Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2020-253-RC2, 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive comment on “A Markov chain method
for weighting climate model ensembles” by Max
Kulinich et al.

Anonymous Referee #2

Received and published: 10 November 2020

In this study, the authors present a novel method that employs Markov Chains as a
means to weight members of global climate model (GCM) ensembles. Using three
case studies involving historical simulations of global average temperature, regionally
downscaled seasonal temperature, and a regional heat wave heuristic, they compare
the performance of three model weighting schemes: simple model averaging (by def-
inition, equal weights), a ‘Convex Optimization Ensemble’ (COE) method, and their
‘Markov Chain Ensemble’ (MCE) approach. Standard observational datasets from the
recent past (up to ~120 years) are used for comparison based on RMSE and R2 skill
scores.

The proposed approach is interesting, and could be quite useful as a means to weight
model ensembles and its simplicity is attractive, while also presenting a less ad-hoc ap-
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proach than simple model averaging. However, | cannot evaluate the scientific merit of
the approach because the model-observation tests are ill-posed in their current form.
The main problem is that comparing unfiltered GCM time series to observations is
very problematic when applying typical skill scores because the interannual variability
will not correspond between CMIP5 models and the observations. So although the
underlying trend or evolving signal (assuming there is a signal, such as in global tem-
peratures) of a perfectly performing model should match what is observed, the full time
series from the model would not necessarily match the observed time series. This is
because in the CMIP5 experiments, the GCMs begin the experiments with different
initial conditions, and different model runs within the same model will begin at differ-
ent points in the same control run before then beginning the perturbation experiment
(i.e. including anthropogenic forcings). This makes direct time series comparisons very
tricky if not handled carefully. Take a very simple example as shown in the example
figure.

Here are three simulated white noise time series (mean = 0, standard deviation = 1)
overlaid onto two linear trends (0.1 for the black and blue time series, 0.03 for the
red time series). The blue and red time series symbolize what could occur in a multi-
member CMIP5 ensemble. Note that even though the blue time series has exactly
the same trend as the ‘observed’ time series, the RMSE is higher than the red time
series simply because the inter-annual variation is misaligned (of opposite sign in this
case) with the observed anomalies. In contrast, the red time series has a lower RMSE,
despite the fact that it does not capture the true forced trend. But the anomalies are
aligned perfectly with observations. The red time series would be weighted higher in
this case. It is ‘right’ for the ‘wrong’ reasons. Similarly the test set up in this manuscript
is subject to the same problem. Individual models could exhibit anomalies that are
more similar to the observed time series (driving down the skill scores), while the model
response to the perturbation is less accurately simulated than other models with higher
(by-chance) anomaly errors.
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Of course, all the methods that were tested (AVG, COE, MCE) could be similarly bi-
ased, in which case perhaps the results hold. But, there is no way to ascertain that in
the current test structure.

My other, more minor comments relate to similar issues with the structure of the model
evaluation exercise. It is unsurprising that the model RMSE and R2 values were so
poor when comparing GCM results to heat wave heuristics based on local weather sta-
tion data (and again, where the model internal variability would have no reason except
by chance to match the observed internal variability). The GCMs were developed at
a scale that was never intended to resolve such localized patterns, and of course any
annual heat waves that were observed, would only by chance occur in the same years
(and be of similar magnitude) in the ensemble members.

To improve the evaluation | suggest the authors revisit the literature to see how oth-
ers have tackled this problem. More attention should be paid to, for example, efforts
by Sanderson et al. (2015) to carefully construct valid comparisons between GCM
ensembles and observations (in this case, by focusing the model skill evaluation on
climatologies, rather than time series anomalies) while also taking into account model
inter-dependence; something which the authors admit they do not account for in their
method. Others have addressed the non-initialized climate model/observation com-
parison problem by comparing long-term trends (e.g. Terando et al. 2012), which
removes some of the problems with mis-matched internal variability, and gets closer to
an actual forecast verification approach, but does not address other issues such as the
robustness and reliability of weighting methods (see discussion in Knutti et al. 2017). It
should be possible to construct a rigorous test of their MCE method, but the numerous
challenges that have been widely and repeatedly documented in the literature should
be acknowledged and addressed.
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Observed trend = 0.1
Model 1 trend = 0.1, RMSE=2.06
Model 2 trend = 0.03, RMSE=2.04
Meodel 1 Anom = -1*{0Obs Anom)

Model 2 Anom = Obs Anom
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Fig. 1. RMSE Example
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