
1

Rapid development of fast and flexible environmental models: The

Mobius framework v1.0

Magnus D. Norling
1
, Leah A. Jackson-Blake

2
, José-Luis G. Calidonio

1
, James E. Sample

2

1
Norwegian Institute for Water Research, 0349 Oslo, Norway

2
Norwegian Institute for Water Research, 4879 Grimstad, Norway 5

Correspondence to: Magnus D. Norling (magnus.norling@niva.no)

Abstract. The Mobius model building system is a new open source framework for building fast and flexible environmental

models. Mobius makes it possible for researchers with limited programming experience to build performant models with

potentially complicated structures. Mobius models can be easily interacted with through the MobiView graphical user

interface and through the Python programming language. Mobius was initially developed to support catchment scale 10

hydrology and water quality modelling, but can be used to represent any system of hierarchically structured ordinary

differential equations, such as population dynamics or toxicological models. Here, we demonstrate how Mobius can be used

to quickly prototype several different model structures for a dissolved organic carbon catchment model, and use built-in

auto-calibration and statistical uncertainty analysis tools to help decide on the best model structures. Overall, we hope the

modular model building platform offered by Mobius will provide a step forward for environmental modelling, providing an 15

alternative to the “one size fits all” modelling paradigm. We hope that by making it easier to explore a broader range of

model structures and parameterisations, users will be encouraged to build more appropriate models, and that this in turn will

improve process understanding and allow for more robust modelling in support of decision making.

1 Introduction

Environmental models are increasingly used both to formalise the current state of scientific knowledge and to support policy 20

and practical decision making, and there is therefore a strong need for robust models. Present-day system knowledge, new

data sources (for instance from remote sensing) and the practical experience of many modellers suggest that model structure

and complexity should be tailored to the system of interest based on (i) the research or policy question of interest, (ii) the

response characteristics of the system, and (iii) the availability of observational data. When developing a model application,

a compromise therefore needs to be reached between the realism with which natural processes are represented as a set of 25

equations, and whether those processes are important for the specific objectives of the modelling exercise, whether it is

computationally feasible to represent those processes and whether data is available to evaluate the hypotheses put forward by

the model (Clark et al., 2015). Within catchment hydrology and water quality modelling, for example, the dominant

processes that determine the system response to external drivers vary according to the scale of interest, with different

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

2

processes dominating as scale increases from plot to hillslope to catchment (e.g. Sivapalan et al., 2003). Appropriate process 30

representation also varies from catchment to catchment (Kavetski & Fenicia, 2011; Wagener et al., 2007). Despite this, many

popular water quality models provide limited flexibility for customising model structure. For example, spatially semi-

distributed models typically allow users to define their own hydrological response units (HRUs), but the process

representation within each HRU is essentially fixed. It is common for users to make implicit changes to the model structure,

for example by setting parameter values to zero or ±infinity, but this approach is both inflexible and opaque. Inflexible 35

model structures are problematic when attempting to generalise complex models developed in areas with detailed monitoring

data to less well-studied regions with sparse data. Overfitting is a serious problem for many hydrology and water quality

models and several authors have expressed concerns regarding testability or falsifiability of model simulations (see e.g.

Kirchner, 2006). The predominance of inflexible model structures has also lead to a vast number of models, often developed

for a specific location or to answer a specific question and then (perhaps inappropriately) transferred elsewhere (e.g. 40

hydrology models are considered in Beven, 2012). To tackle this issue, calls have been made for open source community

models (e.g. Mooij et al., 2010; Weiler & Beven, 2015), and/or so-called “models of everywhere”, where the idea is to move

from generic models that are customised to particular locations, for example through appropriate parameterisation, to models

that are specific to particular places (Beven, 2007; Blair et al., 2019).

 45

Modular (or flexible) modelling systems try to address these issues by providing a unified computational environment within

which models can be developed, and therefore offer an attractive and increasingly popular alternative to the “one size fits

all” paradigm. A well designed framework makes it possible to quickly explore alternative model structures, and to explicitly

customise existing models for specific applications. Model evaluation and comparison then become significantly easier, as

all model variants can use the same input and output data formats and share components of the same code base where 50

appropriate. The user can therefore be certain that differences in output are due to intended structural changes, and not to

implementation differences (e.g. in data pre-processing, secondary model components, or numerical solving schemes),

meaning more significant scientific insight can be gained when comparing alternative process representations (Mooij et al.,

2010). Modular frameworks also make it possible for users to extend or combine previously developed models – for example

by quickly developing multiple variants of a water quality model, all underpinned by the same hydrology module. 55

Although modelling frameworks have many advantages compared to traditional (fixed structure) approaches, they are

difficult to implement in practice as building a flexible, generalizable framework requires considerably more programming

expertise than building a static model. Many modellers have skills in interpreted languages such as Python or R, which are

reasonably well-suited to rapid prototyping of alternative model structures. However, exploring uncertainty in model 60

predictions, or formally comparing model structures, typically requires methods such as Bayesian MCMC, which involves

running each model thousands or even millions of times. This can be a big limitation for models coded in interpreted

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

3

languages, which are comparatively slow. One solution is to build models using compiled languages like C++ or Fortran, but

many modellers lack the time or inclination to develop the necessary programming skills.

 65

This paper presents a new modelling framework, Mobius, which allows flexible and fast model building by researchers with

a relatively basic level of programming. Mobius models meet modern demands for computational speed, and allow for the

complexity of process representation to be varied depending on progressing system knowledge, research question or scale.

Several hydrological model building frameworks exist to date, such as FUSE (Clark et al., 2008), SUPERFLEX (Fenicia et

al., 2011), FARM (Euser et al., 2013) and SUMMA (Clark et al., 2015). These all allow predefined components to be 70

connected in user-specified ways to create a model, with a focus on catchment hydrology. The framework presented here

takes these existing approaches further, allowing the user to define any component/process. It is therefore, to our knowledge,

one of the first frameworks to be fully generalizable: although initially developed to support catchment-scale hydrology and

water quality modelling, it can be used to represent any system of hierarchically structured ordinary differential equations

(ODEs), such as population dynamics or toxicological models. A range of popular hydrology and water quality models have 75

already been implemented in Mobius, for instance the INCA-family of models (Futter et al., 2007, 2014; Jackson-Blake et

al., 2016; Wade et al., 2002; Whitehead et al., 1998) and the Simply models (Jackson-Blake et al., 2017), and these are

available to use either as standalone models or as starting points for further development and customisation.

In the remainder of the paper, we first describe the core of the Mobius framework (Section 2). We then describe tools for 80

interacting with Mobius models, including the MobiView application (Section 3.1.1), a user-friendly graphical user interface

(GUI) compatible with all Mobius models, and the Mobius Python wrapper (Section 3.1.2), which provides Python bindings

to core Mobius functionality and incorporates many powerful optimisation and uncertainty estimation tools from the Python

ecosystem. We then demonstrate the utility of Mobius by developing a new illustrative dissolved organic carbon catchment

model, including rapid development of a variety of potential model structures, and using the tools available through the 85

Python wrapper to choose an appropriate structure for model application in a Norwegian catchment (Section 3.2). We also

include a model run speed benchmarking test, to demonstrate that performance is only marginally compromised by the

increase in flexibility (Section 3.3). We finish by discussing the current scope and limitations of the framework, as well as

future plans (Section 4).

2 Overview of Mobius 90

Mobius is a general framework for building models consisting of ordinary differential equations (ODEs) and equations

evaluated only once per time step (discrete time step equations). Only limited programming knowledge is needed to build or

modify Mobius models. When building a Mobius model, the user specifies what state variables are in the model and what

equations govern these. Equations can depend on the values of input time series, such as meteorological forcings, and be

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

4

tuned using parameters. The core Mobius framework is built using highly optimised C++ code, but users can add new model 95

equations, parameters, inputs and dependencies between these, or adapt existing models, without a detailed understanding of

C++.

The equations provided by the model builder are automatically distributed over auto-generated and user-specified

arrangements of batches. Batches are groups of equations that are evaluated for each index in some collection of index sets,

and can be viewed as “response units” in a loose way, meaning for instance a river reach or subcatchment in a catchment 100

model, a size class or species in a biological population model, or a grain size and density class for microplastic particles.

For example, in a catchment model it is typical to have some processes that have different parametrisations depending on

land use class or subcatchment. The land use index set could then contain the indexes “Forest” and “Agricultural” to allow

for evaluation of all equations relating to soil processes separately for these two land use classes. When a parameter is

created, the model developer also specifies whether that parameter should have a separate value for each index of an index 105

set. If so, any processes depending on that parameter will be evaluated for each index of that set. What indexes each index

set should contain can be specified in a parameter file. Land use and river connectivity structure in a catchment model, for

example, can thus be easily specified by a user without changing or recompiling the model.

Once a model is specified, the framework sets up the data structures of the model and determines how to evaluate equations

in the right order for each time step. This involves sorting the list of equations based on the order they reference the results of 110

one another and organizing them in batches based on index set dependencies. ODEs are solved using an ODE integrator

algorithm. At present, one Runge-Kutta 4 ODE integrator based on the DASCRU algorithm (Wambecq, 1978) is bundled

with Mobius, and there are wrappers for the Boost Odeint solvers (Ahnert et al., 2011). Other solvers could be made

accessible in Mobius by anybody with moderate C++ knowledge without having to modify the core framework code. When

the model is run, all state variables are then recorded each time step, resulting in a time series corresponding to each equation 115

in the model. For equations that are evaluated for multiple indexes, a time series is produced for every index combination. So

you may for instance get a separate “Soil water volume” time series for each subcatchment and land use class in a hydrology

model. The production of a time series by every equation allows for easy introspection into model processes, for instance in

the MobiView user interface (Section 3.1.1), which can be used during all stages of model development. This way a model

can be built iteratively, adding one process at a time, and assessing how it performs. 120

When programming models without a framework one typically has to do a significant amount of work when adding in new

processes or parameters. This may involve putting the mathematical equations in the right place in the model evaluation code

or even restructuring the model evaluation code, recording the value of the equations at each time step for later exporting,

packing various values into structures for use inside ODE integrators, updating parameter file formats and parsers, and

updating the code that exports the result time series to the desired final format. Any user interface or plotting code for 125

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

5

visualising the new process will typically also need updating. The Mobius framework automatically takes care of these

things, allowing the researcher to focus only on the mathematical formulation of the processes.

The modular system in Mobius allows various modules to be combined together. Inside one module, this is done by referring

to externally-defined result time series, parameters or other model entities by name, and the framework will set up the data

structures that allow the processes to access one another during the model run without much overhead. Even with this 130

flexibility, run speeds are comparable to custom-coded C++ models, and considerably faster than models written in

languages such as Python or R (see Section 3.3).

Mobius supports a custom text format for parameter and input files that is tailor made to be convenient to edit by hand. A

json format for parameter and input files is also supported, which could for instance be used for serialisation and web

communication. We also expose an API that makes it easy to add support for new file or data formats. 135

Using the application-building API, a model developer can decide whether they want to compile a model as a command line

application, a .dll (or .so on Linux) compatible with MobiView or the Python wrapper, an R module (for instance using

Rcpp, see Eddelbuettel & François, 2011), or anything else that is suitable. Using this API (either directly in C++ or in

Python), one can also automate more complicated run setups, such as running a model multiple times over different

scenarios (more on this in Section 3.1.2). 140

3 Demonstration of Mobius

3.1 Tools for convenient interaction with Mobius models

Compiled Mobius models can be interacted with in two user-friendly ways, using a GUI or Python.

3.1.1 MobiView GUI

The MobiView GUI is ideal for model users and developers to quickly explore Mobius model parameters, equations and 145

inputs, and carry out manual calibration. The GUI includes a structured organisation of parameters, associated descriptions

and recommended ranges. It is easy to find parameters using a name search. The workflow for manual calibration is

convenient: the user can update a parameter value, then click a button to re-run the model and see the results in the plot view

(Figure 1).

 150

There are various plot modes and ways to customise the plotting to be able to analyse the model result time series. For

instance, the user can switch between daily values and monthly and yearly sums. There are also residual plots, residual

distribution histograms and quantile-quantile plots for analysing the performance of a model result time series compared to

an observed time series. MobiView computes several different goodness-of-fit statistics (including for example bias, mean

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

6

absolute error, mean squared error and Nash-Sutcliffe efficiency; Nash & Sutcliffe, 1970). Any observation time series can 155

be loaded in for use in calibration. Other features include visualisation of branched river structures (for hydrology models),

ability to export results to csv formats, customisation of plot visual layout and export of plots to image or pdf formats.

MobiView is developed using the Ultimate++ framework and the ScatterCtrl package (ultimatepp.org).

3.1.2 Python wrapper and integration with model auto-calibration and uncertainty analysis packages 160

Users can interact with compiled Mobius models using a Python wrapper. Python is a high-level programming language well

suited to rapid development and prototyping, as well as being more accessible to domain scientists than low-level languages

such as FORTRAN or C++. Python also offers a wide range of additional packages, including tools for model optimisation,

calibration and uncertainty analysis. ODE-based models implemented in “pure” Python often suffer from poor performance.

By implementing the model using Mobius and communicating with it via the Python wrapper, users can therefore benefit 165

from both the performance of C++ and the flexibility and modules available in Python. Although the wrapper adds a small

computational overhead, it generally offers excellent performance, because for most ODE-based models with realistic levels

of complexity, the main performance bottleneck will be running the model itself and not communicating through the Python

interface.

 170

The wrapper makes it easy for users to modify input datasets and parameter values, run the model and extract time series of

results. Functions are provided for plotting and visualising outputs, and for calculating a range of commonly used goodness-

of-fit statistics. It is also straightforward to connect Mobius models to other tools in the Python ecosystem and to parallelise

multiple model runs across many processes or cores. For example, auto-calibration can be implemented by defining a Python

function to update parameter values, run the model and return an appropriate summary of the results (such as the sum of 175

squared errors). This “loss function” can then be minimised using any of the tools available via Python.

The current Python wrapper provides access to generic functions to aid model auto-calibration and uncertainty estimation.

Key dependencies are the Python packages LMFit (Newville et al., 2014) and emcee (Foreman-Mackey et al., 2013). LMFit

offers a consistent interface to a range of optimisers (Levenberg-Marquardt, Nelder-Mead etc.), as well as providing a 180

‘Parameters’ class that allows users to define plausible parameter ranges (e.g. “priors” in the context of a Bayesian analysis)

and to choose which model parameters should be varied and which fixed. Auto-calibration using LMFit is typically fast and

most optimisers return estimates of confidence intervals for the fitted parameters. It therefore provides an excellent starting

point for further investigation. For more complex models with potentially multi-modal likelihoods/posterior distributions, or

for users wishing to explore parameter-related uncertainty in more detail (e.g. by explicitly specifying a likelihood function), 185

emcee provides a state-of-the-art Markov chain Monte Carlo (MCMC) algorithm based on the affine-invariant ensemble

sampler (Goodman and Weare, 2010). Emcee’s ensemble sampler supports various methods for parallelisation and is well-

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

7

suited to exploring the complicated and inhomogeneous posterior distributions characteristic of many ODE-based

environmental models. Although more computationally intensive than optimisation, sampling using MCMC provides much

richer information describing the (Bayesian) posterior probability of the model’s parameters, given the calibration dataset 190

and the underlying assumptions. The Python wrapper includes functions for visualising MCMC chains and creating “corner

plots” of the posterior distribution, which provide valuable diagnostic information that can be used to inform iterative

refinement of the model structure within the core Mobius framework. We give examples of how this can be used in Section

3.2.4.

 195

A convenient approach for interacting with Mobius models via the Python wrapper is to use Jupyter Notebooks (Kluyver et

al., 2016), which provide an effective platform for well-documented, shareable and reproducible modelling workflows. The

Mobius repository (see Section 5) provides example code illustrating how to interact with models via the Python wrapper,

including auto-calibration of the nutrient model SimplyP (see the “PythonWrapper\SimplyP\simplyp_calibration.ipynb” file

in the repository). 200

3.2 Rapid model development – a case study

We now demonstrate how Mobius can be used to easily build a variety of model structures, and then how the tools made

available through the Python wrapper can be used to decide on an appropriate model structure in a given study area, given

the observed data available. To illustrate this, we will develop some simple example alternative model structures to simulate

daily river dissolved organic carbon (DOC) concentrations in a small upland catchment in Norway. Stream DOC 205

concentrations have been rising in recent decades, both here and in many regions around the world, due to a combination of

recovery from acidification and climate change (Monteith et al., 2007, de Wit et al., 2016), and model predictions of

potential future changes are of interest in terms of drinking water quality, carbon cycling and climate feedbacks.

3.2.1 Case study site and data for model selection

The study site is a small stream and associated catchment in southeast Norway, one of the main inlets to the lake Langtjern 210

(510–750 m.a.s.l; 60.371 N, 9.727 E). The catchment has an area of 0.8 km
2
 and land cover is 80% pine forest on thin

mineral soils and 20% bog on deeper peat. Mean annual temperature, precipitation and discharge (1986-2015) are 2.5°C, 901

mm and 650 mm, respectively.

Water discharge and DOC observations were used for model selection. Discharge is difficult to simulate in this catchment, 215

due to a combination of short water residence times and a flashy hydrology, and uncertainty in the observed discharge

(which until 2014 was based on a water balance for the lake, see de Wit et al., 2018) is high. Since 1986, stream water grab

samples have been collected weekly to monthly and analysed for total organic carbon (TOC) (see de Wit et al., 2014, for

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

8

details of sampling methods and chemical analysis). In this catchment, TOC is essentially equivalent to DOC. Starting in

August 2014 there is also daily soil temperature data (at 15 and 20 cm depths). 220

3.2.2 General model set up

The modelling aim is to reproduce daily in-stream DOC concentrations over the long term, rather than a detailed carbon

balance. All DOC model versions are built on a common hydrology module, SimplyQ, which was developed for SimplyP

(Jackson-Blake et al., 2017), excluding the deeper soil flow path. In brief, water and associated DOC may be transported

from the land to the stream via ‘quick’ flow (infiltration and saturation excess overland flow and deeper bypass flow) and/or 225

shallow soil water flow, which is somewhat slower. DOC fluxes to the stream are therefore simply via soil water flow, given

by 𝑄𝑠[DOC]𝑠, and via quick flow, as 𝑄𝑞𝑢𝑖𝑐𝑘[DOC]𝑠, where 𝑄𝑠 is soil water flow, 𝑄𝑞𝑢𝑖𝑐𝑘 the quick flow, and [DOC]𝑠 is the soil

water DOC concentration. Soil water and quick flow vary through time as a function of precipitation, evapotranspiration, soil

moisture levels and runoff to the stream. The factors which control the variation through time of [DOC]𝑠 are investigated

through the model selection process described below. As there are no upstream inputs in our study area, the mixing of these 230

different water sources gives the in-stream DOC concentration.

Models were run for the period 1986-2016 using input meteorological data (air temperature and precipitation) from a local

weather station operated by met.no, the Norwegian Meteorological Institute.

3.2.3 Carbon model structures 235

The model development process starts with a statistical exploration of the observed data and knowledge of the literature, and

these together are used to generate a list of potential processes to include, and different possible formulations for a given

process. These are then translated into a range of model structures. In this example, a strong correlation was seen between

observed stream DOC concentration and modelled soil temperature, but there are questions as to the appropriate

representation of this process, and longer-term processes and hydrological effects such as snowmelt dilution may also be 240

important. To this end, six model structures were developed (the DOC-related model parameters are defined in Table 1):

1. Simple linear relationship between soil water DOC concentration and soil temperature. The linear relationship

describes an empirical relationship between equilibrium soil water DOC concentration and soil temperature, 𝑇𝑠𝑜𝑖𝑙 :

[DOC]𝑠 = [DOC]𝑠,𝑏𝑎𝑠𝑒 + 𝑘𝑇,1𝑇𝑠𝑜𝑖𝑙

Soil temperature is computed based on air temperature using a simplified version of the Rankinen soil temperature 245

model (Rankinen et al., 2004). We assume that the DOC concentration reaches equilibrium instantly.

2. More complex relationship between soil water DOC concentration and soil temperature than structure 1, a second-

degree polynomial:

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

9

[DOC]𝑠 = [DOC]𝑠,𝑏𝑎𝑠𝑒 + (𝑘𝑇,1 + 𝑘𝑇,2𝑇𝑠𝑜𝑖𝑙)𝑇𝑠𝑜𝑖𝑙

3. The observed DOC time series shows a long-term trend which is not explained by soil temperature, but which other

studies have suggested is due to recovery from soil water acidification (Futter & de Wit, 2008; Monteith et al., 2007). 250

To test the importance of this process, we use yearly means of measured stream SO4
2− concentration as a proxy for soil

water acidification and add a linear dependence of DOC concentration on SO4
2− concentration:

[DOC]𝑠 = [DOC]𝑠,𝑏𝑎𝑠𝑒 + (𝑘𝑇,1 + 𝑘𝑇,2𝑇𝑠𝑜𝑖𝑙)𝑇𝑠𝑜𝑖𝑙 − 𝑘𝑆𝑂4[SO4
2−]

Note that in an operational model, this would need replacing with SO4
2− concentration in deposition (which should be

well correlated with stream water SO4
2− concentration) to allow for future predictions.

4. There are visible short-term decreases in the stream DOC concentration during snow melt, likely due to source-255

exhaustion and dilution. In this structure, we attempt to simulate this by introducing a separate parameter for the snow

melt DOC concentration:

(quick DOC flux) = 𝑄𝑞𝑢𝑖𝑐𝑘,𝑚𝑒𝑙𝑡[DOC]𝑚𝑒𝑙𝑡 + 𝑄𝑞𝑢𝑖𝑐𝑘,𝑟𝑎𝑖𝑛[DOC]𝑠

5. Starting from Structure 3, replace the soil temperature model by the Lindström model (Lindström et al., 2002) to see if

the effect of the choice of soil temperature model is important.

6. Instead of assuming instant equilibration of soil water DOC concentration, add equilibration as a delayed process. We 260

add a state variable [DOC]𝑠,𝑒𝑞which obeys the same equation as [DOC]𝑠 in the formulation from structure 3. We then

let DOC mass in the soil move toward the point where equilibrium is satisfied:

[DOC]𝑠,𝑒𝑞 = [DOC]𝑠,𝑏𝑎𝑠𝑒 + (𝑘𝑇,1 + 𝑘𝑇,2𝑇𝑠𝑜𝑖𝑙)𝑇𝑠𝑜𝑖𝑙 − 𝑘𝑆𝑂4[SO4
2−]

𝑑DOC𝑠

𝑑𝑡
= 𝑐𝑒𝑞([DOC]𝑠.𝑒𝑞 − [DOC]𝑠) − [DOC]𝑠𝑄𝑠

[DOC]𝑠 = DOC𝑠/𝑉𝑠

where 𝑉𝑠 is the modelled soil water volume and 𝑐𝑒𝑞 is the equlibration speed factor.

Going from one structure to the next typically involves just a few lines of code (see code and data for this experiment in the 265

Mobius repository. Application files for compiling models, input data files and parameter files are in the

“Applications\SimplyC_paper” subfolder, while module files containing the definitions of each structure (inputs, parameters

and equations) are in the “Modules\Alternate_versions_of_simplyC” subfolder).

3.2.4 Model comparison and selection of the most appropriate structure

The model structures were calibrated using data from the period 1986-2003. The calibrations were then validated on data 270

from the period 2004-2016. All auto-calibrations were performed using the implementation of the Nelder-Mead algorithm in

the Python LMFIT package, described in Section 3.1.2. We auto-calibrated the hydrology module separately first, and fixed

the hydrology parameters for all subsequent calibrations of the DOC-related parameters. It is possible to calibrate for

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

10

hydrology and DOC at the same time, but in this particular experiment we decided to simplify the parameter space to only

those parameters relating to DOC, to allow more targeted model selection. The two soil temperature modules used were also 275

calibrated just once each against the more limited soil temperature data available.

For each model structure in order:

1. We manually calibrated the DOC-related parameters. If applicable, manual calibration used the parameter values

from the auto-calibration of the previous structure as a starting point. The manual calibration targeted the Nash-280

Sutcliffe coefficient as the goodness-of-fit statistic.

2. Auto-calibration was run using the manual calibration as a starting point. The auto-calibration algorithm uses a

least-squares fitness measure. In terms of finding optimal parameters, this is equivalent to optimising for the Nash-

Sutcliffe coefficient.

 285

Auto-calibration of models written in the Mobius framework is fast due to the fast run speeds of the models. The longest

time needed to auto-calibrate any of these structures was 189 seconds (time depended on the number of parameters

calibrated). See more on benchmarking in Section 3.3.

Goodness-of-fit statistics from the automatic calibrations of each of the six model structures are given in Table 2, together 290

with the number of calibrated DOC-related parameters. A plot of the observed vs. modelled stream DOC concentration using

the auto-calibrated parameter sets for structures 1, 3 and 5 is shown in Figure 2.

Visually, the results are good overall, but all structures fail to capture high DOC concentrations during some summers. The

improvement of fit from structure 1 to 2 is obvious (Table 2), as structure 2 allows for a more flexible relationship between 295

soil temperature and soil water DOC concentration and this relationship is a strong determining factor for stream DOC

concentration in this catchment. The improvement from structure 2 to 3 is not as large, but structure 3 does capture long-term

trends a little better – in structure 2 there is a long-term trend in the residuals that disappears in structure 3 (data not shown).

Adding snow melt dilution in structure 4 does not give a significant improvement of fit. This is possibly because the snow

model used is simple and not constrained by observed snow levels, so that the timing of the snow melt may be off. 300

Moreover, snow melt happens during a short time span, and so will not register as strongly when just calibrating for DOC

concentrations. If one also calibrated for total DOC fluxes, it would be more prominent due to the high water flow during

snow melt, which would be something to explore further for an operational model. Changing the soil temperature model in

structure 5 obtains a better fit for soil temperature, but the stream DOC fit was relatively unchanged, probably because

differences in modelled soil temperature could be compensated for by variations in the parameters that determine soil DOC 305

response to soil temperature. Structure 6 captures melt dilution better, but creates too much noise in the signal the rest of the

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

11

year. Calibrating for goodness-of-fit tends to adjust the 𝑐𝑒𝑞 parameter to be very high so that equilibration is almost instant

(i.e. the model is close to equivalent to earlier formulations).

Out of the 6 structures, model 5 performed marginally best during validation, but had two additional parameters compared to 310

Structure 3. Overall, structure 3 seems to be the most appropriate given the observed data, offering the best compromise

between model performance (particularly during validation) and complexity. More work would be needed to arrive at an

operational model, and more formal model selection process using e.g. a Bayesian approach would also be possible (e.g.

Marshall et al., 2005). However, hopefully this exercise serves to illustrate the relative ease with which model development

can be carried out and alternative structures quickly explored. 315

To explore how well-constrained parameters in Structure 3 are by the observed data, and also to explore any parameter

covariance, we then used the emcee algorithm (see Section 3.1.2) to generate a sample of the posterior distribution of

structure 3 and associated marginal posteriors of the parameters. The model run interval was the same as the earlier

calibration interval. The sampler was run with 100 chains for 1000 steps, each with a burn-in of 100 steps, and showed good 320

convergence. A heteroscedastic Gaussian error structure was used, where the standard deviation of the likelihood at each

point in time is assumed to be equal to a Bayesian error parameter (𝑒𝑟𝑟DOC) multiplied by the simulated value at that point. A

corner plot of the results (Figure 3) shows that the parameters are well constrained by the observed data - which is desirable

in a model - and gives an idea of the probable range of each parameter, represented as the 95% credible interval on each

marginal histogram. Clear covariance between [DOC]𝑠,𝑏𝑎𝑠𝑒 and 𝑘𝑆𝑂4 is also apparent. 325

3.3 Benchmarking of model run speeds

For benchmarking, we created a hard-coded test model in C++ (i.e. the model code was written without using a framework)

and a mathematically equivalent model in Mobius. The model was a simple hydrological model (SimplyQ; Jackson-Blake et

al., 2017), and we verified that the two implementations produced the same results up to numerical error. The hard-coded 330

model had a straightforward implementation and was not excessively optimised using advanced techniques such as single

instruction multiple data (SIMD) or optimisation of cache locality, but we assume that this is not something most researchers

would be comfortable with doing. A hard coded version of the model was also produced in Python. Results of the

benchmarking show that Mobius models have a slight performance loss compared to hard-coded C++ models but run several

orders of magnitude faster than hard-coded Python models (Table 3). Code used in these experiments can be found in the 335

“Evaluation” subfolder of the Mobius repository.

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

12

4 Discussion and outlook

Mobius aims to be a framework for rapid development of hydrological and biogeochemical models, and other models based

on ODE and discrete time step equations. Model development should be flexible, and models should run quickly. The aim is

for Mobius to be a virtual environmental laboratory for researchers to test their hypotheses about natural processes using 340

quantifiable data.

Each component of the Mobius framework targets a different user group:

● Practitioners with little or no programming experience can use MobiView to manually calibrate and apply existing

models that have been built by other users.

● Researchers with basic programming skills can use the Python wrapper to perform sophisticated model auto-345

calibration and uncertainty assessments, make predictions under uncertainty and consider whether model process

representations are adequate.

● Researchers and developers with more advanced programming skills can use all components of the framework to

iteratively calibrate, evaluate and refine process representations and/or make ensemble simulations from a range of

model structures. 350

There are currently a few technical limitations:

● Strong two-way links (such as two-way fluxes) between different instances of the same equation batch are not well

supported, though workarounds are possible in simple cases. For instance, it would currently be difficult to build

grid-based models with an ODE-based two-way diffusion of quantities between neighbouring cells (assuming the 355

number of cells is not fixed by the model). This is related to the next limitation.

● ODE equations in the same batch can be solved as one coupled ODE system for each index in the index set of the

batch. But you can’t currently solve a coupled system consisting of multiple indexes at the same time. Instead, they

have to be solved as separate systems. This limitation only applies if one uses the automatic distribution of

equations over indexes. If one instead manually codes every instance of the equations, this is alleviated, but 360

removes much of the flexibility of using the automatic indexing system.

We hope to remove some of these limitations in the future. Indeed, Mobius is under active development, and priorities for

the near future include expanding the range of available pre-built models (porting existing models from elsewhere into

Mobius and developing new ones), developing interfaces for the R and Julia programming languages and development of a

statistical model comparison framework to aid in model selection. 365

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

13

We are keen to build an open source community of users interested in modular open source model development, and to that

end we also plan on creating a user forum, carrying out training workshops, and to continue development of on-line

documentation, tutorials and tools for easy interaction with models.

Overall, the Mobius framework combines cutting-edge computational speed with sophisticated model inspection and

evaluation tools. This permits comprehensive model assessment – crucially including consideration of structural uncertainty 370

– without compromising performance. The framework is freely available under a GNU Lesser General Public License (v3.0)

and we hope that by making it easier to explore a broader range of model structures and parameterisations, users will be

encouraged to build better and more appropriate models. We believe this will in turn improve both process-understanding

and practical decision making.

5 Code and data availability 375

The most up to date version of Mobius can be found at https://github.com/NIVANorge/Mobius. An archived version

(27.01.2020) is available on zenodo doi:10.5281/zenodo.3628211. Mobius is distributed with the GNU Lesser General

Public License (v3.0). Mobius models can be compiled to work on most platforms, and MobiView works on Windows and

Linux. Pre-compiled binaries of MobiView and selected Mobius models are available for 64-bit Windows (instructions on

how to download are given on the Mobius GitHub front page). 380

Supplementary material

User manuals and documentation for Mobius and MobiView are available in the “Documentation” subfolder of the Mobius

repository (see Section 5 Code and data availability). See also the README file in the repository.

Author contribution

MDN developed the Mobius framework and MobiView, co-developed the Python integration of Mobius, implemented the 385

DOC model examples and performed some of the experiments with them. LJB developed the Simply models and co-

developed the DOC model example and performed some of the experiments with them. JES co-developed the Python

integration of Mobius with the lmfit and emcee packages. JLG was involved in the design process of Mobius. MDN

prepared the manuscript with contributions from all co-authors.

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

14

Acknowledgements 390

Mobius takes many of its design ideas from and supersedes the INCA Core Framework, developed by Dan Butterfield. The

development of Mobius was partially funded by Nordforsk “Nordic eScience Globalisation Initiative (NeGI)” via the project

“An open access, generic ePlatform for environmental model-building at the river-basin scale” (Machu-Picchu). We

acknowledge the crucial role of Raoul M. Couture and Martyn N. Futter in getting that project started. Mobius development

was also partially funded by the Norwegian Institute for Water Research (NIVA), and we acknowledge the very important 395

support that Heleen de Wit and Thorjørn Larssen provided during development.

Competing interests

The authors declare that they have no conflicts of interest.

References

Ahnert, K., Mulansky, M., Simos, T. E., Psihoyios, G., Tsitouras, C. and Anastassi, Z.: Odeint – Solving Ordinary 400

Differential Equations in C++, pp. 1586–1589., 2011.

Beven, K.: Towards integrated environmental models of everywhere: Uncertainty, data and modelling as a learning process,

Hydrol. Earth Syst. Sci., doi:10.5194/hess-11-460-2007, 2007.

Beven, K.: Rainfall-Runoff Modelling: The Primer: Second Edition., 2012.

Blair, G. S., Beven, K., Lamb, R., Bassett, R., Cauwenberghs, K., Hankin, B., Dean, G., Hunter, N., Edwards, L., Nundloll, 405

V., Samreen, F., Simm, W. and Towe, R.: Models of everywhere revisited: A technological perspective, Environ. Model.

Softw., doi:10.1016/j.envsoft.2019.104521, 2019.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T. and Hay, L. E.: Framework

for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models,

Water Resour. Res., doi:10.1029/2007wr006735, 2008. 410

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A.

W., Brekke, L. D., Arnold, J. R., Gochis, D. J. and Rasmussen, R. M.: A unified approach for process-based hydrologic

modeling: 1. Modeling concept, Water Resour. Res., doi:10.1002/2015WR017198, 2015.

Eddelbuettel, D. and François, R.: Rcpp: Seamless R and C++ integration, J. Stat. Softw., doi:10.18637/jss.v040.i08, 2011.

Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S. and Savenije, H. H. G.: A framework to assess the 415

realism of model structures using hydrological signatures, Hydrol. Earth Syst. Sci., doi:10.5194/hess-17-1893-2013, 2013.

Fenicia, F., Kavetski, D. and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1.

Motivation and theoretical development, Water Resour. Res., doi:10.1029/2010WR010174, 2011.

Foreman-Mackey, D., Hogg, D. W., Lang, D. and Goodman, J.: emcee : The MCMC Hammer , Publ. Astron. Soc. Pacific,

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

15

doi:10.1086/670067, 2013. 420

Futter, M. N. and de Wit, H. A.: Testing seasonal and long-term controls of streamwater DOC using empirical and process-

based models, Sci. Total Environ., doi:10.1016/j.scitotenv.2008.10.002, 2008.

Futter, M. N., Butterfield, D., Cosby, B. J., Dillon, P. J., Wade, A. J. and Whitehead, P. G.: Modeling the mechanisms that

control in-stream dissolved organic carbon dynamics in upland and forested catchments, Water Resour. Res.,

doi:10.1029/2006WR004960, 2007. 425

Futter, M. N., Erlandsson, M. A., Butterfield, D., Whitehead, P. G., Oni, S. K. and Wade, A. J.: PERSiST: A flexible

rainfall-runoff modelling toolkit for use with the INCA family of models, Hydrol. Earth Syst. Sci., doi:10.5194/hess-18-855-

2014, 2014.

Goodman, J. and Weare, J.: Ensemble samplers with affine invariance, Commun. Appl. Math. Comput. Sci.,

doi:10.2140/camcos.2010.5.65, 2010. 430

Jackson-Blake, L. A., Wade, A. J., Futter, M. N., Butterfield, D., Couture, R. M., Cox, B., Crossman, J., Ekholm, P.,

Halliday, S. J., Jin, L., Lawrence, D. S. L., Lepistö, A., Lin, Y., Rankinen, K. and Whitehead, P. G.: The INtegrated

CAtchment model of phosphorus dynamics (INCA-P): Description and demonstration of new model structure and equations,

Environ. Model. Softw., doi:10.1016/j.envsoft.2016.05.022, 2016.

Jackson-Blake, L. A., Sample, J. E., Wade, A. J., Helliwell, R. C. and Skeffington, R. A.: Are our dynamic water quality 435

models too complex? A comparison of a new parsimonious phosphorus model, SimplyP, and INCA-P, Water Resour. Res.,

doi:10.1002/2016WR020132, 2017.

Kavetski, D. and Fenicia, F.: Elements of a flexible approach for conceptual hydrological modeling: 2. Application and

experimental insights, Water Resour. Res., doi:10.1029/2011WR010748, 2011.

Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the 440

science of hydrology, Water Resour. Res., doi:10.1029/2005WR004362, 2006.

Kluyver, T., Ragan-kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay,

S., Ivanov, P., Avila, D., Abdalla, S. and Willing, C.: Jupyter Notebooks—a publishing format for reproducible

computational workflows., 2016.

Lindström, G., Bishop, K. and Löfvenius, M. O.: Soil frost and runoff at Svartberget, northern Sweden - Measurements and 445

model analysis, Hydrol. Process., doi:10.1002/hyp.1106, 2002.

Marshall, L., Nott, D. and Sharma, A.: Hydrological model selection: A Bayesian alternative, Water Resour. Res.,

doi:10.1029/2004WR003719, 2005.

Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit, H. A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B. L.,

Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopécek, J. and Vesely, J.: Dissolved organic carbon trends resulting from changes 450

in atmospheric deposition chemistry, Nature, doi:10.1038/nature06316, 2007.

Mooij, W. M., Trolle, D., Jeppesen, E., Arhonditsis, G., Belolipetsky, P. V., Chitamwebwa, D. B. R., Degermendzhy, A. G.,

DeAngelis, D. L., De Senerpont Domis, L. N., Downing, A. S., Elliott, J. A., Fragoso, C. R., Gaedke, U., Genova, S. N.,

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

16

Gulati, R. D., Håkanson, L., Hamilton, D. P., Hipsey, M. R., ’t Hoen, J., Hülsmann, S., Los, F. H., Makler-Pick, V., Petzoldt,

T., Prokopkin, I. G., Rinke, K., Schep, S. A., Tominaga, K., van Dam, A. A., van Nes, E. H., Wells, S. A. and Janse, J. H.: 455

Challenges and opportunities for integrating lake ecosystem modelling approaches, Aquat. Ecol., doi:10.1007/s10452-010-

9339-3, 2010.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A discussion of principles, J.

Hydrol., doi:10.1016/0022-1694(70)90255-6, 1970.

Newville, M., Ingargiola, A., Stensitzki, T. and Allen, D. B.: LMFIT: Non-Linear Least-Square Minimization and Curve-460

Fitting for Python, Zenodo, doi:10.5281/ZENODO.11813, 2014.

Rankinen, K., Karvonen, T. and Butterfield, D.: A simple model for predicting soil temperature in snow-covered and

seasonally frozen soil: model description and testing, Hydrol. Earth Syst. Sci., doi:10.5194/hess-8-706-2004, 2004.

Sivapalan, M., Blöschl, G., Zhang, L. and Vertessy, R.: Downward approach to hydrological prediction, Hydrol. Process.,

doi:10.1002/hyp.1425, 2003. 465

Wade, A. J., Durand, P., Beaujouan, V., Wessel, W. W., Raat, K. J., Whitehead, P. G., Butterfield, D., Rankinen, K. and

Lepisto, A.: A nitrogen model for European catchments: INCA, new model structure and equations, Hydrol. Earth Syst. Sci.,

doi:10.5194/hess-6-559-2002, 2002.

Wagener, T., Sivapalan, M., Troch, P. and Woods, R.: Catchment Classification and Hydrologic Similarity, Geogr.

Compass, doi:10.1111/j.1749-8198.2007.00039.x, 2007. 470

Wambecq, A.: Rational Runge-Kutta methods for solving systems of ordinary differential equations, Computing,

doi:10.1007/BF02252381, 1978.

Weiler, M. and Beven, K.: Do we need a Community Hydrological Model?, Water Resour. Res.,

doi:10.1002/2014WR016731, 2015.

Whitehead, P. G., Wilson, E. J. and Butterfield, D.: A semi-distributed Integrated Nitrogen model for multiple source 475

assessment in Catchments (INCA): Part I - Model structure and process equations, Sci. Total Environ., doi:10.1016/S0048-

9697(98)00037-0, 1998.

de Wit, H. A., Couture, R.-M., Jackson-Blake, L., Futter, M. N., Valinia, S., Austnes, K., Guerrero, J.-L. and Lin, Y.: Pipes

or chimneys? For carbon cycling in small boreal lakes, precipitation matters most, Limnol. Oceanogr. Lett.,

doi:10.1002/lol2.10077, 2018. 480

De Wit, H. A., Granhus, A., Lindholm, M., Kainz, M. J., Lin, Y., Braaten, H. F. V. and Blaszczak, J.: Forest harvest effects

on mercury in streams and biota in Norwegian boreal catchments, For. Ecol. Manage., doi:10.1016/j.foreco.2014.03.044,

2014.

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

17

 485

Figure 1: The MobiView user interface, running INCA-N, a catchment nitrogen model.

Figure 2: Time series of observed and modelled stream dissolved organic carbon (DOC) concentration (model structures 1, 3 and

5; auto-calibrated parameters).

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

18

 490

Figure 3: Corner plot of the marginal posterior distributions of DOC-related parameters in model structure 3. Sampled using the

emcee algorithm.

Parameter Symbol Model structure

Baseline soil water DOC concentration [DOC]𝑠,𝑏𝑎𝑠𝑒 1-6

Soil temperature DOC concentration linear response

coefficient
𝑘𝑇,1 1-6

Soil temperature DOC concentration second-order response

coefficient
𝑘𝑇,2 2-6

Soil carbon solubility response to SO4
2− deposition 𝑘𝑆𝑂4 3-6

Snow melt DOC concentration [DOC]𝑚𝑒𝑙𝑡 4

Equilibration speed factor 𝑐𝑒𝑞 6

Table 1: DOC-related parameters used in the various simple carbon model structures explored.

 495

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

19

Model

structure

Goodness of fit

Number of

parameters

Calibration

(1986-2003)

Validation

(2004-2016)

DOC Soil T

1 0.51 0.50 2 2

2 0.65 0.61 3 2

3 0.67 0.62 4 2

4 0.67 0.62 5 2

5 0.65 0.63 4 3

6 0.64 0.62 5 3

Table 2: Goodness-of-fit (Nash-Sutcliffe coefficient) obtained for stream DOC concentration using the 6 model structures, and

number of parameters relating to DOC processes and soil T (parameters based on well-constrained physically-measured quantities

are excluded). Nash Sutcliffe values of 1 indicate a perfect fit; values of 0 suggest the model is no better a predictor than the mean

of the observations.

 500

Hardcoded model language Run speed ratio

C++ 0.5 - 0.7

Python approximately 200

Table 3: Ratio of times taken for 1000 runs of the hardcoded model versions versus 1000 runs of the Mobius version. Testing was

done on several common desktop machines and laptops, both under Linux and Windows.

https://doi.org/10.5194/gmd-2020-26
Preprint. Discussion started: 28 April 2020
c© Author(s) 2020. CC BY 4.0 License.

