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Abstract

The formation of stratigraphy in shallow marine environments has long been an important topic15

within the geologic community. Although many advances have been made in the field of forward

stratigraphic modelling (FSM), there are still some areas that can be improved in the existing models.

In this work, the authors present our recent development and application of Sedapp: a new non-linear

open-source R code for FSM. This code uses an integrated depth-distance related function as the

expression of the transport coefficient to underpin the FSM with more along-shore details. In addition20

to conventional parameters, a negative-feedback sediment supply rate and a differentiated

deposition-erosion ratio were also introduced. All parameters were implemented in a non-linear manner.

Sedapp is a 2DH tool that is also capable of running 1DH scenarios. Two simplified case studies were

conducted. The results showed that Sedapp can not only assist in geologic interpretation, but is also an

efficient tool for internal architecture predictions.25
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fault basin
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1 Introduction

Shallow marine areas are among the most active environments for sedimentation, where sea level,

tectonism, climate all influence the interactions between land and sea. The sedimentary successions30

formed in these areas are an important record of the past interactions. In addition, shallow marine

stratigraphic record itself can be an ideal hydrocarbon accumulation place. From this record, many

theoretical and field studies have made great achievements and accumulated a wealth of data in the past

decades.

In order to better interpret the specific processes and analyze internal architectures, many forward35

stratigraphic models (FSM) have been built for a range of temporal and spatial scales. These models

can be roughly divided into two categories, according to their purposes. The first is a full source-to-sink

type, which mainly analyzes the deposition and erosion processes from the perspective of the whole

sediment chain. In addition to analyzing the depositional response in the downstream unloading area,

this kind of model also deals with precipitation and tectonic uplift in the upstream catchments area,40

which directly determine water and sediment flux (Armitage et al., 2011;2018; Ding et al., 2019; Guerit

et al., 2019; Zhang J.Y. et al., 2020). The second, which we choose here, is a sink-dominant type, which

focuses on analyzing the architectures and stacking patterns of the sedimentary results in a forward

manner (Rivenaes, 1997; Dalman and Weltje, 2012; Granjeon, 2014; Li et al., 2020). This type

generally does not consider how the sediments in the source area are entrained. Instead, it usually takes45

the sediment supply rate as a known condition. This kind of model is appropriate for rapid evaluation

of the underground strata and prediction of potential hydrocarbon reservoirs by fitting some known

evidences.

For long-term processes, sediment flux is usually assumed to be proportional to the topographic

gradient. Thus, through the mass conservation law, a diffusion equation like Eq. (1) is generally used in50

FSM models (Paola, 2000).
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where h denotes the topography, t denotes the time and Γ denotes the transport coefficient. If Γ is

a constant or it does not change with the unknowns, these models are usually called linear models.

Whereas if Γ changes with the primary unknown h, these models are called non-linear models.55

In many cases, linear models are not very robust when the stratigraphic results and controlling

factors are interactively connected. For example, topography evolution in the marine portion is

seriously affected by the water depth, whereas water depth is generally a function of topography and

sea level. In this case, non-linear models seem to be more suitable. Many existing non-linear models

define the transport coefficient using water depth-related functions (e.g., in Clarke et al .1983;60

Kaufman,1991; Syvitski and Hutton, 2001, the coefficient value was assumed to decrease

exponentially with the water depth ). Water depth models can work well in general coastal zones.

However, in shallow marine environments with river injection, these models are not as effective,

especially when reflecting the shoreline shape in plane view. Depositional processes around the river

mouth are more active than those at a distance, even when they are at the same water depth.65

Additionally, according to Eq. (1), if Γ is fixed for a given site, deposition or erosion (i.e.,∂h/t >

0 or ∂h/∂ t < 0 ) depend solely on the topographic gradient. However, in a basin, the efficiency of

deposition and erosion can be very different, even if the slope, sediment supply, and water flux are the

same. For example, some bed surface is “hardground”, which is very difficult to erode. While the

overlying deposition process is relatively easy. In this case, a distinction between the two processes70

seems necessary. For a long-term stratigraphic forming process, there may exist many sedimentary

discontinuities, which may provide long enough time to generate a variety of "hardgrounds" (the

missing time in the sedimentary record can be predominant according to Miall, 2015). Thus, we need to

impose a ratio to differentially treat the efficiency of deposition and erosion besides the original

diffusion process. Here we call it the efficiency ratio of deposition to erosion. While customizable75

adjustment of this ratio is less involved in the existing FSM models. Although some source-to-sink

models (e.g. Guerit et al., 2019) have introduced the distinction between deposition and erosion

processes, the complex parameter settings still severely limit its practicability in a quick result-fitting.

In addition, many existing models are not free or open-source, making it difficult for people to

reproduce and improve them.80

In this paper, we propose a new non-linear FSM model, which is expected to add some new

features to the existing models. This model is integrated into a framework called Sedapp, which is an
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open-source and cross-platform application written in R. We use examples to show how this model

works and test its effectiveness and convenience in reconstruction of sedimentary systems, revealing

their internal architectures.85

2 Methodology

2.1 Mathematical model

The Sedapp mathematical model can be expressed as follows:
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where Fi is the fraction of the ith class of sediment, h is elevation, t is time, ∇ is the nabla operator,

Der is a user-defined parameter denoting the ratio of deposition to erosion (it can be a scalar, vector or

tensor value depending on its temporal and spatial variability), Γi is the diffusion coefficient for the ith

class of lithology, and q is the source term that is a function of coordinates and time (the source term is

used only for endogenetic sedimentation, especially carbonates. If endogenetic sedimentation is95

ignored, the source term can be left out). Of these, h and Fi are the primary unknowns.

Note that Γi cannot be outside the parentheses because they are not constants but rather functions

of spatial coordinates and time. The Γ can generally be expressed as:
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where α/αwd are preexponential factors (L2/T) , η/ηwd are distance indexes (no dimension), β/βwd are100

spatial scale factors ( L or wdL ), and ε is an adjustment factor (L2/T) reflecting the environment

energy. In particular, the distance function D=D(x,h,sl) and water depth function Wd(x,h,sl) change

with spatial coordinates x, topography h and the sea level sl, and they apply to the marine portion only.

When Der = 1 and n = 2, the 3D (actually 2DH, because h is another dimension perpendicular to

x and y) scenario for Eq. (2) and Eq. (3) can also be expressed as:105
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where x and y are spatial coordinates. This is especially suitable for cases dealing only with two classes

of sediments for simplicity, where Γ1 is the transport coefficient for sand and Γ2 is the transport

coefficient for mud.110

For 2D (1DH) scenarios, especially along the section line through the river mouth, the distance

related term is generally larger than the water depth related term, so the latter term within the max

function in Eq. (4) is usually omitted. For convenience in coding, also ignoring the endogenetic

sedimentation, Eq. (5), Eq. (6) and Eq. (4) can be simplified into:
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The joint effect of c and E in Eq. (9) is equivalent to that of β in Eq. (4). The variable c here, with

a dimension of L-1, is mainly used to facilitate the scale of distance and differentiate the transport

characteristics of different sediment types (e.g., sand and mud). E is a denominator of an exponent. Its120

corresponding numerator is a transformed distance term, which could be regarded as a proxy to the

river injection related hydraulic energy. In order to make the whole exponent dimensionless, the

denominator and the numerator should have the same dimension. Thus, E could be considered as

“hydraulic characteristic energy”. While for ε , it does not contribute very much to the deposition

geometry around the shoreline. Instead, it could significantly affect the sedimentation deep in the basin.125

This seems to have little to do with the transportation capability originated from the river injection,

instead the most appropriate description is as the energy inherent in the basin that carries the sediments

to the basin centre.

2.2 Code Implementation

Sedapp was written in the R language and its solution was based on the finite volume method130

(FVM), which has the desired property of local mass conservation and has a clear physical meaning

(Versteeg and Malalasekera, 2007; Moukalled et al., 2016; Liu P. et al., 2017). The cell-centered
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variable arrangement method was used to store the unknowns at the grid element centroids. The

non-linearity was implemented through stepwise iteration (Fig.1).

The brief work-flow within a single time step is as below:135

1) Implement user-defined tectonic subsidence and update the topography;

2) Implement user-defined sea level and identify/update the shoreline location;

3) Solve the differential deposition/erosion function;

4) Implement the compaction and isostatic subsidence.

Step 3) is an important step. According to the hypothesis of diffusion-based FSM models, the140

change rate (by either deposition or erosion) is proportional to the gradient of the slope (Fernandes et

al., 1997; Pelletier, 2013). If we use the diffusion equation/law directly without any differential

treatments between deposition and erosion (in other words, Der is held at 1), it will be very difficult to

treat some complex situations. For example, some bed surface is “hardground”, which is very difficult

to erode, whereas the overlying deposition process is relatively easy. Hence, for a given location,145

erosion and deposition could occur at different rates and Der may not be equal to 1. For example, if we

wanted the erosion rate to be only 1/100 of the deposition rate, Der can be set to 100. Through the max()

function in Eq. (2), for a deposition process (namely the
t
h



>0),  hi would be larger than

der
1  hi , and  hi is used. Otherwise, the

der
1  hi is used. If a non-erosion

case is desired, Der can be set to a very large value.150

Generally, sediment supply rate cannot be directly defined through boundary condition settings

since the latter can only determine the boundary slope. Therefore, Sedapp uses a negative-feedback

strategy to define the sediment supply rate. At each time step, the total amount of deposition within a

step is first calculated using the previously defined test , and then the adjusted modα is calculated by

Eq. (10):155

test

expected
testmod V
V

α  (10)

where αmod denotes the modified α of this time step; Vexpected denotes the expected sediment increment,

namely the sediment supply rate; and Vtest denotes the computed sediment increment with αtest.
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3 Characteristics

3.1 Nonlinear transport coefficients160

The nonlinear transport coefficient is a feature of Sedapp. Sedapp's transport coefficient uses a

function of both the distance from the estuary and the water depth. This feature makes it easier to

simulate fluvial-deltaic processes in 2DH scenarios, which can reflect changes along the shore. Even in

1DH cases, this feature also has some advantages (see the discussion section for details).

Generally, a smaller c value in Eq. (9) results in a higher sediment travel distance and a larger165

distribution range when the total amount of sediment is fixed. For example, the c of mud is usually set

to 50%-85% of sand, thus reflecting the differential deposition of sand and mud. In addition, the

environment energy ε can also influence the sediment travel distance; e.g. a larger ε will make the

sediment travel further. As sedimentation progresses, the position of the estuary may change, so the

distance from the estuary is updated at each time step to achieve the nonlinearity of  .170

3.2 Differential and customizable deposition/erosion rate

During the actual deposition process, the properties of the underlying strata (such as compaction

degree, lithology, and age, etc.), as well as some external environmental factors (such as temperature,

humidity and pH value, etc.), will affect the erosion rate. Therefore, the customized treatment of

erosion rate is another Sedapp characteristic.175

In Sedapp, the deposition rate is a parameter that can be specified directly (for the adjustment

process see section 2.2). Furthermore, the Der parameter is a user-defined parameter that controls the

ratio of deposition rate to erosion rate. When Der is 1, the deposition rate is equal to the denudation rate

(Fig.2a), and when Der value is 10 or 100, denudation is significantly weakened (Fig.2b). Theoretically,

if the value of Der is large enough, it is equivalent to completely eliminating the denudation effect. Der180

values should be customized according to the actual situation.

3.3 Customizable compaction

Compaction is an important geological process after sediment deposition, especially when the

sediment thickness is very high. In Sedapp, the compaction process can be easily realized by setting the

composition of lithology and porosity curves.185

In this paper, we designed a pyramid-shaped mountain simulation commonly used by other
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researchers (as shown in Fig.3, see Rivenaes, 1992 and Yuan et al., 2019 for reference). The Der value

was set to 1. The sediment supply ratio of sand and mud was set to 1:1, and the porosity curve was set

as shown in Fig.3d. After simulation, the top of the pyramid was denuded and the foot of the pyramid

had deposited sediment of a given thickness.190

To illustrate the effect of compaction, Sedapp introduces a scale factor that can enlarge the

longitudinal scale. Fig.3a shows the original compression scale (that is, the scale factor was equal to 1),

and the scale factors in Fig.3b and Fig.3c were 100 and 1000, respectively. It can be seen that sediment

thickness at the foot of the pyramid in Fig.3c was significantly smaller than that in Fig.3a. The factors

that caused these differences were not only depth but also the proportion of sand and mudstone and the195

shape of depth-porosity curves, which can be easily adapted to different scenarios by modifying the

lithologic proportion and porosity-depth functions in Sedapp.

4 Verification of Sedapp

To identify how well the algorithm works within geological context, some simple benchmark

simulations are given below.200

4.1 Typical stacking patterns

Typical stacking patterns including forced regression, normal regression, and transgression can

be formed (Fig.4) by fixing sediment supply while controlling the adjusted sea level rise rate.

During the period of sea-level decline, the shoreline moved seaward, and the onlap points also

moved seaward and form the offlap and downlap stratigraphic termination structures (Fig.4a). During205

slow sea-level rise, the shoreline continued to move seaward, but the onlap points started to move

landward, forming an onlap termination structure. At the other end, the downlap structure continued to

exist. During rapid sea-level rise, the shoreline started to move landward and the onlap points also

moved landward. At this time, downlap structure did not exist above the slope break, but may have

existed below the slope break.210

4.2 Typical two-cycle scenario

To demonstrate the complete base level changing process, this paper designed a simulation with

two full sinusoidal cycles as shown in Fig.5. In the first cycle, the shoreline dropped and moved
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seaward. Then it slowly rose and gradually moved landward until it reached the highest point and

tended to stabilize. The water depth of deposition in the strata gradually deepened from left to right on215

the marine side (Fig.5a), and the sandy content reached a maximum around the shoreline (Fig.5b) near

the shoreline. In the strata on the land side, the sand content was stratified. The sand content was

relatively large during the early transgression and subsequently relatively small. The second cycle was

located above the first cycle and continued the same characteristics as the first cycle, but the deposition

range was enlarged and the average single layer thickness was thinner..220

4.3 Case studies

1) Model 1

In order to better display the 2DH performance of Sedapp, this paper designed Model 1. Its

length and width ranges were both 200m, and the elevation range was about 10m. The mesh was 200 ×

200 in x-y plane. The time span of the model was set at 10 Myr, and the step size was set at 0.5 Myr.225

Sea level was kept constant at 3 m. The initial topography was set as shown in Fig.6a. A river was set

up in the central position of the y-axis (y = 100m). The channel shape of the river was set in advance as

a sine curve. The fluvial profile slope was set to a constant of 0.00357, and the sediment supply rate

was not defined since it could vary according to the fluvial profile slope. The other main parameters of

the model are shown in Tab. 1.230

Projection of the simulation results on the x-y plane clearly showed the variability along the

shore (Fig.7). When t = 0, the shoreline was a straight line, and the channel was in the middle of the

shoreline. As time went on, the river mouth continued to move forward. From 0 to 2 Myr, the channel

first swung to the north, then to the south, and the shoreline began to bulge slightly towards the sea side.

From 2Myr, the channel continued to swing southward, until the time approached 4Myr and the river235

mouth began to slowly turn north. From 4Myr to 6Myr, the channel continued to swing northward, and

the convex part towards the sea side became more prominent. From 6Myr to 8Myr, the channel

continued the previous trend, while the convex shoreline became asymmetrical (increasing skewness to

the north). From 8 Myr to 10 Myr, the principal line of the channel moved southward, and the convex

shoreline gradually returned to being symmetrical (Fig.7).240

The simulation results also revealed some interesting features in longitudinal sections (Fig.8).

Two sections (y = 75m and y = 125m) perpendicular to the shoreline direction were selected (see Fig.7f
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for the position of the section line). The two sections are located on the north and south sides of the

main channel. The distance between the channel and the two sections was variable. In the southern

profile (y = 75m), from 4 Myr to 10 Myr, the isochronous lines of the formation changed from sparse245

to dense, and then from dense to sparse (i.e., the thickness of a single clinoform changed from thick to

thin first and then from thin to thick) (Fig.8). This was completely contrary to what was observed in the

northern profile (y = 125m). From 4Myr to 10Myr, the isochronous lines first changed from dense to

sparse, and then from sparse to dense, reflecting that the deposition rate first increased and then

decreased (Fig.9).250

Under the parameters shown in Tab. 1, due to the existence of estuaries, the shoreline bulged

towards the sea side. A closer distance to the river mouth would result in a higher sedimentation rate

and a greater shoreline advancing speed. From 2 Myr, the convex shape of the shoreline towards the

sea side became more apparent, similar to the morphology of some real-world deltas (Fig.10).

2) Model 2255

This code can be applied not only to marginal marine environments but also to the continental

fault basins. Taking the 3 + 4 sand groups of the third member of Shahejie Formation in the Gaobei

slope belt of Nanpu Sag in Bohai Bay Basin as an example, we conducted a simplified 1DH real case

study. The basic geological background is as follows: During the deposition period of this set of strata,

the normal fault tectonic movement in the north of the sag was active, which was the main controlling260

factor leading to the increase of accommodation space. At the same time, the terrigenous clasts came

from the north is sufficient, and the basin was in a balanced state (Li et al., 2018). According to the

geological background, a simplified reconstruction model (Model 2) was designed, which assumed that

the subsidence rate of the boundary fault and sediment supply rate is constant, neglected the effect of

isostasy, and considered the effect of sediment compaction.265

The simulation results are shown in Fig.11. From the perspective of temporal and spatial

stratigraphy, the shoreline mainly moved towards the sag center during the early stage, and then moved

back to the land side. The deepest water depth occurred in the middle south part at 2 Myr (Fig.11a).

This shoreline phenomenon is usually called autoretreat (Muto and Steel, 2002). The sand fraction

section shows that the steep slope belt in the north was richer in sand content than the south (Fig.11b).270

The porosity section shows that porosity generally decreased from bottom to top. The porosity also

varied horizontally, especially when the depth was greater than 800 m. The porosity in the north was
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higher than in the south.

Due to the over-simplified assumptions, the simulation results would not necessarily be

consistent with every practical borehole. However, the simulation revealed general trends that can275

strengthen or improve our existing understanding and validate the previously proposed conceptual

model.

5 Discussion

Sedapp is a diffusion-based model and its transport coefficient is a function of both distance from

estuary and water depth. Compared with most existing diffusion models based only on water depth, this280

modification has great advantages in fluvial-deltaic environments, especially for 2DH scenarios.

Sedapp not only simulates some surface landscapes, but it also reveals some interesting internal

features. In the sections beside the channel in Model 1, the formation rate of the clinoforms had a close

relationship with distance between the channel and the section. This may be of great significance for

analyzing ancient strata. Considering the resolution of seismic data, it is easier to observe changes in285

the density of the foreset than to directly find a channel. This may provide some important

supplementary information in areas with less borehole data. Sedapp also showed strong simulation

ability in 1DH scenarios. It can avoid some potential problems that water depth models may not

overcome. For example, when the slope is steep, the slope break trajectory created by the water depth

model can even become far above the shoreline (Fig.12a and c). In contrast, Sedapp does not face such290

a problem. As long as the sea level is constant, the slope break line will remain in a straight line and the

clinoforms will also move smoothly to the ocean (Fig.12b and d).

Sedapp can be used not only in shallow marine environment, but also in continental fault basins

(Fig.11). In the case of Model 2 of Part 4.3, the simulation results of this study were very similar to

those of the previous study (Li et al., 2018). In Li et al., 2018, the results were generated by Sedpak, an295

FSM model widely used in continental fault basins. Both Sedapp and Sedpak performed well in this

case, while their core algorithms are different. Compared with the diffusion-based Sedapp, Sedpak is

mainly geometry-based. Various geometric rules (e.g., alluvial angles, submarine angles, bypass angles,

etc.) govern the processes in Sedpak. To generate a simple clinoform, setting a transport coefficient is

apparently more convenient than designing the above angles. This is an advantage of Sedapp over300
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Sedpak for beginner users. Another advantage of Sedapp over Sedpak is its flexibility in graphing. For

example, the relative content of sand can only be expressed by discrete yellow and green belts in

Sedpak. While in Sedapp, it is more flexible. A continuous colour bar is available, and the sand fraction

can be expressed in a variety of ways due to its open-source feature.

The transport coefficient is a relatively long-term geomorphologic physical quantity, while wave,305

tidal, and current energy are relatively short-term hydrodynamic quantities. However, they are closely

related. A river entering the sea is a type of jet flow phenomenon. The flow velocity decreases rapidly

from the river mouth to the sea, which also has a strong negative correlation with the distance to the

mouth of the river. The contour map of water flow velocity is fan-shaped. At the same time, the

decrease of velocity is also an important cause of sediment deposition, which also explains the close310

fan-shaped morphology of a delta front. Correspondingly, an increase in water depth will also decrease

the flow velocity. For the open coast without river injection, a model based on water depth seems to be

reasonable. However, for a coast with river injection, it is difficult to explain the formation of the

fan-shaped morphology of a delta. Therefore, it can be concluded that, in more general cases, the

transport coefficient should be a function of short-term water energy, which is related to both the315

estuary distance and the water depth. When there is river injection, the river process is dominant and

the estuary distance function is a reasonable proxy for the transport coefficient. When there is no river

injection, the water depth plays the main role. In addition, particle size is also a decisive factor (Nash

1980; Andrews and Bucknam 1987). Hence, a choice function (see Eq. (9)) and differentiated α’s are

used to adapt different environments and lithologies. Although the current results of Sedapp seem320

plausible, these settings for transport coefficient are still empirical. Due to the complex nature of the

tranformation from short-term processes to long-term ones, it is difficult to build an accurate bridge

between sediment hydrodynamics and stratigraphic formation, which may be the focus of the next step.

6 Code availability

The current version of model is available from the project website:325

http://zenodo.org/record/4556868 or https://github.com/lijingzheQD/Sedapp_v2021 under the Creative

Commons Attribution 4.0 International License. The exact version of the model used to produce the

results used in this paper is archived on Zenodo. Input data and scripts of the case studies are also

http://zenodo.org/record/4133262
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presented in this site. For more details about Sedapp, please contact Jingzhe Li via email

lijingzhe@qust.edu.cn .330
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Fig.1 Flowchart of the algorithms in Sedapp410
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Fig.2 Dip direction section with different Der values (Der = 1, Der = 10, Der = 100 respectively).

Erosion will be switched off if Der is large enough.
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Fig.3 Customized compaction and the porosity curves. a) the x-z plot with original415

depth-porosity scale; b) the x-z plot with magnified depth-porosity scale (x100) to enhance compaction;

c) the x-z plot with magnified depth-porosity scale (x1000) to enhance compaction; d) Depth-porosity

curves used in the compaction module (the mix indicates mixed 50%-50% sand and shale. Details see

Athy, 1930; Sclater and Christie 1980)
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(a)

(b)

(c)

420

Fig.4 Typical stacking patterns acquired through different sea level change rates
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Fig.5 Simulated stratigraphy under two full sea level cycles. A) facies section and B) lithological

section.

425
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(a)

(b)

Fig.6 The initial topography and the simulated results of Model 1. (a): the initial topography; (b):

the topography at t=10 Myr.
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430

Fig.7 Plane view of Model 1 results. (a): t=0Myr; (b): t=2 Myr; (c): t=4Myr; (d) t=6Myr; (e)

t=8Myr; (f) t=10Myr.
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Fig.8 Cross section at x=75m. (a): t=4Myr; (b): t=6 Myr; (c): t=8Myr; (d) t=10Myr. The blank

spaces divide the strata into isochronous stratigraphic units, which can be used to infer the relative435

deposition rate.
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Fig.9 Cross section at x=125m. (a): t=4Myr; (b): t=6 Myr; (c): t=8Myr; (d) t=10Myr. The

blank spaces divide the strata into isochronous stratigraphic units, which can be used to infer the

relative deposition rate.440

Fig.10 Horton River Delta in Canada (a) and Ebro Delta in Mediterranean Sea (b) (taken from ©

Google Maps)
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445

Fig.11 Simulation results of Gaobei Slope Belt during the study interval. a) Sedapp results of

facies in the time domain (Wheeler diagram) and depth domain at different times; b) Sedapp results of

sand fraction in the depth domain. c) Sedapp results of porosity in the depth domain
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450
Fig.12 Comparison of the simulated results by water-depth based algorithm and the algorithm of

Sedapp. a) Clinoforms of gentle slope created in water depth models; b) Clinoforms of gentle slope

created in Sedapp; a) Clinoforms of steep slope created in water depth models; d) Clinoforms of steep

slope created in Sedapp. The results of the two algorithms did not diverge strongly when the original

slope was gentle, while the clinoform shapes and slope break trajectories could be very different when455

the slope was steep.

Tab. 1 Main simulation parameters of Model1 (see 2.1 above for meanings of the notations)

Parameter Value

α 1000

β 500

η 2

αwd 10000

βwd 0.16

ηwd 1

ε 0

Der 1
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