
Dear referee, 

thank you for your comments. We would like to respond to them: 

 

Major comments 

1. I do not understand why the geometric vs arithmetic mean is discussed in the manuscript, especially as it 

cannot be fully applied to the ECMWF scores that are externally calculated. The part needs to be better 

motivated or removed. 

We added a better motivation (Line 179-180): 

Calculating predictability curves by arithmetic and geometric mean, although it does not affect predictability 

curves of the ECMWF forecasting system, is mentioned because it affects the calculation of predictability curves 

of the L05 system and this then affects the comparison of predictability curves, which is important for 

recalculation of error growth models’ parameters for the ECMWF forecast system. 

 

2. In the L05 a model error is introduced, but it needs to be better explained how this error would work and how 

it relates to real model errors. 

We added a more detailed explanation (Line 103-108): 

This method was presented by Lorenz (2005). Although not only resolution but also physical parameterization 

affects the deficiencies of the ECMWF system which make it different from the real atmosphere, Buizza (2010) 

showed that a comparison of predictability curves of the ECMWF system calculated from differences of 

prediction and analysis and from two predictions of systems with different horizontal resolutions leads to the 

same overall conclusions. Despite the sub differences mentioned by Buizza (2010), this method is sufficient for 

comparing the L05 system and the ECMWF forecasting system. 

 

3. The correction scheme for which the results are presented on line 210-233 is not properly introduced and 

motivated. For example, it is not easy to see how a correction based on L05 can be applied to ECMWF data. A 

proper description is needed. 

We added a description (Line 228-232, 245-251): Some symbols were incorrectly marked in Eq. (15) and in its 

description ( ( )( ) ( )( )05 05 05 05 05 05

lim lim lim lim lim

EFS EFS EFS L L L EFS EFS EFS L L LE E E E E E E E E E E E      = +  − → = +  − in Eq., 

05 05

lim

L LE E → in description): 

Line 228-232 

The formula (14) is based on the assumption, that if normalized predictability curves of the L05 system and the 

ECMWF forecasting system are similar, then the differences between true values of the global largest Lyapunov 

exponents (
EFS  , 

05L ) and values determined from error growth models (
EFS  , 

05L ) are similar (

05 05EFS EFS L L   −  − ). Similarity of differences  −  allows to estimate the global largest Lyapunov 

exponents of the ECMWF forecasting system. 

 

Line 245-251 

05

lim 05

lim

,
L

EFS EFS

L

E
E E

E



 =   (1) 

where 
lim

EFSE  and 05

lim

LE  are values from error growth models and 05 8.2LE = . As in calculating 
EFS , Eq. (15) 

based on the assumption, that if normalized predictability curves of the L05 system and the ECMWF forecasting 



system are similar, then the differences between true limit values ( EFSE
, 05LE

) and values determined from error 

growth models (
lim

EFSE , 05

lim

LE ) are similar. In this case, however, only normalized values can be compared: 

( ) ( ) ( )( )05 05 05 05 05 05 05 05

lim lim lim lim lim lim .EFS EFS EFS L L L EFS EFS EFS L L L EFS EFS L LE E E E E E E E E E E E E E E E         −  − →  +  − →    

Similarity of normalized differences ( ( )limE E E − ) allows to estimate new limit values of the ECMWF 

forecasting system. 

 

Minor comments 

Line 18-19: Initial errors grow due to the chaotic nature of the system. 

Corrected (Line 19). 

 

Line 19-20: The growth can be considered exponential for short lead times before nonlinear effects (saturation) 

starts to play a role. Note that for very short lead times the error growth could be faster either due to small-scale 

processes as discussed in Zhang et al., or due to decorrelation between analysis error and forecast errors. 

Added (Line 22-23). 

 

Line 22: “with increasing” -> “as function of”. 

Corrected (Line 23-24). 

 

Line 27: L is often referred to as practical predictability. 

Added (Line 28-29) 

 

Line 30: Historically U is referred to as the perfect model assumption. 

Added (Line 32) 

 

Line 38: Based on time-derivatives of the error. 

Corrected (Line 41-42). 

 

Line 44 and other places: Do not use ‘ (e.g don’t). 

Corrected (Line 48, 49, 139, 162, 175). 

 

Line 48: The need for a multi-scale growth model can be elaborated a bit more on. 

Added (Line 52-53) 

, where a parameter that usually measure model error, here represents the intrinsic upscale error growth and 

propagation from small scales. 

 

Line 99: Is “real” referring to the forecast as opposed to observations? 

Corrected (Line 109). 

observed predicted 

 

Line 116: “Ago” and “ahead” is confusing. 

Corrected (Line 127). 

ahead ago 

 

Line 177: ERA-Interim does also include errors, which might be correlated with the forecast initial conditions. 

We did not find how this comment is associated with line 177. 

 

Line 175: Do you tune the L05 differently for different years of ECMWF data, to account for lower initial and 

lower model errors? 

Added (Line 163-165, 168-169, 186-187, 189-190). 



Line 163-165: 

these values are in the interval ( )05 0 0.3;0.8L

UE  , where lower values correspond to initial prediction errors of 

the ECMWF system from later years and higher values pertain to early years. 

 

Line 168-169: 

where lower values correspond to initial prediction errors of the ECMWF system from later years and higher 

values pertain to early years. 

 

Line 186-187: 

(for lower bound predictability curves this sets different values of the model error) 

 

Line 189-190: 

(the fact that this would mean unrealistic values of the model error for the ECMWF forecasting system is further 

discussed) 

 

Line 199: How would the result look if you force beta to be zero? 

Results with beta equal to zero are results of Quadratic ( Km ) and hyperbolic tangent (Tm ) error growth models. 

 

Line 210-233: This paragraph is very difficult to follow. 

See Major comments 3. 

 

Line 244: Odd statement. 

Deleted (Line 271) 

 

Line 288: p should be given by the system and be independent of the model error 

The answer can be found on the lines 275-278. 

 

“ Gm  has parameter p  that defines skewness of the originally parabolic shape of the difference of predictability 

curves. 1p =  pertains to symmetrical parabolic shape ( Gm becomes Km ) and 0p =  means the greatest 

skewness to the left ( Gm becomes Lm ). Parameters   also skew the originally parabolic shape (Figs. 3 and 4). 

The model error can be seen as a difference between skewness of upper and lower bound predictability curves.” 

 

Line 270-273: I do not understand the statement “used in ECMWF forecasting system”. Please give a reference. 

Reference to Zhang et al. (2019) (Line 297). 
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Abstract. This article provides a new estimate of error growth models’ parameters approximating predictability curves and 

their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest 

Lyapunov exponent are also provided, along with model error and the limit value of the predictability curve. The proposed 

correction is based on the ability of the Lorenz’s (2005) system to simulate predictability curve of the ECMWF forecasting 10 

system and on comparing the parameters estimated for both these systems, as well as on comparison with the largest Lyapunov 

exponent (λ = 0.35 day-1) and limit value of the predictability curve (E∞ = 8.2) of the Lorenz’s system. Parameters are calculated 

from the Quadratic model with and without model error, as well as by the Logarithmic and General models and by the 

hyperbolic tangent model. The average value of the largest Lyapunov exponent is estimated to be in the <0.32; 0.41> day-1 

range for the ECMWF forecasting system, limit values of the predictability curves are estimated with lower theoretically 15 

derived values and new approach of calculation of model error based on comparison of models is presented.  

1. Introduction 

Forecast errors in numerical weather prediction systems grow in time because of the inaccuracy of the initial state (initial 

error), chaotic nature of the weather system itself, and the model imperfections (model error). The growth of forecast error in 

weather prediction is exponential on average. As an error becomes larger, its growth slows down and then stops with the 20 

magnitude saturating at about the average distance between two states chosen randomly from dynamically and statistically 

possible states. For very short lead times the error growth could be superexponential either due to small-scale processes (Zhang 

et al., 2019) or due to decorrelation between analysis and forecast errors. This average growth of forecast error with increasing 

lead as function of times is called the predictability curve. 

Predictability curves (Froude et al., 2013) of the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical 25 

weather prediction system are calculated by the approach developed by Lorenz (1982), where two types of error growth can 

be obtained (Lorenz, 1982). The first type is calculated as the root mean square difference between forecast data of increasing 

lead times and analysis data valid for the same time. This error growth estimate consists of initial and model error that is often 

referred to as practical predictability but and following Lorenz (1982) we will call it the lower bound predictability curve (L). 
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The second type is calculated as the root-mean-square difference between pairs of forecasts, valid for the same time but with 30 

times differing by some fixed time interval (the difference between two forecasts issued with 24-h lag but valid at the same 

time is used in this article). This type, that is historically referred as the perfect model assumption, consists of initial error and 

we will call it the upper bound predictability curve (U). Predictability curves of Lorenz’s 05 system (L05; Lorenz, 2005) can 

be controlled by model parameters and by the size of the initial error and they are set to be as close to predictability curves of 

ECMWF forecasting system as possible.  35 

Over the years several error growth models approximating predictability curves have been developed, aiming to quantify 

Lyapunov exponents, model errors (for the imperfect model case where the atmosphere is not perfectly modeled), and limit 

(saturated) errors. The first, called Quadratic ( Km ), was designed by Lorenz (1969). Dalcher and Kalney (1987) added model 

error to the Quadratic model and Savijarvi (1995) changed it to the form ( Km ), that is used today. An alternative, called 

Logarithmic model ( Lm ) was introduced by Trevisan et al. (1992; 1993). General model ( Gm ) was introduced by Stroe and 40 

Royer (1993; 1994). All these models are based on time-derivatives of the error approximate differences of predictability 

curves (error growth rate). Newer models approximate the predictability curve directly by the hyperbolic tangent (Tm  and 

Tm ) (Žagar et al., 2017).  

Values of parameters calculated from error growth models are used to evaluate the improvement of the ECMWF forecasting 

system (Magnusson and Kallen, 2013), to estimate the predictability or the limit error (Bengtsson et al., 2008), to quantify 45 

impacts of different model’s resolutions (Buizza, 2010), to study chaos and model error in different spatial-temporal scales 

(Žagar et al., 2015; Žagar et al., 2017 ). They are also used by researchers when the need arises to estimate chaoticity, model 

error or predictability, but their validity can’t not be proved, because standard methods (Sprott, 2006) to calculate the largest 

Lyapunov exponents for the ECMWF forecasting system can’t not be used due to a large number of variables. An independent 

value estimated from forecast and analysis anomalies can be calculated for the limit error (Simmons et al., 1995) and its validity 50 

will be discussed.  The need for correct values of error growth models´ parameters increased these days because the Quadratic 

model with model error is used to describe multiscale weather (Zhang et al., 2019), where a parameter that usually measure 

model error, here represents the intrinsic upscale error growth and propagation from small scales .  

This article intends to provide a new estimate of parameters of error growth models in the ECMWF forecasting system 

calculated from data over the 1986 to 2011 period. The correction is based on comparing the parameters calculated from the 55 

error growth models for the L05 system and the ECMWF forecasting system and on comparison with the largest Lyapunov 

exponent and the limit value of the predictability curve of the L05 system that can be calculated independently and with 

sufficient accuracy. To make the correction valid, predictability curves of the ECMWF forecasting system and the L05 systems 

are compared for two different methods (arithmetic and geometric averages) and the number of variables of the L05 system, 

pertaining to the best match of the predictability curves is identified. As a result, a new approach to the calculation of model 60 

error based on a comparison of models is presented. 
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This article is divided into six sections.  The second describes the experimental setting. The third provides a comparison of 

predictability curves of the ECMWF forecasting system and the L05 system and the fourth deals with the estimation of 

Lyapunov exponents, model, and limit errors of the ECMWF forecasting system based on the correction.  Discussion and 

conclusions are then presented in the final two sections. 65 

2. Experimental setting  

L05 model is based on the low-dimensional atmospheric system presented by Lorenz (1996). It is a nonlinear model, with N 

variables connected by governing equations   

 2 1 1 1 ,n n n n n ndX dt X X X X X F− − + −= − + − +  (1) 

1, ,n N= . 2 1 1   ,  ,   ,   n n n nX X X X− − + are unspecified (i.e., unrelated to actual physical variables) scalar meteorological 70 

quantities, F is a constant representing external forcing and t is time. The index is cyclic so that n N n N nX X X− += = and 

variables can be viewed as existing around a circle. Nonlinear terms of Eq. (1) simulate advection. Linear terms represent 

mechanical and thermal dissipation. The model quantitatively, to a certain extent, describes weather systems, but, unlike the 

well-known Lorenz’s model of atmospheric convection (Lorenz, 1963), it cannot be derived from any atmospheric dynamic 

equations. The motivation was to formulate the simplest possible set of dissipative chaotically behaving differential equations 75 

that share some properties with the “real” atmosphere. One of the model´s properties is to have 5 to 7 main highs and lows that 

correspond to planetary waves (Rossby waves) and a number of smaller waves that correspond to synoptic-scale waves. For 

Eq. (1) this is only valid for 30N =  and that is, as it will be seen, not sufficient for the experimental setting. Therefore, spatial 

continuity modification of L05 system is used, where the Eq. (1) is rewritten to the form:                                                          

  
,

, ,n nL n
dX dt X X X F= − +  (2) 80 

where 

  ( ) 2

2,
, ' ' .

J J

n L i n L j n L j i n L jL n
j J i J

X X X X X X L− − − − − + − + +

=− =−

= − +   

If L is even, ∑’ denotes a modified summation, in which the first and last terms are to be divided by 2. If L is odd, ∑’ denotes 

an ordinary summation. Generally, L is much smaller than N and J = L/2 if K is even and J = (L-1)/2 if L is odd. For comparison 

with predictability curves of the ECMWF forecasting system, we choose N =30; 60; 90; 120; 150; 360. To keep a desirable 85 
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number of main pressure highs and lows, Lorenz (2005) suggested to keep ratio N/L = 30 and therefore L = 1; 2; 3; 4; 5; 12. 

For even values of L we have J = 1; 2; 6 and for odd values of L we have J = 0; 1; 2. Parameter F = 15 is selected as a 

compromise between too high Lyapunov exponent (smaller F) and undesirable shorter waves (larger F). For this setting and 

by the method of numerical calculation (Sprott, 2006), the global largest Lyapunov exponents are calculated (Table 2). By the 

definition of Lorenz (1969): „A bounded dynamical system with a positive Lyapunov exponent is chaotic “. Because the value 90 

of the largest Lyapunov exponent is positive and the system under study is bounded, it is chaotic. Strictly speaking (Aligood  

et al., 1996), we also need to exclude the asymptotically periodic behavior, but such a task is impossible to fulfill for the 

numerical simulation. The choice of parameters F and time unit = 5 days is made to obtain a similar value of the largest 

Lyapunov exponent as the ECMWF forecasting system. 

To calculate predictability curves (Lorenz, 1996), arbitrary values of the variables nX  are chosen, and, using a fourth-order 95 

Runge-Kutta method with a time step ∆t = 0.05 or 6 hours, it is integrated forward for 14400 steps or 10 years. Final values 

0,nX , which should be free of transient effect, are the initial values of “reality”. Initial values of “prediction” are 

0, 0, 0,n n nX X e = + , where 0,ne  is the initial error and it is chosen randomly from a normal distribution ( );ND   , where 

0 =  is mean and σ is the standard deviation, which is chosen from comparison with the ECMWF forecasting system. From 

0,nX  and 0,nX   Eqs. (2) are integrated forward for 37.5 days (K=150 steps). For upper bound predictability curves nX  and 100 

nX   are chosen with the same number of variables N. For lower bound predictability curves nX  is defined by 0,nX  and by 

Eqs. (2) with 0 360N =  and nX   by 0,nX   and by Eqs. (2) with N = 30; 60; 90; 120; 150. The size of the model error is 

corrected by the difference of N for nX  and nX  . If, for example, 120N =  then nX  is compared with nX   in each third 

point of 0N . This method was presented by Lorenz (2005). Although not only resolution but also physical parameterization 

affects the deficiencies of the ECMWF system which make it different from the real atmosphere, Buizza (2010) showed that 105 

a comparison of predictability curves of the ECMWF system calculated from differences of prediction and analysis and from 

two predictions of systems with different horizontal resolutions leads to the same overall conclusions. Despite the sub 

differences mentioned by Buizza (2010), this method is sufficient for comparing the L05 system and the ECMWF forecasting 

system. 

In each time step t  of numerical integration N “real” and N “observed predicted” values are obtained. The size of the error 110 

at a given time for upper bound predictability curves is ( ) , , ,n k n k ne k t X X = −  where 1, ,k K=  and  1, ,n N= and for 

lower bound predictability curves ( ) , ,´ ,n k n k nk t X X  = −  where 1, ,k K= , 1, ,n N=  (except for 0N ). 1, ,n N =  

(except for 0N ) is the location of the value ,k nX  for N = 360, where 0n n N N =   for N = 30; 60; 90; 120; 150. The 

predictability curves of the ECMWF forecasting system, in this case, are obtained from annual averages of daily data. To 
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simulate that, the number of runs M = 400 is made. In each new run, initial values 0,nX  are the last values ,K nX  from the 115 

previous run. M N values are obtained for each k. Final formulas of prediction errors that constitute predictability curves by 

calculation with arithmetic mean (A) are: 

 ( ) ( ) ( )05 2

,

1 1

1
,

M N
L

n mU A
m n

E k t e k t
M N = =

 = 

  (3) 

 ( ) ( ) ( )05 2

,

1 1

1
.

M N
L

n mL A
m n

E k t k t
M N


= =

 = 

  (4) 

Formulas to calculate prediction errors by geometric means (G) are: 120 

 ( ) ( ) ( )05 2
2

,

11

1
,

M N
L

M
n mU G

nm

E k t e k t
N ==

 
 =  

 
  (5) 

 ( ) ( ) ( )05 2
2

,

11

1
.

M N
L

M
n mL G

nm

E k t k t
N


==

 
 =  

 
  (6) 

For an overview of the symbols see Table 1. 

To calculate predictability curves for the ECMWF forecasting system (EFS) values of 500 hPa geopotential height are used. 

Data were obtained from ECMWF (Magnusson, 2018). Lower bound predictability curves are calculated (Magnusson and 125 

Kallen, 2013) from twenty-one root mean squares over the Northern Hemisphere (20°–90° N) obtained daily from 1 January 

1986 to 31 December 2011. Means are differences between operational forecasts and analyses from ERA-Interim for a given 

day. Forecasts range from 0.5 day ago relative to the given day to 10 days ahead ago, with time step 0.5 day. The difference 

between operational analysis and analysis from ERA-Interim is taken as the initial error.  Upper bound predictability curves 

are calculated (Magnusson and Kallen, 2013) from twenty-seven root mean squares over Northern Hemisphere (20°–90°) 130 

obtained daily from 1 January 1986 to 31 December 2011. Means are differences between two operational forecasts issued 

with one day lag, but valid at the same day. Specifically, following differences are obtained for a given day (hours): 0–24, 6–

30, 12–36, 18–42, 24–48, 30–54, 36–60, 42–66, 48-72, 54–78, 60–84, 66–90, 72–96, 78–102, 84–108, 90–114, 96–120, 108–

132, 120–144, 132–156, 144–168, 156–180, 168–192, 180–204, 192–216, 204–228, 216–240. Prediction errors constituting 

the predictability curves are calculated as annual averages of daily data. Detailed information about calculating predictability 135 

curves of the ECMWF forecasting system can be found in Lorenz (1982). 
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Comparisons of model predictability curves are done through values normalized by the limit (saturated) errors (
, limU U

t
E E

→
=

, 
, limL L

t
E E

→
= ). Because maximum forecast time for the ECMWF forecasting system is 10 days, presented predictability 

curves don’t not reach their limit value.  Independent measure of limit error can be calculated as: 

 140 

 ( ) ( ) ( )
2 2 2

, ,; 2 ,L UE f c a c E f c = − + − = −  (7) 

where ( )f c−  is the time-averaged anomaly with respect to climate and ( )a c−  is the time-averaged analysis anomaly with 

respect to climate. The climate is defined from ERA-Interim daily climatology. More information can be found in (Simmons 

et al., 1995). Because it will be shown that values of limit error calculated by this method aren´t correct, predictability curves 

of the ECMWF forecasting system are normalized by values calculated by Eq. (15). 145 

3. Comparison of predictability curves 

Predictability curves of the ECMWF (26 annual averages) and L05 systems are compared to find a setting of the L05 system 

(number of variables (N), the size of the initial errors, preference of arithmetic or geometric mean) that gives the most similar 

progress of systems’ predictability curves. 

Predictability curves of the L05 system show negative growth for the first time step (6 hours) but turn into an increase 150 

thereafter. At the second time step (12 hours) values of predictability curves reach approximately the same values as it had 

initially. A possible explanation could be that initial errors set the initial state off the attractor and decrease occurs because the 

first tendency is to get on the attractor (Brisch and Kantz, 2019). With an increase of average errors, chaotic behavior becomes 

dominant. Predictability curves of the ECMWF forecasting system do not exhibit this type of behavior. This may be because 

of larger time steps or methods of objective analysis. We aim to get the most similar predictability curves of both models and 155 

therefore the first two time steps (up to 12 hours) of L05 model’s predictability curves are filtered out. 

Initials values ( )05 0L

UE  and ( )05 0L

LE  or equivalently standard deviations σ from a normal distribution ( );ND    of the L05 

system are calculated from a comparison of initial values of the ECMWF system (26 annual averages) that are normalized (

NormE ) by limit (saturated) errors 
EFSE  calculated by Eq. (15). Upper bound predictability curves start for the ECMWF 

forecasting system at day one (the difference between one-day prediction and the analysis) and therefore ( )05 0L

UE  are 160 

calculated from predictability curves that are close at the first day ( ) ( )( )05 1 1L EFS

Norm NormE E= . Initial values for the L05 system are 

computed for N = 60; 90; 120; 150. Normalized predictability curves with N = 30 exhibit different evolution compared to 

predictability curves of the ECMWF forecasting system and they aren’t not displayed. Initial prediction errors ( )05 0L

UE  
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calculated by arithmetic and geometric mean and N = 60; 90; 120; 150 have the same values and these values are in the interval 

( )05 0 0.3;0.8L

UE  , where lower values correspond to initial prediction errors of the ECMWF system from later years and 165 

higher values pertain to early years. For lower bound predictability curves of the ECMWF forecasting system, the initial error

( )0EFS

LE  is computed as a difference between analysis from the operational forecasting system and analysis from ERA-Interim. 

Initial errors of the L05 system ( )05 0L

LE  are calculated as: ( ) ( )05 05

, ,0 0L L EFS EFS

L L L LE E E E =   and ( )05 0 0.2;0.7L

LE  , where 

lower values correspond to initial prediction errors of the ECMWF system from later years and higher values pertain to early 

years. Initial values are the same for all N and arithmetic and geometric mean. 170 

Predictability curves calculated by arithmetic and geometric mean show a significant difference for the L05 system (all N) and 

minor difference for the ECMWF forecasting system. For the L05 system and upper and lower bound predictability curves, 

the maximal difference is between 6.5 % and 10.5 % of 
05

,

L

UE  or 
05

,

L

LE  and these maximal values occur between 5 and 9 day 

of forecast length. For the ECMWF forecasting system and upper and lower bound predictability curves, the maximal 

difference is 2 % of ,

EFS

UE  or ,

EFS

LE  and these maximal values occur at the end of the forecast length (10 day). The choice of 175 

the averaging method doesn’t not significantly change the evolution of the ECMWF forecasting system’s predictability curves 

and it does not change values of parameters of the approximations. For the L05 system, the choice of averaging method is 

significant and it changes values of the parameters. The reason for this sensitivity can be found in the spread of values that are 

used for averaging. For the ECMWF forecasting system, the values are closer to each other than for the L05 system and from 

the definition of means, it leads to the aforementioned difference. Calculating predictability curves by arithmetic and geometric 180 

mean, although it does not affect predictability curves of the ECMWF forecasting system, is mentioned because it affects the 

calculation of predictability curves of the L05 system and this then affects the comparison of predictability curves, which is 

important for recalculation of error growth models’ parameters for the ECMWF forecast system. 

The comparison of predictability curves is done with given initial values. Predictability curves of the ECMWF forecasting 

system are normalized by ,

EFS

UE  or ,

EFS

LE  (Fig. 7, black full curves) and for the L05 system by 
05

,

L

UE  and 
05

,

L

LE  displayed in 185 

Table 2 (for a description of the symbols see Table 1). For the L05 system predictability curves are calculated with N = 60; 

90; 120; 150 variables and by arithmetic and geometric mean (for lower bound predictability curves this sets different values 

of the model error). For the ECMWF forecasting system only arithmetic mean is used. 

A comparison of lower bound predictability curves (Fig. 2) shows the most similar predictability curves of the ECMWF 

forecasting system and the L05 system for the L05 system calculated by arithmetic mean with N = 90 (the fact that this would 190 

mean unrealistic values of the model error for the ECMWF forecasting system is further discussed). For upper bound 

predictability curves (Fig. 1), predictability curves for the L05 system with N = 90 are the most similar but to the year 1999 

for predictability curves of the L05 system calculated by geometric mean and after 1999 by the arithmetic mean. 
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4. Estimation of parameters 

Parameters of error growth models are the Lyapunov exponent, model error, and limit error. They are estimated from 195 

approximations of predictability curves or differences of predictability curves ( ) ( )( ) ( ) ( )( )( )2;E t t E t E t t E t t+  + +  −  , 

where t is time and 0.25t = day (Figs. 3 and 4). Error growth models considered here are: 

 
( )

lim

: 1 ,
dE t E

Km E
dt E


 

= = − 
 

 (8) 

 
( )

( )
lim

: 1 ,
dE t E

Km E
dt E

  
 

= = + − 
 

 (9) 

 
( )

lim

: ln ,
dE t E

Lm E
dt E


 

= = −  
 

 (10) 200 

 
( )

lim

: 1 ,

p
dE t E

Gm E
dt p E

   
 = = −  
   

 (11) 

 ( ) ( ): tanh ,Tm E t A at a A= = + +  (12) 

where parameters of Tm  are 2a = , lim 2E A=  and  

 ( ) ( ): tanh ,Tm E t A at b B = = + +  (13) 

where parameters of Tm  are ( )a A B A = + , ( )2 2a A B A = −  and limE A B= + . E is an average forecast error. t 205 

represents time,  is the estimate of the Lyapunov exponent .   is the parameter of model error ( dE dt  when 0E = ), 

limE  is the limit (saturated) value of E (value of E when 0dE dt = , theoretically E ) and p, A, B, a, b are parameters. 

The calculation is done for the ECMWF forecasting system (26 annual averages) and the L05 system ( 90N = ), for arithmetic 

(A) and geometric (G) means, for upper bound predictability curves (U) and lower bound predictability curves (L). See Tables 
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3 and 4 for root mean square (RMS) values of parameters  , limE ,   and p , that are calculated over all used initial errors 210 

for the L05 system and all calculated years for the ECMWF forecasting system.  

The average values of parameters  , limE  are higher for the lower bound predictability curves than for the upper bound 

predictability curves. Upper bound predictability curves should not include model error (theoretically 0 = ) but from Table 4 

it can be seen that for the L05 system (arithmetic mean) the values are even higher than for the lower bound predictability 

curves. For the ECMWF forecasting system the values of   are higher for lower bound predictability curves which is 215 

theoretically more acceptable, but   is not zero for the upper bound predictability curves. A possible explanation can be the 

sensitivity to correct approximation (cases with higher   have lower  ), but this can not fully explain the discrepancy. For 

p  the values of upper and lower bound predictability curves are similar to each other (L05 system and ECMWF forecasting 

system). 

There are significant differences of parameters  , 
limE ,   and p  between predictability curves calculated by arithmetic and 220 

geometric mean for the L05 system (for the ECMWF forecasting system only arithmetic mean is presented). The most 

significant differences are detected for   and p , where for   values are closer to zero for geometric mean and values of 

predictability curves calculated by arithmetic mean are two or three times higher. Values of parameter p  are closer to 1p =  

for geometric mean. This means that differences of predictability curves calculated by geometric mean have a shape that is 

close to a symmetric parabola (for example Fig. 3a) but for the arithmetic mean the parabolic shape is skewed to the left (for 225 

example Fig. 3c). 

The Lyapunov exponent of the ECMWF forecasting system is recalculated by the formula:  

 ( )05 05 ,EFS EFS L L   = + −  (14) 

where 
EFS and 

05L  are parameters of error growth models and 
05 0.35L =  day-1. The formula (14) is based on the 

assumption, that if normalized predictability curves of the L05 system and the ECMWF forecasting system are similar, then 230 

the differences between true values of the global largest Lyapunov exponents (
EFS  , 

05L ) and values determined from error 

growth models (
EFS  , 

05L ) are similar ( 05 05EFS EFS L L   −  − ). Similarity of differences  −  allows to estimate the 

global largest Lyapunov exponents of the ECMWF forecasting system .For upper bound predictability curves (the L05 system 

with N = 90, to the year 1999 calculated by geometric mean and after 1999 by arithmetic mean), the average value EFS

U over 

all error growth models is in the range 0.33; 0.41  day-1 (Fig. 5a). Lm is not used, because this error growth model is not 235 

sufficient to approximate predictability curves. RMSEs of EFS

U are mostly about 0.01 day-1 only in years 1991, 1995, 1997 a 
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1999 RMSE is about 0.02 day-1. For comparison, RMSEs of  EFS

U  are in the range 0.02; 0.07  day-1 (Fig. 5a). For lower 

bound predictability curves (the L05 system with N = 90 calculated by arithmetic mean), the average value EFS

U over all error 

growth models is in the range 0.32; 0.41  day-1 (Fig. 5b). RMSEs of EFS

L are in the range 0.01; 0.02  day-1. For 

comparison, RMSEs of  EFS

L  are in the range 0.03; 0.07  day-1 (Fig. 5b).  The average value EFS  over upper and lower 240 

bound predictability curves is shown in Fig. 6  and RMSEs of EFS are mostly about 0.01 d-1. Low values of RMSEs of 
EFS  

compared to RMSEs of 
EFS and similar values of 

EFS for upper and lower bound predictability curves (low values of RMSEs 

of EFS ) prove the validity of EFS . Values of EFS and 
EFS  are generally closer to parameters  

EFS  of Km
 , Tm

 and 

Gm  than to 
EFS  of Km  , Tm  and Lm , but none of the error growth models approximates EFS  (Fig. 6). 

New limit values EFSE
 are calculated from the error growth models by the formula: 245 

 
05

lim 05

lim

,
L

EFS EFS

L

E
E E

E



 =   (15) 

where 
lim

EFSE  and 05

lim

LE  are values from error growth models and 05 8.2LE = . As in calculating 
EFS , Eq. (15) based on the 

assumption, that if normalized predictability curves of the L05 system and the ECMWF forecasting system are similar, then 

the differences between true limit values ( EFSE
, 05LE

) and values determined from error growth models (
lim

EFSE , 05

lim

LE ) are 

similar. In this case, however, only normalized values can be compared: 250 

( ) ( ) ( )( )05 05 05 05 05 05 05 05

lim lim lim lim lim lim .EFS EFS EFS L L L EFS EFS EFS L L L EFS EFS L LE E E E E E E E E E E E E E E E         −  − →  +  − →    

Similarity of normalized differences ( ( )limE E E − ) allow to estimate new limit values of the ECMWF forecasting system. 

For upper bound predictability curves (the L05 system with N = 90), average value over all error growth models ,

EFS

UE is in the 

range 96; 133  m (Fig. 7a). Lm is not used, because this error growth model is not sufficient to approximate predictability 

curves. RMSEs of ,

EFS

UE are mostly about 1 m only in the years 1987, 1988, 1995, 1997, 2003, and 2011 it is about 2 m. For 255 

comparison, RMSEs of lim,

EFS

UE  are in the range 2; 6  m (Fig. 7a). For lower bound predictability curves (the L05 system with 

N = 90 calculated by arithmetic mean), average value over all error growth models ,

EFS

LE is in the range 114; 134  m (Fig. 

7b). Lm is not used, because this error growth model is not sufficient to approximate predictability curves. RMSEs of ,

EFS

LE

are mostly 3 m and after the year 2004, they are 4 m. RMSEs of lim,

EFS

LE  are in the range 3; 6  m (Fig. 7b). Lower values of 
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RMSEs of 
,

EFS

UE
 and 

,

EFS

LE
calculated by Eq. (15) compared to RMSEs of 

lim,

EFS

UE  and 
lim,

EFS

LE  prove the validity of 
,

EFS

UE
 and 260 

,

EFS

LE
. 

5. Discussion 

The argument that favors EFSE
 calculated by Eq. (15) (Fig. 7, black full curves) instead of EFSE

 calculated by Eq. (7) (Fig. 7, 

black dashed curves) is based on the parameter of model error  .  The most similar predictability curves of the L05 system 

and the ECMWF forecasting system with EFSE
 calculated by Eq. (15) are found for the L05 system with N = 90  (for lower 265 

bound predictability curves calculated by arithmetic mean and for upper bound predictability curves calculated by geometric 

mean to 1999 and after by arithmetic mean). The most similar predictability curves of the L05 system and the ECMWF 

forecasting system with EFSE
 calculated by Eq. (7) are found for the L05 system with N = 90 by the arithmetic mean for upper 

and lower bound predictability curves. It means that if the comparison is valid and model error is constant for the L05 system 

(same number of variables over years in the L05 system means constant model error over years), it must be constant also for 270 

the ECMWF forecasting system, but the calculation of parameters EFS

L  shows a decreasing trend with increasing time (Fig. 

8b).  This can’t help yet.  But parameters EFS

U  have non zero values (Fig. 8a) that are close to EFS

L  for some years and that 

is inconsistent with the theoretical expectation that upper bound predictability curves should be without model error and 

therefore   should be 0 m/day. This inconsistency can be solved by the new definition of the model error. From Fig. 6 it can 

be seen closer value of 
EFS to EFS for 

EFS approximated from error growth models Km
 , Tm

 and Gm than for 
EFS275 

approximated from error growth models Km , Tm  and Lm . Gm  has parameter p  that defines skewness of the originally 

parabolic shape of the difference of predictability curves. 1p =  pertains to symmetrical parabolic shape ( Gm becomes Km ) 

and 0p =  means the greatest skewness to the left ( Gm becomes Lm ). Parameters   also skew the originally parabolic shape 

(Figs. 3 and 4). The model error can be seen as a difference between skewness of upper and lower bound predictability curves 

and the new definition of model error would be: 280 

 .L U L U  − = −  (16) 

Results (Fig. 9a) show good agreement for EFS

L U −
 (Eq. (16)) calculated from Km

 and Tm
, decreasing trend of EFS

L U −
 with 

increasing time for predictability curves with EFSE
 calculated by Eq. (15) and almost constant values of EFS

L U −
 with increasing 

years (slight decrease can be due to the error of approximations) for predictability curves with EFSE
 calculated by Eq. (7). 
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There is also good agreement with trends of 
L Up p−  (Fig. 9b). Because constant values of 

L U −
 for predictability curves 285 

with EFSE
 calculated by Eq. (7) are not theoretically possible, predictability curves with EFSE

 calculated by Eq. (15) are 

favored. The reason for the decreasing trend of 05L

L U −
, found for predictability curves of the L05 system with N = 90 that are 

the most similar with predictability curves of the ECMWF forecasting system normalized by EFSE
 calculated by Eq. (15), is 

that they are partly calculated by geometric and partly by the arithmetic mean. 

These arguments are taken as proof of the validity of   EFS , EFSE
 calculated by Eq. (15). The reason for the overestimation 290 

of EFSE
 calculated by Eq. (7) (Fig. 7) can be found in the multiscale behavior of weather. If some events are predictable on a 

timescale longer than ten days (for example long-lived anomalies in sea surface temperature or soil moisture) than they 

wouldn´t be captured by medium-range weather forecast (Simmons et al., 1995; Brisch and Kantz, 2019). It is also possible 

that the overestimation is due to the different source of data used for calculation of EFSE
 by Eqs. (7) and (15): For EFSE

 

calculated by Eq. (7) only data from ERA-Interim (Janoušek 2011) are used but for EFSE
 calculated by Eq. (15) data from 295 

operational forecast are employed.  

At the end of this section, it is important to remind the readers about the importance of the correct values of the parameters. 

Nowadays,Zhang et al. (2019) used Km
 in the ECMWF forecasting system to estimate the influence of different 

spatiotemporal scales where parameter   newly represents the intrinsic upscale error growth and propagation from small 

scales and  represents synoptic-scale error growth. The results of our analysis well support this approach by the new 300 

definition of model error (Eq. (16)) and by showing the errors of approximations for individual error growth models. 

6. Conclusion 

The values of error growth models’ (Eqs. (8) - (13)) parameters that approximate predictability curves and their differences 

(Figs. 3 and 4) in the ECMWF forecast system (Tables 3 and 4) were recalculated. It is based on similarities of normalized 

upper and lower bound predictability curves (Figs. 1 and 2) of the ECMWF forecasting system (annual arithmetic mean of 305 

geopotential heights of 500 hPa from years 1986 – 2011) and the L05 system (N = 90,  arithmetic mean for lower bound 

predictability curves; geometric mean up to 1999 and arithmetic mean after 1999 for upper bound predictability curves). It is 

also based on knowledge of the largest Lyapunov exponent (λ = 0.35 day-1) and the limit value of the predictability curve (E∞ 

= 8.2) of the L05 system. 

Lyapunov exponents of the ECMWF forecasting system were recalculated by Eq. (14). The average value over all error growth 310 

models for upper bound predictability is in the range 0.33; 0.41  day-1 (Fig. 5a) and RMSEs are mostly about 0.01 day-1. For 

lower bound predictability curves average value over all error growth models is in the range 0.32; 0.41  day-1 (Fig. 5b). 



13 

 

RMSEs are in the range 0.01; 0.02  day-1. The average value over upper and lower bound predictability curves is shown in 

Fig. 6 and RMSEs are mostly about 0.01 d-1. Values of Lyapunov exponent are generally closer to parameters  
EFS  of Km

 

, Tm
 and Gm  than to 

EFS  of Km  , Tm  and Lm  (Fig. 6). 315 

New limit values were calculated from the error growth models by Eq. (15). For upper bound predictability curves, the average 

value over all error growth models is in the range 96; 133  m (Fig. 7a) and RMSEs are mostly about 1 m. For lower bound 

predictability curves average value over all error growth models is in the range 114; 134  m (Fig. 7b) and RMSEs are mostly 

3 m. 

The argument that favors limit values calculated by Eq. (15) (Fig. 7, black full curves) instead of limit values calculated by 320 

Eq. (7) (Fig. 7, black dashed curves) is based on the new definition of model error (Eq. (16)) which shows a decreasing trend 

with increasing years for predictability curves with limit values calculated by Eq. (15), and almost constant trend with 

increasing time (slight decrease can be due to the error of approximations) for predictability curves with limit values calculated 

by Eq. (7), which is theoretically impossible (Fig. 9a). This new model error calculated as a difference of model error 

parameters between the upper (Fig. 8a) and lower (Fig. 8b) bound predictability curves well support model error parameters 325 

calculated for upper bound predictability curves that are used to represents the intrinsic upscale error growth and propagation 

from small scales (Zhang et al., 2019). 
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 Types of 

mean 

Types of predictability curve 

 
Upper bound (U) Lower bound (L) 

ECMWF 

forecasting 

system 

(EFS) 

Arithmetic 

(A) 
( ) ( )

EFS

U A
E t  ( ),

EFS

U A
E


 ( )lim,

EFS

U A
E  ( ) ( )

EFS

L A
E t  ( ),

EFS

L A
E


 ( )lim,

EFS

L A
E  

( )
EFS

U A
  ( )

EFS

U A
  ( )

EFS

U A
p  ( )

EFS

L A
  ( )

EFS

L A
  ( )

EFS

L A
p  

Geometric 

(G) 
( ) ( )

EFS

U G
E t  ( ),

EFS

U G
E


 ( )lim,

EFS

U G
E  ( ) ( )

EFS

L G
E t  ( ),

EFS

L G
E


 ( )lim,

EFS

L G
E  

( )
EFS

U G
  ( )

EFS

U G
  ( )

EFS

U G
p  ( )

EFS

L G
  ( )

EFS

L G
  ( )

EFS

L G
p  

L05 system 

(L05) 

Arithmetic 

(A) 
( ) ( )
05L

U A
E t  ( )

05

,

L

U A
E


 ( )
05

lim,

L

U A
E  ( ) ( )

05L

U A
E t  ( ),

EFS

L A
E


 ( )lim,

EFS

L A
E  

( )
05L

U A
  ( )

05L

U A
  ( )

EFS

U A
p  ( )

EFS

U A
  ( )

EFS

L A
  ( )

EFS

L A
p  

Geometric 

(G) 
( ) ( )
05L

U G
E t  ( )

05

,

L

U G
E


 ( )lim,

EFS

U G
E  ( ) ( )

EFS

U G
E t  ( ),

EFS

L G
E


 ( )lim,

EFS

L G
E  

( )
05L

U G
  ( )

05L

U G
  ( )

EFS

U G
p  ( )

EFS

U G
  ( )

EFS

L G
  ( )

EFS

L G
p  

 390 

Table 1: Description of symbols that indicate types of predictability curve, types of mean and systems for prediction error E, 

theoretically calculated limit error E  , and parameters of error growth models  ,  , p and limE . 
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N 05L  
05

,

L

UE  
05

,

L

LE  

30 0.70 8.5 8.3 
60 0.29 8.0 8.1 

90 0.35 8.2 8.2 
120 0.32 8.2 8.2 

150 0.34 8.2 8.2 

360 0.34   

 

Table 2: Values of the global largest Lyapunov exponents 05L  and limit values of predictability curves 05

,

L

UE
 a 05

,

L

LE
 for displayed 395 

number of variables N of the L05 system. 
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RMS 
D

PPKH  D

PMKH  KP

PPKH  KP

PMKH  OH  LH  

value (day-1) (day-1) (day-1) (day-1) (day-1) (day-1) 

( )
05L

U A
  0.45 0.36 0.46 0.34 0.31 0.24 

( )
05L

L A
  0.46 0.40 0.48 0.41 0.33   0.23 

( )
05L

U G
  0.41 0.39 0.41 0.39 0.39 0.19 

( )
05L

L G


 0.42 0.40 0.43 0.41 0.35 0.19 

( )
EFS

U A


 0.45 0.41 0.46 0.39 0.36 0.21 

( )
EFS

L A
  0.48 0.42 0.50 0.40 0.35 0.27 

 (-)
 

(-)
 

(-)
 

(-)
 

(-)
 

(-)
 

( )
05

lim,

L

U A
E

 7.5 7.8 7.3 7.8 8.2 8.9 

( )
05

lim,

L

L A
E

 7.5 7.8 7.3 7.6 8.3 9.3 

( )
05

lim,

L

U G
E

 7.7 7.8 7.7 7.8 7.8 11.0 

( )
05

lim,

L

L G
E

 7.8 8.0 7.6 7.8 8.3 10.6 

 (m)
 

(m)
 

(m)
 

(m)
 

(m)
 

(m)
 

( )lim,

EFS

U A
E

 108 110 106 111 115 138 

( )lim,

EFS

L A
E

 114 117 112 117 123 134 

 

Table 3: RMS values calculated over all used initial errors for the L05 system ( 90N = ) and over all years for the ECMWF 

forecasting system of parameters  , limE  (for description see Table 1).  
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RMS 
D

PMKH  KP

PMKH  RMS OH  RMS 
D

PMKH  KP

PMKH  RMS OH  

value (day-1) (day-1) value (-) value (day-1) (day-1) value (-) 

( )
05L

U A
  0.21 0.27 ( )

05L

U A
p  0.3 ( )

05L

U G
     0.03 0.04 ( )

05L

U G
p    0.9 

( )
05L

L A
  0.10 0.12 ( )

05L

L A
p  0.4 ( )

05L

L G
  0.04 0.03 ( )

05L

L G
p  0.7 

 (m/day) (m/day)  (-)  (m/day) (m/day)  (-) 

( )
EFS

U A


 
0.97 1.82 ( )

EFS

U A
p

 
0.6 ( )

EFS

L A


 
2.14 2.83 ( )

EFS

L A
p

 
0.40 

 400 

Table 4: RMS values calculated over all used initial errors for the L05 system ( 90N = ) and over all years for the ECMWF 

forecasting system of parameters  and p (for description see Table 1).  
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Figure 1. Comparison of upper bound predictability curves ,norm UE  of the ECMWF forecasting system normalized by 
,

EFS

UE
 (Eq. (15)

)  (EFS; annual arithmetic means, representative samples from 1986–2011) and the L05 system normalized by 05

,

L

UE
 (Table 2) (L05; 405 

geometric means (1986–1999), arithmetic means (2000–2011)). 
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Figure 2. Comparison of lower bound predictability curves ,norm LE  of the ECMWF forecasting system normalized by 
,

EFS

LE
(Eq. (15)

), (EFS; annual arithmetic means, representative samples from1986–2011) and the L05 system normalized by 05

,

L

LE
 (Table 2) (L05; 

arithmetic mean). 410 
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Figure 3. Approximations of differences of upper bound predictability curves (representative samples). (a) – (b): the most similar 

predictability curves in the year 1995 of the ECMWF forecasting system. (c) – (d): the most similar predictability curves in the year 

2005 of the ECMWF forecasting system. Parameters from Tm used in Km  (blue) and parameters from  Tm  used in Km  (blue, 

dashed).  415 
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Figure 4. Approximations of differences of lower bound predictability curves (representative samples). (a) – (b): the most similar 

predictability curves in the year 1995 of the ECMWF forecasting system. (c) – (d): the most similar predictability curves in the year 

2005 of the ECMWF forecasting system. Tm displays parameters from Tm used in Km  and Tm  displays parameters from Tm  

used in Km .  420 
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Figure 5. Lyapunov exponents EFS  of the ECMWF forecasting system calculated by Eq. (14) and parameters EFS  of error growth 

models for (a) upper and (b) lower bound predictability curves. 
EFS is average value over all error growth models.   
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Figure 6. Average values over upper and lower bound predictability curves of Lyapunov exponents 
EFS (black, solid), average 425 

values 
EFS  (black, dashed) for (a) upper and (b) lower bound predictability curves of the ECMWF forecasting system calculated 

by Eq. (14) and parameters EFS  of error growth model for (a) upper and (b) lower bound predictability curves of the ECMWF 

forecasting system.  
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Figure 7. Limit values 
EFSE  of the ECMWF forecasting system calculated by Eq. (15) and parameters lim

EFSE  of error growth models 430 

for (a) upper and (b) lower bound predictability curves. 
EFSE (Eq. (15))  is average value over all error growth models and  and 

EFSE

(Eq. (7)) is limit values calculated by Eq. (7).    
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Figure 8. Parameters 
EFS (a) for upper bound predictability curves 

EFS

U  and (b) for lower bound predictability curves 
EFS

L . Black 435 

curves represent 
EFS  approximated from predictability curves with 

EFSE  calculated by Eq. (7), red curves pertain to 
EFS  

approximated from predictability curves with 
EFSE  calculated by Eq. (15), full curves correspond to 

EFS calculated from Tm  and 

dashed curves to 
EFS calculated from Km . 
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Figure 9. Absolute values of differences of parameters (a) 
EFS EFS

L U −  and (b) 
EFS EFS

L Up p− between lower and upper bound 440 

predictability curves. For the notation see Fig. 8. 

 


