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Abstract. Forest ecosystem processes follow classic responses with age, peaking production around canopy closure 10 
and declining thereafter. Although age dynamics might be more dominant in certain regions over others, demo-

graphic effects on net primary production (NPP) and heterotrophic respiration (Rh) are bound to exist. Yet, explicit 

representation of ecosystem demography is notably absent in most global ecosystem models. This is concerning 

because the global community relies on these models to regularly update our collective understanding of the global 

carbon cycle. This paper aims to fill this gap in understanding by presenting the technical developments of a compu-15 
tationally-efficient approach for representing age-class dynamics within a global ecosystem model, the LPJ-wsl v2.0 

Dynamic Global Vegetation Model. The modeled age-classes are initially created by fire feedbacks, wood harvest-

ing, and abandonment of managed land, otherwise aging naturally until a stand-clearing disturbance is simulated or 

prescribed. In this paper, we show that the age-module can capture classic demographic patterns in stem density and 

tree height compared to inventory data, and that patterns of ecosystem function follow classic responses with age. 20 
We also present a few scientific applications of the model to assess the modeled age-class distribution over time and 

to determine the demographic effect on ecosystem fluxes relative to climate. Simulations show that, between 1860 

and 2016, zonal age distribution on Earth was driven predominately by fire, causing a ~45-year difference in ages 

between boreal (50N-90N) and tropical (23S-23N) latitudes. Land use change and land management was responsible 

for an additional decrease in zonal age by -6 years in boreal and by -21 years in temperate (23N-50N) and tropical 25 
latitudes, with the anthropogenic effect on zonal age distribution increasing over time. A statistical model helped 

reduced LPJ-wsl v2.0 complexity by predicting per-grid-cell annual NPP and Rh fluxes by three terms: precipita-

tion, temperature and age-class; at global scales, R2 was between 0.95 and 0.98. As determined by the statistical 

model, the demographic effect on ecosystem function was often less than 0.10 kg C m-2 yr-1 but as high as 0.60 kg C 

m-2 yr-1 where the effect was greatest. In eastern forests of North America, the demographic effect was of similar 30 
magnitude, or greater than, the effects of climate; demographic effects were similarly important in large regions of 

every vegetated continent. Spatial datasets are provided for global ecosystem ages and the estimated coefficients for 

effects of precipitation, temperature and demography on ecosystem function. The discussion focuses on our finding 

of an increasing role of demography in the global carbon cycle, the effect of demography on relaxation times (resili-

ence) following a disturbance event and its implications at global scales, and a finding of a 40-Pg C increase in turn-35 
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over from age dynamics at global scales. Whereas time is the only mechanism that increases ecosystem age, any 

additional disturbance not explicitly modeled will decrease age. The LPJ-wsl v2.0 age-module therefore simulates 

the upper limit of age-class distributions on Earth and represents another step forward towards understanding the 

role of demography in global ecosystems.  

1 Introduction  40 

Forest ecosystem production follows predictable patterns with time since disturbance – the classic forest age-

production curves from Odum (1969), where net ecosystem production (NEP) peaks around canopy closure, declin-

ing thereafter due to hydraulic limitations on gross primary production (Ryan et al. 2004, Drake et al. 2010, 2011), 

increases in heterotrophic respiration from biomass turnover, as well as from stand-level declines in population den-

sity (Ptrezsch and Biber 2005, Stephenson et al. 2014). That younger forests are more productive than older forests 45 
has been long-standing knowledge in forestry, as evidenced by yield and growth tables dating back to the 18th Cen-

tury that incorporated stand age into their calculations of lumber production (Pretzsch et al. 2008).  
 

On global scales, forest age is a considerable factor in global carbon cycling. Regrowth following disturbance com-

prises ~60% of the total land carbon sink based on country-level forest inventories (Pan et al. 2011a; tropical re-50 
growth sink of 1.6 ± 0.5 Pg C yr-1) and model-based studies (Pugh et al. 2019a; global regrowth sink of 0.3 to 1.1 Pg 

C yr-1). In the last decade, explicit model representation of forests as a function of time since disturbance (hereafter 

simply, ‘ecosystem age’) has been a grand challenge in an effort to quantify the demographic response of forests to 

changes in climate, atmospheric CO2, disturbances (Friend et al. 2014, Kondo et al 2018, Pugh et al. 2019a), fire, 

and land use change and land management (LUCLM) (Gitz and Ciais 2003, Model: OSCAR; Shevliakova et al. 55 
2009, Model: LM3V; Haverd et al. 2014, Model: CABLE-POP; Lindeskog et al. 2013, Model: LPJ-GUESS; Yue et 

al. 2018, Model: ORCHIDEE MICT; Nabel et al. 2019, Model: JSBACH4; Longo et al. 2019, Model: ED-2.2). 

Much of the focus of these global modeling studies has been on the effect of natural and anthropogenic disturbances 

on the carbon dynamics in old-growth versus second-growth forests (Gitz and Ciais 2003, Shevliakova et al. 2009, 

Kondo et al 2018, Yue et al. 2018, Pugh et al. 2019a), lacking finer distinction of demographic effects, for example, 60 
when age-classes near canopy closure have the greatest NEP.  
 

Both large-scale (> 0.1 ha) natural and anthropogenic ecosystem disturbances that reset ecosystem age can be gener-

ally ranked in the following order according to global area disturbed: fire > windstorms > forest management > 

shifting cultivation (Frolking et al. 2009). Much of the evidence for the relative importance and global distribution 65 
of large disturbances has come from either satellite retrievals of spectral indices indicating forest loss or burn scars 

on the land (Potter et al. 2003, Frolking et al. 2009, Pugh et al. 2019b), national forest inventory records of land use 

change and forest management (Houghton 1999, FAO-FRA 2015, Williams et al. 2016), or from model-based stud-

ies (Goldewijck 2001, Arneth et al. 2017) that integrate information on historical land use (Goldewijck 2001, Hurtt 

et al. 2006). Other natural disturbances such as pest and pathogen outbreaks, flooding, ice storms, and volcanic erup-70 
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tions are less widespread globally (Frolking et al. 2009) but are still influential drivers of landscape patch dynamics 

(Dale et al. 2001, Turner 2010). In the coterminous United States, forest management is the predominant forest dis-

turbance (1.4% of forested area converted to non-forest and then re-established annually), followed by fire (0.01-

0.5% of forested area burned annually 1997-2008) (Williams et al. 2016). Although pest and pathogens, namely 

bark beetle infestations, affected a much larger area (up to 6% of total forested area in U.S.) than both logging and 75 
fire, the effects do not always cause stand replacement. It is arguable whether fire and forest management are the 

two most important global drivers of ecosystem age (Pan et al. 2011b), but nevertheless these are the drivers applied 

in a model framework in this study, in a manner that moves modeling one step forward to assess global age-class 

dynamics. 
 80 
The overall aim of this study was to fill a gap in existing knowledge by simulating the time-evolution of age-class 

distributions in a global ecosystem model and to determine if explicit representation of demography influenced eco-

system stocks and fluxes at global scales or at the level of a grid-cell. Technical details are presented for a module 

representing age-class dynamics, driven by fire feedbacks, land abandonment and wood harvesting in the Lund 

Potsdam Jena (LPJ-wsl; Sitch et al. 2003) Dynamic Global Vegetation Model (DGVM). Analyses are presented of 85 
model behavior, in terms of age-structure and age-functional patterns, the temporal evolution of age distributions 

and their causative drivers, and a statistical model of ecosystem production and respiration as a function of demog-

raphy and climate.  

2 Methods 

2.1 LPJ-wsl v2.0 General Model Description 90 

2.1.1 LPJ History 

LPJ-wsl v2.0 has its legacy in the LPJ family of models, first developed by Sitch et al. (2003) in a Fortran coding 

environment 1. In 2007, Bondeau et al. (2007) produced the LPJmL codebase, in C, which included the addition of 

‘managed lands’. The model known as LPJ-wsl v2.0 is based on LPJmL v3.0, but includes modifications to man-

aged lands that now includes modeling gross land cover transitions, forest age cohorts, and also a modification that 95 
include permafrost and wetland methane. Many developments were made in the publicly-available LPJmL4 (version 

4.0; Schaphoff et al. 2018) that are not present in LPJ-wsl v2.0. The LPJ-wsl model was branched off of LPJmL 

sometime around 2010 and continued to diverge. In modern programming practices, the historical branching of par-

allel lines of model development would have been tracked with version control software. This research paper repre-

sents a large effort toward this end, and the LPJ-wsl v2.0 code is now freely and publicly available 100 
(https://github.com/benpoulter/LPJ-wsl_v2.0) under a GNU Affero General Public License version 3. LPJ-wsl v2.0, 

hereafter simply ‘LPJ-wsl’, excluding the version number unless an explicit reference is being made to prior ver-

sions or to clarify the version number. 

                                                
1. LPJ and LPJmL History, https://www.pik-potsdam.de/research/projects/activities/biosphere-water-
modelling/lpjml/history-1) 
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2.1.2 LPJ-wsl v2.0 Overview 

LPJ-wsl v2.0 simulates soil hydrology and vegetation dynamics in 0.5˚ grid-cells, wherein climate, atmospheric 105 
CO2, and soil texture is prescribed from driver datasets (Figure 1). Vegetation is categorized into Plant Functional 

Types (PFT; Box 1996). Plant populations compete for light, space, and soil water, depending on demand; nutrient 

cycles are not considered in this model version. LPJ-wsl is a ‘big-leaf’ ecosystem model, whereby leaf-level photo-

synthesis and respiration (Haxeltine and Prentice 1996, Farquhar et al. 1980) occur at daily time-steps, accounting 

for the photosynthetically active period (daytime), and is scaled to the stand-level using a mean-individual approxi-110 
mation, which assumes that important state variables (carbon stocks and fluxes) can be determined by using the av-

erage properties of a population. Plant populations are categorized using 10 PFTs in this study (phenology parame-

ters and bioclimatic limits listed in SM Table 1); the same PFTs as in Sitch et al. (2003). Left unchanged are the 

PFT-specific bioclimatic limits, turnover rates, C:N tissue ratios, allometric ratios, and other parameters not explicit-

ly commented on here, but as described in Sitch et al. (2003). Mortality occurs via reductions in population density 115 
if a PFT’s annual carbon balance is less than zero or if fire occurs. The fire module and the representation of land 

use change and land management are described in detail in Section 2.2.2, as these modules require a greater number 

of modifications for integration with age-classes.  

2.2 Age-class Module 

2.2.1 An age-based model of ecosystems – sub-grid-cell patch dynamics 120 

Age-classes are represented as sub-tiles within a grid-cell (Figure 1), which we refer to as ‘patches’. Every patch has 

the same climate, atmospheric CO2, and soil texture, but the properties of the patch, such as available soil water and 

light availability, are determined by feedbacks from plant demand within a patch; hereafter, ‘age-class’ and ‘patch’ 

are used interchangeably depending on context but describe the same entity. Plant processes (competition, photosyn-

thesis, respiration) are simulated at the level of the patch for each PFT within the patch. The age-class module has a 125 
fixed number of age-classes that can be represented in a grid cell, but all age-classes are not always represented. In 

this setup, age-classes are classified into 12 age-classes (patches) in fixed age-width bins, defined as the unequalbin 

or the 10yr-equalbin age-width setup (Table 1). The age-widths of the age-classes in the 10yr-equalbin setup corre-

spond to common age-widths of classes used in forest inventories. The 10yr-equalbin age setup is used for all global 

simulations, whereas the unequalbin setup is applied to explore model dynamics at the level of a single grid-cell; 130 
simulation details in next section.  

Age-classes are only created by fire, wood harvest, or land abandonment and are initialized to the youngest age-

class. The fraction of the patch that burns gets its age ‘reset’ to the youngest age-class, 1-10 yr. The same process 

occurs for the fractional area that undergoes wood harvest or when managed land is abandoned and allowed to re-

grow – the fractional area undergoing an age-transition is reclassified as a 1-10 yr age-class. This process allows the 135 
model to accurately track the carbon stocks, fluxes and feedbacks associated with these state variables. For example, 

if a fire burns 50% of a patch, then 50% might have bare ground and 50% will have vegetation at pre-burn levels. If 

the probability of another fire is dependent on live vegetation, then feedbacks will result in a lower chance of fire on 
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the bare-ground fraction versus the fully-vegetated fraction that was not previously burned. 

The most novel advancement in this study is a new method of age-class transition modeling, which we call ‘vector-140 
tracking of fractional transitions’ (VTFT), which improves the computational efficiency of modeling age-classes in 

global models; this is a similar approach independently conceived by Nabel et al. (2019). The method is a transpar-

ent and simple solution to the problem of dilution, which manifests as an advective process when state variables, 

such as carbon stocks or tree density, are made to merge by area-weighted averaging. The concept of merging two 

unique model entities (‘patch’ or age-class) on the basis of similarity is a computational solution to constrain the 145 
number simulated patches in accordance with computer resources, but is also ecologically unrealistic. For example, 

along what axis of similarity is a patch considered to be most similar to another patch – in terms of PFT composi-

tion, biomass in plant organs, plant height, or stem density? Existing age-class models (Medvigy et al. 2009, Model: 

ED2; Lawrence et al. 2019, Model: CLMv5.0; Yu et al. 2018, Model: ORCHIDEE-MICT) employ merging rules 

(although some do not – Lindeskog et al. 2013, Model: LPJ-GUESS) with varying thresholds to ensure that patches 150 
are only merged if the difference among one state variable (biomass, tree height) is less than a fixed threshold. 

Merging rules along a single axis are arbitrary distinctions of similarity and VTFT circumvents these issues by not 

using merging rules at all. By design, VTFT allows age-classes to advance in a natural progression from young to 

old and ensures that age-class transitions always occur between the most similar age-classes along multiple state 

variables. 155 

In matrix notation, VTFT describes a matrix of size (w := agewidths per ageclass, n := ageclasses), where the ele-

ments fi,j are the within-age-class fractional areas of the grid-cell: 

𝐅 =

⎣
⎢
⎢
⎡
𝑓',' 𝑓',) . . . 𝑓',+
𝑓),' 𝑓),) . . . 𝑓),+
⋮ ⋮ ⋱ ⋮
𝑓.,' 𝑓.,) . . . 𝑓.,+⎦

⎥
⎥
⎤
= 2𝑓3,4 ∈ ℝ.7+8 (1) 

It is important to note here that within-age-class fractional areas (fi,j) are only used during age-class transitions – this 

is a key point.  For almost all calculations in LPJ, processes operate on the total fractional areas for each age-class, 

calculated by the total fractional area for each age-class, 160 

F_total4 =?𝑓3,4

.

3@'

 (2) 

, where F_totalj is the column sum of F for a given age-class (j); the calculation can be vectorized for efficiency by 

computing the dot product between an ‘all-ones’ row vector of length (w) and F. In practice, when LPJ-wsl simu-

lates physical processes on an arbitrary carbon pool (C), for example, the calculations are computed on a per-mass 

basis, which then requires conversion to a per-area basis by multiplying the total carbon mass in an age-class by the 

representative total fractional area: 165 
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CB[kg	mH)] = CB[kg] 	× F_totalB (3) 

, where Cj [units := kg or km-2] is the total carbon for a given age-class (j). Again, the calculation can be computed 

via the Hadamard (element-wise) product, taking a vector (𝐶), where elements are the carbon pool totals for every 

age-class and multiplying by vector F_total, with elements of the total fractional areas in each age-class. In effect, all 

simulated processes in LPJ-wsl act on an area-basis, based on the column sums of F.  

In every year of simulation, an age-class transition always occurs, and this procedure is defined as an operation that 170 
increments the positions of the elements as,  

𝐅(NO'): =

⎣
⎢
⎢
⎢
⎡𝑓','

(NO') 	≝ 𝑓S,S
(NO') 𝑓',)

(NO') ≝ 𝑓.,'
(N) . . . 𝑓',+

(NO') ≝ 𝑓.,+H'
(N) 															

	𝑓),'
(NO') ≝ 𝑓','

(N)		 			 𝑓),)
(NO') ≝ 𝑓',)

(N)	 . . . 𝑓),+
(NO') ≝ 𝑓',+

(N)																			
⋮ ⋮ ⋱ ⋮

𝑓.,'
(NO') 	≝ 𝑓.H','

(N)			 	 			𝑓.,)
(NO') 	≝ 𝑓.H',)

(N	)			 . . . 𝑓.,+
(NO') ≝ 𝑓.,+

(N	)		 + 𝑓.H',+
(N	)			

⎦
⎥
⎥
⎥
⎤

 (4) 

, where the superscripts are the time indices for the current timestep (t+1) and the previous timestep (t), subscripts 

are the matrix indices,  𝑓S,S
(NO') is the fractional area of a newly created stand (by definition, it is the youngest age-

class fraction), and fw,n is the oldest fractional age of the grid-cell, which is incremented by an amount equal to frac-

tional area (𝑓.H',+
(N)			 ). Of special importance is the bottom row of the F matrix, Fw,1≤j≤n, which are the fractional areas 175 

of each age-class transitioning to the next oldest age-class. The transitioning fractions (Fw*) become the incoming 

fractions in the next-oldest age-class. Using an arbitrary carbon pool (C) as an example, the carbon pool for the next 

timestep (t+1) would be calculated via an area-weighted average between the carbon remaining in the age-class and 

the carbon in the transitioning fraction,   

CB
(UO') =

VCB
(U) × F′_totalB

(U)X + VCBH'
(U) × FY,BH'

(U) X

F′_totalB
(U) + FY,BH'

(U)  (5) 

, where 𝐹′_𝑡𝑜𝑡𝑎𝑙4	is the total fractional area of age-class (j) that remains in the age-class, 𝐹.,4H'
(N)  is the transitioning 180 

or ‘incoming’ fraction from the younger age-class, and 𝐶4H'
(N)   is the carbon pool (on area-basis, kg m-2) in the young-

er age-class, calculated at the end of the previous timestep.  Equation 5 effectively converts the units of the carbon 

pools from an area-basis (km m-2) to a total mass (kg), taking the sum of the carbon remaining and transitioning into 

the age-class, and ‘redistributes’ the carbon mass by the new fractional area; during age-class transitions, these area-

weighted averages are used to conserve mass across all state variables.  In theory, VTFT minimizes the redistribu-185 
tion (or ‘dilution’) of mass across a larger area if the incoming fractional area is much smaller than the fractional 

area of the existing age-class.  

In a plain-language summary of the matrix representation, VTFT ensures that a vector of fractional areas is associat-

ed with every age-class (n), of length (w), and where ‘w’ is equal to the age-width of the age-class, with elements (f) 

that are the fractional areas contributing to the total fractional area of the patch (F_total). When a young age-class 190 
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(a1) is first created, VTFT vectors are initialized to zero and the first element (f1) is set to the incoming fractional 

area. Within-class Fractional Transitions: For every simulation year, the position of each element (fx) in the VTFT 

vector is incremented by the representative time of each element (x), which is simply 1. No changes occur to the 

state variables of the age-class during within-class transitions. Between-class Fractional Transitions: Upon incre-

menting the position of each element, if the value at (fw) is non-zero, then the corresponding fractional area fw, de-195 
fined as the outgoing fraction, is used in an area-weighted average between the state variables of a1 fw and the next 

oldest age-class a2 F_total. Lastly, upon incrementing element position, if all elements < f1 ... fw > in the VTFT vec-

tor of the preceding age-class, in this example (a1), are zeros, then the age-class is simply deleted from computation-

al memory.  

Two additional examples are provided in Figure 2 that demonstrate the procedure when there is a young age-class 200 
created, and another scenario when there are fractional age-class transitions between age-classes. With VTFT, any 

number of age-classes and age-widths can be modeled, but it is demonstrated that the age-widths employed in this 

study are sufficient to minimize the dilution of state variables when area-weighted averaging is used to merge frac-

tional patches while also simulating stand-age patterns in state variables of carbon stocks, stem density and fluxes. 

2.2.2 Integration with fire and land use change and land management (LUCLM) modules 205 

Fire – The fractional area burned initiates the creation of a youngest age-class, or it gets merged with a youngest 

age-class if one exists already. Fire simulation is based on the semi-empirical Glob-FIRM model by Thonicke et al. 

(2001), with implementation details described in Sitch et al (2003). In short, fire is dependent on the length of the 

fire season, calculated as the number of dry days in a year above a threshold and a minimum fuel load, defined only 

as the mass of carbon in litter. When a fire occurs, PFT-specific fire resistances determine the fraction of the PFT 210 
population that gets burned. The biomass of burned PFTs, along with the aboveground litter in the patch, gets calcu-

lated as an immediate flux to the atmosphere. The fraction of the PFT population that does not burn maintains state 

variables (e.g., tree height, carbon in leaf and wood) at previous values; it is possible to have so called ‘survivor’ 

trees on the youngest age-class that then skews the age-height distribution of the patch. Fire occurs in both the pri-

mary forest and secondary forest tiles; the classification of primary versus secondary forests is determined by the 215 
land use driver dataset. 
 

LUCLM – Age-classes get created when managed land is abandoned and allowed to regrow into secondary forests, 

or when wood harvest occurs on forested lands and causes deforestation. In both cases, the fractional area aban-

doned/logged initiates the creation of a youngest age-class, or it gets merged with a youngest age-class if one exists 220 
already. To improve accounting of primary forests, defined here as natural land without a history of LUCLM, and 

second-growth forests, defined as natural land with a history of LUCLM; transitions between these classes are unidi-

rectional from primary -> secondary. In the LUCLM module, gross transitions between land uses (Pongratz et al. 

2014, Stocker et al. 2014) are simulated, such that if the fraction of abandoned land equals the fraction of land de-

forested in the same year (net zero land use change), the fluxes from the gross transitions are tracked independently 225 
and gives an overall more accurate accounting (and higher magnitude) of emissions from LUC (Arneth et al. 2017).   
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General rules distinguishing primary and secondary stands within the age-class context stem from the Land Use 

Harmonization dataset version 2 (LUHv2; Hurtt et al. 2017) and with the following modifications: (1a) the primary 

grid-cell fraction only decreases in size and never gets mixed with existing secondary forests or with abandoned 230 
managed land. Only fire creates young age-classes on primary lands. (2a) secondary grid-cell fractions can be mixed 

with other secondary forest fractions, recently abandoned land, fractions with wood harvest, and recently burned 

area. General priority rules for deforestation and wood harvest: (1b) For simplicity, deforestation always occurs in 

the ranking of oldest to youngest age-class, proceeding to deforest each age-class until the prescribed fractional area 

of deforestation is met. This rule is a conservative estimate of fluxes from deforestation, typically resulting in greater 235 
land-to-atmosphere fluxes than if rules were employed that allowed younger age-classes to be preferentially defor-

ested. (2b) wood harvest also occurs in the ranking of oldest to youngest age-class until two conditions are met. 

Timber harvest occurs on each age-class until a prescribed harvest mass or harvest area is met. 
 

Treatment of immediate emissions and residues: Deforestation results in 100% of heartwood biomass and 50% of 240 
sapwood biomass being stored for delay emission in product pools; root biomass is entirely part of belowground 

litter pools, while 100% leaf and 50% of sapwood biomass becomes part of aboveground litter pools. Grid-cell frac-

tions that underwent land-use change were not mixed with existing managed lands or secondary fractions until all 

land-use transitions had occurred. This avoids a computational sequence that results in a lower flux if deforestation 

and abandonment occur in the same year. For wood harvest, 100% of leaf biomass and 40% of the sapwood and 245 
heartwood enters the aboveground litter pools, and 100% of root biomass the belowground litter pools; 60% of sap-

wood and heartwood are assumed to go into a product pool for delayed emission.  
 

Timber from deforestation and harvest in product pools for delayed emission (Earles et al. 2012): For deforestation, 

60% of exported wood (i.e., not in litter) goes into a 2-yr product pool and 40% goes into a 25-yr product pool, fol-250 
lowing the 40:60 efficiency assumption from McGuire et al. (2001). For wood harvest, the model uses space-time 

explicit data on harvest fractions going into roundwood, fuelwood and biofuel product pools; dataset described fur-

ther in Sect. 2.3.3. We use three product pools and assume that 100% of the fuelwood and biofuel fraction goes into 

the 1-year product pool (emitted in the same year of wood harvest), 50% of the roundwood fraction goes into the 10-

year product pool (emitted at rate 10% per year) and the remaining 50% of the roundwood fraction goes into the 255 
100-year product pool (emitted at rate 1% per year).  

2.3 Experimental Design and Analysis 

2.3.1 Model inputs 

Inputs to the model are gridded soil texture (sand, silt, clay fractions) from the USDA Harmonized World Soils Da-

taset v1.2 (Nachtergaele et al. 2008), annually-varying global-mean [CO2] (time series available in supplement), and 260 
monthly-varying air temperature, precipitation, precipitation frequency, and radiation from the Climate Research 

Unit (CRU, version TS3.26) data for 1901-2016. Land use, land use change, and wood harvest was prescribed annu-
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ally based on the Land Use Harmonization dataset version 2 (LUHv2; Hurtt et al. 2017), which is used as forcing 

land-use for the 6th Coupled Model Intercomparison Project (CMIP6; Eyring et al. 2016). The dataset includes frac-

tional area of bi-directional (gross) land use transitions between forested and managed lands, as well as the total 265 
biomass of wood harvest on a specified fractional area logged. In this version of LPJ, managed lands (crops, pas-

tures) are treated as grasslands with no irrigation, no fire, and tree PFTs were not allowed to establish. Model repre-

sentation of land management is an oversimplification to focus on effects of wood harvest.  

2.3.2 Qualitative evaluation of simulated stand structure against U.S. Forest Inventory Analysis (FIA) data 

U.S. Forest Inventory and Analysis (FIA) – The FIA dataset is freely available at the FIA DataMart web portal (FI-270 
ADB version 1.6.0.0.2), accessed 2 February 2016. We extracted variables that capture two main axes of structural 

change as a function of forest age: stem density and tree height. Spatial coordinates of sample plots are ‘fuzzed’ with 

imposed error for privacy reasons (FIA User Guide v 6.02; O’Connell et al. 2015). For purposes of this analysis, plot 

data were aggregated to the spatial scale of U.S. Forest Service Divisions (delineated by regional-scale precipitation 

levels and patterns as well as temperature) minimizing co-location concerns between model-observation compari-275 
sons. We filtered the FIA data based on the following criteria. We only included plots that used the national standard 

plot design (DESIGNCD=1) and were located on forested land (COND_STATUS=1) with no history of major dis-

turbance, stocking, or logging (DSTRBCD=0, TRTCD1=0). We also only included plots that had both sub-plot (168 

m2) samples of live (STATUSCD=1) tree (≥ 5.0 inches diameter) stem density and also micro-plot (13.5 m2) sam-

ples of seedling/sapling (1 to 5 inches diameter) stem density, and where the sub-plot sampling design was the na-280 
tional standard (Tree Table SUBP = [1,4]); LPJ-wsl implicitly includes sapling and adult trees in estimates of tree 

height and stem density. We assumed that the filtered plots were representative of the true density and distribution of 

tree species for the general vicinity of the plots and of the USFS Division. Although these requirements for selecting 

FIA plots reduce the total amount of data, we aimed to make evaluations in a fair manner, in both spatial scale and 

meaning. 285 

2.3.3 Examining age dynamics: regional simulation for assessing changes in stand structure and ecosystem 
function 

The objectives of the regional simulations were to evaluate demographic patterns of stand structure and function 

when simulating age-classes using different age-width binning. Two ideal simulations were conducted at a regional 

scale to sample simulated annual stem density, average tree height, and NEP. The first simulation used the unequal-290 
bin age-width setup, Sunequalbin, and another used the 10-yr-equalbin age-width setup, S10yrbin (Table 2). For both sim-

ulations, Fire and LUCLM were not simulated. Instead, 5% of the fractional area of age-classes > 25 years were 

cleared of biomass annually; the fractional area cleared was re-classified and merged with the youngest age-class. 

The intent of the setup was to ensure that each grid-cell maintained patches in every age-class for each year of the 

simulation and avoided situations in which age-classes were only present in ‘bad years’, or when growing conditions 295 
were poor. Both simulations were conducted with a 1000-yr ‘spinup’ using fixed CO2 (287 ppm, ‘pre-industrial’ 

values) and climate randomly sampled from 1901-1920 to ensure that age distributions were developed and state 

https://doi.org/10.5194/gmd-2020-258
Preprint. Discussion started: 22 September 2020
c© Author(s) 2020. CC BY 4.0 License.



10 

variables were in dynamic equilibrium (i.e., no trend). A transient simulation then used time-varying CO2 and cli-

mate, as prescribed by model inputs. Stand structure data were analyzed for 1980-2016. 
 300 
The idealized simulations were performed for the mixed deciduous and evergreen forests of Michigan, Minnesota 

and Wisconsin, U.S.A (bounding box defined by left: 97.00º W; right: 82.50º W, top: 49.50º N, bottom: 42.00º W). 

These forests are of moderate temperate climates, with total annual rainfall 815.0 mm/yr (average over 1980-2016, 

based on CRU TS3.26) with monthly minimum 21.0 mm/mo and maximums of 148.5 mm/mo. Mean annual tem-

perature (1980-2016, CRU TS3.26) was 5.98º C with monthly minimum of –11.45º C and maximum 20.98º C.  305 
 

Data were pooled for the region over the time period and by age-class. Date were plotted in box plots to show medi-

an value, interquartile range and outliers. No attempt was made to de-trend data because there was enough between 

age-class variation to evaluate general demographic patterns visually.  

2.3.4 Examining resilience: idealized simulation of a single event of deforestation, abandonment, regrowth  310 

The objective of the idealized simulation was to evaluate the effect of age-classes on relaxation times following a 

single deforestation, abandonment and regrowth event within a single grid-cell (Table 2). The relaxation time is de-

fined as the time required for a variable to recover to previous state and is a direct measure of ecosystem resilience 

(sensu Pimm 1984). Two simulations were conducted, the first simulation used the 10-yr-equalbin age-width setup, 

Sage_event, and another did not simulate age-classes, Snoage_event (Table 2). Both simulations were conducted with a 315 
1000-yr ‘spinup’ using fixed CO2 (287 ppm, pre-industrial value) and climate randomly sampled from 1901-1920 to 

ensure that state variables were in dynamic equilibrium. A transient simulation then used time-varying CO2 and cli-

mate, as prescribed by model inputs. Fire and LUCLM were not simulated. Instead, 25% of the fractional area was 

deforested in year 1910 of the simulation and classified as managed land. Deforestation rules were equally applied 

for both simulations as described in Section 2.2.2. In the following year (1911), the managed land fraction was 320 
abandoned and allowed to regrow. The following state variables were plotted over time and visually evaluated: 

NBP, NEP, NPP, Rh, carbon in biomass.  
 

The idealized simulations were performed for a single grid-cell in a mixed broadleaf and evergreen needleleaf forest 

in British Columbia, CAN (121.25º W 57.25º N). The grid-cell is a boreal climate with total annual rainfall 473.7 325 
mm/yr (average over 1980-2016, based on CRU TS3.26) with monthly minimum 9.11 mm/mo and maximums of 

105.8 mm/mo. Mean annual temperature (1980-2016, CRU TS3.26) was 0.59º C with monthly minimum of –16.9º 

C and maximum 14.7º C.  

2.3.5 Global simulation objectives and setup 

There were three main objectives for global simulations. The first objective was to evaluate the contribution of age-330 
class information to global stocks and fluxes. Here, a simulation with age-classes (Sage) was compared to a simula-

tion without age-class representation (Snoage) (Table 2). The second objective was to determine the relative influence 
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of fire and LUCLM on the spatial and temporal distribution of ecosystem ages. For this objective, a Fire-only simu-

lation (SFire) only had age-classes created by fire, whereas a LUCLM-only simulation (SLU) had age-classes only 

created by abandonment of managed land or by wood harvest (Table 2). A simulation with both Fire and LUCLM 335 
(SFireLU) was used as the baseline for comparison against SFire and SLU. The third objective used data from Sage to 

identify the relative influence of demography versus climate on simulated fluxes (NEP, NPP, and Rh). 
 

For all three simulations, a spinup simulation was run for 1000 years using randomly sampled climate conditions 

from 1901-1920 and atmospheric CO2 fixed at pre-industrial levels (287 ppm); spinup ensured that age distributions 340 
were initialized under natural conditions and state variables were in dynamic equilibrium (i.e., no trend). A second 

‘land-use-spinup’ procedure was run for 398 years to initialize land use at values for year 1860, resampling climate 

and fixing CO2 as in the first spinup. After spinup procedures, climate and CO2 were allowed to vary until simula-

tion year 2016; in SLU and SFireLU, land use change and wood harvest varied annually as prescribed by the LUHv2 

dataset. 345 
 

In the first objective (as above), global values for stocks and fluxes include both natural and managed lands. These 

global estimates conform to typical presentation of global values (Le Quéré et al. 2018), in Petagrams (1015) of car-

bon. Comparisons are made among simulation types and to values from the literature. 
 350 
For the second objective, a time series of zonal mean ecosystem ages were analyzed to determine the relative im-

portance of SFire and SLU on the observed distributions in SFireLU. The first assessment was made by visual inspection 

of zonally-averaged time-series (i.e., Hovmöller plots) for the entire period of transient simulation, years 1860-2016. 

In addition, for each of SFire and SFireLU, a simple linear regression model (age = ß0 + ß1*year, setting 1860 as the 

reference year and defined as 1) was applied to identify trends in ecosystem age by the following zonal bands: bore-355 
al (50˚ N to 90˚ N), temperate (23˚ N to 50˚ N), and tropics (23˚ S to 23˚ N). Trends in LUCLM are, by definition, 

prescribed a priori by the forcing data, but age distributions are not prescribed by inputs per se; instead, the age 

module is a necessary model structure that allows full realization of the effect of forcing data on age distributions. 

By contrast, fire is a fully simulated process that integrates feedbacks from climate conditions and fuel loads.  

2.3.6 Statistical model to assess relative importance of demography and climate 360 

For the third objective of global simulations – to reduce dimensionality of the data and to assess the relative influ-

ence of demography and climate on simulated fluxes – annual flux data from Sage (Table 2) were analyzed from 

2000-2016 using generalized linear regression model, 

𝑓𝑙𝑢𝑥3,ab = 𝐵13 × total_precipitation3,ab + 𝐵23 × mean_temperature3,ab
+ 𝐵33,nop × 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠3,ab,nop  

(6) 

, where flux was one of {NEP, NPP, Rh} in kg C m-2 yr-1, precipitation (mm) and temperature (Celsius) data from 

CRU TS3.26, and age-class was categorical, defined by the age-class code (Table 1), and the beta coefficients (B) 365 
for subscripts of grid-cells (i), years (yr) and age-class (age). The beta coefficients are therefore unique to every 
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grid-cell, and the betas for age-classes are estimated separately for each age-class within the grid-cell (B3i,age). An 

initial test of the model attempted to estimate globally-consistent predictor effects, but the model was found to be a 

poor fit (not shown) and it was assumed that there was too much variation among grid-cells to detect globally-

consistent effects. Instead of adding additional gridded fields of predictor variables to account for grid-cell-level 370 
variation, the same statistical model was applied and analyzed per-grid-cell. This allowed coefficients of precipita-

tion, temperature and age-class to vary by grid-cell, in essence, reducing the effect of variation in PFT composition, 

soil texture and hydrology that might otherwise reduce predictive power.  

 

In all per-grid-cell analyses, the intercept term was intentionally omitted from the data model by adding a ‘-1’ term 375 
to the data model. The Age-class term in the statistical model (B3i,age), as a categorical variable, effectively takes the 

place of the intercept term anyhow, so the outcome is that estimates are for the absolute effect of each age-class on 

the predicted flux as opposed to estimates that were relative to the first age-class; this had no impact on estimated 

coefficients but it did simplify analyses. In grid-cells where only a single age-class was present, the statistical model 

was defined as (fluxi,yr = B1i total_precipitationi,yr + B2i mean_temperaturei,yr + B3i), leaving the intercept term, in 380 
this case – B3i, to be estimated from the data and then re-classifying the intercept term by the age-class code for the 

grid-cell.  
 

The degrees of freedom (d.f.) of a model for a grid-cell with a single age-class was d.f.=14, based on 17 annual data 

points to estimate coefficients of three predictors. The degrees of freedom for a grid-cell that had a maximum of 12 385 
age-classes was d.f.=190, based on 204 annual data points to estimate coefficients for 14 predictors. Because the 

analysis produced statistical results for every grid-cell, the degrees of freedom are not presented elsewhere. Coeffi-

cients were only analyzed or mapped when significant at p=0.05. 

3 Results 

3.1 Model Stand Structure – comparison against inventory data 390 

FIA data were not equally available for every age class, nor for every Division (Figure SM2), but there were enough 

inventory data across 8 Divisions, spanning subtropical to temperate steppe climates, to qualitatively suggest that 

LPJ-wsl does capture the expected age-structure patterns in the different climates evaluated. There was a tendency to 

overestimate stem density in younger age-classes and systematically underestimate tree heights among age-classes 

(e.g., Figure SM3, Figure SM5), for which the greater number of small individuals could cause the average tree 395 
heights to be dampened. However, LPJ-wsl is a big-leaf, single-canopy model and it does not represent multiple pft 

cohorts in a stand, or more simply, it does not represent vertical heterogeneity. As such, and under the current model 

architecture and associated assumptions, the cause of the mis-match is unclear. Even still, the more general pattern 

of modeled stem density and tree height tended to track FIA data, with stem density being maximal in the younger 

age-classes and declining thereafter, whereas tree height patterns increased more linearly before stabilizing (Figure 400 
SM6 to SM9). 
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FIA data had greater variability among age-classes, regardless of Division. It is a reasonable assumption to say that a 

large part of this variability results from successional changes in community composition as FIA protocols specify 

data be taken on every species; although species-level data are available. It is beyond the scope of this study to dis-

entangle these patterns further, but such information could be used to improve simulated age dynamics if models 405 
were to include additional plant functional types for a given Division. 

3.2 Model Age Dynamics 

3.2.1 Dynamics of stand structure and function – regional simulations 

Forest structural characteristics of stem density, height, and NEP followed the expected patterns with age with a few 

exceptions. In Sunequalbin (Table 2), stem density increased from near zero to maximum in the 21-25 yr age-class, 410 
before declining non-linearly (Figure 3). By contrast, the gradual increase in stem density in the first age-class in S10-

yrbin (Table 1) was not readily apparent because this process, which is evident in Sunequalbin, occurs entirely within the 

youngest 1-10 yr age-class in S10-yrbin. Both simulation setups approach the same stem densities after age ~25; prior 

differences are due to binning of age-widths. 
 415 
For average tree height in Sunequalbin, there were large tree heights in the youngest age-class, which results from so-

called ‘survivor’ trees (Figure 3). Not all trees are killed-off when a stand-clearing disturbance occurs in LPJ. Alt-

hough the stand is ‘reset’ to the youngest age-class, the survivor trees skew the height distribution until the density 

of establishing saplings subsequently increases and brings down the average tree height to smaller values. This pat-

tern is more akin to what occurs during natural fires or selective harvesting, which can reduce the overall age of a 420 
stand but might not result in a complete removal of all trees. By contrast, the skewed age-height pattern is not appar-

ent in S10-yrbin (Figure 3) only because the same process is effectively hidden. Both simulation types approach the 

same average tree heights after age ~25 (Figure 3). 
 

NEP peaked at age-class 5-6 in Sunequalbin, before declining non-linearly to the lowest average value in the oldest 425 
age-class (Figure 3). Although the unimodal peak was not apparent in S10-yrbin, the maximum NEP occurred in the 

youngest age-class and also declined non-linearly thereafter (Figure 3). The decline in NEP after a maximum at 5-6 

years was driven mainly by an increase in Rh due to increases in turnover rather than a larger decline in NPP (Figure 

4). The peak in NEP did not coincide with maximum stand density at ~20 years. Instead, model dynamics suggest 

that the total foliar projective cover of tree canopies reaches near maximum (80-95% cover, not shown) at 5-6 years, 430 
thereafter plant competition reduces NPP while biomass turnover increases, which together cause the apparent de-

cline in NEP. The time period of canopy closure, at 5-6 years, in LPJ-wsl is probably too early, in part due to ad-

vanced regeneration (saplings establish at 1.5 m height) and constant establishment rates. The age-class module 

demonstrates NEP-age relationships consistent with field-based evidence (Ryan et al. 2004, Turner 2010).  
 435 
Lastly, an emergent pattern was found in the declining portion of the NEP-age curve and approximately follows the 

functional form NEPmax*0.70age-agemax, where NEPmax is the maximum NEP flux at the initial point of decline, age 
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is the age of the stand, and agemax is the age of the stand where NEP is maximized. Thus, the non-linear decline in 

NEP is approximately 30% with increasing age. The functional equation holds between year 5-6 to year 25, after 

which NEP decreases only by 20% with increasing age and the functional form becomes NEP25yr*0.80age-25, where 440 
NEP25yr is the NEP at year 25. The functional form of the decline in NEP is consistent among climate regions when 

simulated data is analyzed separately for all U.S. States (not shown). It is unclear whether this emergent pattern is 

strictly the result of model dynamics around canopy closure or if the pattern would be apparent in field data. 

3.2.2 Time-series evolution of a deforestation, abandonment and regrow event 

A single event of deforestation, abandonment and subsequent forest regrowth caused long-lasting effects and unreal-445 
istic model behavior when omitting age-class dynamics. In the simulation without age-classes, Snoage_event (Table 2), 

NEP takes ~30 years to recover to values prior the event, whereas the age-class simulation, Sage_event, takes only 5-6 

years to recover (Figure 5) – a 5-fold change in relaxation times. The quick recovery of NEP in Sage_event is due part-

ly to the fact that the fraction of the grid-cell (75%) that was not deforested maintained its state variables (carbon 

stocks in vegetation, soil, litter) unchanged from its prior state, which buffered NEP and dampened the effect of the 450 
smaller fraction (25% of grid-cell) that was deforested. Age-class dynamics also contributed an elevated NEP (Fig-

ure 4) that quickens the recovery at the grid-cell level. In Sage_event, there is an elevated NEP in the secondary stand 

that is sustained for more than 30 years following the event.  
 

In Snoage_event, vegetation dynamics cause turnover to increase and causes an elevated Rh that is consistently higher 455 
than NPP for 30 years after the event. This pattern is striking because NPP recovers quicker than in Sage_event and 

maintains an elevated value for ~30 years. Following a disturbance even in LPJ, stem density and foliar projective 

cover is reduced but the state variables (carbon in plant organ pools of leaf, stem, root) maintain prior values; this is 

the reason NPP recovers quickly in the standard-no-age simulation. As stand density increases again, canopy closure 

initiates competitive dynamics that result in mortality of individuals of the plant population that are generally larger 460 
than if the stand had progressed from small to large individuals (as in Sage_event). The VTFT age-class module also 

uses the mean-individual approximation, but these unrealistic model dynamics are effectively dampened because 

stand dynamics are always allowed to occur in natural progression and the relatively small age-widths (10-years) 

ensure that stand age dynamics (NEP-age trajectories in Figures 3 and 4) most evident in the first 50 years are dis-

cretely modeled. 465 

3.3 Global Stocks, Fluxes, and Age Distribution 

3.3.1 Stocks and fluxes – Snoage versus SFireLU and convergence in global NEP.           

Carbon stocks in biomass are lower in Sage than in Snoage by ~40 Pg C globally (Figure 6). Lower global biomass in 

Sage can be explained by feedbacks from LUC and Fire that create younger age-classes that have lower overall bio-

mass than in older stands. In addition, age dynamics cause turnover to increase (as in Figures 3 and 4), causing soil 470 
carbon to be greater by ~35 Pg C and litter carbon to be greater by 5 Pg C. Taken together, age-class dynamics cause 

40 Pg C to be re-allocated from the living biomass pool to the soil-detrital pool, which compounds to alter the mag-
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nitude of fluxes from heterotrophic respiration. Demographic changes in turnover, such as these, are already known 

to be a large source of uncertainty among projections by global ecosystem models (Friend et al. 2014). What these 

numbers emphasize, however, is that uncertainty among models could be reduced by explicitly modeling age dy-475 
namics. 
 

Net Ecosystem Exchange (NEE; positive fluxes to atmosphere) is only marginally different between Snoage and Sage 

simulations (mean difference of 0.25 Pg C yr-1 over 2000-2010). Compensatory fluxes in Fire and Rh explain the 

small difference in NEE at global scales. Fire fluxes in Sage are lower by 0.92 Pg C yr-1 in the 2000s than in the 480 
Snoage, but fluxes from Rh are greater in Sage by 1.61 Pg C yr-1 and NPP also greater by 0.55 Pg C yr-1. The fluxes in 

Fire, Rh and NPP largely offset to minimize differences in NEE from age dynamics.  
 

The question still remains – should there be an expectation for greater differences in NEE (?), perhaps not. Consider 

that deforestation (areal changes prescribed the same in Snoage and Sage) occurs from the oldest to youngest age-class 485 
in Sage, following greater to lower overall biomass, respectively. The deforestation flux is greater in the Sage by only 

0.04 Pg C yr-1 in 2000s compared to deforestation fluxes in Snosge, which makes sense given that low-biomass age-

classes are not preferentially deforested or harvested. By contrast, fire is not prescribed in LPJ-wsl but it is simulated 

based on soil moisture and a minimum fuel load. It is not clear outright how age-dynamics affect soil moisture, but 

fluxes from fire would need to be proportional to the biomass in a patch. By definition in Sage, there is explicit repre-490 
sentation of lower-biomass patches (younger age-classes) than in Snoage, and a series of fires or disturbances within 

the grid-cell would drive the age distribution towards younger states, exacerbating differences in downstream fluxes 

as well. That global NEE only changed marginally when simulating global age dynamics was a surprise, but ex-

plained by shifts in the carbon pools and compensatory fluxes, then the patterns appear to make sense. In light of 

these compensation effects, however, there is a great need to benchmark fluxes from critical feedbacks, particularly 495 
from fire in this case. It is beyond the scope of this paper to do so, and best available datasets, such as the Global 

Fire Emission Database (GFEDv4s; van der Werf et al. 2017) do not lend themselves to direct comparison with fire 

fluxes from LPJ. GFED includes fires from deforestation and land management that are tracked differently in LPJ-

wsl – as a land use change flux, which cannot simply be added to the fire flux for direct comparison to GFED with-

out double counting. In any manner, this issue is stated as a suggestion for future development and refinement. 500 

3.3.2 Global age-class distribution – contribution of fire and LUCLM to age distributions 

Average ecosystem age, generated by the model, differed greatly among continents (Figure 7), with large areas of 

old-growth forests in Asia, Europe, North and South America skewing the distribution towards older ages. The larg-

est area of young ecosystems was located in Africa and Australia (Figure 1), wherein age-classes comprised an ~1:1 

age to fractional area ratio of vegetated land (age-classes < 20 years comprise ~20% of the vegetated land area in 505 
Africa and Australia and age-classes < 40 years ~ 40% of vegetated land area; Figure 7).  

 

The primary driver of zonal age distributions was Fire (Figure 8), which was responsible for a ~23 yr difference in 
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zonal ages (Table 3). There was a significant decrease in zonal ecosystem age over time due to fire (Table 3), most 

likely from feedbacks due to enhanced fuel (biomass) production from CO2 fertilization. The causes were not ex-510 
plored further because feedbacks between fire-climate-CO2 are largely constrained by the fire module itself. A prop-

er attribution to trends in fire is better suited to fire model inter-comparisons (‘FireMIP’ in Hanston et al. 2016). The 

emphasis here is simply that fire was a major driver of age distributions and fire-age relationships had an apparent 

trend over time. Between simulation years 1860 and 2016, fire caused a total change in ecosystem age, integrated 

over the time period, by -1.5 years in boreal zones (negative values for a decrease in age), whereas the change was 515 
greater in temperate (-6.7 years) and tropical (-8.24 years) zonal bands (Table 3). The larger trend in temperate and 

tropical latitudes might be due to increasing warming temperatures in contemporary times, causing dryer conditions 

more suitable for fire, or from increases in fuel loads from CO2 fertilization. A more convincing argument would 

require support from additional factorial experiments to identify to the casual driver of the trend differences.  
 520 
After accounting for the effects of fire, LUCLM caused a much greater change over time in the zonal ecosystem age 

(Figure 9). Integrating from 1860 to 2016, LUCLM caused a zonal change in ecosystem age by -6.1 years in boreal 

zones, whereas the change in ecosystem age from LUCLM in temperate and tropical zones was -21.6 years, with no 

significant difference in the trend due to LUCLM among these zonal bands (Table 3). These patterns are consistent 

with the concentration of deforestation in the tropics and land use change in temperate latitudes, as described by the 525 
forcing data (Hurtt et al. 2011, Hurtt et al. 2017).   

3.4 Global Demographic Effects on NPP and Rh 

3.4.1 Simplification of LPJ-wsl via a statistical model  

The statistical model (flux = B1 precipitation + B2 temperature + B3age age-class; See Sect. 2.3.6 for details) had 

great predictive power for NPP and Rh, with R2 between 0.95-0.98 (Figure 10). The predicted fluxes were at annual 530 
time scales, with annual variation being mainly driven by total annual precipitation and mean annual temperature, 

whereas the mean state (intercept) being predicted by the age-class. The predictive power for a model of NEP was 

slightly worse (R2 between 0.60-0.65; SM Figure 1). The effect of precipitation, temperature and age-class on NEP 

was not consistent enough for robust predictions, but more specifically, the predictors had different effects on NPP 

versus Rh leading to poorer model fit. As it is, NEP is better derived as predictions of NPP minus predictions of Rh 535 
rather than having a standalone model for NEP. 
 

3.4.2 The Effective Range of Predictors – assessing relative importance of demography on predicted fluxes 
 

The “Effective Range of the Predictors” were mapped to visualize spatial patterns of the range of effects, given ob-540 
served values for the predictors (Figure 11). In essence, the effective range of the predictor is a measure of the dy-

namic range in the predicted flux due to changes in precipitation, temperature or demography. It is calculated as the 

grid-cell-specific beta coefficient multiplied by the observed range of the predictor for a given grid-cell, which helps 

constrain the effect of the predictor on the predicted flux to realistic values. For example, for the LPJ-wsl grid-cell at 
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location [110.75 W 50.25 N], the ß estimate for the effect of precipitation on NPP was 0.0028, and the range of ob-545 
served precipitation (based on CRU TS36) was 282 mm, then the effective range of the predictor on the flux was 

calculated as 0.0028*282 = 0.79 kg C m-2 yr-1.  
 

The effect of precipitation on NPP was clearly greater in the central USA and Eastern Australia (range of effect ~ 

0.70 kg C m-2 yr-1 due to precipitation) than in other locations, and overall, precipitation had a stronger (positive) 550 
effect on NPP than on Rh (Figure 11). It was also clear from the maps that the direction of the effect of temperature 

on NPP was more spatially varied in the direction of effect (both positive and negative) than other predictors (Figure 

11). The effects of precipitation and temperature displayed similar spatial patterns in both primary and secondary 

stands, which was a good indicator that the model was performing as expected because, within the LPJ-wsl model, 

the distinction between primary and secondary stands is mainly to track land use histories and there was no reason, a 555 
priori, that climate effects should differ substantially between the two stand types. 
 

The effective range of demography on fluxes was generally lower than the effective range of precipitation and tem-

perature, but there were regions where the range of demographic effects were just as important as, or greater than, 

the climate predictors. The demographic effect on NPP ranged between 0.30-0.60 kg C m-2 yr-1 in Eastern North 560 
America, Western Europe, Central Africa, Eastern China, Tropical Asia, and distributed smaller areas of South 

America (Figure 11), whereas it was at maximum ~0.10 kg C m-2 yr-1 in other regions. The higher demographic ef-

fect was predominately on secondary stands (Figure 12), but there was also a distinct absence of primary stands in 

these same areas (Figure 11) so it could not be said definitively if the higher demographic effect was due to a wider 

age distribution, and therefore a greater demographic effect, or simply due to the productivity of these locations.  565 

3.4.3 Frequency distribution of demographic effects 

The global mean demographic effect on NPP on primary stands was 0.078 ± 0.063 [0, 1.37] kg C m-2 yr-1 (µ ± stdev. 

[min, max]), whereas on secondary stands it was 0.160 ± 0.141 [0, 1.33] kg C m-2 yr-1. There were differences in the 

spatial distribution of primary and secondary stands that led to the disparity in global mean values of the demo-

graphic effect. On primary stands, the distribution of age-classes with maximum NPP flux was skewed towards the 570 
second (11-20 years) age-class having the maximum NPP flux, whereas on secondary stands, the maximum NPP 

flux was in the first (1-10 years) and also in the second age-class (Figure 12). The first class was categorized as 1-10 

years, but in the presence of constant renewal, an age-class can effectively be younger than an equivalent age-class 

without such recurrent disturbance. Furthermore, on primary stands, fire is the only mechanism that creates young 

age-classes, whereas land management also creates young age-classes on secondary stands. It is possible for wood 575 
harvest, a form of simulated land management, to result in advanced regeneration of younger stands if harvest de-

mand is met without ‘clear-cutting’ the prescribed fractional area under harvest. Currently, the model structure does 

not lend itself to say definitively the cause of the difference in the age-class of maximum flux, but the only process 

that differs between primary and secondary stands is land management, so it is reasonable to assume that land man-

agement is the cause of the difference. In any manner, global values for age-effects for NPP on primary and second-580 
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ary stands were also skewed towards greater values on secondary stands, but more due to the absence of primary 

stands in productive areas where secondary stands dominated (e.g., Eastern U.S.A.).  
 

Following a similar pattern, the demographic effects on Rh were greater on secondary stands than on primary stands 

(Figures 11 and 12), which could be partly explained by the differential coverage of secondary and primary stands, 585 
but also by historical land use. LUCLM leads to overall greater inputs to soil and litter carbon pools than does fire, 

and the latter is simulated in the same manner on secondary stands as on primary stands. In LPJ, wood harvest is 

only 60% efficient, leaving dead biomass ‘residue’ as a legacy flux. An increase of carbon in the litter and soil pools 

would add additional mass that can be respired during heterotrophic respiration, and which manifests as a larger 

demographic effect on Rh, ranging from 0.25 to 0.70 kg C m-2 yr-1 on the high-end (Figure 12). 590 

4 Discussion 

4.1 Distribution of Ecosystem Age on Earth 

The LPJ-wsl age-module simulates the upper limit of age-class distributions on Earth (Figure 13) and captures im-

portant demographics effects on NPP and Rh. Simulations demonstrate that fire and LUCLM have been driving the 

latitudinal age distribution towards younger states in contemporary times (Figure 8), suggesting an increasing role of 595 
age dynamics on global ecosystem functioning. Whereas time is the only mechanism that increases ecosystem age, 

any additional disturbance not explicitly modeled in this study will decrease age.  

 

The simulations omit widespread disturbances of windstorms, flood, pest and disease outbreak, selective logging, 

and other processes that would modify stand structure and function. For instance, small-scale logging activity is a 600 
dominant disturbance in South Eastern U.S.A. (Williams et al. 2016) but it is underestimated by the LUCLM driver 

data in this study (‘LUHv2’, Hurtt et al. 2017); otherwise the simulated age of secondary forests in this region (~100 

years) would be lower and closer to inventory-based age estimates of these forests (< 50 years; Figure 4 in Pan et al. 

2011b). Furthermore, the fire module has been well evaluated at global scale (Thonicke et al. 2001) but it is overly 

simplistic (Hantson et al. 2016), so it is more likely that effects of fire are much greater than simulated in this study. 605 
It is clear then that this study underestimates disturbances rather than overestimates them, and as such, these simula-

tions overestimate ecosystem age. But again, additional disturbances would only lead to younger age-classes, en-

hancing the role of age dynamics in regional and global carbon cycles. 
 

Even with these caveats in mind, the findings presented retain utility as insight into the way age-class dynamics in-610 
tegrate into our broader understanding of global carbon dynamics. Ecosystem demographics likely play a larger role 

than suggested here, and on regional scales, demographic effects on NPP and Rh are already identified by this study 

as more important in East Asia, Tropical Asia, Europe, Central Africa, Eastern North America, and Tropical South 

America than they are in other regions, where average ecosystem ages are much older.  

4.2 Age Dynamics Increase Turnover 615 
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In an analysis by Friend et al. (2014), it was determined that demographic processes (age-dependent mortality and 

turnover) influence carbon residence time (1/Turnover), which was found to be a major source of uncertainty in fu-

ture projections by global ecosystem models. In this study, it was demonstrated that simulation of age-classes led to 

a ~40 Pg C shift from live vegetation to the soil-litter pool, effectively an increase in biomass turnover. Further, re-

laxation times, or the time to return to a previous state, were up to 30 years in the no-age simulation (Snoage_event; 620 
Figure 5) but relaxation times were less than 10 years when simulating age-classes, suggesting that uncertainty in 

carbon residence time can be reduced by improving representation of demographics in models. Omitting age-class 

representation in models can leave long-lasting patterns in simulated fluxes that could inflate land use change fluxes 

at global scales when considering legacy fluxes from past land use change (Pongratz et al. 2014). The current state 

of knowledge is that fluxes from gross land use change and land management cause greater-than-expected land use 625 
fluxes (Arneth et al. 2017), but existing models that estimate the global land use flux (Arneth et al. 2017, Le Quéré 

et al. 2018) do not include age dynamics. If resiliency is inversely proportional to relaxation times (a quicker return 

to previous states is represented by shorter relaxation times, therefore greater resiliency; Pimm 1984, Tilman and 

Downing 1994), then instead of land use change fluxes being ‘greater than assumed’ (Arneth et al. 2017), we might 

rethink the land as being ‘more resilient than expected’ when demographic effects are considered at large scales. 630 

4.3 Forecasting Demographic Effects with a Simplified Statistical Model 

The modeling community has made increasing effort to simplify complex models using a traceability framework 

(Friedlingstein et al. 2006, Xia et al. 2013). Statistical emulators, from matrix models (Huang et al. 2018) to ac-

counting-type statistical models, which track individual carbon pools (Xia et al. 2013, Ahlström et al. 2015), have 

been developed to reduce the dimensionality of simulated state variables. However, statistical modeling by linear 635 
regression can be a more straightforward approach, as long as the statistical model shows promise.  

 

We found that LPJ-wsl fluxes of NPP and Rh could be predicted at annual timescales by three terms, precipitation, 

temperature and age-class. Part of the success of the data model came from allowing coefficients to vary by grid-

cell. This allowed the intercept (age-class) term to effectively capture grid-cell level variation in soil texture (which 640 
influences soil hydrology and plant available water), PFT composition and cloud cover. Another insight was that 

climate and age-class had differential effects on NPP versus Rh, which makes sense and ultimately led to poorer fit 

of the NEP model (NEP = NPP – Rh). It might have been possible to improve upon the NPP model further by sepa-

rately modeling GPP and Autotrophic Respiration (NPP = GPP – Ra) because climate might also have differential 

effects on GPP than on Ra, but suffice to say that the NPP statistical model was robust. 645 
 

Although unexplored in this study, the spatial datasets of predictor coefficients could be used within an emulator 

(Xia et al. 2013, Ahlström et al. 2015) to forecast NPP and Rh, while exploring extreme climate scenarios 

(Reichstein et al. 2013), such as drought. Such application would allow for a much quicker exploration of scenarios 

and could include a more explicit treatment of uncertainty that would otherwise be too costly for the simulation 650 
model in terms of computing time. The spatial dataset of precipitation coefficients has an equivalent meaning to 
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spatial maps of climatic sensitivity. In fact, the maps of the effective range of precipitation on NPP (Figure 11) show 

areas where the precipitation effect is largest, notably in semi-arid biomes – a biome that is known to be highly sen-

sitive to precipitation and has been shown to play an important role in the inter-annual variability of global-scale 

fluxes (Poulter et al. 2014, Ahlström et al. 2015). But what if, in a given year, semi-arid biomes received their max-655 
imum annual precipitation, while every other biome received its lowest annual precipitation – can anomalously high 

annual precipitation and high productivity events in some regions overcome anomalously low precipitation and low 

productivity events in other regions? This type of question is best suited for exploration within a simplified statisti-

cal model that maintains fidelity to the process-based model because effects of climate on fluxes can be explored 

quicker, easier, and with a better treatment of statistical uncertainty.  660 

4.2 Vector Tracking of Fractional Transitions (VTFT) – modeling age-classes in global models 

The VTFT approach simulated classic demographic responses in NPP and Rh (Figure 4), a differential in younger 

age-classes that led to a larger carbon sink in the youngest stands. These demographic responses are inherent within 

the original formulation in LPJ; that is, establishment rates and the process of self-thinning of stand density over 

time as plants grow and compete (for space, light, water resources) have been unchanged. In the original formulation 665 
of LPJ-wsl (prior to this study), and under a hypothetical scenario where a disturbance clears the biomass from the 

entire grid-cell (0.5° ~ 2,500 km2), the resultant evolution of stand structure and fluxes would produce the same pat-

tern as in the age-module, such as the age-NPP pattern from Figure 4. It is often the case, however, that smaller dis-

turbances (<< 2,500 km2) occur regularly as opposed to a much larger disturbance the size of the entire grid-cell. As 

such, in the original formulation of LPJ, the potential benefits of demographic responses are often masked (as 670 
demonstrated in Section 3.2.2; Figure 5). One can then say that the VTFT age-module reveals intrinsic demographic 

responses and model behavior that would rarely emerge otherwise.  
 

Total runtime for global age-class simulations (Sage) was ~8 hrs on 32 Intel Xeon CPUs, including spinup to transi-

ent simulations, whereas the total runtime for the no-age simulations (Snoage) was ~3 hrs. On a limited sample of 675 
single grid-cell simulations, there was a 4- to 6-fold increase in runtimes, but not all grid-cells require simultaneous 

tracking of every age-class so the increase in runtime of global simulations was lower than expected from per-grid-

cell estimates. 

4.3 Opportunities for Improving Modelled Age-dynamics 

There a number of opportunities for refining the age-module. Incorporating additional disturbances within the mod-680 
el, which will help simulate age distributions more consistent with inventory (Pan et al. 2011a) and satellite (Pugh et 

al. 2019b) data and contribute to more scientifically relevant questions. Modeled disturbances need not be complex 

to explore their effects on age distributions, they only need to reset a fractional area to the youngest age-class. For 

example, windstorms from Hurricanes are known to be a large disturbance of Eastern North American forests (Dale 

et al. 2001). Data on Hurricane return intervals and locations of landfall in Eastern North America have been availa-685 
ble for some time (Keim et al. 2007), and could be used to prescribe a periodic resetting of age-classes to assess the 
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demographic effect of Hurricanes on ecosystem function. In another example, forest gaps represent areas of high 

production because of high resource abundance relative to the surrounding areas. The distribution of forest gaps also 

has a predictable power-law relationship with size of the gap (Asner et al. 2013), and this fact lends itself well for 

representing gaps within the framework of the current age-module. 690 
 

There are limitations to the current framework of the model, which are more difficult to overcome and will require 

more effort in model development. In this version of the model, plant composition and competitive dynamics in 

young age-classes are not representative of early successional dynamics because there is a lack of plant trait varia-

tion in the current set of PFTs that could otherwise represent a wider range of growth strategies, turnover, and pro-695 
duction (Pütz et al. 2011, Fischer et al. 2016, Miller et al. 2016). There is also no height variation within an age-

class, for lack of a radiative transfer model; each age-class in this version of LPJ-wsl is an even-height stand. Demo-

graphic patterns in this study (age-NPP, age-Rh, relaxation times by age-class) will inevitably differ when, and if, 

additional trait and height variation is incorporated into the model.  
 700 
Recent model developments in JSBACH4 (Nabel et al. 2019) and ED-2.2 (Longo et al. 2019) could point the way 

forward for incorporating a greater amount of vertical heterogeneity in LPJ-wsl, as well as in other models. In any 

case, the age-module in LPJ-wsl v2.0 now contributes to an ensemble of global models with demographic capabili-

ties. 

5. Code and Data Availability 705 

LPJ-wsl v2.0 model code, in its entirety, is freely available at <https://github.com/benpoulter/LPJ-wsl_v2.0>. Code 

used for analyses and figure production are available at <https://github.com/lcalle/VTFT_demography>. Associated 

data necessary to reproduce the analyses and figures, as well as a copy of the analysis code is permanently archived 

at the Dryad Digital Repository <https://doi.org/10.5061/dryad.k6djh9w4x>. 
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Table 1. Age-class widths corresponding to two 

different simulation age-class setups in LPJ. The 

age-class codes are referenced in Figures.  

  Age-Widths (years) 

Code Unequal Bins 10-yr Equal Bins 

1 1-2 1-10 

2 3-4 11-20 

3 5-6 21-30 

4 7-8 31-40 

5 9-10 41-50 

6 11-15 51-60 

7 16-20 61-70 

8 21-25 71-80 

9 26-50 81-90 

10 51-75 91-100 

11 76-100 101-150 

12 +101 +151 
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Table 3. Linear trend statistics by zonal band from LPJ-wsl simulations, based on model (age = 𝛽0 + 

𝛽1*year) where year at 1860 is indexed at 1. Coefficients listed as 𝜇 ± S.E. All d.f. are 113 and p < 

0.001. 
Zonal Band Simulation 𝛽0 𝛽1 R2 
Boreal Fire Only (SFire) 141.7 ± 0.01 -0.0098 ± 0.0002 0.95 

 Fire and LUCLM (SFireLU) 139.7 ± 0.13 -0.0388 ± 0.0019 0.78 

Temperate Fire Only (SFire) 118.5 ± 0.05 -0.0525 ± 0.0008 0.98 

 Fire and LUCLM (SFireLU) 112.6 ± 0.21 -0.1383 ± 0.0032 0.94 

Tropics  Fire Only (SFire) 95.9 ± 0.06 -0.0429 ± 0.0009 0.95 

  Fire and LUCLM (SFireLU) 88.9 ± 0.16 -0.1382 ± 0.0024 0.97 
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Figure 1. LPJ-wsl model structure of inputs (red), time-steps (blue) and the level at which state variables are 925 
tracked within grid-cells and sub-grid-cell patches (green), such as age-classes or land uses. Simulation of 

abiotic, biotic and ecological processes occurs at the scale of a patch. 
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Figure 2. Methodological examples of the matrix based method called Vector-Tracking of Fractional 930 
Transitions for computationally-efficient simulation of age-classes in large-scale models. (a) Hypothetical 

matrix of VTFT vectors of fractional areas (f). The total area of the age-class is the sum of the fractional areas 

in the corresponding VTFT vector. State variables are calculated on area basis by accounting for the 

fractional area of the age-class, in this example Csoil is the carbon in soil. (b) An example of the VTFT method 

for a newly created age-class by clear-cut wood harvest. An area-weighted average updates age-class state 935 
variables in the youngest age-class using the preceding total fractional area of the age-class and the incoming 

fraction. (c) A VTFT example for a fractional age-class transition. An area-weighted average updates state 

variables in an age-class using the preceding total fractional area of the age-class and the incoming fraction 

from the younger age-class. 
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Figure 3. Boxplots by age-classes (x-axis, in years) from LPJ-wsl simulations for MI, MN, WI. (blue, left) Age-

classes defined with unequalbin age widths (Table 1); small age-widths in the youngest age-classes towards 

progressively larger width age classes. Density peaks in the 21-25 year age-class and NEP peaks in the 5-6 

year age-class. For average tree height (middle row), large tree height in the youngest age-class represents the 945 
‘survivor’ trees; average tree height decreases as the density of establishing saplings increases. (gold, right) 

Age-classes in 10-yr-equalbin age-widths (Table 1), the standard age-class setup used in global age-class 

simulations. Peaks in Density and NEP roughly follow the age-class patterns when finer age-widths are 

employed (blue, left).  
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Figure 4. Boxplots of NPP and Rh by age-classes (x-axis, in years) from LPJ-wsl simulations for U.S. States 

MI, MN, WI. Age-classes defined with unequalbin age widths (Table 1); small age-widths in the youngest age-

classes towards progressively larger age-widths. 
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Figure 5. A time-series comparison between the standard LPJ-wsl simulation (Snoage_event) and the age-class 

approach (Sage_event) in an idealized single-cell simulation of a deforestation, abandonment, and subsequent 

regrow event. x-axis is the simulation year. See Table 2 for simulation details. 
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Figure 6. Time-series of global carbon stocks and fluxes from LPJ-wsl simulation without age-classes (black 

lines) compared against simulations with age-classes (red).  
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 965 
Figure 7. Age-class distributions by Continent. (left) Violin plots of ecosystem age by continent averaged over 

2000-2010, based on LPJ-wsl simulations. Violin plots show the distribution of data points (green), 

interquartile range (black box) and the median value (white circle). The number of vegetated 0.5° grid-cells in 

each continent are above plot. (right) Cumulative fractional area in continent by age-classes. Age-class codes, 

lowest (youngest) to greatest (oldest), correspond to the 10-yr-equalbin age-class setup (Table 1). 970 
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Figure 8. Zonal ecosystem age versus year based on LPJ-wsl simulations using full forcing (top), only fire 

(middle), or only land use and land cover change (bottom).  
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Figure 9. Trend in ecosystem age by zonal band for LPJ-wsl simulation with only fire (SFire, solid lines) and 

with both fire and LUCLM (SFireLU, dashed lines). Fire causes zonal bands to differ in ecosystem age by ~23 

years, and decreases the average age by 0.009 to 0.054/yr. LUCLM decreased ecosystem age at rates up to 3-

times the rate of fire, from 0.038/yr in boreal zones to 0.138/yr in temperate and tropical zones.  980 
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Figure 10. Annual fluxes (NPP, Rh) (2000-2017) from LPJ-wsl simulations versus predictions of LPJ-wsl 

fluxes based on a generalized linear model (flux = precipitation + temperature + age-class); coefficients were 985 
allowed to vary by grid-cell, in essence, reducing the effect of variation in plant composition, soil texture and 

hydrology. Coloring is by density of grid-cells on a log scale; diagonal red line is the 1:1 correspondence line. 

The simplified statistical model is can simplify the dynamics in the global vegetation model, with coefficients 

from the GLM helping to determine the relative importance of a small set of predictors. 
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Figure 11. Global maps of the Effective Range of the Predictors (precipitation, temperature, demography) on 

LPJ-wsl fluxes (NPP, Rh); black is zero values or no-data. The Effective Range of the predictor is calculated 

as the grid-cell-specific beta (ß) coefficient multiplied by the observed range of the predictor variable for the 

grid-cell, for years 2000-2017. Units are on the scale of the predicted flux (kg C m-2 yr-1). In these maps, an 995 
emphasis is placed on the effective range of the predictor rather than the absolute value of the coefficient, 

although these too can be mapped for forecasting purposes. See Sect 2.3.6 and Sect 3.4 for additional details. 
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Figure 12. Stacked frequency plots for NPP, Rh on primary and secondary stands. (top row) Global 

frequency of age-classes with the largest flux (NPP, Rh), relative to other age-classes in the grid-cell. Age-class 1000 
codes, lowest (youngest) to greatest (oldest), correspond to the 10-yr-equalbin age-class setup (Table 1). 

(bottom row) Global frequency of the range of the demographic effect on fluxes, bin width is 0.10 kg C m-2 yr-

1. An example interpretation, on primary stands, (top left) NPP is greatest in the second age-class and (bottom 

left) the demographic effect on NPP is < 0.25 kg C m-2 yr-1. 
 1005 

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12
agecode

fre
qu

en
cy

primary

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12
agecode

fre
qu

en
cy

secondary

0

10000

20000

30000

40000

0.00 0.25 0.50 0.75 1.00
kg C yr−1 m−12

co
un

t

primary

0

10000

20000

30000

40000

0.00 0.25 0.50 0.75 1.00
kg C yr−1 m−12

co
un

t

secondary

Primary	Stands Secondary	Stands

kg	C	m-2 yr-1 kg	C	m-2 yr-1

Fr
eq

ue
nc
y 30,000

20,000

10,000

0

40,000

30,000

20,000

10,000

0

40,000

Fr
eq

ue
nc
y

Age-class	with	Maximum	Flux Age-class	with	Maximum	Flux

Range	of	Demographic	Effect Range	of	Demographic	Effect

1 2 3 54 6 7 8 9 10 11 12 1 2 3 54 6 7 8 9 10 11 12

Age-class	Code Age-class	Code

NPP
Rh

NPP
Rh

0.0 0.25 0.50 0.75 1.0

30,000

20,000

10,000

0

30,000

20,000

10,000

0

0.0 0.25 0.50 0.75 1.0

https://doi.org/10.5194/gmd-2020-258
Preprint. Discussion started: 22 September 2020
c© Author(s) 2020. CC BY 4.0 License.



44 
 

 
Figure 13. LPJ-wsl simulated global distribution of ecosystem ages, defined as the time since disturbance by 

fire and/or land use change and land management (LUCLM) in year 2016. (top) Average age of the natural 

ecosystem, scaled to the area of natural lands within 0.5° grid-cells. (middle) Average age of primary 

Ecosystems only, wherein only fire creates age structure, scaled to the area of primary lands. (bottom) 1010 
Average age of secondary Ecosystems only, wherein fire and LUCLM creates age structure, scaled to the area 

of secondary lands. 
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