. (2011) continental
EST 51.66 N 110.21 W 707 3 Worthy et al. (2003) continental
FSD 49.88 N 81.57 W 210 40 Worthy et al. (2003) continental
CPS 49.82 N 74.98 W 381 8 Worthy et al. (2003) continental
ESP 49.38 N 126.54 W 7 40 Worthy et al. (2003) coastal
KAS 49.23 N 19.98 E 1989 5 Necki et al. (2003) mountain
SSL 47.92 N 7.92 E 1205 12 Schmidt et al. (2003) mountain
HUN 46.95 N 16.65 E 248 115 Haszpra et al. (2001) continental
JFJ 46.55 N 7.99 E 3570 10 Schibig et al. (2015) mountain
LEF 45.95 N 90.27 W 472 396 Andrews et al. (2014) continental
PUY 45.77 N 2.97 E 1465 10 Lopez et al. (2015) mountain
AMT 45.03 N 68.68 W 53 107 Andrews et al. (2014) continental
EGB 44.23 N 79.78 W 251 3 Worthy et al. (2003) continental
WSA 43.93 N 60.01 W 5 25 Worthy et al. (2003) remote
VAC 42.88 N 3.21 W 1086 20 Morgui et al. (2013) mountain
TPD 42.64 N 80.56 W 231 35 Worthy et al. (2003) continental
DEC 40.74 N 0.79 E 1 10 Morgui et al. (2013) coastal
HDP 40.56 N 111.65 W 3351 17.7 Stephens et al. (2011) mountain
SPL 40.45 N 106.73 W 3210 9.1 Stephens et al. (2011) mountain
GIC 40.35 N 5.18 W 1436 20 Morgui et al. (2013) mountain
NWR 40.05 N 105.59 W 3523 3.5 Stephens et al. (2011) mountain
BAO 40.05 N 105.00 W 1584 300 Andrews et al. (2014) continental
RYO 39.03 N 141.82 E 260 20 Tsutsumi et al. (2005) coastal
SNP 38.62 N 78.35 W 1008 17 Andrews et al. (2014) mountain
WGC 38.26 N 121.49 W 0 483 Andrews et al. (2014) coastal
SGC 36.70 N 5.38 W 850 20 Morgui et al. (2013) continental
SCT 33.41 N 81.83 W 115 305 Andrews et al. (2014) continental
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Table 4. Continued from previous page

Station Latitude longitude altitude intake Reference Type
ID (m a.m.s.l) (m a.g.l)
WKT 31.31 N 97.33 W 251 457 Andrews et al. (2014) continental
IZO 28.31 N 16.50 W 2373 13 Gomez-Pelaez and Ramos (2005) mountain
YON 24.47 N 123.01 E 30 20 Tsutsumi et al. (2005) coastal
MNM 24.29 N 153.98 E 8 20 Tsutsumi et al. (2005) remote
MLO 19.54 N 155.58 W 3397 40 Thoning et al. (1989) mountain
SMO 14.25 S 170.56 W 42 10 Halter et al. (1988) remote
CPT 34.35 S 18.49 E 230 30 Brunke et al. (2004) coastal
AMS 37.80 S 77.54 E 55 20 Gaudry et al. (1991) remote
CGO 40.68 S 144.69 E 94 70 Francey et al. (2003) coastal
CYA 66.28 S 110.52 E 47 7 Loh et al. (2017) remote
SYO 69.00 S 39.58 E 14 8 NA remote
SPO 89.98 S 24.80 W 2810 10 Conway and Thoning (1990) remote
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Table 5. Comparison of Mean RMSE of hourly CO2 from MPAS-A and IFS 9 km and 80 km simulations. p-values of paired t test between
MPAS-A and the IFS simulations are also listed.

Mean RMSE (ppm) p value of paired t-test

Number of MPAS-A vs MPAS-A vs
data MPAS-A IFS 9km IFS 80 km IFS 9 km IFS 80 km

January 2014 50 4.20 3.12 4.94 0.01 0.25
July 2014 50 8.09 8.04 11.77 0.95 0.04
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Table 6. Comparison of RMSE of hourly CO2 between the MPAS-A 60-15 km simulation and the IFS 9 km and 80 km simulations at 12
mountain sites (Table 4). The left half of the table is for six mountain sites located in MPAS-A’s 15 km cells and the second half is for six
mountain sites located in MPAS-A’s 60 km cells. The top half of the table is for January 2014 and the bottom half is for July 2014.

Sites at MPAS-A 15 km cells Sites at MPAS-A 60 km cells
RMSE (ppm) RMSE (ppm)

Site IFS 9km IFS 80 km MPAS-A Site IFS 9km IFS 80 km MPAS-A

Ja
nu

ar
y

20
14

HDP 3.10 19.71 1.17 KAS 4.44 10.71 16.65
SPL 3.95 4.43 1.36 SSL 5.83 23.99 14.74
NWR 1.64 3.74 1.78 JFJ 2.53 15.55 5.91
SNP 5.01 14.54 4.36 PUY 4.58 10.30 5.94
IZO 2.80 1.16 2.00 VAC 1.10 2.28 1.62
MLO 0.85 1.25 0.77 GIC 5.60 4.74 7.40

Ju
ly

20
14

HDP 5.99 37.37 2.92 KAS 4.29 17.57 7.17
SPL 10.79 26.32 4.09 SSL 8.99 20.91 18.15
NWR 5.17 18.78 3.71 JFJ 6.35 11.93 4.83
SNP 29.28 48.33 12.88 PUY 7.23 13.29 12.80
IZO 6.01 2.88 3.69 VAC 5.95 13.91 7.76
MLO 1.47 1.68 1.31 GIC 20.30 15.36 28.58
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Table 7. TCCON stations used for model evaluations.

Site Latitude Longitude Reference
Ascension Island -7.92 -14.33 Feist et al. (2014)
Bialystok 53.23 23.02 Deutscher et al. (2015)
Bremen 53.10 8.85 Notholt et al. (2014)
Darwin -12.43 130.93 Griffith et al. (2014a)
Edwards 34.96 -117.88 Iraci et al. (2016)
Garmisch 47.48 11.06 Sussmann and Rettinger (2015)
Izana 28.31 -16.48 Blumenstock et al. (2017)
Saga 33.24 130.29 Kawakami et al. (2014)
Karlsruhe 49.10 8.44 Hase et al. (2015)
Lauder -45.04 169.68 Sherlock et al. (2014)
Lamont 36.60 -97.49 Wennberg et al. (2014b)
Orleans 47.97 2.11 Warneke et al. (2014)
Parkfalls 45.94 -90.27 Wennberg et al. (2014a)
Reunion Island -20.90 55.49 De Mazière et al. (2014)
Rikubetsu 43.46 143.77 Morino et al. (2016b)
Sodankyla 67.37 26.63 Kivi et al. (2014)
Tsukuba 36.05 140.12 Morino et al. (2016a)
Wollongong -34.41 150.88 Griffith et al. (2014b)

51



Table 8. Statistics for the average hourly XCO2 and average daily XCO2 comparison between TCCON measurements and MPAS-A simula-
tions: RMSE (ppm), bias (ppm), and correlation coefficient R. N is the number of data pairs used for computing of the statistics.

Average hourly XCO2 Average daily XCO2

Site N RMSE (ppm) Bias (ppm) R N RMSE (ppm) Bias (ppm) R
Ascension Island 1113 1.01 0.72 0.81 190 1.00 0.75 0.81
Bialystok 537 1.70 0.72 0.89 112 1.63 0.83 0.91
Bremen 222 2.30 1.04 0.85 51 2.20 1.15 0.87
Darwin 2109 1.18 0.85 0.68 296 1.06 0.79 0.77
Edwards 1515 1.01 0.57 0.90 257 0.91 0.57 0.93
Garmisch 567 1.10 0.18 0.91 99 1.14 0.20 0.91
Izana 210 0.51 0.24 0.94 56 0.51 0.26 0.94
Saga 516 0.97 0.30 0.91 107 0.95 0.29 0.91
Karlsruhe 522 1.99 0.92 0.85 93 1.73 1.05 0.88
Lauder 783 1.13 0.92 0.86 158 1.09 0.91 0.88
Lamont 1881 1.30 0.44 0.85 270 1.27 0.41 0.86
Orleans 573 2.06 0.95 0.75 114 1.84 1.01 0.81
Parkfalls 1200 1.35 0.17 0.93 194 1.27 0.15 0.94
Reunion Island 1092 1.03 0.86 0.91 186 1.00 0.86 0.93
Rikubetsu 180 1.26 -0.03 0.93 43 1.21 0.09 0.94
Sodankyla 243 1.33 0.83 0.97 54 1.26 0.85 0.97
Tsukuba 1086 1.55 0.26 0.80 169 1.42 0.22 0.82
Wollongong 1146 1.22 0.80 0.78 194 1.17 0.81 0.81
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Table 9. The duration of four ACT aircraft campaign seasons

Campaign season Duration
Summer 2016 July 15 to August 28

Winter 2017 February 1 to March 10
Fall 2017 October 1 to November 15

Spring 2018 April 12 to May 20
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Table 10. Evaluation of the simulated horizontal wind of MPAS-A using radiosonde observations at 457 stations located across the globe.
Wind speed and direction are compared at 00:00 UTC and 12:00 UTC at four pressure levels (1000, 850, 500, and 200 hPa) for each day of
the MPAS-A simulation. Note the number of data samples (N ) is smaller at 1000 hPa because some stations are located above that pressure
level.

Pressure level Mean RMSE Bias Mean difference N
vector wind (m/s) Wind speed (m/s) Wind direction (◦)

Su
m

m
er

20
16 1000 hPa 3.87 0.63 34.15 11,630

850 hPa 3.75 -0.41 28.70 34,107
500 hPa 3.58 -0.57 18.84 35,213
200 hPa 4.58 -0.52 13.40 34,732

W
in

te
r2

01
7 1000 hPa 4.02 1.01 32.00 11,415

850 hPa 4.11 -0.32 25.28 27,957
500 hPa 4.03 -0.43 14.67 28,977
200 hPa 4.55 -0.48 9.79 28,401

Fa
ll2

01
7 1000 hPa 3.76 0.99 32.00 12,396

850 hPa 4.05 -0.38 25.38 31,964
500 hPa 3.92 -0.45 14.93 32,881
200 hPa 4.63 -0.46 10.39 32,252

Sp
ri

ng
20

18 1000 hPa 3.98 0.89 33.80 10,763
850 hPa 4.05 -0.30 27.85 29,886
500 hPa 4.12 -0.42 17.24 30,914
200 hPa 4.79 -0.46 12.96 30,257
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Table 11. Comparison of mean CO2 dry air mole fraction (ppm) in the boundary layer between the warm and the cold sectors. The table
includes 10 frontal crossing flights from the summer 2016 season and 5 from winter 2017 season. The column labeled as diff is the mean
value of the warm sector minus that of the cold sector.

date ACT MPAS-A WRF-Chem CT2019
yyyy-mm-dd warm cold diff warm cold diff warm cold diff warm cold diff
2016-07-18 396.7 396.7 0.0 396.7 402.1 -5.4 392.2 398.4 -6.2 397.8 399.1 -1.3
2016-07-19 398.2 396.6 1.6 404.9 393.5 11.4 400.2 394.3 5.9 399.6 397.9 1.7
2016-07-25 400.8 390.5 10.3 400.4 393.4 7.0 399.3 389.9 9.4 402.0 395.2 6.8
2016-07-26 405.9 396.1 9.8 419.4 394.8 24.6 424.8 394.0 30.8 408.4 396.3 12.1
2016-08-03 399.8 401.7 -1.9 401.7 398.4 3.3 400.8 401.1 -0.3 401.3 399.1 2.2
2016-08-04 407.3 393.5 13.8 408.2 391.3 16.9 407.5 399.8 7.7 403.0 390.7 12.3
2016-08-08 412.2 385.3 26.9 422.9 386.0 36.9 405.1 383.9 21.2 407.3 392.0 15.3
2016-08-12 401.4 395.1 6.3 404.4 392.1 12.3 405.4 402.8 2.6 399.6 395.3 4.3
2016-08-20 404.0 395.1 8.9 406.2 389.2 17.0 406.6 393.3 13.3 404.3 395.2 9.1
2016-08-21 406.5 390.7 15.8 408.1 387.0 21.1 414.8 392.5 22.3 404.1 394.1 10.0
2017-02-12 408.1 414.2 -6.1 409.7 412.1 -2.4 409.7 413.1 -3.4 408.3 410.9 -2.6
2017-02-17 413.5 414.8 -1.3 411.8 415.1 -3.3 411.5 413.2 -1.7 411.5 414.0 -2.5
2017-02-23 409.4 419.1 -9.7 411.7 417.6 -5.9 409.8 428.2 -18.4 409.6 415.0 -5.4
2017-03-07 412.0 415.2 -3.2 415.3 417.1 -1.8 417.4 418.4 -1.0 413.7 413.8 -0.1
2017-03-10 410.8 413.5 -2.7 413.5 415.3 -1.8 414.2 416.2 -2.0 412.3 413.4 -1.1
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Table 12. Mean absolute error (MAE) of the simulated CO2 of MPAS-A, WRF-Chem, and CT2019 as validated using ACT campaign aircraft
CO2 measurements. p values of paired t tests between MPAS-A and the other two models are included to provide a significance level for the
model comparisons.

Mean Absolute Error p-value of paired t test

Number of MPAS-A vs MPAS-A vs
Season profiles MPAS-A WRF-Chem CT2019 CT2019 WRF-Chem

Summer 2016 72 3.80 4.38 3.03 0.06 0.21
Winter 2017 27 1.56 2.23 1.58 0.95 0.09

Fall 2017 40 2.55 3.25 3.16 0.04 0.11
Spring 2018 60 2.29 3.75 1.99 0.23 0.01
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