(1) Comments from referee

Anonymous Referee #1

Received and published: 17 December 2020

The reviewed manuscript aims to estimate the Lyapunov exponent, asymptotic error

and model error for the ECMWEF forecasts. The authors are comparing different parametric
models to do such estimates. The topic is interesting but as a reader | have

problems to follow some of the steps and assumptions in the manuscript, especially

the correction step that is introduced. The manuscript also has a number of statements
that need to be better clarified. | therefore recommend a major revision before it

can be accepted for publication.

Major comments 1.

| do not understand why the geometric vs arithmetic mean is discussed

in the manuscript, especially as it cannot be fully applied to the ECMWF scores

that are externally calculated. The part needs to be better motivated or removed.

2. In the LO5 a model error is introduced, but it needs to be better explained how this error would
work and how it relates to real model errors.

3. The correction scheme for which the results are presented on line 210-233 is not

properly introduced and motivated. For example, it is not easy to see how a correction

based on LO5 can be applied to ECMWEF data. A proper description is needed.

Minor comments:

Line 18-19: Initial errors grow due to the chaotic nature of the system.

Line 19-20: The growth can be considered exponential for short lead times before nonlinear effects
(saturation) starts to play a role. Note that for very short lead times the error growth could be faster
either due to small-scale processes as discussed in Zhang et al., or due to decorrelation between
analysis error and forecast errors.

Line 22: “with increasing” -> “as function of”

Line 27: L is often referred to as practical predictability

Line 30: Historically U is referred to as the perfect model assumption

Line 38: Based on time-derivatives of the error Line 44 and other places: Do not use ‘ (e.g don’t)

Line 48: The need for a multi-scale growth model can be elaborated a bit more on.

Line 99: Is “real” referring to the forecast as opposed to observations?

Line 116: “Ago” and “ahead” is confusing

Line 177: ERA-Interim does also include errors, which might be correlated with the forecast initial
conditions

Line 175: Do you tune the LO5 differently for different years of ECMWF data, to account for lower initial
and lower model errors?

Line 191: “RMS” - Root mean square?

Line 199: How would the result look if you force beta to be zero? Line 210-233: This paragraph is very
difficult to follow.

Line 244: Odd statement.

Line 288: p should be given by the system and be independent of the model error

Line 270-273: | do not understand the statement “used in ECMWF forecasting system”. Please give a
reference.



(2) author’s response

Dear referee,
thank you for your comments. We would like to respond to them:

Major comments

1. 1 do not understand why the geometric vs arithmetic mean is discussed in the manuscript, especially as it
cannot be fully applied to the ECMWEF scores that are externally calculated. The part needs to be better
motivated or removed.

We added a better motivation (Line 179-180):

Calculating predictability curves by arithmetic and geometric mean, although it does not affect predictability

curves of the ECMWEF forecasting system, is mentioned because it affects the calculation of predictability curves
of the LO5 system and this then affects the comparison of predictability curves, which is important for

recalculation of error growth models’ parameters for the ECMWEF forecast system.

2. In the LO5 a model error is introduced, but it needs to be better explained how this error would work and how
it relates to real model errors.

We added a more detailed explanation (Line 103-108):

This method was presented by Lorenz (2005). Although not only resolution but also physical parameterization

affects the deficiencies of the ECMWEF system which make it different from the real atmosphere, Buizza (2010)
showed that a comparison of predictability curves of the ECMWEF system calculated from differences of
prediction and analysis and from two predictions of systems with different horizontal resolutions leads to the
same overall conclusions. Despite the sub differences mentioned by Buizza (2010), this method is sufficient for

comparing the LO5 system and the ECMWEF forecasting system.

3. The correction scheme for which the results are presented on line 210-233 is not properly introduced and
motivated. For example, it is not easy to see how a correction based on LO5 can be applied to ECMWF data. A
proper description is needed.

We added a description (Line 228-232, 245-251): Some symbols were incorrectly marked in Eq. (15) and in its
description (ES™® = E& +( B (EL™ —E})) [EL™ — B =57 +(ES - (EL" - 1)) [EL® in Eq.,
JE-%® — Ex% in description):

Line 228-232

The formula (14) is based on the assumption, that if normalized predictability curves of the L05 system and the

ECMWEF forecasting system are similar, then the differences between true values of the global largest Lyapunov
exponents (A5 , 1'®) and values determined from error growth models (a™ , &"®) are similar (
AF — o = 1Y% — %), Similarity of differences 41—« allows to estimate the global largest Lyapunov

exponents of the ECMWEF forecasting system.

Line 245-251

EEFS _ EEFS . E:OS (1)
o =lim E|_05 D

lim

where EFS and EL® are values from error growth models and E-® =8.2. As in calculating A*°, Eq. (15)

lim

based on the assumption, that if normalized predictability curves of the L05 system and the ECMWEF forecasting



system are similar, then the differences between true limit values (EE™, EL®) and values determined from error

growth models (EE™®, EL%) are similar. In this case, however, only normalized values can be compared:

lim ? lim

(EEFS _ EFEFS )/EEFS :(ELOS _ELOS)/ELOS 5 EFFS & EI_EFS +(EEFS .(ELOS _ ELOS))/ELOS _y EEFS  EEFS _ELos/ELos_

lim lim lim lim lim

Similarity of normalized differences ((Ew =[5 )/Ew ) allows to estimate new limit values of the ECMWF

forecasting system.

Minor comments
Line 18-19: Initial errors grow due to the chaotic nature of the system.
Corrected (Line 19).

Line 19-20: The growth can be considered exponential for short lead times before nonlinear effects (saturation)
starts to play a role. Note that for very short lead times the error growth could be faster either due to small-scale
processes as discussed in Zhang et al., or due to decorrelation between analysis error and forecast errors.
Added (Line 22-23).

Line 22: “with increasing” -> “as function of”".
Corrected (Line 23-24).

Line 27: L is often referred to as practical predictability.
Added (Line 28-29)

Line 30: Historically U is referred to as the perfect model assumption.
Added (Line 32)

Line 38: Based on time-derivatives of the error.
Corrected (Line 41-42).

Line 44 and other places: Do not use * (e.g don’t).
Corrected (Line 48, 49, 139, 162, 175).

Line 48: The need for a multi-scale growth model can be elaborated a bit more on.
Added (Line 52-53)
, where a parameter that usually measure model error, here represents the intrinsic upscale error growth and

propagation from small scales.

Line 99: Is “real” referring to the forecast as opposed to observations?
Corrected (Line 109).
observed predicted

Line 116: “Ago” and “ahead” is confusing.
Corrected (Line 127).
ahead ago

Line 177: ERA-Interim does also include errors, which might be correlated with the forecast initial conditions.
We did not find how this comment is associated with line 177.

Line 175: Do you tune the LO5 differently for different years of ECMWF data, to account for lower initial and
lower model errors?
Added (Line 163-165, 168-169, 186-187, 189-190).



Line 163-165:
these values are in the interval E;% (0)<(0.3;0.8) , where lower values correspond to initial prediction errors of

the ECMWEF system from later years and higher values pertain to early years.

Line 168-169:
where lower values correspond to initial prediction errors of the ECMWEF system from later years and higher

values pertain to early years.

Line 186-187:
(for lower bound predictability curves this sets different values of the model error)

Line 189-190:
(the fact that this would mean unrealistic values of the model error for the ECMWEF forecasting system is further

discussed)

Line 199: How would the result look if you force beta to be zero?
Results with beta equal to zero are results of Quadratic (Km) and hyperbolic tangent (Tm) error growth models.

Line 210-233: This paragraph is very difficult to follow.
See Major comments 3.

Line 244: Odd statement.
Deleted (Line 271)

Line 288: p should be given by the system and be independent of the model error
The answer can be found on the lines 275-278.

“Gm has parameter p that defines skewness of the originally parabolic shape of the difference of predictability
curves. p=1 pertains to symmetrical parabolic shape (Gm becomes Km)and p =0 means the greatest

skewness to the left (Gmbecomes Lm ). Parameters £ also skew the originally parabolic shape (Figs. 3 and 4).
The model error can be seen as a difference between skewness of upper and lower bound predictability curves.”

Line 270-273: I do not understand the statement “used in ECMWF forecasting system”. Please give a reference.
Reference to Zhang et al. (2019) (Line 297).
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(3) authors changes in manuscript

Recalculation of error growth models’ parameters for the ECMWF
forecast system

Hynek Bednai!, Ales Raidl® and Ji¥i Mik3ovsky *

!Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, 180 00, Czech
Republic

Correspondence to: Hynek Bednai (hynek.bednar@mff.cuni.cz)

Abstract. This article provides a new estimate of error growth models’ parameters approximating predictability curves and
their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest
Lyapunov exponent are also provided, along with model error and the limit value of the predictability curve. The proposed
correction is based on the ability of the Lorenz’s (2005) system to simulate predictability curve of the ECMWF forecasting
system and on comparing the parameters estimated for both these systems, as well as on comparison with the largest Lyapunov
exponent (4 = 0.35 day!) and limit value of the predictability curve (E. = 8.2) of the Lorenz’s system. Parameters are calculated
from the Quadratic model with and without model error, as well as by the Logarithmic and General models and by the
hyperbolic tangent model. The average value of the largest Lyapunov exponent is estimated to be in the <0.32; 0.41> day™
range for the ECMWF forecasting system, limit values of the predictability curves are estimated with lower theoretically

derived values and new approach of calculation of model error based on comparison of models is presented.

1. Introduction

Forecast errors in numerical weather prediction systems grow in time because of the inaccuracy of the initial state (initial
error), chaotic nature of the weather system itself, and the model imperfections (model error). The growth of forecast error in
weather prediction is exponential on average. As an error becomes larger, its growth slows down and then stops with the
magnitude saturating at about the average distance between two states chosen randomly from dynamically and statistically
possible states. For very short lead times the error growth could be superexponential either due to small-scale processes (Zhang
etal., 2019) or due to decorrelation between analysis and forecast errors. This average growth of forecast error with-increasing
fead as function of times is called the predictability curve.

Predictability curves (Froude et al., 2013) of the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical
weather prediction system are calculated by the approach developed by Lorenz (1982), where two types of error growth can
be obtained (Lorenz, 1982). The first type is calculated as the root mean square difference between forecast data of increasing

lead times and analysis data valid for the same time. This error growth estimate consists of initial and model error that is often
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referred to as practical predictability but and following Lorenz (1982) we will call it the lower bound predictability curve (L).
The second type is calculated as the root-mean-square difference between pairs of forecasts, valid for the same time but with
times differing by some fixed time interval (the difference between two forecasts issued with 24-h lag but valid at the same
time is used in this article). This type, that is historically referred as the perfect model assumption, consists of initial error and
we will call it the upper bound predictability curve (U). Predictability curves of Lorenz’s 05 system (L05; Lorenz, 2005) can
be controlled by model parameters and by the size of the initial error and they are set to be as close to predictability curves of
ECMWEF forecasting system as possible.

Over the years several error growth models approximating predictability curves have been developed, aiming to quantify
Lyapunov exponents, model errors (for the imperfect model case where the atmosphere is not perfectly modeled), and limit
(saturated) errors. The first, called Quadratic ( Km), was designed by Lorenz (1969). Dalcher and Kalney (1987) added model

error to the Quadratic model and Savijarvi (1995) changed it to the form ( Kmﬂ), that is used today. An alternative, called

Logarithmic model ( Lm) was introduced by Trevisan et al. (1992; 1993). General model (Gm) was introduced by Stroe and

Royer (1993; 1994). All these models are based on time-derivatives of the error appreximate-differences—of predictability

eurves (error growth rate). Newer models approximate the predictability curve directly by the hyperbolic tangent (Tm and
Tm, ) (Zagar et al., 2017).

Values of parameters calculated from error growth models are used to evaluate the improvement of the ECMWF forecasting
system (Magnusson and Kallen, 2013), to estimate the predictability or the limit error (Bengtsson et al., 2008), to quantify
impacts of different model’s resolutions (Buizza, 2010), to study chaos and model error in different spatial-temporal scales
(Zagar et al., 2015; Zagar et al., 2017 ). They are also used by researchers when the need arises to estimate chaoticity, model
error or predictability, but their validity cant not be proved, because standard methods (Sprott, 2006) to calculate the largest
Lyapunov exponents for the ECMWEF forecasting system cant not be used due to a large number of variables. An independent
value estimated from forecast and analysis anomalies can be calculated for the limit error (Simmons et al., 1995) and its validity
will be discussed. The need for correct values of error growth models” parameters increased these days because the Quadratic
model with model error is used to describe multiscale weather (Zhang et al., 2019), where a parameter that usually measure
model error, here represents the intrinsic upscale error growth and propagation from small scales .

This article intends to provide a new estimate of parameters of error growth models in the ECMWEF forecasting system
calculated from data over the 1986 to 2011 period. The correction is based on comparing the parameters calculated from the
error growth models for the LO5 system and the ECMWEF forecasting system and on comparison with the largest Lyapunov
exponent and the limit value of the predictability curve of the L05 system that can be calculated independently and with
sufficient accuracy. To make the correction valid, predictability curves of the ECMWEF forecasting system and the LO5 systems
are compared for two different methods (arithmetic and geometric averages) and the number of variables of the L05 system,
pertaining to the best match of the predictability curves is identified. As a result, a new approach to the calculation of model

error based on a comparison of models is presented.
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This article is divided into six sections. The second describes the experimental setting. The third provides a comparison of
predictability curves of the ECMWF forecasting system and the LO5 system and the fourth deals with the estimation of
Lyapunov exponents, model, and limit errors of the ECMWF forecasting system based on the correction. Discussion and

conclusions are then presented in the final two sections.

2. Experimental setting

L05 model is based on the low-dimensional atmospheric system presented by Lorenz (1996). It is a nonlinear model, with N
variables connected by governing equations
dX, /dt=—X_,X ,+X X ,—X +F, (1)

n+l

n=1...,N . Xn_z ) Xn_l, Xn ) Xm1 are unspecified (i.e., unrelated to actual physical variables) scalar meteorological

quantities, F is a constant representing external forcing and t is time. The index is cyclic so that X, =X, =X, and

variables can be viewed as existing around a circle. Nonlinear terms of Eq. (1) simulate advection. Linear terms represent
mechanical and thermal dissipation. The model quantitatively, to a certain extent, describes weather systems, but, unlike the
well-known Lorenz’s model of atmospheric convection (Lorenz, 1963), it cannot be derived from any atmospheric dynamic
equations. The motivation was to formulate the simplest possible set of dissipative chaotically behaving differential equations
that share some properties with the “real” atmosphere. One of the model’s properties is to have 5 to 7 main highs and lows that
correspond to planetary waves (Rossby waves) and a number of smaller waves that correspond to synoptic-scale waves. For
Eqg. (1) thisis only valid for N =30 and that is, as it will be seen, not sufficient for the experimental setting. Therefore, spatial

continuity modification of LO5 system is used, where the Eq. (1) is rewritten to the form:

dX, /dt=[X,X] , =X, +F, @)

where

J J
'

[X,X]L‘n = Z l_z (_Xn—ZL—an—L—j + Xn—L+j—an+L+j )/Lz-

j=—J i=-J

If L is even, Y’ denotes a modified summation, in which the first and last terms are to be divided by 2. If L is odd, }.” denotes
an ordinary summation. Generally, L is much smaller than Nand J = L/2 if K is even and J = (L-1)/2 if L is odd. For comparison
with predictability curves of the ECMWEF forecasting system, we choose N =30; 60; 90; 120; 150; 360. To keep a desirable
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number of main pressure highs and lows, Lorenz (2005) suggested to keep ratio N/L = 30 and therefore L = 1; 2; 3; 4; 5; 12.
For even values of L we have J = 1; 2; 6 and for odd values of L we have J = 0; 1; 2. Parameter F = 15 is selected as a
compromise between too high Lyapunov exponent (smaller F) and undesirable shorter waves (larger F). For this setting and
by the method of numerical calculation (Sprott, 2006), the global largest Lyapunov exponents are calculated (Table 2). By the
definition of Lorenz (1969): ,,A bounded dynamical system with a positive Lyapunov exponent is chaotic “. Because the value
of the largest Lyapunov exponent is positive and the system under study is bounded, it is chaotic. Strictly speaking (Aligood
et al., 1996), we also need to exclude the asymptotically periodic behavior, but such a task is impossible to fulfill for the
numerical simulation. The choice of parameters F and time unit = 5 days is made to obtain a similar value of the largest
Lyapunov exponent as the ECMWF forecasting system.

To calculate predictability curves (Lorenz, 1996), arbitrary values of the variables X, are chosen, and, using a fourth-order
Runge-Kutta method with a time step At = 0.05 or 6 hours, it is integrated forward for 14400 steps or 10 years. Final values
Xo,n , which should be free of transient effect, are the initial values of “reality”. Initial values of “prediction” are
Xon = Xon +€,, Where &, is the initial error and it is chosen randomly from a normal distribution ND(y; o), where

u =0 is mean and ¢ is the standard deviation, which is chosen from comparison with the ECMWF forecasting system. From
Xo,n and X(;,n Egs. (2) are integrated forward for 37.5 days (K=150 steps). For upper bound predictability curves Xn and
Xr: are chosen with the same number of variables N. For lower bound predictability curves X, is defined by X,, and by
Egs. (2) with Ny =360 and X/ by X;, and by Egs. (2) with N = 30; 60; 90; 120; 150. The size of the model error is
corrected by the difference of N for X, and X . If, for example, N =120 then X, is compared with X, in each third

point of N0 . This method was presented by Lorenz (2005). Although not only resolution but also physical parameterization

affects the deficiencies of the ECMWEF system which make it different from the real atmosphere, Buizza (2010) showed that
a comparison of predictability curves of the ECMWEF system calculated from differences of prediction and analysis and from
two predictions of systems with different horizontal resolutions leads to the same overall conclusions. Despite the sub
differences mentioned by Buizza (2010), this method is sufficient for comparing the L05 system and the ECMWEF forecasting
system.

In each time step At of numerical integration N “real” and N “ebserved predicted” values are obtained. The size of the error

at a given time for upper bound predictability curves is €, (k-At) = Xgn— X qr Where k=1,...,K and n=1...,N and for
lower bound predictability curves &, (k-At)= X", ,—X,,, where k=1,...,K , n=1...,N (except for Ny ). n'=1,...,N

(except for Ny ) is the location of the value X, , for N = 360, where N'=n-Ny/N for N = 30; 60; 90; 120; 150. The

predictability curves of the ECMWF forecasting system, in this case, are obtained from annual averages of daily data. To
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simulate that, the number of runs M = 400 is made. In each new run, initial values X, are the last values X, ; from the

previous run. M - N values are obtained for each k. Final formulas of prediction errors that constitute predictability curves by

calculation with arithmetic mean (A) are:

ELOS (k At J %Niie m k- At (3)

m=1 n=1

E”J5 (k -At) \/ : ii (k-At). (&)

m=1 n=

Formulas to calculate prediction errors by geometric means (G) are:

M

et )= F1[ £ 5 ), ®

m=1

Etfé)<k-m>=zuﬂjﬁ[ﬁis§m<k-m>} ©)

For an overview of the symbols see Table 1.

To calculate predictability curves for the ECMWF forecasting system (EFS) values of 500 hPa geopotential height are used.
Data were obtained from ECMWF (Magnusson, 2018). Lower bound predictability curves are calculated (Magnusson and
Kallen, 2013) from twenty-one root mean squares over the Northern Hemisphere (20°-90° N) obtained daily from 1 January
1986 to 31 December 2011. Means are differences between operational forecasts and analyses from ERA-Interim for a given
day. Forecasts range from 0.5 day ago relative to the given day to 10 days ahead ago, with time step 0.5 day. The difference
between operational analysis and analysis from ERA-Interim is taken as the initial error. Upper bound predictability curves
are calculated (Magnusson and Kallen, 2013) from twenty-seven root mean squares over Northern Hemisphere (20°-90°)
obtained daily from 1 January 1986 to 31 December 2011. Means are differences between two operational forecasts issued
with one day lag, but valid at the same day. Specifically, following differences are obtained for a given day (hours): 0-24, 6—
30, 12-36, 18-42, 24-48, 30-54, 36-60, 42-66, 48-72, 54-78, 60-84, 66-90, 72-96, 78-102, 84-108, 90-114, 96-120, 108—
132, 120-144, 132-156, 144-168, 156-180, 168-192, 180-204, 192-216, 204228, 216-240. Prediction errors constituting
the predictability curves are calculated as annual averages of daily data. Detailed information about calculating predictability

curves of the ECMWEF forecasting system can be found in Lorenz (1982).
5
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Comparisons of model predictability curves are done through values normalized by the limit (saturated) errors (E,, , = tIim E,
v EoL =!im E, ). Because maximum forecast time for the ECMWF forecasting system is 10 days, presented predictability

curves dor’t not reach their limit value. Independent measure of limit error can be calculated as:

Ew,Lz\/(f—c) +(a—c); E,u =y2(f-c), @

where ( f —c) is the time-averaged anomaly with respect to climate and (a—c) is the time-averaged analysis anomaly with

respect to climate. The climate is defined from ERA-Interim daily climatology. More information can be found in (Simmons
et al., 1995). Because it will be shown that values of limit error calculated by this method aren’t correct, predictability curves

of the ECMWF forecasting system are normalized by values calculated by Eq. (15).

3. Comparison of predictability curves

Predictability curves of the ECMWF (26 annual averages) and L05 systems are compared to find a setting of the L05 system
(number of variables (N), the size of the initial errors, preference of arithmetic or geometric mean) that gives the most similar
progress of systems’ predictability curves.

Predictability curves of the L05 system show negative growth for the first time step (6 hours) but turn into an increase
thereafter. At the second time step (12 hours) values of predictability curves reach approximately the same values as it had
initially. A possible explanation could be that initial errors set the initial state off the attractor and decrease occurs because the
first tendency is to get on the attractor (Brisch and Kantz, 2019). With an increase of average errors, chaotic behavior becomes
dominant. Predictability curves of the ECMWF forecasting system do not exhibit this type of behavior. This may be because
of larger time steps or methods of objective analysis. We aim to get the most similar predictability curves of both models and

therefore the first two time steps (up to 12 hours) of L05 model’s predictability curves are filtered out.
Initials values E;™(0) and E *(0) or equivalently standard deviations o from a normal distribution ND( ;) of the L05
system are calculated from a comparison of initial values of the ECMWEF system (26 annual averages) that are normalized (

ENO,m) by limit (saturated) errors EEFS calculated by Eq. (15). Upper bound predictability curves start for the ECMWF
forecasting system at day one (the difference between one-day prediction and the analysis) and therefore Ejos (0) are
calculated from predictability curves that are close at the first day (E,bfjfm (1) = Exeem (1)) . Initial values for the L0O5 system are

computed for N = 60; 90; 120; 150. Normalized predictability curves with N = 30 exhibit different evolution compared to

predictability curves of the ECMWEF forecasting system and they area’t not displayed. Initial prediction errors EjOS(O)
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calculated by arithmetic and geometric mean and N = 60; 90; 120; 150 have the same values and these values are in the interval

E;™(0)&(0.3,0.8) , where lower values correspond to initial prediction errors of the ECMWF system from later years and

higher values pertain to early years. For lower bound predictability curves of the ECMWEF forecasting system, the initial error

ES (0) is computed as a difference between analysis from the operational forecasting system and analysis from ERA-Interim.

Initial errors of the L05 system E®(0) are calculated as: E-® (0)=E-T-E (0)/EST and E;™(0)e(0.2;0.7), where

lower values correspond to initial prediction errors of the ECMWEF system from later years and higher values pertain to early
years. Initial values are the same for all N and arithmetic and geometric mean.
Predictability curves calculated by arithmetic and geometric mean show a significant difference for the L05 system (all N) and

minor difference for the ECMWF forecasting system. For the LO5 system and upper and lower bound predictability curves,
the maximal difference is between 6.5 % and 10.5 % of E.% or ELT and these maximal values occur between 5 and 9 day
of forecast length. For the ECMWF forecasting system and upper and lower bound predictability curves, the maximal
difference is 2 % of EZ; or EZ° and these maximal values occur at the end of the forecast length (10 day). The choice of

the averaging method doesa’t not significantly change the evolution of the ECMWF forecasting system’s predictability curves
and it does not change values of parameters of the approximations. For the L05 system, the choice of averaging method is
significant and it changes values of the parameters. The reason for this sensitivity can be found in the spread of values that are
used for averaging. For the ECMWEF forecasting system, the values are closer to each other than for the L0O5 system and from
the definition of means, it leads to the aforementioned difference. Calculating predictability curves by arithmetic and geometric
mean, although it does not affect predictability curves of the ECMWEF forecasting system, is mentioned because it affects the
calculation of predictability curves of the L0O5 system and this then affects the comparison of predictability curves, which is
important for recalculation of error growth models’ parameters for the ECMWF forecast system.

The comparison of predictability curves is done with given initial values. Predictability curves of the ECMWEF forecasting

system are normalized by EE; or EE® (Fig. 7, black full curves) and for the LOS system by E.% and E.% displayed in

Table 2 (for a description of the symbols see Table 1). For the LO5 system predictability curves are calculated with N = 60;
90; 120; 150 variables and by arithmetic and geometric mean (for lower bound predictability curves this sets different values
of the model error). For the ECMWF forecasting system only arithmetic mean is used.

A comparison of lower bound predictability curves (Fig. 2) shows the most similar predictability curves of the ECMWF
forecasting system and the L05 system for the LO5 system calculated by arithmetic mean with N = 90 (the fact that this would
mean unrealistic values of the model error for the ECMWEF forecasting system is further discussed). For upper bound
predictability curves (Fig. 1), predictability curves for the LO5 system with N = 90 are the most similar but to the year 1999

for predictability curves of the LO5 system calculated by geometric mean and after 1999 by the arithmetic mean.



195 4. Estimation of parameters
Parameters of error growth models are the Lyapunov exponent, model error, and limit error. They are estimated from
approximations of predictability curves or differences of predictability curves (( t+A'E + E )/2 ( t+A'E )/At)

where tis time and At =0.25day (Figs. 3 and 4). Error growth models considered here are:

dE(t) E
Km=— = gE|1-—|,
dt “ [ Iimj (8)
dE(t) E
Km, = — = (aE + f)| 1- — |,
200 m, == (a +ﬁ)( E"mj ©)
E(t
Lm ::d—()z—aEIn [i] (10)
dt lim
p
om= W) _a E{l—(iJ } (11)
dt p EIim
Tm:=E(t)=Atanh(at+a)+A, (12)
where parameters of Tm are o =2a, E;, =2A and
205 Tm, = E(t) = Atanh(at+b)+B, (13)

where parameters of Tm; are @ =a(A+B)/A, p=a(A’-B?)/A and E;, =A+B . E is an average forecast error. t

represents time, & is the estimate of the Lyapunov exponent A. g is the parameter of model error (dE/dt when E=0),

E,.,, is the limit (saturated) value of E (value of E when 0E/dt =0, theoretically E., )and p, A, B, a, b are parameters.

The calculation is done for the ECMWF forecasting system (26 annual averages) and the L05 system ( N =90), for arithmetic
210 (A) and geometric (G) means, for upper bound predictability curves (U) and lower bound predictability curves (L). See Tables
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220

225

230

235

3 and 4 for root mean square (RMS) values of parameters « , E,im , /_? and p , that are calculated over all used initial errors

for the LO5 system and all calculated years for the ECMWF forecasting system.

The average values of parameters & , E, are higher for the lower bound predictability curves than for the upper bound
predictability curves. Upper bound predictability curves should not include model error (theoretically g =0) but from Table 4
it can be seen that for the LO5 system (arithmetic mean) the values are even higher than for the lower bound predictability

curves. For the ECMWF forecasting system the values of E are higher for lower bound predictability curves which is

theoretically more acceptable, but ,E is not zero for the upper bound predictability curves. A possible explanation can be the
sensitivity to correct approximation (cases with higher g have lower @ ), but this can not fully explain the discrepancy. For
P the values of upper and lower bound predictability curves are similar to each other (L05 system and ECMWF forecasting

system).

There are significant differences of parameters @, E, , # and P between predictability curves calculated by arithmetic and

lim ?

geometric mean for the LO5 system (for the ECMWEF forecasting system only arithmetic mean is presented). The most
significant differences are detected for £ and P, where for 4 values are closer to zero for geometric mean and values of
predictability curves calculated by arithmetic mean are two or three times higher. Values of parameter P are closerto p=1
for geometric mean. This means that differences of predictability curves calculated by geometric mean have a shape that is
close to a symmetric parabola (for example Fig. 3a) but for the arithmetic mean the parabolic shape is skewed to the left (for

example Fig. 3c).

The Lyapunov exponent of the ECMWF forecasting system is recalculated by the formula:

JEFS _ [ EFS +(/1L05 _aLos), (14)

5

where o and a"® are parameters of error growth models and A® =0.35 day. The formula (14) is based on the

assumption, that if normalized predictability curves of the L0O5 system and the ECMWEF forecasting system are similar, then

the differences between true values of the global largest Lyapunov exponents (A5 , 1"*®) and values determined from error

L05
(24

growth models (™ | ) are similar (A5 —a™° =~ 1"® —¢"®). Similarity of differences 1 —¢ allows to estimate the

global largest Lyapunov exponents of the ECMWEF forecasting system .For upper bound predictability curves (the LO5 system

with N = 90, to the year 1999 calculated by geometric mean and after 1999 by arithmetic mean), the average value A;"> over
all error growth models is in the range <0.33; 0.41) day? (Fig. 5a). Lmis not used, because this error growth model is not

sufficient to approximate predictability curves. RMSEs of 4" are mostly about 0.01 day™ only in years 1991, 1995, 1997 a



240

245

250

255

260

1999 RMSE is about 0.02 day. For comparison, RMSEs of & ™ are in the range <0.02; 0.07) day (Fig. 5a). For lower
bound predictability curves (the L05 system with N = 90 calculated by arithmetic mean), the average value /" over all error

growth models is in the range <O.32; 0.41) day* (Fig. 5b). RMSEs of 4 are in the range <0.0L‘ 0.02> day?. For
comparison, RMSEs of ™ are in the range (0.03; 0.07) day (Fig. 5b). The average value 25 over upper and lower

bound predictability curves is shown in Fig. 6 and RMSEs of 15 are mostly about 0.01 d™*. Low values of RMSEs of 15

compared to RMSEs of @™ and similar values of 45 for upper and lower bound predictability curves (low values of RMSEs

S

of 257°) prove the validity of 15 . Values of 25 and A5 are generally closer to parameters o= of Km, , Tm, and

FS

Gm thanto ™ of Km , Tm and Lm, but none of the error growth models approximates 25 (Fig. 6).

New limit values EE™ are calculated from the error growth models by the formula:

EEFS _ EEFS . E:;OS (15)
I [T E|_05 J

where EE™ and EL® are values from error growth models and E-® =8.2. As in calculating A%, Eq. (15) based on the
assumption, that if normalized predictability curves of the L05 system and the ECMWEF forecasting system are similar, then

the differences between true limit values (ES™, E-®) and values determined from error growth models (ES°, E:%®) are
similar. In this case, however, only normalized values can be compared:
(EOEFS _ EFEFS )/EEFS z(E:OS _ ELOS)/E:OS N EEFS ~ EFFS +(EOI§FS .(E;OS _ ELOS))/EOI;OS N EOEFS ~ EEFS ‘E:OS/ELOSl

lim lim lim lim lim lim

Similarity of normalized differences ((Ew =[5 )/Ew ) allow to estimate new limit values of the ECMWF forecasting system.
For upper bound predictability curves (the LO5 system with N = 90), average value over all error growth models EjFUS isin the
range <96; 133) m (Fig. 7a). Lmis not used, because this error growth model is not sufficient to approximate predictability
curves. RMSEs of EEFUS are mostly about 1 m only in the years 1987, 1988, 1995, 1997, 2003, and 2011 it is about 2 m. For
comparison, RMSEs of E;v, are in the range (2; 6) m (Fig. 7a). For lower bound predictability curves (the L05 system with

N = 90 calculated by arithmetic mean), average value over all error growth models EEFLS is in the range <114; 134) m (Fig.

7b). Lmis not used, because this error growth model is not sufficient to approximate predictability curves. RMSEs of Efis

— EFS
EIim,L

are mostly 3 m and after the year 2004, they are 4 m. RMSEs of are in the range <3; 6) m (Fig. 7b). Lower values of

10
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270

275

280

285

RMSEs of EFJ and EF calculated by Eq. (15) compared to RMSEs of Ejry, and Ejr; prove the validity of EZ and

lim,L

EEFS
E.L-

5. Discussion

The argument that favors EE calculated by Eq. (15) (Fig. 7, black full curves) instead of EE™ calculated by Eq. (7) (Fig. 7,
black dashed curves) is based on the parameter of model error . The most similar predictability curves of the L0O5 system
and the ECMWF forecasting system with ES™ calculated by Eq. (15) are found for the LO5 system with N = 90 (for lower

bound predictability curves calculated by arithmetic mean and for upper bound predictability curves calculated by geometric

mean to 1999 and after by arithmetic mean). The most similar predictability curves of the L0O5 system and the ECMWF
forecasting system with EE™ calculated by Eq. (7) are found for the LO5 system with N = 90 by the arithmetic mean for upper

and lower bound predictability curves. It means that if the comparison is valid and model error is constant for the LO5 system
(same number of variables over years in the LO5 system means constant model error over years), it must be constant also for

the ECMWF forecasting system, but the calculation of parameters g

= shows a decreasing trend with increasing time (Fig.

8b). Fhiscan’thelp-yet: But parameters 47 have non zero values (Fig. 8a) that are close to g™ for some years and that
is inconsistent with the theoretical expectation that upper bound predictability curves should be without model error and
therefore B should be 0 m/day. This inconsistency can be solved by the new definition of the model error. From Fig. 6 it can
be seen closer value of ™ to 15 for o approximated from error growth models Km, |, Tm, and Gmthan for o™
approximated from error growth models Km, Tm and Lm. Gm has parameter p that defines skewness of the originally
parabolic shape of the difference of predictability curves. p =1 pertains to symmetrical parabolic shape (Gm becomes Km)
and p =0 means the greatest skewness to the left (Gm becomes Lm ). Parameters S also skew the originally parabolic shape

(Figs. 3 and 4). The model error can be seen as a difference between skewness of upper and lower bound predictability curves

and the new definition of model error would be:

,Bqu = |IBL _ﬁu | (16)

Results (Fig. 9a) show good agreement for B¢

5 (Eq. (16)) calculated from Km, and Tm,, decreasing trend of A7 with

increasing time for predictability curves with EE™ calculated by Eg. (15) and almost constant values of g

-, With increasing

years (slight decrease can be due to the error of approximations) for predictability curves with EE calculated by Eq. (7).

11



290

295

300

305

310

There is also good agreement with trends of |pL - pU| (Fig. 9b). Because constant values of g,_,, for predictability curves
with EE™ calculated by Eg. (7) are not theoretically possible, predictability curves with ES™ calculated by Eq. (15) are

favored. The reason for the decreasing trend of 35, found for predictability curves of the L05 system with N = 90 that are
the most similar with predictability curves of the ECMWF forecasting system normalized by ES™ calculated by Eq. (15), is
that they are partly calculated by geometric and partly by the arithmetic mean.

These arguments are taken as proof of the validity of 15, EF calculated by Eq. (15). The reason for the overestimation
of EF™ calculated by Eq. (7) (Fig. 7) can be found in the multiscale behavior of weather. If some events are predictable on a
timescale longer than ten days (for example long-lived anomalies in sea surface temperature or soil moisture) than they
wouldn’t be captured by medium-range weather forecast (Simmons et al., 1995; Brisch and Kantz, 2019). It is also possible

that the overestimation is due to the different source of data used for calculation of ES™ by Eqgs. (7) and (15): For EE®

calculated by Eq. (7) only data from ERA-Interim (Janousek 2011) are used but for EF™ calculated by Eq. (15) data from
operational forecast are employed.

At the end of this section, it is important to remind the readers about the importance of the correct values of the parameters.
Newadays;Zhang et al. (2019) used Km, in the ECMWF forecasting system to estimate the influence of different

spatiotemporal scales where parameter £ newly represents the intrinsic upscale error growth and propagation from small

scales and « represents synoptic-scale error growth. The results of our analysis well support this approach by the new

definition of model error (Eg. (16)) and by showing the errors of approximations for individual error growth models.

6. Conclusion

The values of error growth models’ (Egs. (8) - (13)) parameters that approximate predictability curves and their differences
(Figs. 3 and 4) in the ECMWF forecast system (Tables 3 and 4) were recalculated. It is based on similarities of normalized
upper and lower bound predictability curves (Figs. 1 and 2) of the ECMWEF forecasting system (annual arithmetic mean of
geopotential heights of 500 hPa from years 1986 — 2011) and the LO5 system (N = 90, arithmetic mean for lower bound
predictability curves; geometric mean up to 1999 and arithmetic mean after 1999 for upper bound predictability curves). It is
also based on knowledge of the largest Lyapunov exponent (1 = 0.35 day™) and the limit value of the predictability curve (E
= 8.2) of the LO5 system.

Lyapunov exponents of the ECMWF forecasting system were recalculated by Eq. (14). The average value over all error growth

models for upper bound predictability is in the range <0.33; 0.41) day! (Fig. 5a) and RMSEs are mostly about 0.01 day*. For

lower bound predictability curves average value over all error growth models is in the range <O.32; O.41> day? (Fig. 5h).

12
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RMSEs are in the range <0.0L‘ 0.02) day. The average value over upper and lower bound predictability curves is shown in

S

Fig. 6 and RMSEs are mostly about 0.01 d™. Values of Lyapunov exponent are generally closer to parameters ™ of Km,

S

, Tm, and Gm thanto ™ of Km , Tm and Lm (Fig. 6).

New limit values were calculated from the error growth models by Eq. (15). For upper bound predictability curves, the average

value over all error growth models is in the range <96; l33> m (Fig. 7a) and RMSEs are mostly about 1 m. For lower bound

predictability curves average value over all error growth models is in the range <114; 134) m (Fig. 7b) and RMSEs are mostly

3m.

The argument that favors limit values calculated by Eq. (15) (Fig. 7, black full curves) instead of limit values calculated by
Eq. (7) (Fig. 7, black dashed curves) is based on the new definition of model error (Eq. (16)) which shows a decreasing trend
with increasing years for predictability curves with limit values calculated by Eqg. (15), and almost constant trend with
increasing time (slight decrease can be due to the error of approximations) for predictability curves with limit values calculated
by Eq. (7), which is theoretically impossible (Fig. 9a). This new model error calculated as a difference of model error
parameters between the upper (Fig. 8a) and lower (Fig. 8b) bound predictability curves well support model error parameters
calculated for upper bound predictability curves that are used to represents the intrinsic upscale error growth and propagation

from small scales (Zhang et al., 2019).
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Types of Types of predictability curve

mean Upper bound (V) Lower bound (L)

R R S S S S S EFS

ECMWE Arithmetic EUE(FA) (t) EoE,TJ(A) EnEnf,u(A) ELE(FA) (t) EOE,FL(A) EIim,L(A)
forecast'ng (A) a EFS) EE:S) p EFS) aEFS EFS pEFS
| U(A U(A U(A L(A) L(A) L(A)
. S S S S S EFS

SyESIt:em Geometric EUE(FG) (t EOE,FU(G) E|iEnF1,u(G) ELE(FG) (t) EOE,FL(G) EIim,L(G)
( S) (G) a EFS EFS p EFS a EFS D EFS p EFS
u(©) u(G) u(G) L(©) L(©) L(©)

Arithmetic Eﬁ?i) (t) E:,(:f(A) Elli_rgiJ(A) Eﬁ?i) (t) EE,FLS(A) EnEmF,S L(A)
A) a LO5 L05 EFS a EFS EFS EFS
LO5 system ( u(n) uw  Puw u(A) iy Pua
R 0! 0! S S S EFS

(LOS) Geometric Ellj(é)l_gz) E:Lliée) EEnE,Su(G) EUE(FG)E(FtS) E;EELF(SG) Eléan,sL(G)
(©) ) u(e) Py (c) () L() P

Table 1: Description of symbols that indicate types of predictability curve, types of mean and systems for prediction error E,
theoretically calculated limit error E_ , and parameters of error growth models «, B, pand E

lim *
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N e Eg En
30 0.70 8.5 8.3
60 0.29 8.0 8.1
90 0.35 8.2 8.2
120 0.32 8.2 8.2
150 0.34 8.2 8.2
360 0.34

395

Table 2: Values of the global largest Lyapunov exponents 2% and limit values of predictability curves E.¥ a EL for displayed

number of variables N of the L05 system.
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RMS KHZ, KH2, KHE  KHE OH LH

value (day™) (day™) (day™) (day™)  (day?!) (day™)
5 n 0.45 0.36 0.46 0.34 0.31 0.24
ol 0.46 0.40 0.48 0.41 033 023
a5 0.41 0.39 0.41 0.39 0.39 0.19
als 0.42 0.40 0.43 0.41 035 019
5n 0.45 0.41 0.46 0.39 0.36 0.21
o 0.48 0.42 0.50 0.40 035 027
() () () () () ()
Eimu(a 75 78 73 7.8 8.2 8.9
Eimi(a 75 7.8 73 7.6 8.3 9.3
Eimu(o) 7.7 78 7.7 7.8 78 11.0
Eim(c) 7.8 8.0 7.6 7.8 8.3 10.6
(m) (m) (m) (m) (m) (m)
S 108 110 106 111 115 138
Em(a 114 117 112 117 123 134

Table 3: RMS values calculated over all used initial errors for the L05 system ( N =90) and over all years for the ECMWF
400 forecasting system of parameters &, E,, (for description see Table 1).
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RMS KHp, KH RMS  OH RMS KHp, KH RMS OH
value (day?)  (dayl)  value () value (day?) (day?) value  (-)
) 0.21 0.27 Pofny 03 @) 0.03 0.04 Poje) 09
) 010 012 Py 04 B 0.04 003 P 07
(m/day) (m/day) () (m/day)  (m/day) ()
() 0.97 1.82 Pn 06 o 2.14 2.83 Py 040

Table 4: RMS values calculated over all used initial errors for the L05 system ( N =90) and over all years for the ECMWF

forecasting system of parameters ﬁ and p (for description see Table 1).
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405  Figure 1. Comparison of upper bound predictability curves E ., of the ECMWF forecasting system normalized by E:ffj (Eq. (15)
) (EFS; annual arithmetic means, representative samples from 1986-2011) and the L05 system normalized by E;?j’ (Table 2) (LO5;

geometric means (1986-1999), arithmetic means (2000-2011)).
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(a) 1986, £[75(0)=0.7 (b) 1995, EL (0)=06
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Figure 2. Comparison of lower bound predictability curves E, of the ECMWEF forecasting system normalized by EF? (Eq. (15)

norm, L L

410 ), (EFS; annual arithmetic means, representative samples from1986-2011) and the L05 system normalized by EL (Table 2) (L05;
arithmetic mean).
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Figure 3. Approximations of differences of upper bound predictability curves (representative samples). (a) — (b): the most similar
predictability curves in the year 1995 of the ECMWF forecasting system. (c) — (d): the most similar predictability curves in the year
415 2005 of the ECMWEF forecasting system. Parameters from Tmused in Km (blue) and parameters from Tm, used in Km, (blue,

dashed).
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Figure 4. Approximations of differences of lower bound predictability curves (representative samples). (a) — (b): the most similar
predictability curves in the year 1995 of the ECMWF forecasting system. (c) — (d): the most similar predictability curves in the year

2005 of the ECMWEF forecasting system. Tm displays parameters from Tmused in Km and Tm, displays parameters from Tm,

used in Kmﬂ.
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(a) upper bound predictability curve
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(a) upper bound predictability curve
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(a) upper bound predictability curve (b) lower bound predictability curve
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(1) Comments from referee

Anonymous Referee #2

Received and published: 16 March 2021

Review of “Recalculation of error growth models’ parameters for the ECMWEF forecast
system” by Hynek et al

Summary: This paper seeks to provide a new estimate of parameters of error growth models in the
ECMWEF forecasting system. Using a new approach, the authors calculate the largest Lyapunov
exponent and two types of predictability curves, as well as the Lorenz’s (2005) system, found that the
largest Lyapunov exponent range from 0.32 to 0.41 day-1 in the ECMWEF forecasting system, similar to
the value of 0.35 day-1 in the Lorenz’s system. Several results in this study are interesting, some parts
could benefit from clarifications and major revisions. Below are the detailed comments.

General Comments:

1. | found the paper not easy to read and understand, and it is not well organized. There are too many
symbols and many words are abbreviated that make reader confuse.

2. I'd suggest to divide section 2“Experimental setting”suggest into“2.1 Experimental setting”and “2.2
Calculation of the predictability curves”.

3. The error growth estimate consists of initial and model error is lower bound predictability curve and
the upper bound predictability curve only contains initial error. Can you say more about the differences
between the bound predictability curves and the limit error?

4. L85:Remove the comma “,”. It can be changed to “A bounded dynamical systém with a positive
Lyapunov exponent is chaotic”.

5. 195: How to determine the values of N “real” and N “observed”?

6. L125-130: My main issue with this manuscript is that I’'m not convinced that the measure of limit
error really works, mainly because of the ERAInterim daily data including uncertainty. Also, given that
the maximum forecast time for the ECMWEF forecasting system is 10 days, the forecast error may not
be reach to the saturated value or predictability limit.

7.1125-130: What is the physical meaning of the ’limit error’ you derived? Dose the limit error means
the error of saturated value of predictability limit?

8. The paper of RuigiangDing., and Jianping, Li(2011) is listed in References, but it cannot be found in
the manuscript. Please check it again.



(2) author’s response

Dear referee,
thank you for your comments. We would like to respond to them:

1. | found the paper not easy to read and understand, and it is not well organized. There are too many symbols
and many words are abbreviated that make reader confuse.

To make it easier to read, we tried to create Table 1. (line 370), which we corrected, and at the same time, we
added links to this table in the article.

Line 150: Description of symbols that indicate the type of prediction error E in the text is provided in Table 1.
Line 214-215: Note that the description of symbols that indicate the type of parameters of error growth models o
, B, pand Ejin in the text is provided in Table 1.

2. I'd suggest to divide section 2 "Experimental setting” suggest into "2.1 Experimental setting” and "2.2
Calculation of the predictability curves".

We added:

Line 61: 2. Experimental setting

Line 91: 3. Calculation of the predictability curves

and we have modified the last paragraph of the introduction accordingly (Lines 57 - 59)

3. The error growth estimate consists of initial and model error is lower bound predictability curve and the upper
bound predictability curve only contains initial error. Can you say more about the differences between the bound
predictability curves and the limit error?

We have expanded the introductory definition:

Line 18 - 22: Forecast errors in numerical weather prediction systems grow in time because of the inaccuracy of
the initial state (initial error), chaotic nature of the weather system itself, and the model imperfections (model
error). The growth of forecast error in weather prediction is exponential on average. As an error becomes larger,
its growth slows down and then stops with the magnitude saturating at about the average distance between two
states chosen randomly from dynamically and statistically possible states (limit (saturated) error).

We also added information about the difference between the limit values of the lower and upper bound
predictability curves:
Line 135 -136: E

variability of the atmosphere (model error).

and E_  differ if the ECMWF forecasting system does not sufficiently describe the

o0,U

and we added a link to Figs. 3 and 4 to visually show the limit value as dE/dt = 0.

Line 194: Ejin is the limit (saturated) value of E (value of E when dE/dt = 0, theoretically E., , Figs. 3 and 4)
4. L85:Remove the comma ""”
exponent is chaotic”.

Line 85:The comma is removed.

. It can be changed to “A bounded dynamical system with a positive Lyapunov

5. L95: How to determine the values of N “real” and N “observed”?
We added the number of variables we tested.

Line 98: N (N = 30; 60; 90; 120; 150)

The reason why N = 90 was chosen is explained on lines 172-178.

6. L125-130: My main issue with this manuscript is that I'm not convinced that the measure of limit error really
works, mainly because of the ERAInterim daily data including uncertainty. Also, given that the maximum forecast
time for the ECMWF forecasting system is 10 days, the forecast error may not be reach to the

saturated value or predictability limit.

We agree on this point. That is why we developed the method (Eqg. (15)) that is independent of the calculation
presented on the lines 125 — 130 (Eq. (7)), and we have shown that the method we specify is valid (5. Discussion)



7. L125-130: What is the physical meaning of the ’limit error’ you derived? Dose the limit error means the error
of saturated value of predictability limit?

In our text, the limit and the saturated value of the error have the same meaning.

Line 19 -22: The growth of forecast error in weather prediction is exponential on average. As an error becomes
larger, its growth slows down and then stops with the magnitude saturating at about the average distance between
two states chosen randomly from dynamically and statistically possible states (limit (saturated) error).

8. The paper of RuigiangDing., and Jianping, Li(2011) is listed in References, but it cannot be found in the
manuscript. Please check it again.

Thank you for your comment.
Line 164: which agrees with Ruigiang and Jianping (2011)
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(3) authors changes in manuscript

Recalculation of error growth models’ parameters for the ECMWF
forecast system

Hynek Bednai!, Ales Raidl® and Ji¥i Mik3ovsky *

!Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, 180 00, Czech
Republic

Correspondence to: Hynek Bednai (hynek.bednar@mff.cuni.cz)

Abstract. This article provides a new estimate of error growth models’ parameters approximating predictability curves and
their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest
Lyapunov exponent are also provided, along with model error and the limit value of the predictability curve. The proposed
correction is based on the ability of the Lorenz’s (2005) system to simulate predictability curve of the ECMWF forecasting
system and on comparing the parameters estimated for both these systems, as well as on comparison with the largest Lyapunov
exponent (4 = 0.35 day!) and limit value of the predictability curve (E. = 8.2) of the Lorenz’s system. Parameters are calculated
from the Quadratic model with and without model error, as well as by the Logarithmic and General models and by the
hyperbolic tangent model. The average value of the largest Lyapunov exponent is estimated to be in the <0.32; 0.41> day™
range for the ECMWF forecasting system, limit values of the predictability curves are estimated with lower theoretically

derived values and new approach of calculation of model error based on comparison of models is presented.

1. Introduction

Forecast errors in numerical weather prediction systems grow in time because of the inaccuracy of the initial state (initial
error), chaotic nature of the weather system itself, and the model imperfections (model error). The growth of forecast error in
weather prediction is exponential on average. As an error becomes larger, its growth slows down and then stops with the
magnitude saturating at about the average distance between two states chosen randomly from dynamically and statistically
possible states (limit (saturated) error). This average growth of forecast error with increasing lead times is called the
predictability curve.

Predictability curves (Froude et al., 2013) of the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical
weather prediction system are calculated by the approach developed by Lorenz (1982), where two types of error growth can
be obtained (Lorenz, 1982). The first type is calculated as the root mean square difference between forecast data of increasing
lead times and analysis data valid for the same time. This error growth estimate consists of initial and model error and following

Lorenz (1982) we will call it the lower bound predictability curve (L). The second type is calculated as the root-mean-square
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difference between pairs of forecasts, valid for the same time but with times differing by some fixed time interval (the
difference between two forecasts issued with 24-h lag but valid at the same time is used in this article). This type consists of
initial error and we will call it the upper bound predictability curve (U). Predictability curves of Lorenz’s 05 system (LO05;
Lorenz, 2005) can be controlled by model parameters and by the size of the initial error and they are set to be as close to
predictability curves of ECMWF forecasting system as possible.

Over the years several error growth models approximating predictability curves have been developed, aiming to quantify
Lyapunov exponents, model errors (for the imperfect model case where the atmosphere is not perfectly modeled), and limit
(saturated) errors. The first, called Quadratic ( Km), was designed by Lorenz (1969). Dalcher and Kalney (1987) added model

error to the Quadratic model and Savijarvi (1995) changed it to the form (Km, ), that is used today. An alternative, called

Logarithmic model ( Lm) was introduced by Trevisan et al. (1992; 1993). General model (Gm) was introduced by Stroe and
Royer (1993; 1994). All these models approximate differences of predictability curves (error growth rate). Newer models

approximate the predictability curve directly by the hyperbolic tangent (Tm and Tm, ) (Zagar et al., 2017).

Values of parameters calculated from error growth models are used to evaluate the improvement of the ECMWF forecasting
system (Magnusson and Kallen, 2013), to estimate the predictability or the limit error (Bengtsson et al., 2008), to quantify
impacts of different model’s resolutions (Buizza, 2010), to study chaos and model error in different spatial-temporal scales
(Zagar et al., 2015; Zagar et al., 2017 ). They are also used by researchers when the need arises to estimate chaoticity, model
error or predictability, but their validity can’t be proved, because standard methods (Sprott, 2006) to calculate the largest
Lyapunov exponents for the ECMWF forecasting system can’t be used due to a large number of variables. An independent
value estimated from forecast and analysis anomalies can be calculated for the limit error (Simmons et al., 1995) and its validity
will be discussed. The need for correct values of error growth models” parameters increased these days because the Quadratic
model with model error is used to describe multiscale weather (Zhang et al., 2019).

This article intends to provide a new estimate of parameters of error growth models in the ECMWF forecasting system
calculated from data over the 1986 to 2011 period. The correction is based on comparing the parameters calculated from the
error growth models for the LO5 system and the ECMWF forecasting system and on comparison with the largest Lyapunov
exponent and the limit value of the predictability curve of the L05 system that can be calculated independently and with
sufficient accuracy. To make the correction valid, predictability curves of the ECMWEF forecasting system and the L05 systems
are compared for two different methods (arithmetic and geometric averages) and the number of variables of the L05 system,
pertaining to the best match of the predictability curves is identified. As a result, a new approach to the calculation of model
error based on a comparison of models is presented.

This article is divided into six seven sections. The second describes the experimental setting. The third describes calculation
of the predictability curves. The third fourth provides a comparison of predictability curves of the ECMWF forecasting system
and the LO5 system and the fourth fifth deals with the estimation of Lyapunov exponents, model, and limit errors of the

ECMWF forecasting system based on the correction. Discussion and conclusions are then presented in the final two sections.
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2. Experimental setting

L05 model is based on the low-dimensional atmospheric system presented by Lorenz (1996). It is a nonlinear model, with N

variables connected by governing equations

dX, Jdt=-X_,X  +X X . —X +F, 1)

n+l

n=L...,N. X, ,, X, X,,X,,, are unspecified (i.e., unrelated to actual physical variables) scalar meteorological
quantities, F is a constant representing external forcing and t is time. The index is cyclic so that X _, =X, =X, and

variables can be viewed as existing around a circle. Nonlinear terms of Eq. (1) simulate advection. Linear terms represent
mechanical and thermal dissipation. The model quantitatively, to a certain extent, describes weather systems, but, unlike the
well-known Lorenz’s model of atmospheric convection (Lorenz, 1963), it cannot be derived from any atmospheric dynamic
equations. The motivation was to formulate the simplest possible set of dissipative chaotically behaving differential equations
that share some properties with the “real” atmosphere. One of the model’s properties is to have 5 to 7 main highs and lows that
correspond to planetary waves (Rossby waves) and a number of smaller waves that correspond to synoptic-scale waves. For
Eqg. (1) thisis only valid for N =30 and that is, as it will be seen, not sufficient for the experimental setting. Therefore, spatial

continuity modification of LO5 system is used, where the Eq. (1) is rewritten to the form:

dX,/dt=[X,X] —X,+F, )

L,n

where

J
[X’ X]L,n = Z '.Z I(_Xn—ZL—an—L—j + Xn—L+j—ixn+L+j )/L2

If L is even, Y’ denotes a modified summation, in which the first and last terms are to be divided by 2. If L is odd, }_” denotes
an ordinary summation. Generally, L is much smaller than Nand J = L/2 if K iis even and J = (L-1)/2 if L is odd. For comparison
with predictability curves of the ECMWEF forecasting system, we choose N =30; 60; 90; 120; 150; 360. To keep a desirable
number of main pressure highs and lows, Lorenz (2005) suggested to keep ratio N/L = 30 and therefore L = 1; 2; 3; 4; 5; 12.
For even values of L we have J = 1; 2; 6 and for odd values of L we have J = 0; 1; 2. Parameter F = 15 is selected as a
compromise between too high Lyapunov exponent (smaller F) and undesirable shorter waves (larger F). For this setting and
by the method of numerical calculation (Sprott, 2006), the global largest Lyapunov exponents are calculated (Table 2). By the

definition of Lorenz (1969): 5“A bounded dynamical system with a positive Lyapunov exponent is chaotic “. Because the
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value of the largest Lyapunov exponent is positive and the system under study is bounded, it is chaotic. Strictly speaking
(Aligood

et al., 1996), we also need to exclude the asymptotically periodic behavior, but such a task is impossible to fulfill for the
numerical simulation. The choice of parameters F and time unit = 5 days is made to obtain a similar value of the largest

Lyapunov exponent as the ECMWEF forecasting system.

3. Calculation of predictability curves

To calculate predictability curves (Lorenz, 1996), arbitrary values of the variables X are chosen, and, using a fourth-order

Runge-Kutta method with a time step At = 0.05 or 6 hours, it is integrated forward for 14400 steps or 10 years. Final values

X which should be free of transient effect, are the initial values of “reality”. Initial values of “prediction” are

on !

X{n = Xon +€., Where g, isthe initial error and it is chosen randomly from a normal distribution ND( ;o) where =0

is mean and ¢ is the standard deviation, which is chosen from comparison with the ECMWF forecasting system. From X |
and X; ., Egs. (2) are integrated forward for 37.5 days (K=150 steps). For upper bound predictability curves X and X, are
chosen with the same number of variables N (N = 30; 60; 90; 120; 150). For lower bound predictability curves X, is defined
by X,, andby Egs. (2) with N, =360 and X/ by X/ and by Egs. (2) with N = 30; 60; 90; 120; 150. The size of the model
error is corrected by the difference of N for X and X . If, for example, N =120 then X, is compared with X in each
third point of N, .

In each time step At of numerical integration N “real” and N “observed” values are obtained. The size of the error at a given
time for upper bound predictability curvesis e, (k-At)= X, —X,,, where k=1,...,K and n=1,...,N and for lower bound
predictability curves gn(k-At): X' n—X v, where k=1,...,K, n=1,...,N (exceptfor Ny). n"=1...,N (except for N,)
is the location of the value X, , for N =360, where n"=n-N;/N for N = 30; 60; 90; 120; 150. The predictability curves of

the ECMWF forecasting system, in this case, are obtained from annual averages of daily data. To simulate that, the number of

runs M = 400 is made. In each new run, initial values X, , are the last values X, = from the previous run. M -N values are

obtained for each k. Final formulas of prediction errors that constitute predictability curves by calculation with arithmetic mean
(A) are:

1

et )= [ S5 en (ko) o

M‘Nm::l =1

>
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Formulas to calculate prediction errors by geometric means (G) are:

e o) = 4 [T 3 3t c-00) ). ©

m=1

£ (k- At) = zdﬁ(%isim(k-m)} (®)

For an overview of the symbols see Table 1.

To calculate predictability curves for the ECMWF forecasting system (EFS) values of 500 hPa geopotential height are used.
Data were obtained from ECMWF (Magnusson, 2018). Lower bound predictability curves are calculated (Magnusson and
Kallen, 2013) from twenty-one root mean squares over the Northern Hemisphere (20°-90° N) obtained daily from 1 January
1986 to 31 December 2011. Means are differences between operational forecasts and analyses from ERA-Interim for a given
day. Forecasts range from 0.5 day ago relative to the given day to 10 days ahead, with time step 0.5 day. The difference
between operational analysis and analysis from ERA-Interim is taken as the initial error. Upper bound predictability curves
are calculated (Magnusson and Kallen, 2013) from twenty-seven root mean squares over Northern Hemisphere (20°-90°)
obtained daily from 1 January 1986 to 31 December 2011. Means are differences between two operational forecasts issued
with one day lag, but valid at the same day. Specifically, following differences are obtained for a given day (hours): 0-24, 6—
30, 12-36, 18-42, 24-48, 30-54, 36-60, 42-66, 48-72, 54-78, 60-84, 66-90, 72-96, 78-102, 84-108, 90-114, 96-120, 108—
132, 120-144, 132-156, 144-168, 156-180, 168-192, 180-204, 192-216, 204-228, 216-240. Prediction errors constituting
the predictability curves are calculated as annual averages of daily data. Detailed information about calculating predictability
curves of the ECMWF forecasting system can be found in Lorenz (1982).

Comparisons of model predictability curves are done through values normalized by the limit (saturated) errors (E_, =limE,
! t—wo
, E,,. =limE,). Because maximum forecast time for the ECMWF forecasting system is 10 days, presented predictability
’ t—o

curves don’t reach their limit value. Independent measure of limit error can be calculated as:

E, =(f-c) +(a-0); E., =y2(f-c), @)
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where (f —c) is the time-averaged anomaly with respect to climate and (a—c) is the time-averaged analysis anomaly with
respect to climate. The climate is defined from ERA-Interim daily climatology. E,, and E_ differ if the ECMWF

forecasting system does not sufficiently describe the variability of the atmosphere (model error). More information can be
found in (Simmons et al., 1995). Because it will be shown that values of limit error calculated by this method aren’t correct,

predictability curves of the ECMWEF forecasting system are normalized by values calculated by Eq. (15).

4. Comparison of predictability curves

Predictability curves of the ECMWF and L05 systems are compared to find a setting of the L05 system (humber of variables
(N), the size of the initial errors, preference of arithmetic or geometric mean) that gives the most similar progress of systems’
predictability curves.

Predictability curves of the LO5 system show negative growth for the first time step (6 hours) but turn into an increase
thereafter. At the second time step (12 hours) values of predictability curves reach approximately the same values as it had
initially. A possible explanation could be that initial errors set the initial state off the attractor and decrease occurs because the
first tendency is to get on the attractor (Brisch and Kantz, 2019). With an increase of average errors, chaotic behavior becomes
dominant. Predictability curves of the ECMWEF forecasting system do not exhibit this type of behavior. This may be because
of larger time steps or methods of objective analysis. We aim to get the most similar predictability curves of both models and

therefore the first two time steps (up to 12 hours) of L05 model’s predictability curves are filtered out.

Description of symbols that indicate the type of prediction error E in the text is provided in Table 1. Initials values Eljos (0)
and E ®(0) or equivalently standard deviations o from a normal distribution ND( ;) of the LO5 system are calculated

from a comparison of values that are normalized ( E,, ) by limit (saturated) errors E_ calculated by Eq. (15). Upper bound

Norm
predictability curves start for the ECMWEF forecasting system at day one (the difference between one-day prediction and the
analysis) and therefore E;* (0) are calculated from predictability curves that are close at the first day (Eyor, (1) = Egqy, (1)) :
Values for the LO5 system are computed for N = 60; 90; 120; 150. Normalized predictability curves with N = 30 exhibit
different evolution compared to predictability curves of the ECMWF forecasting system and they aren’t displayed. Initial

prediction errors E;® (O) calculated by arithmetic and geometric mean and N = 60; 90; 120; 150 have the same values and

E;™(0)«(0.3,0.8) . For lower bound predictability curves of the ECMWF forecasting system, the initial error E;™ (0) is

computed as a difference between analysis from the operational forecasting system and analysis from ERA-Interim. Initial

errors of the LO5 system E*®(0) are calculated as: ES® (0)=E-T -EF* (0)/EEY and E;®(0)e(0.2,0.7). Values are the

same for all N and arithmetic and geometric mean.
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Predictability curves calculated by arithmetic and geometric mean show a significant difference for the L05 system (all N),

which agrees with Ruigiang and Jianping (2011), and minor difference for the ECMWF forecasting system. For the L05 system

and upper and lower bound predictability curves, the maximal difference is between 6.5 % and 10.5 % of E.%; or E. and

these maximal values occur between 5 and 9 day of forecast length. For the ECMWF forecasting system and upper and lower

bound predictability curves, the maximal difference is 2 % of EZ'} or EZ° and these maximal values occur at the end of the

forecast length (10 day). The choice of the averaging method doesn’t significantly change the evolution of the ECMWF
forecasting system’s predictability curves and it does not change values of parameters of the approximations. For the L0O5
system, the choice of averaging method is significant and it changes values of the parameters. The reason for this sensitivity
can be found in the spread of values that are used for averaging. For the ECMWEF forecasting system, the values are closer to
each other than for the L05 system and from the definition of means, it leads to the aforementioned difference.

The comparison of predictability curves is done with given initial values. Predictability curves of the ECMWEF forecasting
system are normalized by EZS or EF (Fig. 7, black full curves) and for the LO5 system by E.¢ and E.7 displayed in
Table 2 (for a description of the symbols see Table 1). For the LO5 system predictability curves are calculated with N = 60;
90; 120; 150 variables and by arithmetic and geometric mean. For the ECMWF forecasting system only arithmetic mean is
used.

A comparison of lower bound predictability curves (Fig. 2) shows the most similar predictability curves of the ECMWF
forecasting system and the LO5 system for the LO5 system calculated by arithmetic mean with N = 90. For upper bound
predictability curves (Fig. 1), predictability curves for the LO5 system with N = 90 are the most similar but to the year 1999

for predictability curves of the LO5 system calculated by geometric mean and after 1999 by the arithmetic mean.

5. Estimation of parameters

Parameters of error growth models are the Lyapunov exponent, model error, and limit error. They are estimated from
approximations of predictability curves or differences of predictability curves ((E t+At + E )/2 ( t+ At )/At)

where t is time and At =0.25day (Figs. 3 and 4). Error growth models considered here are:

Km ::dE—(t):aE{l—ij, (8)
dt lim
dE
Km, ::%:((ZE +ﬂ)(1—$} 9)



190

195

200

205

210

Lm:=—*=—-aEIn [ij (10)

Gm :=dE—(t)=ﬁE[1—{i]p} (11)
dt p Eim
Tm:=E(t)=Atanh(at+a)+A, (12)
where parameters of Tm are o =2a, E,, =2A and
Tm, = E(t) = Atanh(at+b)+B, (13)

where parameters of Tm, are a:a(A+ B)/A, ﬂ:a(AZ—BZ)/A and E, =A+B. E is an average forecast error. t

lim
represents time, « is the estimate of the Lyapunov exponent A. /3 is the parameter of model error (dE/dt when E =0), E,,
is the limit (saturated) value of E (value of E when dE/dt =0, theoretically E_, Figs. 3and 4) and p, A, B, a, b are parameters.
The calculation is done for the ECMWF forecasting system and the LO5 system ( N =90), for arithmetic (A) and geometric
(G) means, for upper bound predictability curves (U) and lower bound predictability curves (L). See Tables 3 and 4 for RMS

values of parameters & , E,_, # and P, that are calculated over all used initial errors for the L05 system and all calculated

fim
years for the ECMWF forecasting system.

The average values of parameters &, E,  are higher for the lower bound predictability curves than for the upper bound
predictability curves. Upper bound predictability curves should not include model error (theoretically g =0) but from Table
4 it can be seen that for the L0O5 system (arithmetic mean) the values are even higher than for the lower bound predictability

curves. For the ECMWEF forecasting system the values of g are higher for lower bound predictability curves which is
theoretically more acceptable, but £ is not zero for the upper bound predictability curves. A possible explanation can be the
sensitivity to correct approximation (cases with higher £ have lower « ), but this can not fully explain the discrepancy. For
P the values of upper and lower bound predictability curves are similar to each other (L05 system and ECMWF forecasting
system).

There are significant differences of parameters & , E,_, # and P between predictability curves calculated by arithmetic and

lim *

geometric mean for the LO5 system (for the ECMWEF forecasting system only arithmetic mean is presented). The most
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significant differences are detected for 4 and P, where for 4 values are closer to zero for geometric mean and values of

predictability curves calculated by arithmetic mean are two or three times higher. Values of parameter p are closerto p=1

for geometric mean. This means that differences of predictability curves calculated by geometric mean have a shape that is
close to a symmetric parabola (for example Fig. 3a) but for the arithmetic mean the parabolic shape is skewed to the left (for

example Fig. 3c).

Note that the description of symbols that indicate the type of parameters of error growth models «, B, pand E,, in the text
is provided in Table 1. The Lyapunov exponent of the ECMWF forecasting system is recalculated by the formula:
QEFS — EF8 +(/1L05 _aLOS) (14)

where o™ and o"® are parameters of error growth models and A*® =0.35 day’. For upper bound predictability curves
(the LO5 system with N = 90, to the year 1999 calculated by geometric mean and after 1999 by arithmetic mean), the average

value /TUEFS over all error growth models is in the range <0.33; 0.41) day? (Fig. 5a). Lm is not used, because this error growth
model is not sufficient to approximate predictability curves. RMSEs of /TUEFS are mostly about 0.01 day™ only in years 1991,
1995, 1997 a 1999 RMSE is about 0.02 day™*. For comparison, RMSEs of 5™ are in the range <0.02; 0.07) day* (Fig. 5a).
For lower bound predictability curves (the L05 system with N = 90 calculated by arithmetic mean), the average value /TUEFS
over all error growth models is in the range (0.32; 0.41) day (Fig. 5b). RMSEs of 77 are in the range (0.01, 0.02) day™.

For comparison, RMSEs of & are inthe range (0.03; 0.07) day™ (Fig. 5b). The average value i over upper and lower

bound predictability curves is shown in Fig. 6 and RMSEs of 25 are mostly about 0.01 dX. Low values of RMSEs of 15°

compared to RMSEs of & and similar values of A for upper and lower bound predictability curves (low values of RMSEs
of 257 prove the validity of 25 . Values of 25 and 1% are generally closer to parameters & of Km, , Tm, and
Gm thanto @™ of Km , Tm and Lm, but none of the error growth models approximates s (Fig. 6).
New limit values EE™ are calculated from the error growth models by the formula:
EEFS _EEFS+(EEFS.(ELOS_ELOS))/ELOS (15)
o T lim lim © lim w1

where EL® and E.>° are values from error growth models and E-* =8.2. For upper bound predictability curves (the L05

system with N = 90), average value over all error growth models Effus is in the range <96; 133) m (Fig. 7a). Lm s not used,
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because this error growth model is not sufficient to approximate predictability curves. RMSEs of EOEFUS are mostly about 1 m

only in the years 1987, 1988, 1995, 1997, 2003, and 2011 it is about 2 m. For comparison, RMSEs of EE™  are in the range

lim,U
<2; 6) m (Fig. 7a). For lower bound predictability curves (the LO5 system with N = 90 calculated by arithmetic mean), average

value over all error growth models EEFLS is in the range <114; 134> m (Fig. 7b). Lmis not used, because this error growth

model is not sufficient to approximate predictability curves. RMSEs of EOEFLS are mostly 3 m and after the year 2004, they are

4 m. RMSEs of Ej-$ are in the range (3; 6) m (Fig. 7b). Lower values of RMSEs of E£7; and EE7 calculated by Eq. (15)

compared to RMSEs of Egy) and Efrs prove the validity of EEY; and EES.

lim,L

6. Discussion

The argument that favors EE™ calculated by Eq. (15) (Fig. 7, black full curves) instead of EE™ calculated by Eq. (7) (Fig. 7,
black dashed curves) is based on the parameter of model error . The most similar predictability curves of the L05 system
and the ECMWF forecasting system with E™ calculated by Eg. (15) are found for the L05 system with N = 90 (for lower

bound predictability curves calculated by arithmetic mean and for upper bound predictability curves calculated by geometric
mean to 1999 and after by arithmetic mean). The most similar predictability curves of the L0O5 system and the ECMWF
forecasting system with EE™ calculated by Eq. (7) are found for the LO5 system with N = 90 by the arithmetic mean for upper

and lower bound predictability curves. It means that if the comparison is valid and model error is constant for the L05 system

(same number of variables over years in the L0O5 system means constant model error over years), it must be constant also for

the ECMWF forecasting system, but the calculation of parameters 5™ shows a decreasing trend with increasing time (Fig.

8b). This can’t help yet. But parameters 45— have non zero values (Fig. 8a) that are close to S for some years and that
is inconsistent with the theoretical expectation that upper bound predictability curves should be without model error and
therefore £ should be 0 m/day. This inconsistency can be solved by the new definition of the model error. From Fig. 6 it can
be seen closer value of o™ to 15 for o™ approximated from error growth models Km, , Tm, and Gmthan for o™
approximated from error growth models Km, Tm and Lm. Gm has parameter p that defines skewness of the originally
parabolic shape of the difference of predictability curves. p =1 pertains to symmetrical parabolic shape (Gm becomes Km)
and p =0 means the greatest skewness to the left (Gm becomes Lm). Parameters £ also skew the originally parabolic shape

(Figs. 3 and 4). The model error can be seen as a difference between skewness of upper and lower bound predictability curves

and the new definition of model error would be:

10
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/Bqu = |ﬁ|_ _ﬂu | (16)

Results (Fig. 9a) show good agreement for =

(Eq. (16)) calculated from Km, and Tm,, decreasing trend of S5 with
increasing time for predictability curves with EE™ calculated by Eq. (15) and almost constant values of A5 with increasing
years (slight decrease can be due to the error of approximations) for predictability curves with E5 calculated by Eq. (7).
There is also good agreement with trends of |pL - pU| (Fig. 9b). Because constant values of g _,, for predictability curves
with EE™ calculated by Eq. (7) are not theoretically possible, predictability curves with EE™ calculated by Eq. (15) are
favored. The reason for the decreasing trend of 3% , found for predictability curves of the LO5 system with N = 90 that are
the most similar with predictability curves of the ECMWF forecasting system normalized by EE™ calculated by Eqg. (15), is
that they are partly calculated by geometric and partly by the arithmetic mean.

These arguments are taken as proof of the validity of 157, ES™ calculated by Eg. (15). The reason for the overestimation

of EE™ calculated by Eq. (7) (Fig. 7) can be found in the multiscale behavior of weather. If some events are predictable on a

timescale longer than ten days (for example long-lived anomalies in sea surface temperature or soil moisture) than they
wouldn’t be captured by medium-range weather forecast (Simmons et al., 1995; Brisch and Kantz, 2019). It is also possible

that the overestimation is due to the different source of data used for calculation of EE™ by Egs. (7) and (15): For EE™®
calculated by Eq. (7) only data from ERA-Interim (Janousek 2011) are used but for EF calculated by Eq. (15) data from

operational forecast are employed.
At the end of this section, it is important to remind the readers about the importance of the correct values of the parameters.

Nowadays, Km, is used in the ECMWF forecasting system to estimate the influence of different spatiotemporal scales where
parameter B newly represents the intrinsic upscale error growth and propagation from small scalesand « represents synoptic-

scale error growth (Zhang et al., 2019). The results of our analysis well support this approach by the new definition of model

error (Eg. (16)) and by showing the errors of approximations for individual error growth models.

7. Conclusion

The values of error growth models’ (Egs. (8) - (13)) parameters that approximate predictability curves and their differences
(Figs. 3 and 4) in the ECMWF forecast system (Tables 3 and 4) were recalculated. It is based on similarities of normalized
upper and lower bound predictability curves (Figs. 1 and 2) of the ECMWEF forecasting system (annual arithmetic mean of
geopotential heights of 500 hPa from years 1986 — 2011) and the LO5 system (N = 90, arithmetic mean for lower bound

predictability curves; geometric mean up to 1999 and arithmetic mean after 1999 for upper bound predictability curves). It is

11
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also based on knowledge of the largest Lyapunov exponent (1 = 0.35 day™) and the limit value of the predictability curve (E.
= 8.2) of the LO5 system.

Lyapunov exponents of the ECMWF forecasting system were recalculated by Eq. (14). The average value over all error growth

models for upper bound predictability is in the range <0.33; 0.41) day! (Fig. 5a) and RMSEs are mostly about 0.01 day™*. For
lower bound predictability curves average value over all error growth models is in the range <0.32; O.41> day (Fig. 5b).
RMSEs are in the range <0.0L‘ 0.02) day. The average value over upper and lower bound predictability curves is shown in
Fig. 6 and RMSEs are mostly about 0.01 d%. Values of Lyapunov exponent are generally closer to parameters o of Km,

, Tm, and Gm thanto ™ of Km , Tm and Lm (Fig. 6).

New limit values were calculated from the error growth models by Eq. (15). For upper bound predictability curves, the average

value over all error growth models is in the range <96; 133> m (Fig. 7a) and RMSEs are mostly about 1 m. For lower bound

predictability curves average value over all error growth models is in the range <114; 134) m (Fig. 7b) and RMSESs are mostly

3m.

The argument that favors limit values calculated by Eq. (15) (Fig. 7, black full curves) instead of limit values calculated by
Eq. (7) (Fig. 7, black dashed curves) is based on the new definition of model error (Eq. (16)) which shows a decreasing trend
with increasing years for predictability curves with limit values calculated by Eq. (15), and almost constant trend with
increasing time (slight decrease can be due to the error of approximations) for predictability curves with limit values calculated
by Eq. (7), which is theoretically impossible (Fig. 9a). This new model error calculated as a difference of model error
parameters between the upper (Fig. 8a) and lower (Fig. 8b) bound predictability curves well support model error parameters
calculated for upper bound predictability curves that are used to represents the intrinsic upscale error growth and propagation
from small scales (Zhang et al., 2019).
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LO5 system dataset, products from the ECMWEF forecasting system dataset, codes, and figures were conducted in Wolfram
Mathematica and they are permanently stored at http://www.doi.org/10.17605/OSF.I0/CEK32.
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Types of Types of predictability curve

mean Upper bound (U) Lower bound (L)
Arithmetic EuE(F;S\) (t) EOE,FUS(A) EuEr:Su ELE(FAS) (t) EoIoE,FLS(A) Eu.Er:SL
ECMWEF
N (A) EFS EFS EFS EFS EFS EFS
forecasting %y(n) un P () i Puw
. EFS EFS EF!
S(yESIt:eSr;] Geometric EU(G)E(FtS Ew U(G) Enmsu(e) ELE(ZS) (t) EOEFLS (6) EIFr:SL(G
EFS EFS El
(©) %y (6) u(G) Pue aL(FGS) ﬂliFGs pLE(FGS
Arithmetic Eﬁ?i) (t) E:,(ﬁ(A) EnLn?Su( EII__(OAS) (t) E:,OE(A) Elll_rgsL(A
L05 LO5 LO5
LO5 system A) %y n) v Pu 0 L Pia
(L05) Geometric Esig(t)  Eile Equ:Su Eio() Ele  Eimue
(©) oy B P aqg  Buie  Pug

370

Table 1: Description of symbols that indicate types of predictability curve, types of mean and systems for prediction error E,
theoretically calculated limit error E_ , and parameters of error growth models «, g, pand E;, (Egs. (8) - (13)).
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N e ey Een
30 0.70 8.5 8.3
60 0.29 8.0 8.1
90 0.35 8.2 8.2
120 0.32 8.2 8.2
150 0.34 8.2 8.2
360 0.34

375 Table 2: Values of the global largest Lyapunov exponents 2-® and limit values of predictability curves E% a E-? for displayed

number of variables N of the L05 system.
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RMS KHS, KHp, KHS® KHX OH LH

value (day™) (day™) (day™) (day™)  (day?!) (day™)
T 0.45 0.36 0.46 0.34 0.31 0.24
7 0.46 0.40 0.48 0.41 033 023
Ay e) 0.41 0.39 0.41 0.39 0.39 0.19
aie) 0.42 0.40 0.43 0.41 0.35 0.19
a5n 0.45 0.41 0.46 0.39 0.36 0.21
Alin, 0.48 0.42 0.50 0.40 0.35 0.27
() () () () () ()
Eimua) 75 7.8 73 7.8 8.2 8.9
Eimi(a) 75 7.8 7.3 7.6 8.3 9.3
Eimu(e) 7.7 7.8 7.7 7.8 7.8 11.0
Eimi(o) 7.8 8.0 7.6 7.8 8.3 106
(m) (m) (m) (m) (m) (m)
Eimua) 108 110 106 111 115 138
Eim(a 114 117 112 117 123 134

Table 3: RMS values calculated over all used initial errors for the L05 system ( N =90) and over all years for the ECMWF
forecasting system of parameters a, E,,, (for description see Table 1).
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RMS KHS, KHY ~ RMS OH RMS KHp, KHA RMS OH

value (day?)  (dayl)  value () value (day?) (day?) value  (-)
Boa 0.21 027 Py 03 Bice) 003 004 Py 09
Bl 0.10 0.12 Py 04 Ble) 0.04 0.03 Pie) 0.7
_ (m/day) (m/day) () _ (m/day)  (m/day) ()
) 0.97 182 Py, 06 ) 2.14 2.83 Pn 040

380
Table 4: RMS values calculated over all used initial errors for the L05 system ( N =90) and over all years for the ECMWF

forecasting system of parameters ﬁ and p (for description see Table 1).
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Figure 1. Comparison of upper bound predictability curves E_ ., of the ECMWF forecasting system normalized by EZ; (Eq. (15)
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geometric means (1986-1999), arithmetic means (2000-2011)).
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Figure 2. Comparison of lower bound predictability curves E, of the ECMWEF forecasting system normalized by EF? (Eq. (15)

norm, L L

), (EFS; annual arithmetic means, representative samples from1986-2011) and the L05 system normalized by E-7 (Table 2) (L05;
390 arithmetic mean).
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Figure 3. Approximations of differences of upper bound predictability curves (representative samples). (a) — (b): the most similar
predictability curves in the year 1995 of the ECMWF forecasting system. (c) — (d): the most similar predictability curves in the year
2005 of the ECMWF forecasting system. Parameters from Tmused in Km (blue) and parameters from Tm, used in Km, (blue,

395 dashed).
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Figure 4. Approximations of differences of lower bound predictability curves (representative samples). (a) — (b): the most similar
predictability curves in the year 1995 of the ECMWF forecasting system. (c) — (d): the most similar predictability curves in the year

2005 of the ECMWEF forecasting system. Tm displays parameters from Tmused in Km and Tm, displays parameters from Tm,

used in Kmﬁ.

22



(a) upper bound predictability curve (b) lower bound predictability curve S
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Figure 5. Lyapunov exponents A5 of the ECMWF forecasting system calculated by Eq. (14) and parameters o of error growth

models for (a) upper and (b) lower bound predictability curves. A5 is average value over all error growth models.
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(a) upper bound predictability curve

(b) lower bound predictability curve
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Figure 6. Average values over upper and lower bound predictability curves of Lyapunov exponents EEFS (black, solid), average

values A% (black, dashed) for (a) upper and (b) lower bound predictability curves of the ECMWF forecasting system calculated
by Eg. (14) and parameters o of error growth model for (a) upper and (b) lower bound predictability curves of the ECMWF
forecasting system.
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(a) upper bound predictability curve
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Figure 7. Limit values EE™® of the ECMWF forecasting system calculated by Eq. (15) and parameters

(b) lower bound predictability curve
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(a) upper bound predictability curve (b) lower bound predictability curve
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Figure 8. Parameters 3 (a) for upper bound predictability curves A5~ and (b) for lower bound predictability curves A . Black
curves represent S¥° approximated from predictability curves with EE™ calculated by Eq. (7), red curves pertain to S°
approximated from predictability curves with EZ™ calculated by Eq. (15), full curves correspond to 4= calculated from Tm, and

dashed curves to 5= calculated from Km, .
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