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Abstract. Climate change is typically modelled using sophisticated mathematical models (Climate Models) of physical pro-

cesses taking place over long periods of time. Multi-model ensembles of climate models show better correlation with the

observations than any of the models separately. Currently, an open research question is how climate models can be combined

to create an ensemble in an optimal way. We present a novel approach based on Markov chains to estimate model weights in

order to obtain ensemble means. The method was compared to existing alternatives by measuring its performance on training5

and validation data. The Markov chain method showed improved performance over those methods when measured by the

root mean squared error and the R-squared metrics. The results of this comparative analysis should serve to motivate further

studies in Markov chain and other nonlinear methods application, that address the issues of finding optimal model weight for

constructing ensemble means.

1 Introduction10

Climate change is often modelled using sophisticated mathematical models of physical processes taking place over long periods

of time. These models are inherently limited in their ability to represent all aspects of the modelled physical processes. Simple

averages of multi-model ensembles of GCMs (Global Climate Models) often show better correlations with the observations

than any of the individual models separately (Kharin and Zweirs (2002); Feng et al. (2011)). Knutti et al. (2010) points out that

often the equal-weighted averages ("one model, one vote") approach is used as a best-guess result, assuming that individual15

model biases will be at least partly cancelled. This approach assumes that all models are (a) reasonably independent, (b) equally

plausible, (c) distributed around reality and (d) that the range of their projections is representative of what we believe is the

uncertainty in the projected quantity. However, these assumptions are rarely fulfilled (Knutti et al. (2017)), and thus a better

way of finding a weighted ensemble mean is required (Herger et al. (2018); Sanderson et al. (2017)).

Most studies attempting to define an optimal ensemble weighting employ linear optimisation techniques (Krishnamurti et20

al. (2000); Majumder et al. (2018); Abramowitz et al. (2018)) or are based on a specification of likelihoods for the model and

observation data (Murphy et al. (2004); Fan et al. (2017)). Such methods are inevitably limited by the strong assumptions used

for their design. We seek to weaken those assumptions and to complement the existing methods with a more flexible nonlinear

optimisation approach. An unresolved issue in using weights for models is that models have interdependence, due to the sharing

of codes, sharing of initialisation parameters, etc. Abramowitz et al. (2018) points out that model dependence can play a crucial25

role when assembling the models into an ensemble. If highly dependent models are included in an ensemble mean with equal
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weights as independent models, the overall ensemble mean will become close to the dependent models’ cluster of values if the

cluster is large.

Hence, it is desirable that an ensemble weighting method is robust against the dependency issue, and has normalised non-

negative weights for interpretability. Finally, the methods should work well across a range of different data types, such as30

temperature, precipitation and other kinds of climate variables. In this paper, we propose a novel way to construct a weighted

ensemble mean using Markov chains, which we call the Markov Chain Ensemble (MCE) method. Our purpose is to demon-

strate that going beyond linear optimisation on a vector space of climate models’ outputs allows building better performing

weighted ensembles. We selected Markov chains as a basis for such nonlinear optimisation as one of the most straightforward

nonlinear structures. It naturally produces non-negative weights that sum to one. It performs well on a range of data sets when35

compared to the standard simple mean and linear optimisation weighting methods as we demonstrate below. While it does not

directly address the issue of dependence, it can mitigate some of the problems faced having dependent models in an ensemble.

Although Markov chains have been used frequently in the literature for prediction of future time series (e.g. Bai and Wang

(2011); Pesch et al. (2015)), to the best of our knowledge, this is the first time the method has been applied to building weighted

climate model ensemble means. In this paper, we use the "memoryless" property of Markov chains at each time step to capture40

the dynamic change in models’ fit through the time series. This dynamic change, through time, is represented by the transition

matrix, which describes the probability of each model being the best fit for the next observation at time t + 1, given the best

fit for the current time t. The transition matrix is built based on the input data and describes probable future states given the

current state. The stationary distribution of this transition matrix is used for weighted ensemble creation and reflects the relative

contribution of each model to the total weighted ensemble mean forecast.45

We describe the data sets used in this study and the proposed MCE method in Section 2. We compare the proposed method

(MCE) to the commonly used multi-model ensemble average (AVE) method (Lambert and Boer (2001)) and the convex opti-

misation (COE) method proposed by Bishop and Abramowitz (2013) to explicitly address the issue of dependent models and

present the results in Section 3, followed by a discussion in Section 4 and conclusion in Section 5.

2 Methods50

2.1 Data

Here we first describe the data sets used in this study. We have chosen three publicly available data sets with differing numbers

of models, historical period lengths and model interdependence levels to evaluate and compare the performance of the MCE

method with alternative approaches.

CMIP5 Data: The first data set we use is the temperature anomalies (°C) data from Coupled Model Intercomparison Project55

(CMIP5) with 80 different Global Climate Model (GCM) outputs and Hadley Centre/Climatic Research Unit Temperature

observations (HadCRUT4). The data is obtained from https://climexp.knmi.nl and the period of 1900 - 2019 is selected for the

analysis. It contains temperature anomalies (yearly averages) compared to the reference period of 1961-1990 and is commonly
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used for different research projects (Taylor et al. (2011)). This data set contains several clusters of dependent models, has both

positive and non-positive data values, has a low variability and relatively long time series, with a large ensemble.60

NARCliM Data: The second data set contains temperature output from the New South Wales and Australian Capital Ter-

ritory Regional Climate Modelling project (Evans et al. (2014)). It contains regional climate model (RCM) simulations over

southeastern Australia. The data contains seasonal–mean temperature (°C) as modelled by the NARCliM domain regional

climate models (RCMs) between the years 1990–2008 (Olson et al. (2016)). The temperatures are averaged over southeastern

Australian regions which include New South Wales (NSW) planning regions, Australian Capital Territory (ACT), and Victo-65

ria. Corresponding temperature observations are obtained from the Australian Water Availability Project (AWAP) (Jones et al.

(2009)). The data set has a high ratio of the number of models to the number of observations. While NARCliM model choice

explicitly considered model dependence for both the RCMs as well as the driving GCMs, the resulting ensemble demonstrates

an apparent similarity between the simulations (i.e., model inter-dependence) in small clusters.

KMA Data: The third data set contains data from 59 weather stations operated by the Korea Meteorological Administration70

(KMA) and includes summertime (June, July, and August) observed daily maximum temperatures between 1973 and 2005,

together with historical model output from 29 CMIP5 models, Shin et al. (2017) provides the list of models included in the

study. The projected heatwave characteristics were then calculated from the temperature data. In particular, heatwave amplitude

(HWA) contains the difference between the highest temperature during the heatwave events and the 95th percentile of reference

summer temperatures from 1973 to 2005. This framework was discussed in detail in Fischer and Schär (2010). Here a heatwave75

event occurs when the daily maximum temperature is above the 95th percentile of reference summer temperatures (32.82°C)

for two consecutive days. HWA is non-negative and can be highly skewed with long upper tails as it measures extremal events;

therefore, the data set is highly non-Gaussian (see Figure 1). These properties allow us to test methods in a more challenging

scenario, where likelihood-based approaches are more difficult to apply.

These three data sets cover different scenarios, data structures, parameter distributions and scales, and we summarise these80

in Figure 1. Such coverage allows us to analyse the performance and the inherent limitations of the proposed method.
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Figure 1. Histogram densities of the observational data (top) in the chosen data sets, CMIP5 (left), NARCliM (middle), KMA (right). The

corresponding correlation matrices (middle) and a summary of the properties of the three data set used in this study.

2.2 Markov chain ensemble (MCE) method

Generally, a homogeneous Markov Chain is a sequence of random system states evolving through time, where each next state

is defined sequentially based on its predecessor and predefined transition probabilities (Del Moral and Penev, 2016, p. 121).

Suppose that there is a finite number of probable system states S = {s1, . . . ,sN}, then this dependency can be described85

through a transition matrix P (with P (x,y) ∈ [0,1] and
∑

yP (x,y) = 1, for any x,y ∈ S):

∀x,y ∈ S, Pr(Xn+1 = y|Xn = x) = P (x,y). (1)

In this study, we want to utilise the "Fundamental Limit Theorem for Regular Chain" which states that if P is a transition

matrix for a regular Markov chain (where ∀x,y ∈ S, P (x,y)> 0), then

lim
n→∞

Pn = P∞90
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where P∞ is a matrix with all rows being equal and having strictly positive entries.

This property allows us to construct a non-negative transition matrix P by distillation of input information (i.e., model

outputs and historical observations) and allows P to converge to a unique vector of model weights w = (w1,w2, ...,wN ),

where N is a total number of models in a given ensemble. Vector w can be obtained by solving the equation wP = w. The

converged transition matrix represents a probability of selecting one of the models for any of the time steps in the future when95

observations are not available. Hence, we propose to use it as a weighting vector for constructing a weighted ensemble mean

forecast and test this proposition using cross-validation in the following chapters.

More precisely, we start by constructing a transition vector v (based on the input data) which specifies a choice of the

optimal model at any given time step t. Using vector v we construct a transition matrix P and find its stationary distribution

w. The resulting weighted ensemble mean is constructed by applying w on the given (future) climate model outputs. We call100

this process the Markov Chain Ensemble (MCE) algorithm, and it uses historical observations and equivalent climate model

simulations as the input data to calculate a set of weights for the future ensemble mean as an output. Table 1 gives a step by

step description of the MCE algorithm.

Input:

– length of training period T1, and

– historical observations at Ot, at times t= 1, . . . ,T1, and

– climate model output Mi,t, at times t= 1, . . . ,T1, for i= 1, . . . ,N models, and

– an initialised transition matrix P 0 of N x N size, and

– control parameters σ and L

Step 1. Compute the distance matrix D according to Equation 2.

Step 2. Construct a sequence vector v based on D using stochastic simulations.

Step 3. Update P 0 step-wise by increasing probability of transitions contained in v : P 0→ P 1→ ...→ PT1 .

Step 4. Obtain normalised transition matrix P ∗, by normalising PT1 row-wise so that each row sums to 1.

Step 5. Find w by solving wP ∗ = w and store its value.

Step 6. Repeat Step 2 - 5 until L sets of weights w1,w2, ...,wL have been obtained.

Step 7. Calculate average w =
∑L

l=1wl/L and use it to construct the ensemble mean.

Table 1. The Markov Chain Ensemble (MCE) algorithm

We provide some details of the algorithm as described in Table 1 in the following paragraph.
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Initialisation of transition matrix P 0: In order for the Markov chain to be regular we set P 0(x,y) = λ, ∀x,y ∈ S, where λ105

equals to the lowest computationally possible positive number λ= 2.225074e−308 in the R software (R Core Team (2013)).

Step 1: The MCE method proceeds by utilising each model output in an optimal way based on its ability to resemble observa-

tional data at each given time point. This resemblance is measured by a distance-based probability matrix D of size N ×T1,

using a normalised exponential function.

di,k =
e
−
(
Mi,k−Ok

σ

)2

∑N
j=1 e

−
(
Mj,k−Ok

σ

)2 (2)110

where 1≤ k ≤ T1 ≤ T , T1 indicates the length of the training period, and T is the length of the entire historical period

included in the study. Additionally, 1≤ i≤N where N is the number of models included, and σ is a control factor, which

determines the degree to which models with larger distances are included. The control factor σ is selected by optimising MCE

performance on training data as described below in section 2.2.1.

Step 2: Based on the matrixD a simulation is performed at each time step 1≤ k ≤ T1 by randomly selecting one of the models115

iwith probability proportional to its value di,k. This way we construct a vector V = (v1,v2,v3, ...,vT1), which represents choice

of models closest to observations at each time step.

Step 3: Then the initial matrix P 0 is updated step-wise (P 1,P 2, ...,PT1) to capture the transitions between models present in

vector V . For each t (1≤ t≤ T1− 1), P i
Vi,Vi+1

= P i−1
Vi,Vi+1

+ 1.

Step 4: The resulting matrix is normalised by row P ∗i = PT1
i /

∑N
j=1P

T1
i,j , for each 1≤ i≤N .120

Step 5: The stationary distribution w is obtained by solving wP ∗ = w. A standard R software package is used to find the

solution in this study.

Step 6: Steps 2 - 5 are repeated L times, where L is selected by optimising MCE performance on training data as described

below in section 2.2.1.

Step 7: The average w =
∑L

l=1wl/L is used to construct the weighted ensemble mean.125

2.2.1 Choosing control parameters

We select control parameters σ and L by running MCE on training data and analysing its performance with different values of

these parameters. The best performing set of parameters is chosen to construct the final MCE output.

In order to be able to apply MCE, we set a reasonably high initial L= 300, run the MCE algorithm on different σ ∈
[0.005,0.5], and choose the best performing σ from this range. The optimal σ is achieved when a clear trend of lower and130

higher σ values with lower R-squared is observed. Then we use this optimal σ to find L ∈ [50,1000], which would give

relatively high performance and low computational time.

The interval for choosing σ can vary depending on the data set to accommodate computational limitations. In addition, we

want to have at least L= 300 simulations to have robust results. However, the MCE method is robust against variations of
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both σ and L as we show below, hence finding the exact optimal set of parameters is not necessary for the purpose of our135

demonstration.

2.2.2 MCE method limitations

Though the MCE method can be used on any climate data set, which contains the required inputs, its relative performance

differs depending on the properties of the data set. We will demonstrate that in the case of a standard normally distributed data,

its performance is slightly better than simple averaging and other more sophisticated methods. In more challenging scenarios,140

when data is not normally distributed or has a limited number of data points, MCE is performing significantly better than the

common alternatives.

There are only two arbitrary tuning parameters: σ and L, both of them can be chosen by analysing MCE performance on

training data sets. Though this approach does not guarantee that the chosen parameters are optimal on a validation set as well,

it does provide an easy and objective way to make these choices, while keeping the MCE method performance high.145

The MCE method in its current implementation does not provide an uncertainty quantification, and this limitation is a subject

for future nonlinear ensemble weighting methods development.

2.3 Multi-model ensemble average (AVE) method

In order to evaluate the relative performance of the MCE method we select two other popular approaches to constructing

ensemble weighted average. The first approach is a widely used average of individual climate model outputs (Lambert and150

Boer (2001); Gleckler et al. (2008)):

EAV Et = 1/N
N∑

j=1

Mj,t, (3)

for each 1≤ t≤ T . If model differences from observations are random and independent, they will cancel on averaging and the

resulting ensemble average will perform better than individual climate models (Lambert and Boer (2001)).

2.4 Convex optimisation (COE) method155

The second approach that has been selected for relative performance evaluation in this study is a convex optimisation as

proposed by Bishop and Abramowitz (2013). It represents a family of other methods based on a linear optimisation over the

vector space of individual climate model outputs.

The purpose of this method is to find a linear combination of climate model outputs with w1,w2, ...,wN weights which

would minimise mean squared differences with respect to observations:160

ECOEt =
N∑

j=1

wjMj,t, (4)

for each 1≤ t≤ T , so that
∑T

t=1(ECOEt−Ot)2 is minimised under restrictions
∑N

j=1wj = 1 andwj ≥ 0 for each 1≤ j ≤N .
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This method and its implementation are discussed in details in Bishop and Abramowitz (2013), and we show that it has

relatively high performance on the chosen data sets. However, like any other linear optimisation technique, it naturally has

some limitations that nonlinear optimisations like the MCE method do not. In particular, the COE method assumes having165

a large enough sample size to rule out spurious fluctuations in the weights associated with too small sample size. Such an

assumption is not required for the MCE method. In addition, convex optimisation tends to set a large portion of weights equal

to 0, as is shown in the examples below, which results in lower diversity in models used for prediction.

2.5 Performance metrics

We consider the following performance metrics in this paper when comparing competing methods.170

RMSE

The root mean squared error (RMSE), Equation 5 is a frequently used measure of the differences between values (sample or

population values) predicted by a model or an estimator and the values observed.

RMSE is always non-negative, and a value of 0 would indicate a perfect fit to the data. In general, a lower RMSE is better

than a higher one. However, comparisons across different types of data would be invalid because the measure is dependent on175

the scale of the numbers used. Minimising RMSE is commonly used for finding optimal ensemble weight vectors (e.g. Herger

et al. (2018); Krishnamurti et al. (2000)).

RMSE =

√√√√√ 1
T

T∑

t=1




N∑

j=1

wjMj,t−Ot




2

, (5)

with
∑N

j=1wj = 1 and wj > 0 for j = 1, . . . ,N . T is the total number of time steps, Mj,t denotes the value of model j at time

step t and Ot is the observed value at point t.180

R-squared

R-squared is a statistical measure of how close the observational data are to the fitted estimator. It represents the proportion

of the variance in the dependent variable (weighted ensemble mean) that is predictable from the independent variables (GCMs).

The definition of R-squared used here is

R2 = 1−
∑T

t=1(
∑N

j=1wjMj,t−Ot)2
∑T

t=1(Ot−O)2
(6)185

It is important to note that this definition of R-squared allows its values to lay within a range of (−∞,1), and a high value

of R2 means high performance.
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2.6 Cross-validation procedures

In a future prediction problem, a method is usually given a data set of known data on which training is run (training data set),190

and a data set of unknown data against which the model is tested (called validation data set or testing data set). The goal of

cross-validation is to examine the model’s ability to predict new data that was not used in estimating the required parameters.

We partition our data into two sets, with 70% of data used for training and 30% for validation. This is a specific case of K-

fold validation (Refaeilzadeh et al., 2009, p. 532-538), which is relatively simple to apply and discuss, facilitating the sharing

of our findings with other members of the research and non-research communities.195

3 Results

3.1 CMIP5 data

We select σ and L by analysing MCE performance on training data set as described in section 2.2.1 and shown in Figure 2.

Figure 2. MCE method performance on training data for CMIP5 data depending on L with σ (L= 300 on the left hand side and σ = 0.025

on the right hand side)

Applying the MCE method on the selected CMIP5 data with T = 120(1900− 2019), σ = 0.025, L= 600 (as described in

section 2.2.1) and a training period T1 = 80(1900− 1979), we obtain a weighted ensemble mean EMCE and compare it with200

outputs from other methods:
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Ensemble RMSET R2
T RMSEV R2

V

EAV E 0.11 0.78 0.15 0.87

ECOE 0.08 0.87 0.15 0.87

EMCE 0.10 0.80 0.14 0.89

Table 2. Performance comparison of different methods on CMIP5 data, RMSE on training (RMSET ) and validation (RMSEV ) data; R2

on training (R2
T ) and validation (R2

V ) data.

We can see that all methods perform at a similar level, with the MCE method having a slight advantage. We analyse this

difference in methods’ performance by looking at weighted ensembles and model weights for each method:

Figure 3. Estimated weighted ensembles (left panel) and weight distributions (right panel), comparison of different methods on CMIP5 data.

We can see from Figure 3 (right panel) that the COE method tends to set zero weights to some models, but builds a weighted

ensemble mean that performs best on the training period (1900-1979). Due to some models having zero weights, some of the205

models’ diversity is lost, and this results in worse performance on the validation period (Table 2). The MCE method, on the

other hand, produces model weights that vary around 1/N , where N is the number of the models. The MCE method does not

give any model zero weighting and hence preserves the ensembles’ diversity.
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3.2 NARCliM data

We select σ and L by analysing MCE performance on training data set as described in section 2.2.1 and shown in Figure 4.210

Figure 4. MCE method performance on training data for NARCliM data depending on L with σ (L= 300 on the left hand side and σ = 0.12

on the right hand side).

We apply the MCE method on the selected NARCliM data with T = 19(1990− 2008), σ = 0.12, L= 800 and a training

period T1 = 13(1990−2002), we obtain a weighted ensemble mean EMCE and compare it with outputs from other methods:

Ensemble RMSET R2
T RMSEV R2

V

EAV E 1.36 -0.20 1.86 -1.45

ECOE 0.85 0.53 1.59 -0.78

EMCE 1.07 0.25 1.49 -0.57

Table 3. Performance comparison of different methods on NARCliM data. RMSE on training (RMSET ) and validation (RMSEV ) data;

R2 on training (R2
T ) and validation (R2

V ) data.

Though all three methods have negative R-squared value on the validation data, MCE is still performing slightly better

than the other methods. We analyse this difference in the methods’ performance by looking at weighted ensembles and model

weights for each method:215
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Figure 5. Weighted ensembles (left panel) and weights distributions (right panel), comparison of different methods on NARCliM data.

As in CMIP5 data analysis (Figure 3), we see that the MCE method is maintaining (i.e., assigning non-zero weights to) more

models in the final weighted ensemble than the COE method. As the number of models is significantly smaller than in CMIP5

case, the difference between the MCE output weights and the equal weights is also considerably larger. The MCE method

shows itself being capable of maintaining much of the ensembles’ diversity, though a few models receive zero weightings. This

allows MCE to substantially improve performance over the AVE method on both training and validation periods.220
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3.3 KMA data

We select σ and L by analysing MCE performance on training data set as described in section 2.2.1 and shown in Figure 6.

Figure 6. MCE method performance on training data for KMA data depending on L with σ (L= 300 on the left hand side and σ = 0.005

on the right hand side).

Applying the MCE method on the selected data with T = 33(1973− 2005), σ = 0.005, L= 550 and a training period

T1 = 22(1973− 1994), we obtain a weighted ensemble mean EMCE and compare it with outputs from other methods:

Ensemble RMSET R2
T RMSEV R2

V

EAV E 0.37 0.07 0.52 -0.01

ECOE 0.24 0.61 0.55 -0.10

EMCE 0.35 0.16 0.49 0.10

Table 4. Performance comparison of different methods on KMA data. RMSE on training (RMSET ) and validation (RMSEV ) data; R2 on

training (R2
T ) and validation (R2

V ) data.

We can see that MCE significantly outperforms other methods using R-squared metrics and has the lowest RMSE. We225

analyse this difference in methods’ performance by looking at weighted ensembles and model weights for each method:
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Figure 7. Weighted ensembles (left panel) and weights distributions (right panel), comparison of different methods on KMA data

As before, we see that the MCE method maintains the ensembles’ diversity with no models receiving zero weights, but a

small number of models having much higher weights than the rest. The COE method gives non-zero weights to only a small

subset of models, which results in its performance on the validation period being lower compared to MCE.

4 Discussion230

The obtained results indicate that Markov chains can be used to construct a better performing weighted ensemble mean with

lower RMSE and higher R-squared values on validation data than commonly used methods like multi-model ensemble average

and convex optimisation (Tables 2, 3 and 4). While it performed worse than COE on the training periods, we are confident that

it is less prone to over-fitting than linear optimisation methods. We attribute this advantage of the MCE method to its ability to

maintain the ensemble’s diversity while optimising its weights on the training period (Figures 3, 5 and 7).235

As the number of models is increased MCE tends to become closer to AVE weights (Figure 3), while being closer to COE

with a smaller number of models (Figure 7). This phenomenon can be explained by a higher effect of diversity on performance

in larger ensembles with normally distributed data (observations and model outputs) and similar cross-correlations between

models. The NARCliM data has a relatively small number of models and has four groups of strongly correlated models (Figure

1). In this case, the MCE method recognises the reduced model diversity and does give some models zero weights. The KMA240

data has an intermediate number of models with a more random cross-correlation structure. This produces a hybrid response in

the MCE which maintains ensemble diversity (no models with zero weights) but does weight a small number of models more
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highly. As this effect is observed on all three data sets, we conclude that the main advantage of the MCE method is its ability

to preserve the ensemble’s diversity while optimising its weights on the training period.

The MCE method is not computationally expensive and is limited only by a software’s ability to handle extreme numerical245

values. These limitations can be easily overcome by adjusting control parameters as our method is robust to their reasonably

small variations (Figures 2, 4 and 6). The main limitation of the MCE method is its current inability to quantify the uncertainty

of the resulting weighted ensemble mean. However, we believe that given a stochastic nature of the method, this limitation

can be overcome in future implementations. MCE performance can be further improved by combining it with other types of

optimisation, e.g. linear. In addition, other nonlinear optimisation techniques, which would include more complex structures250

than simple Markov Chains, can be developed based on our demonstrated results.

Finally, the MCE method doesn’t require some of the assumptions necessary for the multi-model ensemble average method

(Knutti et al. (2017); Herger et al. (2018); Sanderson et al. (2017)) and linear optimisation techniques (Krishnamurti et al.

(2000); Majumder et al. (2018); Bishop and Abramowitz (2013)). In addition, it doesn’t produce as many zero weights as the

convex optimisation method, hence maintaining more of the models’ diversity. We attribute the tendency of the COE method255

setting zero weights to some models to its property below:

Geometrically, the restrictions wj ≥ 0,
∑N

j=1wj = 1 describe a simplex in RN that is a subset of the hyperplane with

the equation
∑N

j=1wj = 1. Denote w = (w1,w2, . . . ,wN ). The potential choice of weights that only satisfy the constraint
∑N

j=1wj = 1 without the non-negativity restriction represents any point in the hyperplane P = {w :
∑N

j=1wj = 1}. This hy-

perplane contains the simplex S = {w ∈ P : wj ≥ 0}. In general, the optimal point w∗ for the unrestricted solution of the

optimisation problem

min
w

T∑

i=1

(
N∑

j=1

wjMj,i−Oi)2,w ∈ P

will be outside the simplex. It is clear that the optimal point for the constrained solution on the simplex:

min
w

T∑

i=1

(
N∑

j=1

wjMj,i−Oi)2,w ∈ S

would be on the boundary of the simplex rather than in its interior. Indeed, if we assume that the optimal point for the con-

strained problem is certain w̃ in the interior of the simplex, we immediately arrive at a contradiction. Take then the point

ŵ = w∗+λ(w̃−w∗) with λ ∈ (0,1) chosen such that ŵ is on the intersection of the line connecting w∗ and w̃ with the

boundary of the simplex. Because of the strict convexity of the function

f(w) =
T∑

i=1

(
N∑

j=1

wjMj,i−Oi)2

we have:

f(ŵ) = f(w∗+λ(w̃−w∗)) = f(λw̃+ (1−λ)w∗)< λf(w̃) + (1−λ)f(w∗)< f(w̃)

in contradiction to the assumption that w̃ delivers the minimum over the simplex. Hence the optimisation on the simplex tends

to deliver optimal points with some components equal to zero because they tend to be on the boundary of the simplex.
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5 Conclusions

In this study, we presented a novel approach based on Markov chains to estimate model weights in constructing weighted260

climate model ensemble means. The complete MCE method was applied to selected climate data sets, and its performance was

compared to two other common approaches (AVE and COE) using cross-validation with RMSE and R-squared metrics. The

MCE method was discussed in detail, and its step-wise implementation, including mathematical background, was presented

(Table 1).

The results of this study indicate that applying nonlinear ensemble weighting methods on climate data sets can improve future265

climate projection in terms of accuracy. Even a simple nonlinear structure such as Markov chains shows better performance

on different commonly-used data sets than linear optimisation approaches. These results are supported by using standard

performance metrics and cross-validation procedures. The developed MCE method is objective in terms of parameter selection,

has a sound theoretical basis and has a relatively low number of limitations. Based on the above, we are confident to suggest

its application on other data sets and its usage for the future development of new nonlinear optimisation methods for weighting270

climate model ensembles.

Code and data availability. Code and data for this study is available at https://doi.org/10.5281/zenodo.3965056.
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