
(1) Comments from referee 

 

Anonymous Referee #1 
Received and published: 17 December 2020 

The reviewed manuscript aims to estimate the Lyapunov exponent, asymptotic error 
and model error for the ECMWF forecasts. The authors are comparing different parametric 
models to do such estimates. The topic is interesting but as a reader I have 
problems to follow some of the steps and assumptions in the manuscript, especially 
the correction step that is introduced. The manuscript also has a number of statements 
that need to be better clarified. I therefore recommend a major revision before it 
can be accepted for publication. 
 
Major comments 1. 
 I do not understand why the geometric vs arithmetic mean is discussed 
in the manuscript, especially as it cannot be fully applied to the ECMWF scores 
that are externally calculated. The part needs to be better motivated or removed. 
2. In the L05 a model error is introduced, but it needs to be better explained how this error would 
work and how it relates to real model errors. 
3. The correction scheme for which the results are presented on line 210-233 is not 
properly introduced and motivated. For example, it is not easy to see how a correction 
based on L05 can be applied to ECMWF data. A proper description is needed. 
 
Minor comments: 
Line 18-19: Initial errors grow due to the chaotic nature of the system. 
Line 19-20: The growth can be considered exponential for short lead times before nonlinear effects 
(saturation) starts to play a role. Note that for very short lead times the error growth could be faster 
either due to small-scale processes as discussed in Zhang et al., or due to decorrelation between 
analysis error and forecast errors. 
Line 22: “with increasing” -> “as function of”  
Line 27: L is often referred to as practical predictability 
Line 30: Historically U is referred to as the perfect model assumption  
Line 38: Based on time-derivatives of the error Line 44 and other places: Do not use ‘ (e.g don’t)  
Line 48: The need for a multi-scale growth model can be elaborated a bit more on.  
Line 99: Is “real” referring to the forecast as opposed to observations?  
Line 116: “Ago” and “ahead” is confusing  
Line 177: ERA-Interim does also include errors, which might be correlated with the forecast initial 
conditions 
Line 175: Do you tune the L05 differently for different years of ECMWF data, to account for lower initial 
and lower model errors? 
Line 191: “RMS” - Root mean square?  
Line 199: How would the result look if you force beta to be zero? Line 210-233: This paragraph is very 
difficult to follow.  
Line 244: Odd statement. 
Line 288: p should be given by the system and be independent of the model error 
Line 270-273: I do not understand the statement “used in ECMWF forecasting system”. Please give a 
reference. 



(2) author’s response 

 

Dear referee, 

thank you for your comments. We would like to respond to them: 

 

Major comments 

1. I do not understand why the geometric vs arithmetic mean is discussed in the manuscript, especially as it 

cannot be fully applied to the ECMWF scores that are externally calculated. The part needs to be better 

motivated or removed. 

We added a better motivation (Line 179-180): 

Calculating predictability curves by arithmetic and geometric mean, although it does not affect predictability 

curves of the ECMWF forecasting system, is mentioned because it affects the calculation of predictability curves 

of the L05 system and this then affects the comparison of predictability curves, which is important for 

recalculation of error growth models’ parameters for the ECMWF forecast system. 

 

2. In the L05 a model error is introduced, but it needs to be better explained how this error would work and how 

it relates to real model errors. 

We added a more detailed explanation (Line 103-108): 

This method was presented by Lorenz (2005). Although not only resolution but also physical parameterization 

affects the deficiencies of the ECMWF system which make it different from the real atmosphere, Buizza (2010) 

showed that a comparison of predictability curves of the ECMWF system calculated from differences of 

prediction and analysis and from two predictions of systems with different horizontal resolutions leads to the 

same overall conclusions. Despite the sub differences mentioned by Buizza (2010), this method is sufficient for 

comparing the L05 system and the ECMWF forecasting system. 

 

3. The correction scheme for which the results are presented on line 210-233 is not properly introduced and 

motivated. For example, it is not easy to see how a correction based on L05 can be applied to ECMWF data. A 

proper description is needed. 

We added a description (Line 228-232, 245-251): Some symbols were incorrectly marked in Eq. (15) and in its 

description ( ( )( ) ( )( )05 05 05 05 05 05

lim lim lim lim lim

EFS EFS EFS L L L EFS EFS EFS L L LE E E E E E E E E E E E      = +  − → = +  − in Eq., 

05 05

lim

L LE E → in description): 

Line 228-232 

The formula (14) is based on the assumption, that if normalized predictability curves of the L05 system and the 

ECMWF forecasting system are similar, then the differences between true values of the global largest Lyapunov 

exponents (
EFS  , 

05L ) and values determined from error growth models (
EFS  , 

05L ) are similar (

05 05EFS EFS L L   −  − ). Similarity of differences  −  allows to estimate the global largest Lyapunov 

exponents of the ECMWF forecasting system. 

 

Line 245-251 

05

lim 05

lim

,
L

EFS EFS

L

E
E E

E



 =   (1) 

where 
lim

EFSE  and 05

lim

LE  are values from error growth models and 05 8.2LE = . As in calculating 
EFS , Eq. (15) 

based on the assumption, that if normalized predictability curves of the L05 system and the ECMWF forecasting 



system are similar, then the differences between true limit values ( EFSE
, 05LE

) and values determined from error 

growth models (
lim

EFSE , 05

lim

LE ) are similar. In this case, however, only normalized values can be compared: 

( ) ( ) ( )( )05 05 05 05 05 05 05 05

lim lim lim lim lim lim .EFS EFS EFS L L L EFS EFS EFS L L L EFS EFS L LE E E E E E E E E E E E E E E E         −  − →  +  − →    

Similarity of normalized differences ( ( )limE E E − ) allows to estimate new limit values of the ECMWF 

forecasting system. 

 

Minor comments 

Line 18-19: Initial errors grow due to the chaotic nature of the system. 

Corrected (Line 19). 

 

Line 19-20: The growth can be considered exponential for short lead times before nonlinear effects (saturation) 

starts to play a role. Note that for very short lead times the error growth could be faster either due to small-scale 

processes as discussed in Zhang et al., or due to decorrelation between analysis error and forecast errors. 

Added (Line 22-23). 

 

Line 22: “with increasing” -> “as function of”. 

Corrected (Line 23-24). 

 

Line 27: L is often referred to as practical predictability. 

Added (Line 28-29) 

 

Line 30: Historically U is referred to as the perfect model assumption. 

Added (Line 32) 

 

Line 38: Based on time-derivatives of the error. 

Corrected (Line 41-42). 

 

Line 44 and other places: Do not use ‘ (e.g don’t). 

Corrected (Line 48, 49, 139, 162, 175). 

 

Line 48: The need for a multi-scale growth model can be elaborated a bit more on. 

Added (Line 52-53) 

, where a parameter that usually measure model error, here represents the intrinsic upscale error growth and 

propagation from small scales. 

 

Line 99: Is “real” referring to the forecast as opposed to observations? 

Corrected (Line 109). 

observed predicted 

 

Line 116: “Ago” and “ahead” is confusing. 

Corrected (Line 127). 

ahead ago 

 

Line 177: ERA-Interim does also include errors, which might be correlated with the forecast initial conditions. 

We did not find how this comment is associated with line 177. 

 

Line 175: Do you tune the L05 differently for different years of ECMWF data, to account for lower initial and 

lower model errors? 

Added (Line 163-165, 168-169, 186-187, 189-190). 



Line 163-165: 

these values are in the interval ( )05 0 0.3;0.8L

UE  , where lower values correspond to initial prediction errors of 

the ECMWF system from later years and higher values pertain to early years. 

 

Line 168-169: 

where lower values correspond to initial prediction errors of the ECMWF system from later years and higher 

values pertain to early years. 

 

Line 186-187: 

(for lower bound predictability curves this sets different values of the model error) 

 

Line 189-190: 

(the fact that this would mean unrealistic values of the model error for the ECMWF forecasting system is further 

discussed) 

 

Line 199: How would the result look if you force beta to be zero? 

Results with beta equal to zero are results of Quadratic ( Km ) and hyperbolic tangent (Tm ) error growth models. 

 

Line 210-233: This paragraph is very difficult to follow. 

See Major comments 3. 

 

Line 244: Odd statement. 

Deleted (Line 271) 

 

Line 288: p should be given by the system and be independent of the model error 

The answer can be found on the lines 275-278. 

 

“ Gm  has parameter p  that defines skewness of the originally parabolic shape of the difference of predictability 

curves. 1p =  pertains to symmetrical parabolic shape ( Gm becomes Km ) and 0p =  means the greatest 

skewness to the left ( Gm becomes Lm ). Parameters   also skew the originally parabolic shape (Figs. 3 and 4). 

The model error can be seen as a difference between skewness of upper and lower bound predictability curves.” 

 

Line 270-273: I do not understand the statement “used in ECMWF forecasting system”. Please give a reference. 

Reference to Zhang et al. (2019) (Line 297). 
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(3) authors changes in manuscript 

Recalculation of error growth models’ parameters for the ECMWF 

forecast system 

Hynek Bednář 1, Aleš Raidl 1 and Jiří Mikšovský 1 

1Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, 180 00, Czech 5 

Republic 

Correspondence to: Hynek Bednář (hynek.bednar@mff.cuni.cz) 

Abstract. This article provides a new estimate of error growth models’ parameters approximating predictability curves and 

their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest 

Lyapunov exponent are also provided, along with model error and the limit value of the predictability curve. The proposed 10 

correction is based on the ability of the Lorenz’s (2005) system to simulate predictability curve of the ECMWF forecasting 

system and on comparing the parameters estimated for both these systems, as well as on comparison with the largest Lyapunov 

exponent (λ = 0.35 day-1) and limit value of the predictability curve (E∞ = 8.2) of the Lorenz’s system. Parameters are calculated 

from the Quadratic model with and without model error, as well as by the Logarithmic and General models and by the 

hyperbolic tangent model. The average value of the largest Lyapunov exponent is estimated to be in the <0.32; 0.41> day-1 15 

range for the ECMWF forecasting system, limit values of the predictability curves are estimated with lower theoretically 

derived values and new approach of calculation of model error based on comparison of models is presented.  

1. Introduction 

Forecast errors in numerical weather prediction systems grow in time because of the inaccuracy of the initial state (initial 

error), chaotic nature of the weather system itself, and the model imperfections (model error). The growth of forecast error in 20 

weather prediction is exponential on average. As an error becomes larger, its growth slows down and then stops with the 

magnitude saturating at about the average distance between two states chosen randomly from dynamically and statistically 

possible states. For very short lead times the error growth could be superexponential either due to small-scale processes (Zhang 

et al., 2019) or due to decorrelation between analysis and forecast errors. This average growth of forecast error with increasing 

lead as function of times is called the predictability curve. 25 

Predictability curves (Froude et al., 2013) of the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical 

weather prediction system are calculated by the approach developed by Lorenz (1982), where two types of error growth can 

be obtained (Lorenz, 1982). The first type is calculated as the root mean square difference between forecast data of increasing 

lead times and analysis data valid for the same time. This error growth estimate consists of initial and model error that is often 
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referred to as practical predictability but and following Lorenz (1982) we will call it the lower bound predictability curve (L). 30 

The second type is calculated as the root-mean-square difference between pairs of forecasts, valid for the same time but with 

times differing by some fixed time interval (the difference between two forecasts issued with 24-h lag but valid at the same 

time is used in this article). This type, that is historically referred as the perfect model assumption, consists of initial error and 

we will call it the upper bound predictability curve (U). Predictability curves of Lorenz’s 05 system (L05; Lorenz, 2005) can 

be controlled by model parameters and by the size of the initial error and they are set to be as close to predictability curves of 35 

ECMWF forecasting system as possible.  

Over the years several error growth models approximating predictability curves have been developed, aiming to quantify 

Lyapunov exponents, model errors (for the imperfect model case where the atmosphere is not perfectly modeled), and limit 

(saturated) errors. The first, called Quadratic ( Km ), was designed by Lorenz (1969). Dalcher and Kalney (1987) added model 

error to the Quadratic model and Savijarvi (1995) changed it to the form ( Km ), that is used today. An alternative, called 40 

Logarithmic model ( Lm ) was introduced by Trevisan et al. (1992; 1993). General model ( Gm ) was introduced by Stroe and 

Royer (1993; 1994). All these models are based on time-derivatives of the error approximate differences of predictability 

curves (error growth rate). Newer models approximate the predictability curve directly by the hyperbolic tangent (Tm  and 

Tm ) (Žagar et al., 2017).  

Values of parameters calculated from error growth models are used to evaluate the improvement of the ECMWF forecasting 45 

system (Magnusson and Kallen, 2013), to estimate the predictability or the limit error (Bengtsson et al., 2008), to quantify 

impacts of different model’s resolutions (Buizza, 2010), to study chaos and model error in different spatial-temporal scales 

(Žagar et al., 2015; Žagar et al., 2017 ). They are also used by researchers when the need arises to estimate chaoticity, model 

error or predictability, but their validity can’t not be proved, because standard methods (Sprott, 2006) to calculate the largest 

Lyapunov exponents for the ECMWF forecasting system can’t not be used due to a large number of variables. An independent 50 

value estimated from forecast and analysis anomalies can be calculated for the limit error (Simmons et al., 1995) and its validity 

will be discussed.  The need for correct values of error growth models´ parameters increased these days because the Quadratic 

model with model error is used to describe multiscale weather (Zhang et al., 2019), where a parameter that usually measure 

model error, here represents the intrinsic upscale error growth and propagation from small scales .  

This article intends to provide a new estimate of parameters of error growth models in the ECMWF forecasting system 55 

calculated from data over the 1986 to 2011 period. The correction is based on comparing the parameters calculated from the 

error growth models for the L05 system and the ECMWF forecasting system and on comparison with the largest Lyapunov 

exponent and the limit value of the predictability curve of the L05 system that can be calculated independently and with 

sufficient accuracy. To make the correction valid, predictability curves of the ECMWF forecasting system and the L05 systems 

are compared for two different methods (arithmetic and geometric averages) and the number of variables of the L05 system, 60 

pertaining to the best match of the predictability curves is identified. As a result, a new approach to the calculation of model 

error based on a comparison of models is presented. 
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This article is divided into six sections.  The second describes the experimental setting. The third provides a comparison of 

predictability curves of the ECMWF forecasting system and the L05 system and the fourth deals with the estimation of 

Lyapunov exponents, model, and limit errors of the ECMWF forecasting system based on the correction.  Discussion and 65 

conclusions are then presented in the final two sections. 

2. Experimental setting  

L05 model is based on the low-dimensional atmospheric system presented by Lorenz (1996). It is a nonlinear model, with N 

variables connected by governing equations   

 2 1 1 1 ,n n n n n ndX dt X X X X X F− − + −= − + − +  (1) 70 

1, ,n N= . 2 1 1   ,  ,   ,   n n n nX X X X− − + are unspecified (i.e., unrelated to actual physical variables) scalar meteorological 

quantities, F is a constant representing external forcing and t is time. The index is cyclic so that n N n N nX X X− += = and 

variables can be viewed as existing around a circle. Nonlinear terms of Eq. (1) simulate advection. Linear terms represent 

mechanical and thermal dissipation. The model quantitatively, to a certain extent, describes weather systems, but, unlike the 

well-known Lorenz’s model of atmospheric convection (Lorenz, 1963), it cannot be derived from any atmospheric dynamic 75 

equations. The motivation was to formulate the simplest possible set of dissipative chaotically behaving differential equations 

that share some properties with the “real” atmosphere. One of the model´s properties is to have 5 to 7 main highs and lows that 

correspond to planetary waves (Rossby waves) and a number of smaller waves that correspond to synoptic-scale waves. For 

Eq. (1) this is only valid for 30N =  and that is, as it will be seen, not sufficient for the experimental setting. Therefore, spatial 

continuity modification of L05 system is used, where the Eq. (1) is rewritten to the form:                                                          80 

  
,

, ,n nL n
dX dt X X X F= − +  (2) 

where 

  ( ) 2

2,
, ' ' .

J J

n L i n L j n L j i n L jL n
j J i J

X X X X X X L− − − − − + − + +

=− =−

= − +   

If L is even, ∑’ denotes a modified summation, in which the first and last terms are to be divided by 2. If L is odd, ∑’ denotes 

an ordinary summation. Generally, L is much smaller than N and J = L/2 if K is even and J = (L-1)/2 if L is odd. For comparison 85 

with predictability curves of the ECMWF forecasting system, we choose N =30; 60; 90; 120; 150; 360. To keep a desirable 
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number of main pressure highs and lows, Lorenz (2005) suggested to keep ratio N/L = 30 and therefore L = 1; 2; 3; 4; 5; 12. 

For even values of L we have J = 1; 2; 6 and for odd values of L we have J = 0; 1; 2. Parameter F = 15 is selected as a 

compromise between too high Lyapunov exponent (smaller F) and undesirable shorter waves (larger F). For this setting and 

by the method of numerical calculation (Sprott, 2006), the global largest Lyapunov exponents are calculated (Table 2). By the 90 

definition of Lorenz (1969): „A bounded dynamical system with a positive Lyapunov exponent is chaotic “. Because the value 

of the largest Lyapunov exponent is positive and the system under study is bounded, it is chaotic. Strictly speaking (Aligood  

et al., 1996), we also need to exclude the asymptotically periodic behavior, but such a task is impossible to fulfill for the 

numerical simulation. The choice of parameters F and time unit = 5 days is made to obtain a similar value of the largest 

Lyapunov exponent as the ECMWF forecasting system. 95 

To calculate predictability curves (Lorenz, 1996), arbitrary values of the variables nX  are chosen, and, using a fourth-order 

Runge-Kutta method with a time step ∆t = 0.05 or 6 hours, it is integrated forward for 14400 steps or 10 years. Final values 

0,nX , which should be free of transient effect, are the initial values of “reality”. Initial values of “prediction” are 

0, 0, 0,n n nX X e = + , where 0,ne  is the initial error and it is chosen randomly from a normal distribution ( );ND   , where 

0 =  is mean and σ is the standard deviation, which is chosen from comparison with the ECMWF forecasting system. From 100 

0,nX  and 0,nX   Eqs. (2) are integrated forward for 37.5 days (K=150 steps). For upper bound predictability curves nX  and 

nX   are chosen with the same number of variables N. For lower bound predictability curves nX  is defined by 0,nX  and by 

Eqs. (2) with 0 360N =  and nX   by 0,nX   and by Eqs. (2) with N = 30; 60; 90; 120; 150. The size of the model error is 

corrected by the difference of N for nX  and nX  . If, for example, 120N =  then nX  is compared with nX   in each third 

point of 0N . This method was presented by Lorenz (2005). Although not only resolution but also physical parameterization 105 

affects the deficiencies of the ECMWF system which make it different from the real atmosphere, Buizza (2010) showed that 

a comparison of predictability curves of the ECMWF system calculated from differences of prediction and analysis and from 

two predictions of systems with different horizontal resolutions leads to the same overall conclusions. Despite the sub 

differences mentioned by Buizza (2010), this method is sufficient for comparing the L05 system and the ECMWF forecasting 

system. 110 

In each time step t  of numerical integration N “real” and N “observed predicted” values are obtained. The size of the error 

at a given time for upper bound predictability curves is ( ) , , ,n k n k ne k t X X = −  where 1, ,k K=  and  1, ,n N= and for 

lower bound predictability curves ( ) , ,´ ,n k n k nk t X X  = −  where 1, ,k K= , 1, ,n N=  (except for 0N ). 1, ,n N =  

(except for 0N ) is the location of the value ,k nX  for N = 360, where 0n n N N =   for N = 30; 60; 90; 120; 150. The 

predictability curves of the ECMWF forecasting system, in this case, are obtained from annual averages of daily data. To 115 
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simulate that, the number of runs M = 400 is made. In each new run, initial values 0,nX  are the last values ,K nX  from the 

previous run. M N values are obtained for each k. Final formulas of prediction errors that constitute predictability curves by 

calculation with arithmetic mean (A) are: 

 ( ) ( ) ( )05 2

,

1 1

1
,

M N
L

n mU A
m n

E k t e k t
M N = =

 = 

  (3) 

 ( ) ( ) ( )05 2

,

1 1

1
.

M N
L

n mL A
m n

E k t k t
M N


= =

 = 

  (4) 120 

Formulas to calculate prediction errors by geometric means (G) are: 

 ( ) ( ) ( )05 2
2

,

11

1
,

M N
L

M
n mU G

nm

E k t e k t
N ==

 
 =  

 
  (5) 

 ( ) ( ) ( )05 2
2

,

11

1
.

M N
L

M
n mL G

nm

E k t k t
N


==

 
 =  

 
  (6) 

For an overview of the symbols see Table 1. 

To calculate predictability curves for the ECMWF forecasting system (EFS) values of 500 hPa geopotential height are used. 125 

Data were obtained from ECMWF (Magnusson, 2018). Lower bound predictability curves are calculated (Magnusson and 

Kallen, 2013) from twenty-one root mean squares over the Northern Hemisphere (20°–90° N) obtained daily from 1 January 

1986 to 31 December 2011. Means are differences between operational forecasts and analyses from ERA-Interim for a given 

day. Forecasts range from 0.5 day ago relative to the given day to 10 days ahead ago, with time step 0.5 day. The difference 

between operational analysis and analysis from ERA-Interim is taken as the initial error.  Upper bound predictability curves 130 

are calculated (Magnusson and Kallen, 2013) from twenty-seven root mean squares over Northern Hemisphere (20°–90°) 

obtained daily from 1 January 1986 to 31 December 2011. Means are differences between two operational forecasts issued 

with one day lag, but valid at the same day. Specifically, following differences are obtained for a given day (hours): 0–24, 6–

30, 12–36, 18–42, 24–48, 30–54, 36–60, 42–66, 48-72, 54–78, 60–84, 66–90, 72–96, 78–102, 84–108, 90–114, 96–120, 108–

132, 120–144, 132–156, 144–168, 156–180, 168–192, 180–204, 192–216, 204–228, 216–240. Prediction errors constituting 135 

the predictability curves are calculated as annual averages of daily data. Detailed information about calculating predictability 

curves of the ECMWF forecasting system can be found in Lorenz (1982). 
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Comparisons of model predictability curves are done through values normalized by the limit (saturated) errors (
, limU U

t
E E

→
=

, 
, limL L

t
E E

→
= ). Because maximum forecast time for the ECMWF forecasting system is 10 days, presented predictability 

curves don’t not reach their limit value.  Independent measure of limit error can be calculated as: 140 

 

 ( ) ( ) ( )
2 2 2

, ,; 2 ,L UE f c a c E f c = − + − = −  (7) 

where ( )f c−  is the time-averaged anomaly with respect to climate and ( )a c−  is the time-averaged analysis anomaly with 

respect to climate. The climate is defined from ERA-Interim daily climatology. More information can be found in (Simmons 

et al., 1995). Because it will be shown that values of limit error calculated by this method aren´t correct, predictability curves 145 

of the ECMWF forecasting system are normalized by values calculated by Eq. (15). 

3. Comparison of predictability curves 

Predictability curves of the ECMWF (26 annual averages) and L05 systems are compared to find a setting of the L05 system 

(number of variables (N), the size of the initial errors, preference of arithmetic or geometric mean) that gives the most similar 

progress of systems’ predictability curves. 150 

Predictability curves of the L05 system show negative growth for the first time step (6 hours) but turn into an increase 

thereafter. At the second time step (12 hours) values of predictability curves reach approximately the same values as it had 

initially. A possible explanation could be that initial errors set the initial state off the attractor and decrease occurs because the 

first tendency is to get on the attractor (Brisch and Kantz, 2019). With an increase of average errors, chaotic behavior becomes 

dominant. Predictability curves of the ECMWF forecasting system do not exhibit this type of behavior. This may be because 155 

of larger time steps or methods of objective analysis. We aim to get the most similar predictability curves of both models and 

therefore the first two time steps (up to 12 hours) of L05 model’s predictability curves are filtered out. 

Initials values ( )05 0L

UE  and ( )05 0L

LE  or equivalently standard deviations σ from a normal distribution ( );ND    of the L05 

system are calculated from a comparison of initial values of the ECMWF system (26 annual averages) that are normalized (

NormE ) by limit (saturated) errors 
EFSE  calculated by Eq. (15). Upper bound predictability curves start for the ECMWF 160 

forecasting system at day one (the difference between one-day prediction and the analysis) and therefore ( )05 0L

UE  are 

calculated from predictability curves that are close at the first day ( ) ( )( )05 1 1L EFS

Norm NormE E= . Initial values for the L05 system are 

computed for N = 60; 90; 120; 150. Normalized predictability curves with N = 30 exhibit different evolution compared to 

predictability curves of the ECMWF forecasting system and they aren’t not displayed. Initial prediction errors ( )05 0L

UE  
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calculated by arithmetic and geometric mean and N = 60; 90; 120; 150 have the same values and these values are in the interval 165 

( )05 0 0.3;0.8L

UE  , where lower values correspond to initial prediction errors of the ECMWF system from later years and 

higher values pertain to early years. For lower bound predictability curves of the ECMWF forecasting system, the initial error

( )0EFS

LE  is computed as a difference between analysis from the operational forecasting system and analysis from ERA-Interim. 

Initial errors of the L05 system ( )05 0L

LE  are calculated as: ( ) ( )05 05

, ,0 0L L EFS EFS

L L L LE E E E =   and ( )05 0 0.2;0.7L

LE  , where 

lower values correspond to initial prediction errors of the ECMWF system from later years and higher values pertain to early 170 

years. Initial values are the same for all N and arithmetic and geometric mean. 

Predictability curves calculated by arithmetic and geometric mean show a significant difference for the L05 system (all N) and 

minor difference for the ECMWF forecasting system. For the L05 system and upper and lower bound predictability curves, 

the maximal difference is between 6.5 % and 10.5 % of 
05

,

L

UE  or 
05

,

L

LE  and these maximal values occur between 5 and 9 day 

of forecast length. For the ECMWF forecasting system and upper and lower bound predictability curves, the maximal 175 

difference is 2 % of ,

EFS

UE  or ,

EFS

LE  and these maximal values occur at the end of the forecast length (10 day). The choice of 

the averaging method doesn’t not significantly change the evolution of the ECMWF forecasting system’s predictability curves 

and it does not change values of parameters of the approximations. For the L05 system, the choice of averaging method is 

significant and it changes values of the parameters. The reason for this sensitivity can be found in the spread of values that are 

used for averaging. For the ECMWF forecasting system, the values are closer to each other than for the L05 system and from 180 

the definition of means, it leads to the aforementioned difference. Calculating predictability curves by arithmetic and geometric 

mean, although it does not affect predictability curves of the ECMWF forecasting system, is mentioned because it affects the 

calculation of predictability curves of the L05 system and this then affects the comparison of predictability curves, which is 

important for recalculation of error growth models’ parameters for the ECMWF forecast system. 

The comparison of predictability curves is done with given initial values. Predictability curves of the ECMWF forecasting 185 

system are normalized by ,

EFS

UE  or ,

EFS

LE  (Fig. 7, black full curves) and for the L05 system by 
05

,

L

UE  and 
05

,

L

LE  displayed in 

Table 2 (for a description of the symbols see Table 1). For the L05 system predictability curves are calculated with N = 60; 

90; 120; 150 variables and by arithmetic and geometric mean (for lower bound predictability curves this sets different values 

of the model error). For the ECMWF forecasting system only arithmetic mean is used. 

A comparison of lower bound predictability curves (Fig. 2) shows the most similar predictability curves of the ECMWF 190 

forecasting system and the L05 system for the L05 system calculated by arithmetic mean with N = 90 (the fact that this would 

mean unrealistic values of the model error for the ECMWF forecasting system is further discussed). For upper bound 

predictability curves (Fig. 1), predictability curves for the L05 system with N = 90 are the most similar but to the year 1999 

for predictability curves of the L05 system calculated by geometric mean and after 1999 by the arithmetic mean. 
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4. Estimation of parameters 195 

Parameters of error growth models are the Lyapunov exponent, model error, and limit error. They are estimated from 

approximations of predictability curves or differences of predictability curves ( ) ( )( ) ( ) ( )( )( )2;E t t E t E t t E t t+  + +  −  , 

where t is time and 0.25t = day (Figs. 3 and 4). Error growth models considered here are: 

 
( )

lim

: 1 ,
dE t E

Km E
dt E


 

= = − 
 

 (8) 

 
( )

( )
lim

: 1 ,
dE t E

Km E
dt E

  
 

= = + − 
 

 (9) 200 

 
( )

lim

: ln ,
dE t E

Lm E
dt E


 

= = −  
 

 (10) 

 
( )

lim

: 1 ,

p
dE t E

Gm E
dt p E

   
 = = −  
   

 (11) 

 ( ) ( ): tanh ,Tm E t A at a A= = + +  (12) 

where parameters of Tm  are 2a = , lim 2E A=  and  

 ( ) ( ): tanh ,Tm E t A at b B = = + +  (13) 205 

where parameters of Tm  are ( )a A B A = + , ( )2 2a A B A = −  and limE A B= + . E is an average forecast error. t 

represents time,  is the estimate of the Lyapunov exponent .   is the parameter of model error ( dE dt  when 0E = ), 

limE  is the limit (saturated) value of E (value of E when 0dE dt = , theoretically E ) and p, A, B, a, b are parameters. 

The calculation is done for the ECMWF forecasting system (26 annual averages) and the L05 system ( 90N = ), for arithmetic 

(A) and geometric (G) means, for upper bound predictability curves (U) and lower bound predictability curves (L). See Tables 210 
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3 and 4 for root mean square (RMS) values of parameters  , limE ,   and p , that are calculated over all used initial errors 

for the L05 system and all calculated years for the ECMWF forecasting system.  

The average values of parameters  , limE  are higher for the lower bound predictability curves than for the upper bound 

predictability curves. Upper bound predictability curves should not include model error (theoretically 0 = ) but from Table 4 

it can be seen that for the L05 system (arithmetic mean) the values are even higher than for the lower bound predictability 215 

curves. For the ECMWF forecasting system the values of   are higher for lower bound predictability curves which is 

theoretically more acceptable, but   is not zero for the upper bound predictability curves. A possible explanation can be the 

sensitivity to correct approximation (cases with higher   have lower  ), but this can not fully explain the discrepancy. For 

p  the values of upper and lower bound predictability curves are similar to each other (L05 system and ECMWF forecasting 

system). 220 

There are significant differences of parameters  , 
limE ,   and p  between predictability curves calculated by arithmetic and 

geometric mean for the L05 system (for the ECMWF forecasting system only arithmetic mean is presented). The most 

significant differences are detected for   and p , where for   values are closer to zero for geometric mean and values of 

predictability curves calculated by arithmetic mean are two or three times higher. Values of parameter p  are closer to 1p =  

for geometric mean. This means that differences of predictability curves calculated by geometric mean have a shape that is 225 

close to a symmetric parabola (for example Fig. 3a) but for the arithmetic mean the parabolic shape is skewed to the left (for 

example Fig. 3c). 

The Lyapunov exponent of the ECMWF forecasting system is recalculated by the formula:  

 ( )05 05 ,EFS EFS L L   = + −  (14) 

where 
EFS and 

05L  are parameters of error growth models and 
05 0.35L =  day-1. The formula (14) is based on the 230 

assumption, that if normalized predictability curves of the L05 system and the ECMWF forecasting system are similar, then 

the differences between true values of the global largest Lyapunov exponents (
EFS  , 

05L ) and values determined from error 

growth models (
EFS  , 

05L ) are similar ( 05 05EFS EFS L L   −  − ). Similarity of differences  −  allows to estimate the 

global largest Lyapunov exponents of the ECMWF forecasting system .For upper bound predictability curves (the L05 system 

with N = 90, to the year 1999 calculated by geometric mean and after 1999 by arithmetic mean), the average value EFS

U over 235 

all error growth models is in the range 0.33; 0.41  day-1 (Fig. 5a). Lm is not used, because this error growth model is not 

sufficient to approximate predictability curves. RMSEs of EFS

U are mostly about 0.01 day-1 only in years 1991, 1995, 1997 a 
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1999 RMSE is about 0.02 day-1. For comparison, RMSEs of  EFS

U  are in the range 0.02; 0.07  day-1 (Fig. 5a). For lower 

bound predictability curves (the L05 system with N = 90 calculated by arithmetic mean), the average value EFS

U over all error 

growth models is in the range 0.32; 0.41  day-1 (Fig. 5b). RMSEs of EFS

L are in the range 0.01; 0.02  day-1. For 240 

comparison, RMSEs of  EFS

L  are in the range 0.03; 0.07  day-1 (Fig. 5b).  The average value EFS  over upper and lower 

bound predictability curves is shown in Fig. 6  and RMSEs of EFS are mostly about 0.01 d-1. Low values of RMSEs of 
EFS  

compared to RMSEs of 
EFS and similar values of 

EFS for upper and lower bound predictability curves (low values of RMSEs 

of EFS ) prove the validity of EFS . Values of EFS and 
EFS  are generally closer to parameters  

EFS  of Km
 , Tm

 and 

Gm  than to 
EFS  of Km  , Tm  and Lm , but none of the error growth models approximates EFS  (Fig. 6). 245 

New limit values EFSE
 are calculated from the error growth models by the formula: 

 
05

lim 05

lim

,
L

EFS EFS

L

E
E E

E



 =   (15) 

where 
lim

EFSE  and 05

lim

LE  are values from error growth models and 05 8.2LE = . As in calculating 
EFS , Eq. (15) based on the 

assumption, that if normalized predictability curves of the L05 system and the ECMWF forecasting system are similar, then 

the differences between true limit values ( EFSE
, 05LE

) and values determined from error growth models (
lim

EFSE , 05

lim

LE ) are 250 

similar. In this case, however, only normalized values can be compared: 

( ) ( ) ( )( )05 05 05 05 05 05 05 05

lim lim lim lim lim lim .EFS EFS EFS L L L EFS EFS EFS L L L EFS EFS L LE E E E E E E E E E E E E E E E         −  − →  +  − →    

Similarity of normalized differences ( ( )limE E E − ) allow to estimate new limit values of the ECMWF forecasting system. 

For upper bound predictability curves (the L05 system with N = 90), average value over all error growth models ,

EFS

UE is in the 

range 96; 133  m (Fig. 7a). Lm is not used, because this error growth model is not sufficient to approximate predictability 255 

curves. RMSEs of ,

EFS

UE are mostly about 1 m only in the years 1987, 1988, 1995, 1997, 2003, and 2011 it is about 2 m. For 

comparison, RMSEs of lim,

EFS

UE  are in the range 2; 6  m (Fig. 7a). For lower bound predictability curves (the L05 system with 

N = 90 calculated by arithmetic mean), average value over all error growth models ,

EFS

LE is in the range 114; 134  m (Fig. 

7b). Lm is not used, because this error growth model is not sufficient to approximate predictability curves. RMSEs of ,

EFS

LE

are mostly 3 m and after the year 2004, they are 4 m. RMSEs of lim,

EFS

LE  are in the range 3; 6  m (Fig. 7b). Lower values of 260 
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RMSEs of 
,

EFS

UE
 and 

,

EFS

LE
calculated by Eq. (15) compared to RMSEs of 

lim,

EFS

UE  and 
lim,

EFS

LE  prove the validity of 
,

EFS

UE
 and 

,

EFS

LE
. 

5. Discussion 

The argument that favors EFSE
 calculated by Eq. (15) (Fig. 7, black full curves) instead of EFSE

 calculated by Eq. (7) (Fig. 7, 

black dashed curves) is based on the parameter of model error  .  The most similar predictability curves of the L05 system 265 

and the ECMWF forecasting system with EFSE
 calculated by Eq. (15) are found for the L05 system with N = 90  (for lower 

bound predictability curves calculated by arithmetic mean and for upper bound predictability curves calculated by geometric 

mean to 1999 and after by arithmetic mean). The most similar predictability curves of the L05 system and the ECMWF 

forecasting system with EFSE
 calculated by Eq. (7) are found for the L05 system with N = 90 by the arithmetic mean for upper 

and lower bound predictability curves. It means that if the comparison is valid and model error is constant for the L05 system 270 

(same number of variables over years in the L05 system means constant model error over years), it must be constant also for 

the ECMWF forecasting system, but the calculation of parameters EFS

L  shows a decreasing trend with increasing time (Fig. 

8b).  This can’t help yet.  But parameters EFS

U  have non zero values (Fig. 8a) that are close to EFS

L  for some years and that 

is inconsistent with the theoretical expectation that upper bound predictability curves should be without model error and 

therefore   should be 0 m/day. This inconsistency can be solved by the new definition of the model error. From Fig. 6 it can 275 

be seen closer value of 
EFS to EFS for 

EFS approximated from error growth models Km
 , Tm

 and Gm than for 
EFS

approximated from error growth models Km , Tm  and Lm . Gm  has parameter p  that defines skewness of the originally 

parabolic shape of the difference of predictability curves. 1p =  pertains to symmetrical parabolic shape ( Gm becomes Km ) 

and 0p =  means the greatest skewness to the left ( Gm becomes Lm ). Parameters   also skew the originally parabolic shape 

(Figs. 3 and 4). The model error can be seen as a difference between skewness of upper and lower bound predictability curves 280 

and the new definition of model error would be: 

 .L U L U  − = −  (16) 

Results (Fig. 9a) show good agreement for EFS

L U −
 (Eq. (16)) calculated from Km

 and Tm
, decreasing trend of EFS

L U −
 with 

increasing time for predictability curves with EFSE
 calculated by Eq. (15) and almost constant values of EFS

L U −
 with increasing 

years (slight decrease can be due to the error of approximations) for predictability curves with EFSE
 calculated by Eq. (7). 285 
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There is also good agreement with trends of 
L Up p−  (Fig. 9b). Because constant values of 

L U −
 for predictability curves 

with EFSE
 calculated by Eq. (7) are not theoretically possible, predictability curves with EFSE

 calculated by Eq. (15) are 

favored. The reason for the decreasing trend of 05L

L U −
, found for predictability curves of the L05 system with N = 90 that are 

the most similar with predictability curves of the ECMWF forecasting system normalized by EFSE
 calculated by Eq. (15), is 

that they are partly calculated by geometric and partly by the arithmetic mean. 290 

These arguments are taken as proof of the validity of   EFS , EFSE
 calculated by Eq. (15). The reason for the overestimation 

of EFSE
 calculated by Eq. (7) (Fig. 7) can be found in the multiscale behavior of weather. If some events are predictable on a 

timescale longer than ten days (for example long-lived anomalies in sea surface temperature or soil moisture) than they 

wouldn´t be captured by medium-range weather forecast (Simmons et al., 1995; Brisch and Kantz, 2019). It is also possible 

that the overestimation is due to the different source of data used for calculation of EFSE
 by Eqs. (7) and (15): For EFSE

 295 

calculated by Eq. (7) only data from ERA-Interim (Janoušek 2011) are used but for EFSE
 calculated by Eq. (15) data from 

operational forecast are employed.  

At the end of this section, it is important to remind the readers about the importance of the correct values of the parameters. 

Nowadays,Zhang et al. (2019) used Km
 in the ECMWF forecasting system to estimate the influence of different 

spatiotemporal scales where parameter   newly represents the intrinsic upscale error growth and propagation from small 300 

scales and  represents synoptic-scale error growth. The results of our analysis well support this approach by the new 

definition of model error (Eq. (16)) and by showing the errors of approximations for individual error growth models. 

6. Conclusion 

The values of error growth models’ (Eqs. (8) - (13)) parameters that approximate predictability curves and their differences 

(Figs. 3 and 4) in the ECMWF forecast system (Tables 3 and 4) were recalculated. It is based on similarities of normalized 305 

upper and lower bound predictability curves (Figs. 1 and 2) of the ECMWF forecasting system (annual arithmetic mean of 

geopotential heights of 500 hPa from years 1986 – 2011) and the L05 system (N = 90,  arithmetic mean for lower bound 

predictability curves; geometric mean up to 1999 and arithmetic mean after 1999 for upper bound predictability curves). It is 

also based on knowledge of the largest Lyapunov exponent (λ = 0.35 day-1) and the limit value of the predictability curve (E∞ 

= 8.2) of the L05 system. 310 

Lyapunov exponents of the ECMWF forecasting system were recalculated by Eq. (14). The average value over all error growth 

models for upper bound predictability is in the range 0.33; 0.41  day-1 (Fig. 5a) and RMSEs are mostly about 0.01 day-1. For 

lower bound predictability curves average value over all error growth models is in the range 0.32; 0.41  day-1 (Fig. 5b). 
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RMSEs are in the range 0.01; 0.02  day-1. The average value over upper and lower bound predictability curves is shown in 

Fig. 6 and RMSEs are mostly about 0.01 d-1. Values of Lyapunov exponent are generally closer to parameters  
EFS  of Km

 315 

, Tm
 and Gm  than to 

EFS  of Km  , Tm  and Lm  (Fig. 6). 

New limit values were calculated from the error growth models by Eq. (15). For upper bound predictability curves, the average 

value over all error growth models is in the range 96; 133  m (Fig. 7a) and RMSEs are mostly about 1 m. For lower bound 

predictability curves average value over all error growth models is in the range 114; 134  m (Fig. 7b) and RMSEs are mostly 

3 m. 320 

The argument that favors limit values calculated by Eq. (15) (Fig. 7, black full curves) instead of limit values calculated by 

Eq. (7) (Fig. 7, black dashed curves) is based on the new definition of model error (Eq. (16)) which shows a decreasing trend 

with increasing years for predictability curves with limit values calculated by Eq. (15), and almost constant trend with 

increasing time (slight decrease can be due to the error of approximations) for predictability curves with limit values calculated 

by Eq. (7), which is theoretically impossible (Fig. 9a). This new model error calculated as a difference of model error 325 

parameters between the upper (Fig. 8a) and lower (Fig. 8b) bound predictability curves well support model error parameters 

calculated for upper bound predictability curves that are used to represents the intrinsic upscale error growth and propagation 

from small scales (Zhang et al., 2019). 
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(EFS) 

Arithmetic 

(A) 
( ) ( )

EFS

U A
E t  ( ),

EFS

U A
E


 ( )lim,

EFS

U A
E  ( ) ( )

EFS

L A
E t  ( ),

EFS

L A
E


 ( )lim,

EFS

L A
E  

( )
EFS

U A
  ( )

EFS

U A
  ( )

EFS

U A
p  ( )

EFS

L A
  ( )

EFS

L A
  ( )

EFS

L A
p  

Geometric 

(G) 
( ) ( )

EFS

U G
E t  ( ),

EFS

U G
E


 ( )lim,

EFS

U G
E  ( ) ( )

EFS

L G
E t  ( ),

EFS

L G
E


 ( )lim,

EFS

L G
E  

( )
EFS

U G
  ( )

EFS

U G
  ( )

EFS

U G
p  ( )

EFS

L G
  ( )

EFS

L G
  ( )

EFS

L G
p  

L05 system 

(L05) 

Arithmetic 

(A) 
( ) ( )
05L

U A
E t  ( )

05

,

L

U A
E


 ( )
05

lim,

L

U A
E  ( ) ( )

05L

U A
E t  ( ),

EFS

L A
E


 ( )lim,

EFS

L A
E  

( )
05L

U A
  ( )

05L

U A
  ( )

EFS

U A
p  ( )

EFS

U A
  ( )

EFS

L A
  ( )

EFS

L A
p  

Geometric 

(G) 
( ) ( )
05L

U G
E t  ( )

05

,

L

U G
E


 ( )lim,

EFS

U G
E  ( ) ( )

EFS

U G
E t  ( ),

EFS

L G
E


 ( )lim,

EFS

L G
E  

( )
05L

U G
  ( )

05L

U G
  ( )

EFS

U G
p  ( )

EFS

U G
  ( )

EFS

L G
  ( )

EFS

L G
p  

 

Table 1: Description of symbols that indicate types of predictability curve, types of mean and systems for prediction error E, 

theoretically calculated limit error E  , and parameters of error growth models  ,  , p and limE . 
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N 05L  
05

,

L

UE  
05

,

L

LE  

30 0.70 8.5 8.3 
60 0.29 8.0 8.1 

90 0.35 8.2 8.2 
120 0.32 8.2 8.2 

150 0.34 8.2 8.2 

360 0.34   

 395 

Table 2: Values of the global largest Lyapunov exponents 05L  and limit values of predictability curves 05

,

L

UE
 a 05

,

L

LE
 for displayed 

number of variables N of the L05 system. 
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RMS 
D

PPKH  D

PMKH  KP

PPKH  KP

PMKH  OH  LH  

value (day-1) (day-1) (day-1) (day-1) (day-1) (day-1) 

( )
05L

U A
  0.45 0.36 0.46 0.34 0.31 0.24 

( )
05L

L A
  0.46 0.40 0.48 0.41 0.33   0.23 

( )
05L

U G
  0.41 0.39 0.41 0.39 0.39 0.19 

( )
05L

L G


 0.42 0.40 0.43 0.41 0.35 0.19 

( )
EFS

U A


 0.45 0.41 0.46 0.39 0.36 0.21 

( )
EFS

L A
  0.48 0.42 0.50 0.40 0.35 0.27 

 (-)
 

(-)
 

(-)
 

(-)
 

(-)
 

(-)
 

( )
05

lim,

L

U A
E

 7.5 7.8 7.3 7.8 8.2 8.9 

( )
05

lim,

L

L A
E

 7.5 7.8 7.3 7.6 8.3 9.3 

( )
05

lim,

L

U G
E

 7.7 7.8 7.7 7.8 7.8 11.0 

( )
05

lim,

L

L G
E

 7.8 8.0 7.6 7.8 8.3 10.6 

 (m)
 

(m)
 

(m)
 

(m)
 

(m)
 

(m)
 

( )lim,

EFS

U A
E

 108 110 106 111 115 138 

( )lim,

EFS

L A
E

 114 117 112 117 123 134 

 

Table 3: RMS values calculated over all used initial errors for the L05 system ( 90N = ) and over all years for the ECMWF 

forecasting system of parameters  , limE  (for description see Table 1).  400 
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RMS 
D

PMKH  KP

PMKH  RMS OH  RMS 
D

PMKH  KP

PMKH  RMS OH  

value (day-1) (day-1) value (-) value (day-1) (day-1) value (-) 

( )
05L

U A
  0.21 0.27 ( )

05L

U A
p  0.3 ( )

05L

U G
     0.03 0.04 ( )

05L

U G
p    0.9 

( )
05L

L A
  0.10 0.12 ( )

05L

L A
p  0.4 ( )

05L

L G
  0.04 0.03 ( )

05L

L G
p  0.7 

 (m/day) (m/day)  (-)  (m/day) (m/day)  (-) 

( )
EFS

U A


 
0.97 1.82 ( )

EFS

U A
p

 
0.6 ( )

EFS

L A


 
2.14 2.83 ( )

EFS

L A
p

 
0.40 

 

Table 4: RMS values calculated over all used initial errors for the L05 system ( 90N = ) and over all years for the ECMWF 

forecasting system of parameters  and p (for description see Table 1).  
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Figure 1. Comparison of upper bound predictability curves ,norm UE  of the ECMWF forecasting system normalized by 
,

EFS

UE
 (Eq. (15)405 

)  (EFS; annual arithmetic means, representative samples from 1986–2011) and the L05 system normalized by 05

,

L

UE
 (Table 2) (L05; 

geometric means (1986–1999), arithmetic means (2000–2011)). 
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Figure 2. Comparison of lower bound predictability curves ,norm LE  of the ECMWF forecasting system normalized by 
,

EFS

LE
(Eq. (15)

), (EFS; annual arithmetic means, representative samples from1986–2011) and the L05 system normalized by 05

,

L

LE
 (Table 2) (L05; 410 

arithmetic mean). 
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Figure 3. Approximations of differences of upper bound predictability curves (representative samples). (a) – (b): the most similar 

predictability curves in the year 1995 of the ECMWF forecasting system. (c) – (d): the most similar predictability curves in the year 

2005 of the ECMWF forecasting system. Parameters from Tm used in Km  (blue) and parameters from  Tm  used in Km  (blue, 415 

dashed).  



23 

 

 

Figure 4. Approximations of differences of lower bound predictability curves (representative samples). (a) – (b): the most similar 

predictability curves in the year 1995 of the ECMWF forecasting system. (c) – (d): the most similar predictability curves in the year 

2005 of the ECMWF forecasting system. Tm displays parameters from Tm used in Km  and Tm  displays parameters from Tm  420 

used in Km .  
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Figure 5. Lyapunov exponents EFS  of the ECMWF forecasting system calculated by Eq. (14) and parameters EFS  of error growth 

models for (a) upper and (b) lower bound predictability curves. 
EFS is average value over all error growth models.   
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 425 

Figure 6. Average values over upper and lower bound predictability curves of Lyapunov exponents 
EFS (black, solid), average 

values 
EFS  (black, dashed) for (a) upper and (b) lower bound predictability curves of the ECMWF forecasting system calculated 

by Eq. (14) and parameters EFS  of error growth model for (a) upper and (b) lower bound predictability curves of the ECMWF 

forecasting system.  
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 430 

Figure 7. Limit values 
EFSE  of the ECMWF forecasting system calculated by Eq. (15) and parameters lim

EFSE  of error growth models 

for (a) upper and (b) lower bound predictability curves. 
EFSE (Eq. (15))  is average value over all error growth models and  and 

EFSE

(Eq. (7)) is limit values calculated by Eq. (7).    
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 435 

Figure 8. Parameters 
EFS (a) for upper bound predictability curves 

EFS

U  and (b) for lower bound predictability curves 
EFS

L . Black 

curves represent 
EFS  approximated from predictability curves with 

EFSE  calculated by Eq. (7), red curves pertain to 
EFS  

approximated from predictability curves with 
EFSE  calculated by Eq. (15), full curves correspond to 

EFS calculated from Tm  and 

dashed curves to 
EFS calculated from Km . 
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 440 

Figure 9. Absolute values of differences of parameters (a) 
EFS EFS

L U −  and (b) 
EFS EFS

L Up p− between lower and upper bound 

predictability curves. For the notation see Fig. 8. 

 



(1) Comments from referee 

 
Anonymous Referee #2 
Received and published: 16 March 2021 

Review of “Recalculation of error growth models’ parameters for the ECMWF forecast 
system” by Hynek et al 
 
Summary: This paper seeks to provide a new estimate of parameters of error growth models in the 
ECMWF forecasting system. Using a new approach, the authors calculate the largest Lyapunov 
exponent and two types of predictability curves, as well as the Lorenz’s (2005) system, found that the 
largest Lyapunov exponent range from 0.32 to 0.41 day-1 in the ECMWF forecasting system, similar to 
the value of 0.35 day-1 in the Lorenz’s system. Several results in this study are interesting, some parts 
could benefit from clarifications and major revisions. Below are the detailed comments.  
 
General Comments:  
1. I found the paper not easy to read and understand, and it is not well organized. There are too many 
symbols and many words are abbreviated that make reader confuse.  
2. I’d suggest to divide section 2“Experimental setting”suggest into“2.1 Experimental setting”and “2.2 
Calculation of the predictability curves”.  
3. The error growth estimate consists of initial and model error is lower bound predictability curve and 
the upper bound predictability curve only contains initial error. Can you say more about the differences 
between the bound predictability curves and the limit error? 
4. L85:Remove the comma “„”. It can be changed to “A bounded dynamical systém with a positive 
Lyapunov exponent is chaotic”.  
5. L95: How to determine the values of N “real” and N “observed”?  
6. L125-130: My main issue with this manuscript is that I’m not convinced that the measure of limit 
error really works, mainly because of the ERAInterim daily data including uncertainty. Also, given that 
the maximum forecast time for the ECMWF forecasting system is 10 days, the forecast error may not 
be reach to the saturated value or predictability limit.  
7. L125-130: What is the physical meaning of the ’limit error’ you derived? Dose the limit error means 
the error of saturated value of predictability limit?  
8. The paper of RuiqiangDing., and Jianping, Li(2011) is listed in References, but it cannot be found in 
the manuscript. Please check it again. 



(2) author’s response 

 

Dear referee, 

thank you for your comments. We would like to respond to them: 

 

1. I found the paper not easy to read and understand, and it is not well organized. There are too many symbols 

and many words are abbreviated that make reader confuse. 

To make it easier to read, we tried to create Table 1. (line 370), which we corrected, and at the same time, we 

added links to this table in the article. 

Line 150: Description of symbols that indicate the type of prediction error E in the text is provided in Table 1. 

Line 214-215: Note that the description of symbols that indicate the type of parameters of error growth models  

,  , p and Elim in the text is provided in Table 1. 

 

2. I'd suggest to divide section 2 "Experimental setting" suggest into "2.1 Experimental setting" and "2.2 

Calculation of the predictability curves". 

We added: 

Line 61: 2. Experimental setting 

Line 91: 3. Calculation of the predictability curves 

and we have modified the last paragraph of the introduction accordingly (Lines 57 - 59) 

 

3. The error growth estimate consists of initial and model error is lower bound predictability curve and the upper 

bound predictability curve only contains initial error. Can you say more about the differences between the bound 

predictability curves and the limit error? 

We have expanded the introductory definition: 

Line 18 - 22: Forecast errors in numerical weather prediction systems grow in time because of the inaccuracy of 

the initial state (initial error), chaotic nature of the weather system itself, and the model imperfections (model 

error). The growth of forecast error in weather prediction is exponential on average. As an error becomes larger, 

its growth slows down and then stops with the magnitude saturating at about the average distance between two 

states chosen randomly from dynamically and statistically possible states (limit (saturated) error). 

 

We also added information about the difference between the limit values of the lower and upper bound 

predictability curves: 

Line 135 -136:  
,UE

 and 
,LE

 differ if the ECMWF forecasting system does not sufficiently describe the 

variability of the atmosphere (model error). 

 

and we added a link to Figs. 3 and 4 to visually show the limit value as dE/dt = 0. 

Line 194:  Elim is the limit (saturated) value of E (value of E when dE/dt = 0, theoretically E∞  , Figs. 3 and 4) 

 

4. L85:Remove the comma ""”. It can be changed to “A bounded dynamical system with a positive Lyapunov 

exponent is chaotic”. 

Line 85:The comma is removed. 

 

5. L95: How to determine the values of N “real” and N “observed”? 

We added the number of variables we tested. 

Line 98: N (N = 30; 60; 90; 120; 150) 

The reason why N = 90 was chosen is explained on lines 172-178. 

 

6. L125-130: My main issue with this manuscript is that I’m not convinced that the measure of limit error really 

works, mainly because of the ERAInterim daily data including uncertainty. Also, given that the maximum forecast 

time for the ECMWF forecasting system is 10 days, the forecast error may not be reach to the 

saturated value or predictability limit. 

We agree on this point. That is why we developed the method (Eq. (15)) that is independent of the calculation 

presented on the lines 125 – 130 (Eq. (7)), and we have shown that the method we specify is valid (5. Discussion) 

 



7. L125-130: What is the physical meaning of the ’limit error’ you derived? Dose the limit error means the error 

of saturated value of predictability limit? 

In our text, the limit and the saturated value of the error have the same meaning. 

Line 19 -22: The growth of forecast error in weather prediction is exponential on average. As an error becomes 

larger, its growth slows down and then stops with the magnitude saturating at about the average distance between 

two states chosen randomly from dynamically and statistically possible states (limit (saturated) error). 

 

8. The paper of RuiqiangDing., and Jianping, Li(2011) is listed in References, but it cannot be found in the 

manuscript. Please check it again. 

 

Thank you for your comment. 

Line 164: which agrees with Ruiqiang and Jianping (2011) 
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(3) authors changes in manuscript 

Recalculation of error growth models’ parameters for the ECMWF 

forecast system 

Hynek Bednář 1, Aleš Raidl 1 and Jiří Mikšovský 1 

1Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, 180 00, Czech 5 

Republic 

Correspondence to: Hynek Bednář (hynek.bednar@mff.cuni.cz) 

Abstract. This article provides a new estimate of error growth models’ parameters approximating predictability curves and 

their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest 

Lyapunov exponent are also provided, along with model error and the limit value of the predictability curve. The proposed 10 

correction is based on the ability of the Lorenz’s (2005) system to simulate predictability curve of the ECMWF forecasting 

system and on comparing the parameters estimated for both these systems, as well as on comparison with the largest Lyapunov 

exponent (λ = 0.35 day-1) and limit value of the predictability curve (E∞ = 8.2) of the Lorenz’s system. Parameters are calculated 

from the Quadratic model with and without model error, as well as by the Logarithmic and General models and by the 

hyperbolic tangent model. The average value of the largest Lyapunov exponent is estimated to be in the <0.32; 0.41> day-1 15 

range for the ECMWF forecasting system, limit values of the predictability curves are estimated with lower theoretically 

derived values and new approach of calculation of model error based on comparison of models is presented.  

1. Introduction 

Forecast errors in numerical weather prediction systems grow in time because of the inaccuracy of the initial state (initial 

error), chaotic nature of the weather system itself, and the model imperfections (model error). The growth of forecast error in 20 

weather prediction is exponential on average. As an error becomes larger, its growth slows down and then stops with the 

magnitude saturating at about the average distance between two states chosen randomly from dynamically and statistically 

possible states (limit (saturated) error). This average growth of forecast error with increasing lead times is called the 

predictability curve. 

Predictability curves (Froude et al., 2013) of the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical 25 

weather prediction system are calculated by the approach developed by Lorenz (1982), where two types of error growth can 

be obtained (Lorenz, 1982). The first type is calculated as the root mean square difference between forecast data of increasing 

lead times and analysis data valid for the same time. This error growth estimate consists of initial and model error and following 

Lorenz (1982) we will call it the lower bound predictability curve (L). The second type is calculated as the root-mean-square 
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difference between pairs of forecasts, valid for the same time but with times differing by some fixed time interval (the 30 

difference between two forecasts issued with 24-h lag but valid at the same time is used in this article). This type consists of 

initial error and we will call it the upper bound predictability curve (U). Predictability curves of Lorenz’s 05 system (L05; 

Lorenz, 2005) can be controlled by model parameters and by the size of the initial error and they are set to be as close to 

predictability curves of ECMWF forecasting system as possible.  

Over the years several error growth models approximating predictability curves have been developed, aiming to quantify 35 

Lyapunov exponents, model errors (for the imperfect model case where the atmosphere is not perfectly modeled), and limit 

(saturated) errors. The first, called Quadratic ( Km ), was designed by Lorenz (1969). Dalcher and Kalney (1987) added model 

error to the Quadratic model and Savijarvi (1995) changed it to the form ( Km
), that is used today. An alternative, called 

Logarithmic model ( Lm ) was introduced by Trevisan et al. (1992; 1993). General model ( Gm ) was introduced by Stroe and 

Royer (1993; 1994). All these models approximate differences of predictability curves (error growth rate). Newer models 40 

approximate the predictability curve directly by the hyperbolic tangent (Tm  and Tm
) (Žagar et al., 2017).  

Values of parameters calculated from error growth models are used to evaluate the improvement of the ECMWF forecasting 

system (Magnusson and Kallen, 2013), to estimate the predictability or the limit error (Bengtsson et al., 2008), to quantify 

impacts of different model’s resolutions (Buizza, 2010), to study chaos and model error in different spatial-temporal scales 

(Žagar et al., 2015; Žagar et al., 2017 ). They are also used by researchers when the need arises to estimate chaoticity, model 45 

error or predictability, but their validity can’t be proved, because standard methods (Sprott, 2006) to calculate the largest 

Lyapunov exponents for the ECMWF forecasting system can’t be used due to a large number of variables. An independent 

value estimated from forecast and analysis anomalies can be calculated for the limit error (Simmons et al., 1995) and its validity 

will be discussed.  The need for correct values of error growth models´ parameters increased these days because the Quadratic 

model with model error is used to describe multiscale weather (Zhang et al., 2019).  50 

This article intends to provide a new estimate of parameters of error growth models in the ECMWF forecasting system 

calculated from data over the 1986 to 2011 period. The correction is based on comparing the parameters calculated from the 

error growth models for the L05 system and the ECMWF forecasting system and on comparison with the largest Lyapunov 

exponent and the limit value of the predictability curve of the L05 system that can be calculated independently and with 

sufficient accuracy. To make the correction valid, predictability curves of the ECMWF forecasting system and the L05 systems 55 

are compared for two different methods (arithmetic and geometric averages) and the number of variables of the L05 system, 

pertaining to the best match of the predictability curves is identified. As a result, a new approach to the calculation of model 

error based on a comparison of models is presented. 

This article is divided into six seven sections.  The second describes the experimental setting. The third describes calculation 

of the predictability curves. The third fourth provides a comparison of predictability curves of the ECMWF forecasting system 60 

and the L05 system and the fourth fifth deals with the estimation of Lyapunov exponents, model, and limit errors of the 

ECMWF forecasting system based on the correction.  Discussion and conclusions are then presented in the final two sections. 
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2. Experimental setting  

L05 model is based on the low-dimensional atmospheric system presented by Lorenz (1996). It is a nonlinear model, with N 

variables connected by governing equations   65 

 2 1 1 1 ,n n n n n ndX dt X X X X X F− − + −= − + − +  (1) 

1, ,n N= . 2 1 1   ,  ,   ,   n n n nX X X X− − + are unspecified (i.e., unrelated to actual physical variables) scalar meteorological 

quantities, F is a constant representing external forcing and t is time. The index is cyclic so that 
n N n N nX X X− += = and 

variables can be viewed as existing around a circle. Nonlinear terms of Eq. (1) simulate advection. Linear terms represent 

mechanical and thermal dissipation. The model quantitatively, to a certain extent, describes weather systems, but, unlike the 70 

well-known Lorenz’s model of atmospheric convection (Lorenz, 1963), it cannot be derived from any atmospheric dynamic 

equations. The motivation was to formulate the simplest possible set of dissipative chaotically behaving differential equations 

that share some properties with the “real” atmosphere. One of the model´s properties is to have 5 to 7 main highs and lows that 

correspond to planetary waves (Rossby waves) and a number of smaller waves that correspond to synoptic-scale waves. For 

Eq. (1) this is only valid for 30N =  and that is, as it will be seen, not sufficient for the experimental setting. Therefore, spatial 75 

continuity modification of L05 system is used, where the Eq. (1) is rewritten to the form:                                                          

  
,

, ,n nL n
dX dt X X X F= − +  (2) 

where 

  ( ) 2

2,
, ' ' .

J J

n L i n L j n L j i n L jL n
j J i J

X X X X X X L− − − − − + − + +

=− =−

= − +   

If L is even, ∑’ denotes a modified summation, in which the first and last terms are to be divided by 2. If L is odd, ∑’ denotes 80 

an ordinary summation. Generally, L is much smaller than N and J = L/2 if K is even and J = (L-1)/2 if L is odd. For comparison 

with predictability curves of the ECMWF forecasting system, we choose N =30; 60; 90; 120; 150; 360. To keep a desirable 

number of main pressure highs and lows, Lorenz (2005) suggested to keep ratio N/L = 30 and therefore L = 1; 2; 3; 4; 5; 12. 

For even values of L we have J = 1; 2; 6 and for odd values of L we have J = 0; 1; 2. Parameter F = 15 is selected as a 

compromise between too high Lyapunov exponent (smaller F) and undesirable shorter waves (larger F). For this setting and 85 

by the method of numerical calculation (Sprott, 2006), the global largest Lyapunov exponents are calculated (Table 2). By the 

definition of Lorenz (1969): „“A bounded dynamical system with a positive Lyapunov exponent is chaotic “. Because the 
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value of the largest Lyapunov exponent is positive and the system under study is bounded, it is chaotic. Strictly speaking 

(Aligood  

et al., 1996), we also need to exclude the asymptotically periodic behavior, but such a task is impossible to fulfill for the 90 

numerical simulation. The choice of parameters F and time unit = 5 days is made to obtain a similar value of the largest 

Lyapunov exponent as the ECMWF forecasting system. 

3. Calculation of predictability curves  

To calculate predictability curves (Lorenz, 1996), arbitrary values of the variables nX  are chosen, and, using a fourth-order 

Runge-Kutta method with a time step ∆t = 0.05 or 6 hours, it is integrated forward for 14400 steps or 10 years. Final values 95 

0,nX , which should be free of transient effect, are the initial values of “reality”. Initial values of “prediction” are 

0, 0, 0,n n nX X e = + , where 
0,ne  is the initial error and it is chosen randomly from a normal distribution ( );ND   , where 0 =  

is mean and σ is the standard deviation, which is chosen from comparison with the ECMWF forecasting system. From 
0,nX  

and 
0,nX   Eqs. (2) are integrated forward for 37.5 days (K=150 steps). For upper bound predictability curves nX  and nX   are 

chosen with the same number of variables N (N = 30; 60; 90; 120; 150). For lower bound predictability curves nX  is defined 100 

by 
0,nX  and by Eqs. (2) with 0 360N =  and nX   by 

0,nX   and by Eqs. (2) with N = 30; 60; 90; 120; 150. The size of the model 

error is corrected by the difference of N for nX  and nX  . If, for example, 120N =  then nX  is compared with nX   in each 

third point of 0N . 

In each time step t  of numerical integration N “real” and N “observed” values are obtained. The size of the error at a given 

time for upper bound predictability curves is ( ) , , ,n k n k ne k t X X = −  where 1, ,k K=  and  1, ,n N= and for lower bound 105 

predictability curves ( ) , ,´ ,n k n k nk t X X  = −  where 1, ,k K= , 1, ,n N=  (except for 0N ). 1, ,n N =  (except for 0N ) 

is the location of the value 
,k nX  for N = 360, where 0n n N N =   for N = 30; 60; 90; 120; 150. The predictability curves of 

the ECMWF forecasting system, in this case, are obtained from annual averages of daily data. To simulate that, the number of 

runs M = 400 is made. In each new run, initial values 
0,nX  are the last values 

,K nX  from the previous run. M N values are 

obtained for each k. Final formulas of prediction errors that constitute predictability curves by calculation with arithmetic mean 110 

(A) are: 

 ( ) ( ) ( )05 2

,

1 1

1
,

M N
L

n mU A
m n

E k t e k t
M N = =

 = 

  (3) 
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 ( ) ( ) ( )05 2

,

1 1

1
.

M N
L

n mL A
m n

E k t k t
M N


= =

 = 

  (4) 

Formulas to calculate prediction errors by geometric means (G) are: 

 
( ) ( ) ( )05 2

2
,

11

1
,

M N
L

M
n mU G

nm

E k t e k t
N ==

 
 =  

 
  (5) 115 

 
( ) ( ) ( )05 2

2
,

11

1
.

M N
L

M
n mL G

nm

E k t k t
N


==

 
 =  

 
  (6) 

For an overview of the symbols see Table 1. 

To calculate predictability curves for the ECMWF forecasting system (EFS) values of 500 hPa geopotential height are used. 

Data were obtained from ECMWF (Magnusson, 2018). Lower bound predictability curves are calculated (Magnusson and 

Kallen, 2013) from twenty-one root mean squares over the Northern Hemisphere (20°–90° N) obtained daily from 1 January 120 

1986 to 31 December 2011. Means are differences between operational forecasts and analyses from ERA-Interim for a given 

day. Forecasts range from 0.5 day ago relative to the given day to 10 days ahead, with time step 0.5 day. The difference 

between operational analysis and analysis from ERA-Interim is taken as the initial error.  Upper bound predictability curves 

are calculated (Magnusson and Kallen, 2013) from twenty-seven root mean squares over Northern Hemisphere (20°–90°) 

obtained daily from 1 January 1986 to 31 December 2011. Means are differences between two operational forecasts issued 125 

with one day lag, but valid at the same day. Specifically, following differences are obtained for a given day (hours): 0–24, 6–

30, 12–36, 18–42, 24–48, 30–54, 36–60, 42–66, 48-72, 54–78, 60–84, 66–90, 72–96, 78–102, 84–108, 90–114, 96–120, 108–

132, 120–144, 132–156, 144–168, 156–180, 168–192, 180–204, 192–216, 204–228, 216–240. Prediction errors constituting 

the predictability curves are calculated as annual averages of daily data. Detailed information about calculating predictability 

curves of the ECMWF forecasting system can be found in Lorenz (1982). 130 

Comparisons of model predictability curves are done through values normalized by the limit (saturated) errors (
, limU U

t
E E

→
=

, 
, limL L

t
E E

→
= ). Because maximum forecast time for the ECMWF forecasting system is 10 days, presented predictability 

curves don’t reach their limit value.  Independent measure of limit error can be calculated as: 

 

 ( ) ( ) ( )
2 2 2

, ,; 2 ,L UE f c a c E f c = − + − = −  (7) 135 
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where ( )f c−  is the time-averaged anomaly with respect to climate and ( )a c−  is the time-averaged analysis anomaly with 

respect to climate. The climate is defined from ERA-Interim daily climatology. 
,UE

 and 
,LE

differ if the ECMWF 

forecasting system does not sufficiently describe the variability of the atmosphere (model error). More information can be 

found in (Simmons et al., 1995). Because it will be shown that values of limit error calculated by this method aren´t correct, 

predictability curves of the ECMWF forecasting system are normalized by values calculated by Eq. (15). 140 

4. Comparison of predictability curves 

Predictability curves of the ECMWF and L05 systems are compared to find a setting of the L05 system (number of variables 

(N), the size of the initial errors, preference of arithmetic or geometric mean) that gives the most similar progress of systems’ 

predictability curves. 

Predictability curves of the L05 system show negative growth for the first time step (6 hours) but turn into an increase 145 

thereafter. At the second time step (12 hours) values of predictability curves reach approximately the same values as it had 

initially. A possible explanation could be that initial errors set the initial state off the attractor and decrease occurs because the 

first tendency is to get on the attractor (Brisch and Kantz, 2019). With an increase of average errors, chaotic behavior becomes 

dominant. Predictability curves of the ECMWF forecasting system do not exhibit this type of behavior. This may be because 

of larger time steps or methods of objective analysis. We aim to get the most similar predictability curves of both models and 150 

therefore the first two time steps (up to 12 hours) of L05 model’s predictability curves are filtered out. 

Description of symbols that indicate the type of prediction error E in the text is provided in Table 1. Initials values ( )05 0L

UE  

and ( )05 0L

LE  or equivalently standard deviations σ from a normal distribution ( );ND    of the L05 system are calculated 

from a comparison of values that are normalized ( NormE ) by limit (saturated) errors E  calculated by Eq. (15). Upper bound 

predictability curves start for the ECMWF forecasting system at day one (the difference between one-day prediction and the 155 

analysis) and therefore ( )05 0L

UE  are calculated from predictability curves that are close at the first day ( ) ( )( )05 1 1L EFS

Norm NormE E= . 

Values for the L05 system are computed for N = 60; 90; 120; 150. Normalized predictability curves with N = 30 exhibit 

different evolution compared to predictability curves of the ECMWF forecasting system and they aren’t displayed. Initial 

prediction errors ( )05 0L

UE  calculated by arithmetic and geometric mean and N = 60; 90; 120; 150 have the same values and  

( )05 0 0.3;0.8L

UE  . For lower bound predictability curves of the ECMWF forecasting system, the initial error ( )0EFS

LE  is 160 

computed as a difference between analysis from the operational forecasting system and analysis from ERA-Interim. Initial 

errors of the L05 system ( )05 0L

LE  are calculated as: ( ) ( )05 05

, ,0 0L L EFS EFS

L L L LE E E E =   and ( )05 0 0.2;0.7L

LE  . Values are the 

same for all N and arithmetic and geometric mean. 
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Predictability curves calculated by arithmetic and geometric mean show a significant difference for the L05 system (all N), 

which agrees with Ruiqiang and Jianping (2011), and minor difference for the ECMWF forecasting system. For the L05 system 165 

and upper and lower bound predictability curves, the maximal difference is between 6.5 % and 10.5 % of 
05

,

L

UE  or 
05

,

L

LE  and 

these maximal values occur between 5 and 9 day of forecast length. For the ECMWF forecasting system and upper and lower 

bound predictability curves, the maximal difference is 2 % of 
,

EFS

UE
 or 

,

EFS

LE
 and these maximal values occur at the end of the 

forecast length (10 day). The choice of the averaging method doesn’t significantly change the evolution of the ECMWF 

forecasting system’s predictability curves and it does not change values of parameters of the approximations. For the L05 170 

system, the choice of averaging method is significant and it changes values of the parameters. The reason for this sensitivity 

can be found in the spread of values that are used for averaging. For the ECMWF forecasting system, the values are closer to 

each other than for the L05 system and from the definition of means, it leads to the aforementioned difference. 

The comparison of predictability curves is done with given initial values. Predictability curves of the ECMWF forecasting 

system are normalized by ,

EFS

UE  or ,

EFS

LE  (Fig. 7, black full curves) and for the L05 system by 
05

,

L

UE  and 
05

,

L

LE  displayed in 175 

Table 2 (for a description of the symbols see Table 1). For the L05 system predictability curves are calculated with N = 60; 

90; 120; 150 variables and by arithmetic and geometric mean. For the ECMWF forecasting system only arithmetic mean is 

used. 

A comparison of lower bound predictability curves (Fig. 2) shows the most similar predictability curves of the ECMWF 

forecasting system and the L05 system for the L05 system calculated by arithmetic mean with N = 90. For upper bound 180 

predictability curves (Fig. 1), predictability curves for the L05 system with N = 90 are the most similar but to the year 1999 

for predictability curves of the L05 system calculated by geometric mean and after 1999 by the arithmetic mean. 

5. Estimation of parameters 

Parameters of error growth models are the Lyapunov exponent, model error, and limit error. They are estimated from 

approximations of predictability curves or differences of predictability curves ( ) ( )( ) ( ) ( )( )( )2;E t t E t E t t E t t+  + +  −  , 185 

where t is time and 0.25t = day (Figs. 3 and 4). Error growth models considered here are: 

 
( )

lim

: 1 ,
dE t E

Km E
dt E


 

= = − 
 

 (8) 

 
( )

( )
lim

: 1 ,
dE t E

Km E
dt E

  
 

= = + − 
 

 (9) 
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( )

lim

: ln ,
dE t E

Lm E
dt E


 

= = −  
 

 (10) 

 
( )

lim

: 1 ,

p
dE t E

Gm E
dt p E

   
 = = −  
   

 (11) 190 

 ( ) ( ): tanh ,Tm E t A at a A= = + +  (12) 

where parameters of Tm  are 2a = , lim 2E A=  and  

 ( ) ( ): tanh ,Tm E t A at b B = = + +  (13) 

where parameters of Tm
 are ( )a A B A = + , ( )2 2a A B A = −  and limE A B= + . E is an average forecast error. t 

represents time,  is the estimate of the Lyapunov exponent .   is the parameter of model error ( dE dt  when 0E = ), limE  195 

is the limit (saturated) value of E (value of E when 0dE dt = , theoretically E , Figs. 3 and 4) and p, A, B, a, b are parameters. 

The calculation is done for the ECMWF forecasting system and the L05 system ( 90N = ), for arithmetic (A) and geometric 

(G) means, for upper bound predictability curves (U) and lower bound predictability curves (L). See Tables 3 and 4 for RMS 

values of parameters  , 
limE ,   and p , that are calculated over all used initial errors for the L05 system and all calculated 

years for the ECMWF forecasting system.  200 

The average values of parameters  , 
limE  are higher for the lower bound predictability curves than for the upper bound 

predictability curves. Upper bound predictability curves should not include model error (theoretically 0 = ) but from Table 

4 it can be seen that for the L05 system (arithmetic mean) the values are even higher than for the lower bound predictability 

curves. For the ECMWF forecasting system the values of   are higher for lower bound predictability curves which is 

theoretically more acceptable, but   is not zero for the upper bound predictability curves. A possible explanation can be the 205 

sensitivity to correct approximation (cases with higher   have lower  ), but this can not fully explain the discrepancy. For 

p  the values of upper and lower bound predictability curves are similar to each other (L05 system and ECMWF forecasting 

system). 

There are significant differences of parameters  , 
limE ,   and p  between predictability curves calculated by arithmetic and 

geometric mean for the L05 system (for the ECMWF forecasting system only arithmetic mean is presented). The most 210 
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significant differences are detected for   and p , where for   values are closer to zero for geometric mean and values of 

predictability curves calculated by arithmetic mean are two or three times higher. Values of parameter p  are closer to 1p =  

for geometric mean. This means that differences of predictability curves calculated by geometric mean have a shape that is 

close to a symmetric parabola (for example Fig. 3a) but for the arithmetic mean the parabolic shape is skewed to the left (for 

example Fig. 3c). 215 

Note that the description of symbols that indicate the type of parameters of error growth models  ,  , p and 
limE  in the text 

is provided in Table 1. The Lyapunov exponent of the ECMWF forecasting system is recalculated by the formula:  

 ( )05 05 ,EFS EFS L L   = + −  (14) 

where 
EFS and 

05L  are parameters of error growth models and 
05 0.35L =  day-1.  For upper bound predictability curves 

(the L05 system with N = 90, to the year 1999 calculated by geometric mean and after 1999 by arithmetic mean), the average 220 

value EFS

U over all error growth models is in the range 0.33; 0.41  day-1 (Fig. 5a). Lm is not used, because this error growth 

model is not sufficient to approximate predictability curves. RMSEs of EFS

U are mostly about 0.01 day-1 only in years 1991, 

1995, 1997 a 1999 RMSE is about 0.02 day-1. For comparison, RMSEs of  EFS

U  are in the range 0.02; 0.07  day-1 (Fig. 5a). 

For lower bound predictability curves (the L05 system with N = 90 calculated by arithmetic mean), the average value EFS

U

over all error growth models is in the range 0.32; 0.41  day-1 (Fig. 5b). RMSEs of EFS

L are in the range 0.01; 0.02  day-1. 225 

For comparison, RMSEs of  EFS

L  are in the range 0.03; 0.07  day-1 (Fig. 5b).  The average value EFS  over upper and lower 

bound predictability curves is shown in Fig. 6  and RMSEs of EFS are mostly about 0.01 d-1. Low values of RMSEs of 
EFS  

compared to RMSEs of 
EFS and similar values of 

EFS for upper and lower bound predictability curves (low values of RMSEs 

of EFS ) prove the validity of EFS . Values of EFS and 
EFS  are generally closer to parameters  

EFS  of Km
 , Tm

 and 

Gm  than to 
EFS  of Km  , Tm  and Lm , but none of the error growth models approximates EFS  (Fig. 6). 230 

New limit values EFSE
 are calculated from the error growth models by the formula: 

 ( )( )05 05 05

lim lim lim ,EFS EFS EFS L L LE E E E E E  = +  −  (15) 

where 05LE
 and 05

lim

LE  are values from error growth models  and 05 8.2LE = . For upper bound predictability curves (the L05 

system with N = 90), average value over all error growth models ,

EFS

UE is in the range 96; 133  m (Fig. 7a). Lm is not used, 
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because this error growth model is not sufficient to approximate predictability curves. RMSEs of 
,

EFS

UE
are mostly about 1 m 235 

only in the years 1987, 1988, 1995, 1997, 2003, and 2011 it is about 2 m. For comparison, RMSEs of 
lim,

EFS

UE  are in the range 

2; 6  m (Fig. 7a). For lower bound predictability curves (the L05 system with N = 90 calculated by arithmetic mean), average 

value over all error growth models 
,

EFS

LE
is in the range 114; 134  m (Fig. 7b). Lm is not used, because this error growth 

model is not sufficient to approximate predictability curves. RMSEs of ,

EFS

LE are mostly 3 m and after the year 2004, they are 

4 m. RMSEs of lim,

EFS

LE  are in the range 3; 6  m (Fig. 7b). Lower values of RMSEs of ,

EFS

UE  and ,

EFS

LE calculated by Eq. (15) 240 

compared to RMSEs of 
lim,

EFS

UE  and 
lim,

EFS

LE  prove the validity of 
,

EFS

UE
 and 

,

EFS

LE
. 

6. Discussion 

The argument that favors EFSE
 calculated by Eq. (15) (Fig. 7, black full curves) instead of EFSE

 calculated by Eq. (7) (Fig. 7, 

black dashed curves) is based on the parameter of model error  .  The most similar predictability curves of the L05 system 

and the ECMWF forecasting system with EFSE
 calculated by Eq. (15) are found for the L05 system with N = 90  (for lower 245 

bound predictability curves calculated by arithmetic mean and for upper bound predictability curves calculated by geometric 

mean to 1999 and after by arithmetic mean). The most similar predictability curves of the L05 system and the ECMWF 

forecasting system with EFSE
 calculated by Eq. (7) are found for the L05 system with N = 90 by the arithmetic mean for upper 

and lower bound predictability curves. It means that if the comparison is valid and model error is constant for the L05 system 

(same number of variables over years in the L05 system means constant model error over years), it must be constant also for 250 

the ECMWF forecasting system, but the calculation of parameters EFS

L  shows a decreasing trend with increasing time (Fig. 

8b).  This can’t help yet.  But parameters EFS

U  have non zero values (Fig. 8a) that are close to EFS

L  for some years and that 

is inconsistent with the theoretical expectation that upper bound predictability curves should be without model error and 

therefore   should be 0 m/day. This inconsistency can be solved by the new definition of the model error. From Fig. 6 it can 

be seen closer value of 
EFS to EFS for 

EFS approximated from error growth models Km
 , Tm

 and Gm than for 
EFS255 

approximated from error growth models Km , Tm  and Lm . Gm  has parameter p  that defines skewness of the originally 

parabolic shape of the difference of predictability curves. 1p =  pertains to symmetrical parabolic shape ( Gm becomes Km ) 

and 0p =  means the greatest skewness to the left ( Gm becomes Lm ). Parameters   also skew the originally parabolic shape 

(Figs. 3 and 4). The model error can be seen as a difference between skewness of upper and lower bound predictability curves 

and the new definition of model error would be: 260 
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 .L U L U  − = −  (16) 

Results (Fig. 9a) show good agreement for EFS

L U −
 (Eq. (16)) calculated from Km

 and Tm
, decreasing trend of EFS

L U −
 with 

increasing time for predictability curves with EFSE
 calculated by Eq. (15) and almost constant values of EFS

L U −
 with increasing 

years (slight decrease can be due to the error of approximations) for predictability curves with EFSE
 calculated by Eq. (7). 

There is also good agreement with trends of L Up p−  (Fig. 9b). Because constant values of 
L U −

 for predictability curves 265 

with EFSE
 calculated by Eq. (7) are not theoretically possible, predictability curves with EFSE

 calculated by Eq. (15) are 

favored. The reason for the decreasing trend of 05L

L U −
, found for predictability curves of the L05 system with N = 90 that are 

the most similar with predictability curves of the ECMWF forecasting system normalized by EFSE
 calculated by Eq. (15), is 

that they are partly calculated by geometric and partly by the arithmetic mean. 

These arguments are taken as proof of the validity of   EFS , EFSE
 calculated by Eq. (15). The reason for the overestimation 270 

of EFSE
 calculated by Eq. (7) (Fig. 7) can be found in the multiscale behavior of weather. If some events are predictable on a 

timescale longer than ten days (for example long-lived anomalies in sea surface temperature or soil moisture) than they 

wouldn´t be captured by medium-range weather forecast (Simmons et al., 1995; Brisch and Kantz, 2019). It is also possible 

that the overestimation is due to the different source of data used for calculation of EFSE
 by Eqs. (7) and (15): For EFSE

 

calculated by Eq. (7) only data from ERA-Interim (Janoušek 2011) are used but for EFSE
 calculated by Eq. (15) data from 275 

operational forecast are employed.  

At the end of this section, it is important to remind the readers about the importance of the correct values of the parameters. 

Nowadays, Km
 is used in the ECMWF forecasting system to estimate the influence of different spatiotemporal scales where 

parameter   newly represents the intrinsic upscale error growth and propagation from small scales and  represents synoptic-

scale error growth (Zhang et al., 2019). The results of our analysis well support this approach by the new definition of model 280 

error (Eq. (16)) and by showing the errors of approximations for individual error growth models. 

7. Conclusion 

The values of error growth models’ (Eqs. (8) - (13)) parameters that approximate predictability curves and their differences 

(Figs. 3 and 4) in the ECMWF forecast system (Tables 3 and 4) were recalculated. It is based on similarities of normalized 

upper and lower bound predictability curves (Figs. 1 and 2) of the ECMWF forecasting system (annual arithmetic mean of 285 

geopotential heights of 500 hPa from years 1986 – 2011) and the L05 system (N = 90,  arithmetic mean for lower bound 

predictability curves; geometric mean up to 1999 and arithmetic mean after 1999 for upper bound predictability curves). It is 
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also based on knowledge of the largest Lyapunov exponent (λ = 0.35 day-1) and the limit value of the predictability curve (E∞ 

= 8.2) of the L05 system. 

Lyapunov exponents of the ECMWF forecasting system were recalculated by Eq. (14). The average value over all error growth 290 

models for upper bound predictability is in the range 0.33; 0.41  day-1 (Fig. 5a) and RMSEs are mostly about 0.01 day-1. For 

lower bound predictability curves average value over all error growth models is in the range 0.32; 0.41  day-1 (Fig. 5b). 

RMSEs are in the range 0.01; 0.02  day-1. The average value over upper and lower bound predictability curves is shown in 

Fig. 6 and RMSEs are mostly about 0.01 d-1. Values of Lyapunov exponent are generally closer to parameters  
EFS  of Km

 

, Tm
 and Gm  than to 

EFS  of Km  , Tm  and Lm  (Fig. 6). 295 

New limit values were calculated from the error growth models by Eq. (15). For upper bound predictability curves, the average 

value over all error growth models is in the range 96; 133  m (Fig. 7a) and RMSEs are mostly about 1 m. For lower bound 

predictability curves average value over all error growth models is in the range 114; 134  m (Fig. 7b) and RMSEs are mostly 

3 m. 

The argument that favors limit values calculated by Eq. (15) (Fig. 7, black full curves) instead of limit values calculated by 300 

Eq. (7) (Fig. 7, black dashed curves) is based on the new definition of model error (Eq. (16)) which shows a decreasing trend 

with increasing years for predictability curves with limit values calculated by Eq. (15), and almost constant trend with 

increasing time (slight decrease can be due to the error of approximations) for predictability curves with limit values calculated 

by Eq. (7), which is theoretically impossible (Fig. 9a). This new model error calculated as a difference of model error 

parameters between the upper (Fig. 8a) and lower (Fig. 8b) bound predictability curves well support model error parameters 305 

calculated for upper bound predictability curves that are used to represents the intrinsic upscale error growth and propagation 

from small scales (Zhang et al., 2019). 
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 Types of 

mean 

Types of predictability curve 

 
Upper bound (U) Lower bound (L) 

ECMWF 

forecasting 

system 

(EFS) 
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( ) ( )

EFS

U A
E t  
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EFS

U A
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
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( ) ( )
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E t  
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
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EFS
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
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L G
E t  
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EFS
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E
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E  
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U G
  ( )

EFS
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  ( )

EFS
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  ( )
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EFS
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L05 system 

(L05) 
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,
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U G
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U G
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L G
  ( )
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L G
  ( )

05L

L G
p  

 370 

Table 1: Description of symbols that indicate types of predictability curve, types of mean and systems for prediction error E, 

theoretically calculated limit error E  , and parameters of error growth models  ,  , p and limE  (Eqs. (8) - (13)). 
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N 05L  
05

,

L

UE  
05

,

L

LE  

30 0.70 8.5 8.3 
60 0.29 8.0 8.1 

90 0.35 8.2 8.2 
120 0.32 8.2 8.2 

150 0.34 8.2 8.2 

360 0.34   

 

Table 2: Values of the global largest Lyapunov exponents 05L  and limit values of predictability curves 05

,

L

UE
 a 05

,

L

LE
 for displayed 375 

number of variables N of the L05 system. 
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RMS 
D

PPKH  D

PMKH  KP

PPKH  KP

PMKH  OH  LH  

value (day-1) (day-1) (day-1) (day-1) (day-1) (day-1) 

( )
05L

U A
  0.45 0.36 0.46 0.34 0.31 0.24 

( )
05L

L A
  0.46 0.40 0.48 0.41 0.33   0.23 

( )
05L

U G
  0.41 0.39 0.41 0.39 0.39 0.19 

( )
05L

L G


 0.42 0.40 0.43 0.41 0.35 0.19 

( )
EFS

U A


 0.45 0.41 0.46 0.39 0.36 0.21 

( )
EFS

L A
  0.48 0.42 0.50 0.40 0.35 0.27 

 (-)
 

(-)
 

(-)
 

(-)
 

(-)
 

(-)
 

( )
05

lim,

L

U A
E

 7.5 7.8 7.3 7.8 8.2 8.9 

( )
05

lim,

L

L A
E

 7.5 7.8 7.3 7.6 8.3 9.3 

( )
05

lim,

L

U G
E

 7.7 7.8 7.7 7.8 7.8 11.0 

( )
05

lim,

L

L G
E

 7.8 8.0 7.6 7.8 8.3 10.6 

 (m)
 

(m)
 

(m)
 

(m)
 

(m)
 

(m)
 

( )lim,

EFS

U A
E

 108 110 106 111 115 138 

( )lim,

EFS

L A
E

 114 117 112 117 123 134 

 

Table 3: RMS values calculated over all used initial errors for the L05 system ( 90N = ) and over all years for the ECMWF 

forecasting system of parameters  , limE  (for description see Table 1).  
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RMS 
D

PMKH  KP

PMKH  RMS OH  RMS 
D

PMKH  KP

PMKH  RMS OH  

value (day-1) (day-1) value (-) value (day-1) (day-1) value (-) 

( )
05L

U A
  0.21 0.27 ( )

05L

U A
p  0.3 ( )

05L

U G
     0.03 0.04 ( )

05L

U G
p    0.9 

( )
05L

L A
  0.10 0.12 ( )

05L

L A
p  0.4 ( )

05L

L G
  0.04 0.03 ( )

05L

L G
p  0.7 

 (m/day) (m/day)  (-)  (m/day) (m/day)  (-) 

( )
EFS

U A


 
0.97 1.82 ( )

EFS

U A
p

 
0.6 ( )

EFS

L A


 
2.14 2.83 ( )

EFS

L A
p

 
0.40 

 380 

Table 4: RMS values calculated over all used initial errors for the L05 system ( 90N = ) and over all years for the ECMWF 

forecasting system of parameters  and p (for description see Table 1).  
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Figure 1. Comparison of upper bound predictability curves ,norm UE  of the ECMWF forecasting system normalized by 
,

EFS

UE
 (Eq. (15)

)  (EFS; annual arithmetic means, representative samples from 1986–2011) and the L05 system normalized by 05

,

L

UE
 (Table 2) (L05; 385 

geometric means (1986–1999), arithmetic means (2000–2011)). 
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Figure 2. Comparison of lower bound predictability curves ,norm LE  of the ECMWF forecasting system normalized by 
,

EFS

LE
(Eq. (15)

), (EFS; annual arithmetic means, representative samples from1986–2011) and the L05 system normalized by 05

,

L

LE
 (Table 2) (L05; 

arithmetic mean). 390 
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Figure 3. Approximations of differences of upper bound predictability curves (representative samples). (a) – (b): the most similar 

predictability curves in the year 1995 of the ECMWF forecasting system. (c) – (d): the most similar predictability curves in the year 

2005 of the ECMWF forecasting system. Parameters from Tm used in Km  (blue) and parameters from  Tm  used in Km  (blue, 

dashed).  395 
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Figure 4. Approximations of differences of lower bound predictability curves (representative samples). (a) – (b): the most similar 

predictability curves in the year 1995 of the ECMWF forecasting system. (c) – (d): the most similar predictability curves in the year 

2005 of the ECMWF forecasting system. Tm displays parameters from Tm used in Km  and Tm  displays parameters from Tm  

used in Km .  400 
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Figure 5. Lyapunov exponents EFS  of the ECMWF forecasting system calculated by Eq. (14) and parameters EFS  of error growth 

models for (a) upper and (b) lower bound predictability curves. 
EFS is average value over all error growth models.   
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Figure 6. Average values over upper and lower bound predictability curves of Lyapunov exponents 
EFS (black, solid), average 405 

values 
EFS  (black, dashed) for (a) upper and (b) lower bound predictability curves of the ECMWF forecasting system calculated 

by Eq. (14) and parameters EFS  of error growth model for (a) upper and (b) lower bound predictability curves of the ECMWF 

forecasting system.  
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Figure 7. Limit values 
EFSE  of the ECMWF forecasting system calculated by Eq. (15) and parameters lim

EFSE  of error growth models 410 

for (a) upper and (b) lower bound predictability curves. 
EFSE (Eq. (15))  is average value over all error growth models and  and 

EFSE

(Eq. (7)) is limit values calculated by Eq. (7).    
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Figure 8. Parameters 
EFS (a) for upper bound predictability curves 

EFS

U  and (b) for lower bound predictability curves 
EFS

L . Black 415 

curves represent 
EFS  approximated from predictability curves with 

EFSE  calculated by Eq. (7), red curves pertain to 
EFS  

approximated from predictability curves with 
EFSE  calculated by Eq. (15), full curves correspond to 

EFS calculated from Tm  and 

dashed curves to 
EFS calculated from Km . 
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Figure 9. Absolute values of differences of parameters (a) 
EFS EFS

L U −  and (b) 
EFS EFS

L Up p− between lower and upper bound 420 

predictability curves. For the notation see Fig. 8. 

 


