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1 General

We provide a point by point response to the referee’s comments. Referee’s original comments are in
black fonts, and our response in blue font.

2 Referee 1: Ben Sanderson sanderson@cerfacs.fr

This study considers a novel application of Markov Chain methods to the problem of climate model
weighting. The authors use a multi-model ensemble of climate model simulations, together with
a range of different observation sources (global mean temperatures, regional averages and regional
extreme temperature statistics). The novel ”MCE” methodology is compared with two other ap-
proaches (a climatological weighted average score - Lambert and Boer 2001, AVE hereafter, and the
ensemble transformation approach of Bishop and Abramowitz 2013, COE hereafter). The authors
find desirable properties of their proposed approach in terms of out-of-sample skill and performance
in non normally distributed quantities related to temperature extremes.

The approach shows promise, the potential for more robust error estimates in weights would be
useful and the stochastic nature of the computation may offer additional benefits. However, these
avenues are not explored in the current text and the authors have not yet fully addressed the basic
requirements of an operational climate model weighting scheme (robust out of sample testing), and
existing simpler approaches may outperform the approach presented here for the metrics considered
(see below).

Response: Thank you for this suggestion, and we have now added additional model-as-truth (in-
and out-of-sample) performance assessments in Section 3 (“Results”). The assessments are done
on CMIP5 and NARCLiM monthly data using trend bias, climatology monthly bias, interannual
variability and climatological monthly RMSE metrics.

We describe those metrics in sections 2.5.2 - 2.5.5, and the model-as-truth performance assessment
procedure in section 2.6.2. We present the models-as-truth experiment results for each data set with
monthly data (lines 242 - 248 and 262 - 266) followed by a discussion starting from line 284 and
conclusions starting from line 305.

The introduction talks of the need to represent and consider model interdependency - but the
actual study does not propose any mechanism for accounting for model interdependencies or common
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components in the weighting scheme. Example approaches for doing so are laid out in Sanderson
(2017) and Lorenz (2018).

We added a new section 2.2.2 ”Model interdependence” to demonstrate how MCE is accounting
for model interdependencies.

The study also generalizes existing literature by the two comparative cases considered (AVE and
COE) as ”linear” approaches, but there are more complex schemes in the literature which address
issues not considered here, like optimal subselection (Sanderson 2015). In addition, given an RMSE
or Rˆ2 metric - methods which determine the global optimization of weighted scores (Herger 2018)
are in theory unbeatable - so, although there may be tangential benefits to using MCE, it’s unclear
that the approach here could outperform a global weight optimization for these types of metric.

The size limit of the publication does not allow to compare the MCE method to all the existing
ensemble weighting techniques, though it would be a valuable addition to the study results. Though
the MCE technique can be easily outperformed on training data by other methods (as shown in
Tables 4,5 and 6), when it comes to cross-validation the MCE performs generally well on validation
data (on par or better than other methods). We attribute its high performance to its ability to
capture some of the sequential information in the input time series, which other methods do not use.
An example of such information would be: if model A is the closest to the observation at time t, then
model B will be the closest at time t+1 with high probability. This would be naturally captured by
the MCE method through the transition matrix P, but difficult (or impossible) to capture by linear
or subselection methods. In addition, the MCE method maintains ensemble diversity on all three
data sets and its performance does not degrade from training to validation as much COE.

The paper attributes differences in weighting behavior between MCE, AVE and COE to differ-
ences in methodology, without sampling the subjective degrees of freedom in each of the approaches.
As such, the observation that the MCE approach tends to rule out fewer models than COE is po-
tentially a function of the chosen L and sigma parameters as well as the MCE approach itself. Any
revision should present parameter sensitivities in the main text.

We thank the referee for the above suggestion. We have now modified the MCE method to
randomly select sigma from a segment limited by the exponential function properties. In addition
the modified algorithm selects only one set of weights and is less sensitive to the number of simulations
(L). The modified algorithm is described in Section 2.2 (“Markov chain ensemble (MCE) method”).
We also discuss the effect of the parameter choice in section 2.2.1 (“Parameter sensitivity”).

The paper also employs only a weak out of sample test, splitting the available data into a training
and validation set. This is insufficient for the climate problem - where only the past is observable
and the primary unknowns are climate projections in the future. Models with comparatively similar
past trajectories might diverge significantly in the future - and the validation scheme considered
here (where random timesteps are withheld) does not capture this divergence. A stronger test is
a perfect model study, where individual models are withheld from the ensemble and late century
projected performance is considered.

The perfect model test is covered in model-as-truth performance assessment as described above.

The paper considers that, for a given output variable, that the climate models should be weighted
only by their fidelity in producing that variable - but there is no clear reason why this should be
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the case. Climate projections are functions of the integrated climate system which determine global
climate sensitivities and regional feedbacks. As such, fidelity in producing a given variable (such as
a regional temperature timeseries) in the past is no guarantee of accuracy in the future (Sanderson
2012). Lorenz et al (2018), for example, discusses at length the relative utility of different variable
types for constraining future model evolution.

This is a really good point, and we agree. Though the MCE cannot predict the future behavior
which didn’t occur in the past, it avoids overfitting on the training set (at least if compared to such
methods as COE). As other ensemble methods its prediction efficiency is naturally limited by ability
of the input models to represent observations. As mentioned in the Section 2.2.3 (“MCE method
limitations”), the uncertainty quantification including the analysis of different sources of error is too
large to be included in the same paper as the method introduction itself. This topic is therefore a
subject for further MCE method development and is currently out of scope for this publication.

Finally, the paper does not acknowledge the various reasons climate models may disagree - natural
variability provides an absolute limit on the performance of an uninitialized climate model, and so
some discussion is required on how different sources of error would impact the results in this case.

Given these issues, I suggest the following revisions: 1 - outline more clearly (and ideally quantify)
the benefits of using MCE beyond absolute skill scores (where the method will be outperformed by
construction by Herger 2018)

Response: We extended evaluation of the MCE method as discussed above and included the
following text in the Discussion (Section 5) starting from line 278:

The obtained results indicate that Markov chains can be used to construct a better perform-
ing weighted ensemble mean with lower RMSE on validation data than commonly used methods
like multi-model ensemble average and convex optimisation (Tables 3, 5 and 7). As the method’s
performance did not degrade from training to validation as much as COE, we are confident that it
is less prone to over-fitting than linear optimisation methods. We attribute this advantage of the
MCE method to its ability to maintain the ensemble’s diversity while optimising its weights on the
training period (Figures 3, 5 and 7), to mitigate model interdependence and to capture some of the
nonlinear patterns in the data.

The MCE method also performs at the same level as other methods in terms of climatological
metrics and model-as-truth performance assessment, which gives us confidence in its ability to be
used for future estimation of climate variables.

and in Conclusions (Section 6) starting from line 312: The developed MCE method is objective
in terms of parameter selection, has a sound theoretical basis and has a relatively low number of
limitations. It maintains ensemble diversity, mitigates model interdependence and captures some of
the non-linear patterns in the data while optimizing ensemble weights. It is also shown to perform
well on non-Gaussian data sets. Based on the above, we are confident to suggest its application on
other data sets and its usage for the future development of new nonlinear optimisation methods for
weighting climate model ensembles.

2 - present the parameter sensitivity of the method in the main text Response:

We have changed the method to eliminate need for manual tuning and added Section 2.2.1
(“Parameter sensitivity”).

3 - perform a rigorous leave-one-out test of weighting scheme performance in a perfect model
projections of century-scale climate change Response:
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We performed a rigorous leave-one-out test as described in section 2.6.2 (“Model-as-truth per-
formance assessment”).

4 - Consider how to address model interdependency in this method (which would bias the leave-
one-out test)- either by adaptation of existing approaches or otherwise

Response: We explained and illustrated how the MCE method is addressing model interdepen-
dency in Section 2.2.2 (“Model interdependence”).

5 - Reconsider the relationship between variables used for weighting and those variables which
are to be weighted (there is no reason to limit consideration in the weighting term to those variables
which are themselves being weighted).

Response: That would require a major redesign of the method and can be a topic for the future
MCE development.

6 - consider the role of various sources of error and whether they should be represented within
the scheme (natural variability, forcing errors, structural differences).

Response: That would require a major restructuring of the publication with new data sets and
according tests, discussions and conclusions as the topic is too large to include into the current
manuscript.

3 Referee 2

In this study, the authors present a novel method that employs Markov Chains as a means to
weight members of global climate model (GCM) ensembles. Using three case studies involving
historical simulations of global average temperature, regionally downscaled seasonal temperature,
and a regional heat wave heuristic, they compare the performance of three model weighting schemes:
simple model averaging (by definition, equal weights), a ‘Convex Optimization Ensemble’ (COE)
method, and their ‘Markov Chain Ensemble’ (MCE) approach. Standard observational datasets from
the recent past (up to 120 years) are used for comparison based on RMSE and R2 skill scores. The
proposed approach is interesting, and could be quite useful as a means to weight model ensembles and
its simplicity is attractive, while also presenting a less ad-hoc approach than simple model averaging.
However, I cannot evaluate the scientific merit of the approach because the model-observation tests
are ill-posed in their current form.

The main problem is that comparing unfiltered GCM time series to observations is very prob-
lematic when applying typical skill scores because the interannual variability will not correspond
between CMIP5 models and the observations. So although the underlying trend or evolving signal
(assuming there is a signal, such as in global temperatures) of a perfectly performing model should
match what is observed, the full time series from the model would not necessarily match the ob-
served time series. This is because in the CMIP5 experiments, the GCMs begin the experiments with
different initial conditions, and different model runs within the same model will begin at different
points in the same control run before then beginning the perturbation experiment (i.e. including
anthropogenic forcings). This makes direct time series comparisons very tricky if not handled care-
fully. Take a very simple example as shown in the example figure. Here are three simulated white
noise time series (mean = 0, standard deviation = 1) overlaid onto two linear trends (0.1 for the
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black and blue time series, 0.03 for the red time series). The blue and red time series symbolize
what could occur in a multimember CMIP5 ensemble. Note that even though the blue time series
has exactly the same trend as the ‘observed’ time series, the RMSE is higher than the red time
series simply because the inter-annual variation is misaligned (of opposite sign in this case) with the
observed anomalies. In contrast, the red time series has a lower RMSE, despite the fact that it does
not capture the true forced trend. But the anomalies are aligned perfectly with observations. The
red time series would be weighted higher in this case. It is ‘right’ for the ‘wrong’ reasons. Similarly
the test set up in this manuscript is subject to the same problem. Individual models could exhibit
anomalies that are more similar to the observed time series (driving down the skill scores), while
the model response to the perturbation is less accurately simulated than other models with higher
(by-chance) anomaly errors. Of course, all the methods that were tested (AVG, COE, MCE) could
be similarly biased, in which case perhaps the results hold. But, there is no way to ascertain that
in the current test structure.

Thank you for pointing out this common problem. As mentioned this issue is not unique to MCE
and is difficult to handle for all ensemble weighting methods. To address it in this publication we have
now added additional model-as-truth (in- and out-of-sample) performance assessments as described
in section 2.6.2 (“Model-as-truth performance assessment”). The assessments are done on CMIP5
and NARCLiM monthly data using trend bias, climatology monthly bias, interannual variability and
climatological monthly RMSE metrics. This performance assessment helps to evaluate how sensitive
is the MCE method to the problem described in your example. In this example both mean and
trend would have larger errors in the long run if optimized only on RMSE (i.e. by giving a higher
weight to the red line) compared to a simple averaging. We demonstrate that this is not the case
on CMIP5 and NARCLiM monthly where MCE is performing at the same level as AVE and COE.
Hence we believe that the MCE method is at least as robust against such issues as the methods
mentioned and does not sub-optimize to RMSE only.

My other, more minor comments relate to similar issues with the structure of the model evaluation
exercise. It is unsurprising that the model RMSE and R2 values were so poor when comparing
GCM results to heat wave heuristics based on local weather station data (and again, where the
model internal variability would have no reason except by chance to match the observed internal
variability). The GCMs were developed at a scale that was never intended to resolve such localized
patterns, and of course any annual heat waves that were observed, would only by chance occur in
the same years (and be of similar magnitude) in the ensemble members.

Response: We agree with the outlined challenges in constructing ensembles of RCMs. The
main purpose of including those data sets was to demonstrate versatility of the MCE method due
to its fewer limitations than many other optimization methods. We believe that we were able to
demonstrate that the MCE method can be successfully applied on data with distributions that are
very different from normal and with value constraints (non-negative in case of heatwaves).

To improve the evaluation I suggest the authors revisit the literature to see how others have
tackled this problem. More attention should be paid to, for example, efforts by Sanderson et al.
(2015) to carefully construct valid comparisons between GCM ensembles and observations (in this
case, by focusing the model skill evaluation on climatologies, rather than time series anomalies) while
also taking into account model inter-dependence; something which the authors admit they do not
account for in their method. Others have addressed the non-initialized climate model/observation
comparison problem by comparing long-term trends (e.g. Terando et al. 2012), which removes some
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of the problems with mis-matched internal variability, and gets closer to an actual forecast verification
approach, but does not address other issues such as the robustness and reliability of weighting
methods (see discussion in Knutti et al. 2017). It should be possible to construct a rigorous test of
their MCE method, but the numerous challenges that have been widely and repeatedly documented
in the literature should be acknowledged and addressed.

Response: We analyzed climatologies using trend bias, climatology monthly bias, interannual
variability and climatological monthly RMSE metrics with both cross-validation (holdout method)
and model-as-truth performance assessment to have more confidence in the MCE performance and
applicability.
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