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Abstract. Climate change is typically modelled using sophisticated mathematical models (climate models) of physical pro-

cesses that range in temporal and spatial scales. Multi-model ensemble means of climate models show better correlation with

the observations than any of the models separately. Currently, an open research question is how climate models can be combined

to create an ensemble mean in an optimal way. We present a novel stochastic approach based on Markov chains to estimate

model weights in order to obtain ensemble means. The method was compared to existing alternatives by measuring its per-5

formance on training and validation data, as well as model-as-truth experiments. The Markov chain method showed improved

performance over those methods when measured by the root mean squared error in validation and comparable performance in

model-as-truth experiments. The results of this comparative analysis should serve to motivate further studies in applications of

Markov chain and other nonlinear methods that address the issues of finding optimal model weight for constructing ensemble

means.10

1 Introduction

Climate change is often modelled using sophisticated mathematical models of physical processes taking place over a range of

temporal and spatial scales. These models are inherently limited in their ability to represent all aspects of the modelled physical

processes. Simple averages of multi-model ensembles of GCMs (Global Climate Models) often show better correlations with

the observations than any of the individual models separately (Kharin and Zweirs (2002); Feng et al. (2011)). Knutti et al.15

(2010) point out that often the equal-weighted averages ("one model, one vote") approach is used as a best-guess result,

assuming that individual model biases will at least partially cancel each other out. This approach assumes that all models are

(a) reasonably independent, (b) equally plausible, (c) distributed around reality and (d) that the range of their projections is

representative of what we believe is the uncertainty in the projected quantity. However, these assumptions are rarely fulfilled

(Knutti et al. (2017)), and thus a better way of finding a weighted ensemble mean is required (Herger et al. (2018); Sanderson20

et al. (2017)).

Most studies attempting to define an optimal ensemble weighting either employ linear optimisation techniques (Krishnamurti

et al. (2000); Majumder et al. (2018); Abramowitz et al. (2018)) or are based on a specification of likelihoods for the model

and observation data (Murphy et al. (2004); Fan et al. (2017)). Such methods are inevitably limited by the strong assumptions

used for their design. We seek to weaken those assumptions and to complement the existing methods with a more flexible25
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nonlinear optimisation approach. An unresolved issue in using weights for models is that models have interdependence, due

to the sharing of computer codes, parameterizations, etc. (Olson et al. (2019)). Abramowitz et al. (2018) points out that model

dependence can play a crucial role when assembling the models into an ensemble. Mathematically, interdependence often

result in closeness of model outputs in model output space. If a large cluster of highly dependent models is included into an

ensemble with equal weights, the overall ensemble mean will become close to the dependent models’ cluster. Ignoring model30

dependence can lead to bias and overconfidence in future climate model projections (Leduc et al. (2015); Steinschneider et al.

(2015)).

Hence, it is desirable that an ensemble weighting method is robust against the dependency issue, and has normalised non-

negative weights for interpretability. Finally, the methods should work well across a range of different climate variables, such

as temperature, precipitation, etc.35

In this paper, we propose a novel way to construct a weighted ensemble mean using Markov chains, which we call the

Markov Chain Ensemble (MCE) method. Our purpose is to demonstrate that going beyond linear optimisation on a vector

space of climate models’ outputs allows building better performing weighted ensembles. We selected Markov chains as a basis

for such nonlinear optimisation as one of the most straightforward nonlinear structures. It naturally produces non-negative

weights that sum to one and captures some of the nonlinear patterns in the ensemble (here we refer to nonlinear patterns as40

time-dependent selection of model components rather than considering complete model output vector). It performs well on a

range of datasets when compared to the standard simple mean and linear optimisation weighting methods as we demonstrate

below. We also examine how the method responds to the introduction of interdependent models.

Although Markov chains have been used frequently in the literature for the prediction of future time series (e.g. Bai and

Wang (2011); Pesch et al. (2015)), to the best of our knowledge, this is the first time the method has been applied to building45

weighted climate model ensemble means. In this paper, we use the "memoryless" property of Markov chains at each time step

to capture the dynamic change in models’ fit through the time series. This dynamic change, through time, is represented by the

transition matrix, which describes the probability of each model being the best fit for the next observation at time t+1, given

the best fit for the current time t. The transition matrix is built based on the input data and describes probable future states

given the current state. The stationary distribution of this transition matrix is used for weighted ensemble creation and reflects50

the relative contribution of each model to the total weighted ensemble mean forecast.

We describe the datasets used in this study and the proposed MCE method in Section 2. We compare the proposed method

(MCE) to the commonly used multi-model ensemble average (AVE) method (Lambert and Boer (2001)) and the convex op-

timisation (COE) method proposed by Bishop and Abramowitz (2013) and present the results in Section 3, followed by a

discussion in Section 4 and conclusion in Section 5.55

2



2 Methods

2.1 Data

Here we first describe the datasets used in this study. We have chosen three publicly available datasets with differing number

of models, historical period lengths and model interdependence levels to evaluate and compare the performance of the MCE

method with alternative approaches.60

CMIP5 Data: The first dataset we use is the temperature anomalies (°C) data from Coupled Model Intercomparison

Project (CMIP5) with 39 different Global Climate Model (GCM) outputs (one ensemble member per model) and Hadley Cen-

tre/Climatic Research Unit Temperature observations (HadCRUT4). The data is obtained from https://climexp.knmi.nl

and the period of 1900 - 2099 is selected for the analysis. It contains temperature anomalies (monthly averages) compared to

the reference period of 1961-1990 (Taylor et al. (2011)). This dataset contains several clusters of dependent models, has both65

positive and negative data values, a relatively low variability and long time series.

NARCliM Data: The second dataset contains temperature output from the New South Wales (NSW) and Australian Capital

Territory Regional Climate Modelling project (Evans et al. (2014)). It contains regional climate model (RCM) simulations

over southeastern Australia. Specifically, three RCM versions were forced with four global climate models each, for a total

of twelve ensemble members. The data contains annual time series of mean summer temperature (°C) for the Far West NEW70

state planning region as modelled by the NARCliM domain regional climate models (RCMs) for the periods 1990–2019 and

2030-2039 (Olson et al. (2016)). Corresponding temperature observations are obtained from the Australian Water Availability

Project (AWAP) (Jones et al. (2009)). The dataset has a high ratio of the number of models to the number of observations.

While NARCliM model choice explicitly considered model dependence for both the RCMs as well as the driving GCMs,

the resulting ensemble demonstrates an apparent similarity between the simulations (i.e., model inter-dependence) in small75

clusters.

KMA Data: The third dataset contains yearly heatwave amplitudes (HWA) for the Korean peninsula from 29 CMIP5 climate

models and observations between years 1973 and 2005 (Shin et al., 2017). In particular, HWA contains the difference between

the highest temperature during the heatwave events for the corresponding year and the 95th percentile of daily maximum

summer temperatures from 1973 to 2005. This framework was discussed in detail in Fischer and Schär (2010). Here a heatwave80

event occurs when the daily maximum temperature is above the 95th percentile of daily maximum summer temperatures

(32.82°C) for two consecutive days. Daily maximum temperature data used for the calculation of observed HWA is the mean

of 59 weather stations operated by the Korea Meteorological Administration (KMA). Shin et al. (2017) provides the list of

CMIP5 models included in the study. HWA data is non-negative and can be highly skewed with long upper tails as it measures

extreme events; therefore, the dataset is highly non-Gaussian. These properties allow us to test methods in more challenging85

scenarios, where likelihood-based approaches are more difficult to apply.

These three datasets cover different scenarios, data structures, parameter distributions and scales (see Table 1) . Such cover-

age allows us to analyse the performance and the inherent limitations of the proposed method.
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dataset Climate variable Minimum Maximum Variance Number of observations Number of models

CMIP5 Temperature (°C) -0.80 1.16 0.12 1440 39

NARCLiM Temperature (°C) 9.38 31.64 36.61 240 12

KMA HWA (°C) 0 1.49 0.18 33 29

Table 1. Summary of CMIP5, NARCLiM and KMA data properties.

2.2 Markov chain ensemble (MCE) method

Generally, a homogeneous Markov chain is a sequence of random system states evolving through time, where each next state90

is defined sequentially based on its predecessor and predefined transition probabilities (Del Moral and Penev, 2016, p. 121).

Suppose that there is a finite number of probable system states S = {s1, . . . ,sN}, then this dependency can be described

through a transition matrix P (with P (x,y) ∈ [0,1] and
∑

yP (x,y) = 1, for any x,y ∈ S):

∀x,y ∈ S, Pr(Xn+1 = y|Xn = x) = P (x,y). (1)

In this study, we want to utilise the "Fundamental Limit Theorem for Regular Chain" which states that if P is a transition95

matrix for a regular Markov chain (where ∀x,y ∈ S, P (x,y)> 0), then limn→∞P
n = P∞ where P∞ is a matrix with all

rows being equal and having strictly positive entries.

This property allows us to construct a non-negative transition matrix P by distillation of input information (i.e., model

outputs and historical observations) and allows P to converge to a unique vector of model weights w = (w1,w2, ...,wN ),

where N is a total number of models in a given ensemble. The vector w can be obtained by solving the equation wP = w. The100

converged transition matrix represents a probability of selecting one of the models for any of the time steps in the future when

observations are not available. Hence, we propose to use it as a weighting vector for constructing a weighted ensemble mean

forecast and test this proposition using cross-validation in the following sections.

More precisely, we start by constructing a transition vector v (based on the input data) which specifies a choice of the optimal

model at any given time step t. Using the vector v we construct a transition matrix P and find its stationary distribution w.105

The resulting weighted ensemble mean is constructed by applying w on the given climate model outputs. We call this process

Markov Chain Ensemble (MCE) algorithm, and it uses historical observations and equivalent climate model simulations as the

input data to calculate a set of weights for the future ensemble mean as an output. Table 2 gives a step by step description of

the MCE algorithm.
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Input:

– length of training period T1, and

– historical observations Ot, at times t= 1, . . . ,T1, and

– climate model output Mi,t, at times t= 1, . . . ,T1, for i= 1, . . . ,N models, and

– an initialised number of simulations L

– an initialised σ interval [σmin,σmax]

– an initialised transition matrix P 0 of N x N size

Step 1. Randomly select σ ∈ [σmin,σmax] and compute the distance matrix D according to Equation 2.

Step 2. Construct a sequence vector v based on D using stochastic simulations.

Step 3. Update P 0 step-wise by increasing probability of transitions contained in v : P 0 → P 1 → ...→ PT1 .

Step 4. Obtain normalised transition matrix P ∗, by normalising PT1 row-wise so that each row sums to 1.

Step 5. Find w by solving wP ∗ = w and store its value.

Step 6. Construct the ensemble mean based on weights w and calculate its RMSETr

Step 7. Repeat Step 2 - 6 until L sets of weights w1,w2, ...,wL and respective RMSE1
Tr,RMSE2

Tr, ...,RMSEL
Tr have been obtained.

Step 8. Select a set of weights w∗ corresponding to the minimal RMSE∗
Tr

Step 9. Construct the final EMCE using the selected w∗

Table 2. The Markov Chain Ensemble (MCE) algorithm.

We provide some details of the algorithm as described in Table 2 in the following paragraph.110

Initialisation of transition matrix P 0: In order for Markov chain to be regular we set P 0(x,y) = λ, ∀x,y ∈ S, where λ equals

the lowest computationally possible positive number λ= 2.225074e−308 in the R software (R Core Team (2013)).

Initialisation of σ interval: To avoid division by 0 in Equation 2 and to prevent Equation 2 from converging to 1/N the initial

σ interval is set to [0.1,1].

Step 1: The MCE method proceeds by utilising each model output in an optimal way based on its ability to resemble observa-115

tional data at each given time point. This resemblance is measured by a distance-based probability matrix D of size N ×T1,

using a normalised exponential function.

di,k =
e
−
(
Mi,k−Ok

σ

)2

∑N
j=1 e

−
(
Mj,k−Ok

σ

)2 (2)
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where 1≤ k ≤ T1 ≤ T , T1 indicates the length of the training period, and T is the length of the entire historical period

included in the study. Additionally, 1≤ j ≤N where N is the number of models included, and σ is chosen randomly as120

described above.

Step 2: Based on the matrixD a simulation is performed at each time step 1≤ k ≤ T1 by randomly selecting one of the models

iwith probability proportional to its value di,k. This way we construct a vector V = (v1,v2,v3, ...,vT1), which represents choice

of models closest to observations at each time step.

Step 3: Then the initial matrix P 0 is updated step-wise (P 1,P 2, ...,PT1) to capture the transitions between models present in125

vector V . For each t (1≤ t≤ T1− 1), P i
Vi,Vi+1

= P i−1
Vi,Vi+1

+1.

Step 4: The resulting matrix is normalised by row P ∗i = PT1
i /

∑N
j=1P

T1
i,j , for each 1≤ i≤N .

Step 5: The stationary distribution w is obtained by solving wP ∗ = w. A standard R software package is used to find the

solution in this study.

Step 6: Construct the ensemble mean based on weights w and calculate its RMSETr.130

Step 7: Steps 2 - 6 are repeated L times, where L is selected based on the external requirements on precision of the results and

on computational power available.

Step 8. Select the set of weights w∗ with the best performance on the training set (with the lowest RMSE∗Tr).

Step 9. Construct the EMCE ensemble using the selected w∗.

2.2.1 Parameter sensitivity135

From Equation 2 it is clear that having a small σ will result in distances d close to 1/N . Having a large σ will result in all the

distances becoming marginal with the exception of the largest one. To optimize the properties of the simulations we control σ

by randomly choosing it from [0.1,1] interval.

As we select only one of the simulations, the MCE method is not sensitive to the number of simulations L after a certain

threshold. This threshold is set based on the requirements for precision of the results and on the calculation time. In Figure 1 we140

illustrate the simulation performance dynamics (simulation index and performance on training and validation NARCLiM data)

depending on value of L ∈ [1,1000000]. The simulation index i∗ ≤ L represents the index of the best performing simulation

at each value of L (with w∗ vector of weights and RMSE∗Tr as descibed in Step 8 of Table 2). The cross-validation procedure

and RMSE metrics are described below in Sections 2.5 - 2.6.
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Figure 1. Sensitivity of the ensemble properties to the value of L. Left panes a) and c) contain results from all the simulations. Right panes

b) and d) contain the results from the first 5000 simulations.

Though better RMSE results can be achieved with larger L, the marginal improvement in RMSE has high computational145

time cost. For the demonstration purposes in this study we select L= 3000 to accommodate for possible differences in RMSE

changes between different datasets. As we will show below even with a sub-optimal value of L, MCE method has high

performance and stable results.
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2.2.2 Model interdependence

While we do not claim that the proposed method explicitly addresses the issue of model dependence, it is implicitly addressed150

to some degree at Step 3 in Table 2 of the MCE method. If there are two or more highly correlated models only one of them

can be chosen at each step, and thus the resulting sum of such models’ weights will be close to the scenario when only one of

those models is kept in the ensemble.

We demonstrate this property of the MCE method on modified NARCliM data by adding a copy of one of the models with

an added small random error and comparing the resulting weights as shown in Figure 2. To mitigate difference in weight values155

between random simulations we repeat the calculation 100 times and compare the mean values of the weights.

Figure 2. Change of MCE weights after adding a copy of Model 1, Model 3, 8 and 9 (clockwise from top left) to the NARCliM ensemble.

The original MCE weights are in black. The weights of the modified ensemble are in blue, and the weights of the highly correlated models

are in red.

As we can see from Figure 2, adding a highly correlated ensemble member does not significantly change the weights

distribution significantly, and more pleasingly when a high performing model is duplicated, the weights are shared between

the two copies (see Model 3 and Model 9). Consequently the performance of EMCE remains approximately the same. Though
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we can not guarantee this behaviour in all types of data, we believe that the MCE method’s design helps to mitigate the model160

interdependence problem.

2.2.3 MCE method limitations

Though the MCE method can be used on any climate dataset which contain the required inputs, its relative performance differs

depending on the properties of the dataset. We will demonstrate that in the case of a normally distributed data, its performance

is competitive with the simple averaging and other more sophisticated methods. In more challenging scenarios, when data is165

not normally distributed, MCE is performing better than the common alternatives.

As the MCE method is based on a stochastic process, the results between runs can vary. To mitigate this effect and to have

reproducible results we set the seed of R software‘s random number generator to a constant for all simulations. The MCE

method in its current implementation does not provide an uncertainty quantification, and this limitation is a subject for future

nonlinear ensemble weighting methods development.170

2.3 Multi-model ensemble average (AVE) method

In order to evaluate the relative performance of the MCE method we select two other popular approaches to constructing

ensemble weighted average. The first approach is the widely used average of individual climate model outputs (Lambert and

Boer (2001); Gleckler et al. (2008)):

EAV Et = 1/N

N∑
j=1

Mj,t, (3)175

for each 1≤ t≤ T . If model differences from observations are random and independent, they will cancel on averaging and the

resulting ensemble average will perform better than individual climate models (Lambert and Boer (2001)).

2.4 Convex optimisation (COE) method

The second approach that has been selected for relative performance evaluation in this study is a convex optimisation as

proposed by Bishop and Abramowitz (2013). It represents a family of other methods based on a linear optimisation over the180

vector space of individual climate model outputs.

The purpose of this method is to find a linear combination of climate model outputs with w1,w2, ...,wN weights which

would minimise mean squared differences with respect to observations:

ECOEt =

N∑
j=1

wjMj,t, (4)

for each 1≤ t≤ T , so that
∑T

t=1(ECOEt−Ot)
2 is minimised under restrictions

∑N
j=1wj = 1 andwj ≥ 0 for each 1≤ j ≤N .185

This method and its implementation are discussed in details in Bishop and Abramowitz (2013), and we show that it has

relatively high performance on the chosen datasets. However, like any other linear optimisation technique, it naturally has
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some limitations that nonlinear optimisations like the MCE method do not. In particular, the COE method assumes having

a large enough sample size to rule out spurious fluctuations in the weights associated with too small sample size. Such an

assumption is not required for the MCE method. In addition, convex optimisation tends to set a large portion of weights equal190

to 0, as is shown in the examples below, which results in lower effective number of models used for prediction.

2.5 Performance metrics

2.5.1 RMSE

The root mean squared error (RMSE), Equation 5 is a frequently used measure of the differences between values (sample or

population values) predicted by a model or an estimator and the values observed. RMSE is positive, and a value of 0 indicates195

a perfect fit to the data. In general, a lower RMSE is better than a higher one. However, comparisons across different types of

data would be invalid because the measure is dependent on the scale of the numbers used. Minimising RMSE is commonly

used for finding optimal ensemble weight vectors (e.g. Herger et al. (2018); Krishnamurti et al. (2000)).

RMSE =

√√√√√ 1

T

T∑
t=1

 N∑
j=1

wjMj,t−Ot

2

, (5)

with
∑N

j=1wj = 1 and wj > 0 for j = 1, . . . ,N . T is the total number of time steps, Mj,t denotes the value of model j at time200

step t and Ot is the observed value at point t.

2.5.2 Trend bias

The monthly trend bias is calculated as the difference between the inclination parameter a in weighted ensembles and obser-

vations estimated using a linear function y = ax+b on validation data for each month. The total weighted ensemble trend bias

metric is calculated as a mean of the monthly trend biases.205

2.5.3 Climatology monthly bias

The monthly bias is calculated as the difference between the mean of the weighted ensemble and the observation for each

month on validation data. The total climatology monthly bias metric is calculated as a mean of the monthly biases.

2.5.4 Interannual variability

Interannual variability for each month is calculated as the difference between the standard deviation of detrended weighted210

ensemble and the standard deviations of detrended observations on validation data. The total interannual variability metric is

calculated as the mean of interannual variability for each month.
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2.5.5 Climatological monthly RMSE

Climatological RMSE is calculated according to Equation 5 on climatological monthly means of weighted ensemble values

and observations on validation data.215

2.6 Cross-validation procedures

2.6.1 Holdout method

In this method the dataset, which contains the observations, is split into a training (or calibration) set and a validation (or

testing) set. The goal of cross-validation is to examine the model’s ability to predict new data that was not used in estimating

the required parameters.220

We partition our data into two sets, with 70% of data used for training and 30% for validation. This is a specific case of the

K-fold validation procedure (Refaeilzadeh et al., 2009, p. 532-538), which is relatively simple to apply and discuss, facilitating

the sharing of our findings with other members of the research and non-research communities.

2.6.2 Model-as-truth performance assessment

To evaluate each method’s performance on the future model projections, we use the model-as-truth approach and analyse the225

metrics described in Section 2.5. At each step of model-as-truth performance assessment one model is selected as a true model

(pseudo-observations) and the remaining models are used to build a weighted ensemble mean that best estimates the true model

over the historical period. This weighted ensemble mean is then tested against the future projections of the true model. For a

given ensemble this is repeated as many times as the number of the ensemble members with a different member being chosen

as the true model each time. The median and spread of these results is reported.230

3 Results

3.1 CMIP5 data

Though the selected monthly CMIP5 data contains annual variation, it is not predominant due to the length and trend of the

dataset as shown in panel a) in Figure 3. The CMIP5 models output distribution is close to normal as shown in panel b) in

Figure 3.235

Applying the MCE method on the selected CMIP5 data with T = 120 (1900 - 2019) and a training period T1 = 80 (1900 -

1979), we obtain a weighted ensemble mean EMCE and compare it with outputs from other methods. We summarize CMIP5

data properties together with the resulting ensemble’s weights in Figure 3 and holdout cross-validation results in Table 3.
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Figure 3. CMIP5 data properties. a) Model outputs and observations. b) Model output distribution. c) AVE, COE and MCE weights.

Ensemble RMSET RMSEV BT BCM BIV RMSECM

EAV E 0.22 0.17 0.01 -0.09 -0.05 0.10

ECOE 0.15 0.19 0.00 -0.12 -0.04 0.13

EMCE 0.18 0.17 0.01 -0.10 -0.05 0.10

Table 3. Performance comparison of different methods on CMIP5 data, RMSE on training (RMSET ) and validation (RMSEV ) data;

trend bias (BT ), climatological monthly bias (BCM ), interannual variability bias (BIV ) and climatological monthly RMSE (RMSECM )

on validation data.

We can see that EAV E and EMCE perform at a similar RMSE level, with ECOE performance decreasing comparatively

more in validation, a possible indication of overfitting to the training data. We can see from Figure 3 that the COE method tends240

to set zero weights to some models, but builds a weighted ensemble mean that performs best on the training period (1900-1979).

Due to some models having zero weights, some of the models’ diversity is lost, and this results in worse performance on the

validation period (RMSEV and RMSECM in Table 3). The MCE method, on the other hand, produces model weights that
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vary around 1/N , where N is the number of the models. The MCE method does not give any model zero weighting and hence

preserves the ensembles’ diversity. The climatological biases BT , BCM and BIV are nearly equal for all three methods.245

The model-as-truth performance assessment is done on T = 200(1900−2099) and a training period T1 = 120(1900−2019)
as described in Section 2.6.2. The results are summarized in Figure 4 and Table 4 in form of median, 25% and 75% percentiles

of the N = 39 (number of models) values.

Figure 4. CMIP5 model-as-truth performance assessment results. Median, 25% and 75% percentiles of N = 39 models.

Ensemble BT BCM BIV RMSECM

EAV E 0.00 0.09 -0.09 0.25

ECOE 0.00 0.06 -0.07 0.17

EMCE 0.00 0.10 -0.09 0.22

Table 4. Model-as-truth performance comparison of different methods on CMIP5 data, median of trend bias (BT ), climatological monthly

bias (BCM ), interannual variability bias (BIV ) and climatological monthly RMSE (RMSECM ) on validation data.

All the methods perform similarly in model-as-truth assessment with ECOE having better RMSECM .

3.2 NARCliM data250

The seasonal variation in NARCLiM data is larger than in CMIP5 data as shown in panel a) in Figure 5. The NARCLiM models

output distribution is not normal as shown in panel b) in Figure 5 due to summer time and winter time temperature peaks.
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We apply the MCE method on the selected NARCliM data with T = 20 (1990 - 2009) and a training period T1 = 14 (1990 -

2003), obtain a weighted ensemble mean EMCE and compare it with outputs from other methods. We summarize NARCLiM

data properties together with the resulting ensemble’s weights in Figure 5 and holdout cross-validation results in Table 5.255

Figure 5. NARCLiM data properties. a) Model outputs and observations. b) Model output distribution. c) AVE, COE and MCE weights.

Ensemble RMSET RMSEV BT BCM BIV RMSECM

EAV E 1.6 1.85 0.04 -1.16 -0.73 1.19

ECOE 1.32 1.58 0.00 -0.49 -0.59 0.64

EMCE 1.4 1.58 0.04 -0.64 -0.69 0.70

Table 5. Performance comparison of different methods on NARCLiM data, RMSE on training (RMSET ) and validation (RMSEV ) data;

trend bias (BT ), climatological monthly bias (BCM ), interannual variability bias (BIV ) and climatological monthly RMSE (RMSECM )

on validation data.

As in CMIP5 data analysis (Figure 3), we see that the MCE method is maintaining (i.e., assigning non-zero weights to) more

models in the final weighted ensemble than the COE method. As the number of models is significantly smaller than in CMIP5
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case, the difference between the MCE output weights and the equal weights is also considerably larger. The MCE method

shows itself capable of maintaining much of the ensembles’ diversity during the optimization process. This allows MCE to

substantially improve performance over the AVE method on both training and validation periods and perform at the same level260

as COE on validation period even with lower RMSET . Again, COE has a larger decline in performance from training to

validation periods indicating possible overfitting.

The model-as-truth performance assessment is done on T = 30 (1990 - 2019 and 2030-2039) and a training period T1 = 20

(1990 - 2019) as described in Section 2.6.2. The results are summarized in Figure 6 and Table 6 in form of median, 25% and

75% percentiles of the N = 12 (number of models) values.265

Figure 6. NARCLiM model-as-truth performance assessment results. Median, 25% and 75% percentiles of the N = 12 models.

Ensemble BT BCM BIV RMSECM

EAV E -0.03 0.01 -0.42 0.96

ECOE 0.01 -0.01 -0.11 0.24

EMCE -0.02 -0.01 -0.36 0.50

Table 6. Model-as-truth performance comparison of different methods on NARCLiM data, median of trend bias (BT ), climatological

monthly bias (BCM ), interannual variability bias (BIV ) and climatological monthly RMSE (RMSECM ) on validation data.

As in the CMIP5 results (Figure 4 and Table 4) all the methods perform at the same level in BT and BCM metrics of the

model-as-truth assessment. In BIV and RMSECM metrics ECOE performs better, while EAV E performs worse than EMCE .
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3.3 KMA data

The KMA data is non-negative with a non-normal distribution of model outputs and observations as shown in panels a) and b)

in Figure 7.270

Applying the MCE method on the selected data with T = 33 (1973 - 2005) and a training period T1 = 22 (1973 - 1994),

we obtain a weighted ensemble mean EMCE and compare it with outputs from other methods. As KMA data contains only

summertime months, we analyse only its RMSET and RMSEV . We summarize KMA data properties together with the

resulting ensemble’s weights in Figure 7 and holdout cross-validation results in Table 7.

Figure 7. KMA data properties. a) Model outputs and observations. b) Model output distribution. c) AVE, COE and MCE weights.
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Ensemble RMSET RMSEV

EAV E 0.36 0.5

ECOE 0.23 0.52

EMCE 0.29 0.44

Table 7. Performance comparison of different methods on KMA data, RMSE on training (RMSET ) and validation (RMSEV ) data.

We can see that MCE has the lowest RMSE and maintains the ensembles’ diversity with a few models receiving zero weights.275

The COE method gives non-zero weights to only a small subset of models, which results in its performance on the validation

period being lower compared to MCE.

4 Discussion

The obtained results indicate that Markov chains can be used to construct a better performing weighted ensemble mean with

lower RMSE on validation data than commonly used methods like multi-model ensemble average and convex optimisation280

(Tables 3, 5 and 7). As the method’s performance did not degrade from training to validation as much as COE, we are confident

that it is less prone to over-fitting than linear optimisation methods. We attribute this advantage of the MCE method to its

ability to maintain the ensemble’s diversity while optimising its weights on the training period (Figures 3, 5 and 7), to mitigate

model interdependence and to capture some of the nonlinear patterns in the data.

The MCE method also performs at the same level as other methods in terms of climatological metrics and model-as-truth285

performance assessment, which gives us confidence in its ability to be used for future estimation of climate variables.

As the number of models increases, MCE tends to become closer to AVE weights (Figure 3), while being closer to COE

with a smaller number of models (Figure 7). This phenomenon can be explained by a higher effect of diversity on performance

in larger ensembles with normally distributed data (observations and model outputs) than in smaller ensembles like NAR-

CLiM. The KMA data has an intermediate number of models and MCE produces a hybrid response which maintains ensemble290

diversity (a few models with zero weights) but does weight a small number of models more highly.

The MCE method is computationally cheap and is limited only by a software’s ability to handle extreme numerical values.

One limitation of the MCE method is its current inability to quantify the uncertainty of the resulting weighted ensemble mean.

However, we believe that given the stochastic nature of the method, this limitation can be overcome in future implementations.

MCE performance can be further improved by combining it with other types of optimisation, e.g. linear. In addition, other295

nonlinear optimisation techniques, which would include more complex structures than simple Markov chains, can be developed

based on our demonstrated results.

Finally, the MCE method doesn’t require some of the assumptions necessary for the multi-model ensemble average method

(e.g. models being reasonably independent and equally plausible as discussed by Knutti et al. (2017)) and it doesn’t produce
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as many zero weights as the convex optimisation method, hence maintaining more of the models’ diversity. We attribute the300

tendency of the COE method to set zero weights to some models to its property below:

Geometrically, the restrictions wj ≥ 0,
∑N

j=1wj = 1 describe a simplex in RN that is a subset of the hyperplane with

the equation
∑N

j=1wj = 1. Denote w = (w1,w2, . . . ,wN ). The potential choice of weights that only satisfy the constraint∑N
j=1wj = 1 without the non-negativity restriction represents any point in the hyperplane P = {w :

∑N
j=1wj = 1}. This hy-

perplane contains the simplex S = {w ∈ P : wj ≥ 0}. In general, the optimal point w∗ for the unrestricted solution of the

optimisation problem

min
w

T∑
i=1

(

N∑
j=1

wjMj,i−Oi)
2,w ∈ P

will be outside the simplex. It is clear that the optimal point for the constrained solution on the simplex:

min
w

T∑
i=1

(

N∑
j=1

wjMj,i−Oi)
2,w ∈ S

would be on the boundary of the simplex rather than in its interior. Indeed, if we assume that the optimal point for the con-

strained problem is certain w̃ in the interior of the simplex, we immediately arrive at a contradiction. Take then the point

ŵ = w∗+λ(w̃−w∗) with λ ∈ (0,1) chosen such that ŵ is on the intersection of the line connecting w∗ and w̃ with the

boundary of the simplex. Because of the strict convexity of the function

f(w) =

T∑
i=1

(

N∑
j=1

wjMj,i−Oi)
2

we have:

f(ŵ) = f(w∗+λ(w̃−w∗)) = f(λw̃+(1−λ)w∗)< λf(w̃)+ (1−λ)f(w∗)< f(w̃)

in contradiction to the assumption that w̃ delivers the minimum over the simplex. Hence the optimisation on the simplex tends

to deliver optimal points with some components equal to zero because they tend to be on the boundary of the simplex.

5 Conclusions

In this study, we presented a novel approach based on Markov chains to estimate model weights in constructing weighted305

climate model ensemble means. The complete MCE method was applied to selected climate datasets, and its performance was

compared to two other common approaches (AVE and COE) using cross-validation holdout method and model-as-truth perfor-

mance assessment with RMSE, trend bias, climatology monthly bias, interannual variability and climatological monthly RMSE

metrics. The MCE method was discussed in detail, and its step-wise implementation, including mathematical background, was

presented (Table 2).310

The results of this study indicate that applying nonlinear ensemble weighting methods on climate datasets can improve future

climate projection in terms of accuracy. Even a simple nonlinear structure such as Markov chains shows good performance on

different commonly-used datasets compared to linear optimisation approaches. These results are supported by using standard
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performance metrics, cross-validation procedures and model-as-truth performance assessment. The developed MCE method

is objective in terms of parameter selection, has a sound theoretical basis and has a relatively low number of limitations. It315

maintains ensemble diversity, mitigates model interdependence and captures some of the nonlinear patterns in the data while

optimizing ensemble weights. It is also shown to perform well on non-Gaussian datasets. Based on the above, we are confident

to suggest its application on other datasets and its usage for the future development of new nonlinear optimisation methods for

weighting climate model ensembles.
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