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Abstract. Automatic lidars and ceilometers provide valuable information on cloud and aerosols, but have not been used sys-

tematically in the evaluation of GCMs and NWP models. Obstacles associated with the diversity of instruments, a lack of

standardisation of data products and open processing tools mean that the value of the large ALC networks worldwide is not be-

ing realised. We discuss a tool, called the Automatic Lidar and Ceilometer Framework (ALCF), that overcomes these problems

and also includes a ground-based lidar simulator, which calculates the radiative transfer of laser radiation, and allows one-to-5

one comparison with models. Our ground-based lidar simulator is based on the Cloud Feedback Model Intercomparison Project

(CFMIP) Observation Simulator Package (COSP) which has been used extensively for spaceborne lidar intercomparisons. The

ALCF implements all steps needed to transform and calibrate raw ALC data and create simulated backscatter profiles for one-

to-one comparison and complete statistical analysis of cloud. The framework supports multiple common commercial ALCs

(Vaisala CL31, CL51, Lufft CHM 15k and Sigma Space MiniMPL), reanalyses (JRA-55, ERA5 and MERRA-2) and models10

(AMPS and the Unified Model). To demonstrate its capabilities, we present case studies evaluating cloud in the supported

reanalyses and models using CL31, CL51, CHM 15k and MiniMPL observations at three sites in New Zealand. We show that

the reanalyses and models generally underestimate cloud fraction and overestimate cloud albedo, the common "too few too

bright" problem. If sufficiently high temporal resolution model output is available (better than 6 hourly), a direct comparison

of individual clouds is also possible. We demonstrate that the ALCF can be used as a generic evaluation tool to examine cloud15

occurrence and cloud properties in reanalyses, NWP models and GCMs, potentially utilising the large amounts of ALC data

already available. This tool is likely to be particularly useful for the analysis and improvement of low-level cloud simulations

which are not well monitored from space. This has previously been identified as a critical deficiency in contemporary models,

limiting the accuracy of weather forecasts and future climate projections.
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1 Introduction

Automatic lidars and ceilometers (ALC) are active ground-based instruments which emit laser pulses in the ultraviolet, visible

or infrared (IR) part of the electromagnetic spectrum and measure radiation backscattered from atmospheric constituents such

as cloud and fog liquid droplets and ice crystals, haze, aerosol (particulate matter, ash) and atmospheric gases (Emeis, 2010).

Vertical profiles of attenuated backscattered radiation can be produced by measuring received power as a function of time5

elapsed between emitting the pulse and receiving the backscattered radiation. Quantities such as cloud base height (CBH) and

a cloud mask (Pal et al., 1992; Wang and Sassen, 2001; Martucci et al., 2010; Costa-Surós et al., 2013; Van Tricht et al.,

2014; Liu et al., 2015a, b; Lewis et al., 2016; Cromwell and Flynn, 2018; Silber et al., 2018), aerosol optical depth (Marenco

et al., 1997; Welton et al., 2000, 2002; Wiegner and Geiß, 2012; Wiegner et al., 2014; Jin et al., 2015; Dionisi et al., 2018) and

boundary layer height (Eresmaa et al., 2006; Münkel et al., 2007; Emeis et al., 2009; Tsaknakis et al., 2011; Milroy et al., 2012;10

Knepp et al., 2017) can be derived from the backscatter profile. Lidars equipped with polarisation or multiple wavelengths can

also provide depolarisation ratio or colour ratio, respectively, which can be used to infer cloud phase or particle types. Doppler

lidars can measure wind speed in the direction of the lidar orientation. ALCs are commonly deployed at airports, where they

provide CBH, fog and aerosol observations needed for air traffic control. Large networks of up to thousands of ACLs have been

deployed worldwide: Cloudnet (Illingworth et al., 2007), E-PROFILE (Illingworth et al., 2018), EARLINET (Pappalardo et al.,15

2014), ICENET (Cazorla et al., 2017), MPLNET (Welton et al., 2006) and ARM (Stokes and Schwartz, 1994; Campbell et al.,

2002). The purpose of these networks is to observe cloud, fog, aerosol, air quality, visibility and volcanic ash, provide input

to numerical weather prediction (NWP) model evaluation and assimilation (Illingworth et al., 2015b, 2018) and for climate

studies. These networks are usually composed of multiple types of ACLs, with Vaisala CL31, CL51, Lufft (formerly Jenoptik)

CHM 15k and Sigma Space MiniMPL the most common. Complex lidar data processing has been set up on some of these20

networks. Notably, at the SIRTA site in France, lidar ratio (LR) comparable with a lidar simulator (Chiriaco et al., 2018) is

calculated as part of their "ReOBS" processing method. Intercomparison and calibration campaigns such as CeiLinEx2015

(Mattis et al., 2016) and INTERACT-I(-II) (Rosoldi et al., 2018; Madonna et al., 2018) have been performed. Lidar data

processing involves a number of tasks such as resampling, calibration, noise removal and cloud detection. Some of these are

implemented in the instrument firmware of ALCs. This, however, means that lidar backscatter and detected cloud and cloud25

base are not comparable between different instruments. In most cases the algorithms are not publicly documented, making it

impossible to compare the data with values from a model or a lidar simulator without a systematic bias.

Atmospheric model evaluation is an ongoing task, and a critical part of the model improvement process (Eyring et al., 2019;

Hourdin et al., 2017; Schmidt et al., 2017). Traditionally, various types of observational and model datasets have been utilised –

weather and climate station data, upper air soundings, ground-based and satellite remote sensing datasets, and high-resolution30

model simulations, amongst others. Clouds are one of the most problematic phenomena in atmospheric models due to their

transient nature, high spatial and temporal variability, and sensitivity to a complex combination of conditions such as relative

humidity, aerosols (presence of cloud condensation nuclei and ice nuclei), thermodynamic and dynamic conditions. At the

same time, clouds have a very substantial effect on the atmospheric shortwave and longwave radiation balance, and any cloud
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misrepresentation has a strong effect on other components of the model, limiting the ability to accurately represent past and

present climate and predict future climate (Zadra et al., 2018). An improved understanding of clouds and cloud feedbacks is

one of the focuses of the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016), and comparison of

model cloud with observations is one of the key points of the Cloud Feedback Model Intercomparison Project (CFMIP) (Webb

et al., 2017). Satellite observations make up the majority of the data used to evaluate model clouds. These include passive5

visible and IR low earth orbit and geostationary radiometers measuring, among others, features such as cloud cover, cloud top

height (CTH), cloud top temperature; passive microwave instruments measuring total column water; active radars and lidars

measuring cloud vertical profiles. Ground-based remote sensing instruments include radars, lidars, ceilometers, radiometers

and sky cameras. As pointed out by Williams and Bodas-Salcedo (2017), using a wide range of different observational datasets

including satellite and ground-based for general circulation model (GCM) evaluation is important due to limitations of each10

dataset.

Model cloud is commonly represented by the mixing ratio of liquid and ice and cloud fraction (CF) on every model grid

cell and vertical level. In addition some models provide the cloud droplet effective radius used in radiative transfer calcula-

tions. Remote sensing observations do not match the representation of the atmospheric model fields directly because of their

different resolutions, limited field of view (FOV) and attenuation by atmospheric constituents before reaching the instrument’s15

receiver. Instrument simulators bridge this gap by converting the model fields to quantities which emulate those measured by

the instrument, which can then be compared directly with observations. One such collection of instrument simulators is the

CFMIP Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011; Swales et al., 2018), which has been used for

more than a decade for evaluation of models using satellite, and more recently ground-based, observations. The simulators

in COSP include active instruments such as spaceborne and ground-based radars: Cloud Profiling Radar (CPR) on CloudSat20

(Stephens et al., 2002), Ka-band ARM Zenith Radar (KAZR); lidars: Cloud-Aerosol Lidar Orthogonal Polarization (CALIOP)

on CALIPSO (Winker et al., 2009), Cloud-Aerosol Transport System (CATS) on ISS (McGill et al., 2015), the Atmospheric

Lidar (ATLID) on EarthCARE (Illingworth et al., 2015a); and spaceborne passive instruments: ISCCP (Rossow and Schiffer,

1991), MODIS (Parkinson, 2003) and MISR (Diner et al., 1998). The more recent addition of ground-based radar (Zhang et al.,

2018) and lidar (Chiriaco et al., 2018; Bastin et al., 2018) opens up new possibilities to use the large amount of remote sensing25

data obtained from ground-based active remote sensing instruments. In practice, ground-based observational remote sensing

data are not straightforward to use without a substantial amount of additional processing. Some previous studies have also

compared models and ground-based radar and lidar observations without the use of an instrument simulator (Bouniol et al.,

2010; Hansen et al., 2018), though for the reasons identified above this is not advisable.

In this study we introduce a software package called the Automatic Lidar and Ceilometer Framework (ALCF) for evaluating30

model cloud using ALC observations. It extends and integrates the COSP lidar simulator (Chiriaco et al., 2006; Chepfer et al.,

2007, 2008) with pre- and post-processing steps, and allows the simulator to be run offline on model output, instead of having

to be integrated inside the model. This makes it possible to compare ALC data at any location without having to run the

model with a specific configuration. Multiple ALCs, reanalyses and model output formats are supported. The original COSP

lidar simulator was extended with Rayleigh and Mie scattering at multiple lidar wavelengths. Observational ALC data from35
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a number of common instruments can be processed by re-sampling to a common resolution, removing noise, detecting cloud

and calculating statistics. The same steps can be performed on the simulated lidar data from the model (the output of running

COSP on the model data), allowing for one-to-one comparison of model and observations. A particular focus of our work was

on applying the same processing steps on the observed and simulated backscatter in order to avoid biases. The ALCF is made

available under an open source license (MIT) at https://alcf-lidar.github.io, and as a permanent archive of code and technical5

documentation on Zenodo at https://doi.org/10.5281/zenodo.3779518.

A relatively small amount of other open source code is available for ALC data processing. A lidar simulator has been devel-

oped as part of the Goddard Satellite Data Simulator Unit (G-SDSU) (G-S, 2019), a package based on the instrument simulator

package SDSU (Masunaga et al., 2010). The Community Intercomparison Suite (CIS) (Watson-Parris et al., 2016) allows for

subsetting, aggregation, co-location and plotting of mostly satellite data with a focus on model–observations intercomparison.10

The STRAT lidar data processing tools are a collection of tools for conversion of raw ALC data, visualisation and feature

classification (Morille et al., 2007).

Here, we provide an overview (Sect. 2) and describe the supported ALCs, reanalyses and models (Sect. 3). We present a set

of case studies at three sites in New Zealand (NZ) (Sect. 6) to demonstrate the value of this new tool. Furthermore, we describe

the lidar simulator (Sect. 4), observed and simulated lidar data processing steps (Sect. 5) and the results of the case studies15

(Sect. 7).

2 Overview of operation of the Automatic Lidar and Ceilometer Framework (ALCF 1.0)

The ALCF performs the necessary steps to simulate ALC backscatter based on 4-dimensional atmospheric fields from reanal-

yses, NWP models and GCMs, and to transform the observed raw ALC backscatter profiles to profiles comparable with the

simulated profiles. It does so by extracting 2-dimensional (time × height) profiles from the model data, performing radiative20

transfer calculations based on a modified COSP lidar simulator (Sect. 4), absolute calibration and resampling of observed

backscatter to common resolution and performing comparable cloud detection on the simulated and observed backscatter. The

framework supports multiple common ALCs (Sect. 3.1), reanalyses and models (Sect. 3.2). The schematic in Fig. 1 illustrates

this process as well as the ALCF commands which perform the individual steps. The following commands are implemented:

model, simulate, lidar, stats and plot. The commands are normally executed in a sequence, which is also implemented by a25

meta-command auto, which is equivalent to executing a sequence of commands. The commands are described in detail in the

technical documentation available online at https://alcf-lidar.github.io, on Zenodo at https://doi.org/10.5281/zenodo.3779518

and in the Supplementary information. The physical basis is described here.

The model command extracts 2-dimensional profiles of cloud liquid and ice content (and other thermodynamic fields) from

the supported NWP model, GCM and reanalysis data (model data in Fig. 1) at a geographical point, along a ship track or a30

flight path. The resulting profiles are recorded as NetCDF files. Sect. 3.2 describes the supported reanalyses and models. The

model data can be either in one of the supported model output formats, or a new module for reading arbitrary model output

can be written, providing that the required atmospheric fields are present in the model output. The required model fields are:
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per-level specific cloud liquid water content, specific cloud ice water content, cloud fraction, geopotential height, temperature,

surface-level pressure and orography. No physical calculations are performed by this command. The atmospheric profiles are

extracted by a nearest-neighbour selection.

The simulate command runs the lidar simulator described in Sect. 4 on the extracted model data (the output of the model

command) and produces simulated backscatter profiles. This command runs the COSP-derived lidar simulator, which performs5

radiative transfer calculations of the laser radiation through the atmosphere. The resulting simulated backscatter profiles are

the output of this command.

The lidar command applies various processing algorithms on either the simulated backscatter data (the output of the simu-

late command) or the observed ALC data (lidar data in Fig. 1) (Sect. 5). The data are resampled to increase the signal-to-noise

ratio (SNR), noise is subtracted, LR is calculated, a cloud mask is calculated by applying a cloud detection algorithm and CBH10

is determined from the cloud mask. Absolute calibration (Sect. 5.2) can also be applied in this step by multiplying the observed

backscatter by a calibration coefficient. This is important in order to obtain unbiased backscatter profiles comparable with the

simulated backscatter profiles. Sect. 3.1 describes the supported instruments. The lidar data can be in one of the supported

instrument formats. If the native instrument format is not NetCDF, it has to be converted from the native format with the auxil-

iary command convert or one of the conversion programs: cl2nc (Vaisala CL31, CL51), mpl2nc or SigmaMPL (Sigma Space15

MiniMPL).

The stats step calculates summary statistics from the output of the lidar command. These include CF, cloud occurrence by

height, backscatter histograms and the averages of LR and backscatter.

The plot command plots the backscatter profiles produced by the lidar command (Fig. 5, 6, 7), and the statistics produced

by the stats command: cloud occurrence (Fig. 4), backscatter histograms (Fig. 9) and backscatter noise standard deviation20

histograms (Fig. 11).

3 Supported input data: instruments, reanalyses and models

3.1 Instruments

The primary focus of the framework is to support common commercial ALCs. Ceilometers are considered the most basic type

of lidar (Emeis, 2010; Kotthaus et al., 2016) intended as commercial products designed for unattended operation. They are25

used routinely to measure CBH, but most instruments also provide the full vertical profiles of backscatter. Therefore, they are

suitable for model evaluation by comparing not only CBH, but also cloud occurrence as a function of height. Their compact

size and low cost make it possible to deploy a large number of these instruments in different locations, or use them in unusual

settings such as mounted on ships (Klekociuk et al., 2019; Kuma et al., 2019). Common off-the-shelf ceilometers are the Lufft

CHM 15k, Vaisala CL31 and CL51. Some lidars offer higher power and therefore higher SNR, and capabilities not present30

in ceilometers such as dual polarisation, multiple wavelengths, Doppler shift measurement and Raman scattering. Below we

describe ALCs supported by the framework and used in our case studies: Lufft CHM 15k, Vaisala CL31 and CL51 and Sigma

Space MiniMPL. Table 1 lists selected parameters of the supported ALCs.
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Lufft CHM 15k (previously Jenoptik CHM 15k) is a ceilometer operating at a wavelength of 1064 nm in the near IR spectrum.

The maximum range of the instrument is 15.4 km, vertical sampling resolution 5 m and sampling rate up to 2 s. The wavelength

in the near IR spectrum ensures low molecular backscatter. The instrument produces NetCDF files containing uncalibrated

attenuated backscatter profiles and various derived variables.

Vaisala CL31 and CL51 are ceilometers operating at a wavelength of 910 nm in the near IR spectrum. The maximum range5

of CL31 and CL51 is 7.7 km and 15.4 km and the sampling rate is 2 and 6 s, respectively. The vertical resolution is 10 m.

The wavelength is characterised by relatively low molecular backscatter (but higher than 1064 nm) and is affected by water

vapour absorption (Wiegner and Gasteiger, 2015; Wiegner et al., 2019), which can cause additional absorption of about 20%

in the mid-latitudes and 50% in the tropics (see also Sect. 5.4). The instruments produce data files containing uncalibrated

attenuated backscatter which can be converted to NetCDF (see cl2nc in the Code and data availability section). The firmware10

configuration option "noise_h2 off" results in backscatter range correction to be selectively applied under a certain critical

range and above this range only if cloud is present (Kotthaus et al., 2016, Sect. 3.2). This was the case with our case study

dataset (Sect. 6). We apply range correction on the uncorrected range gates during lidar data processing. The critical range in

CL51 is not documented, but was determined as 6000 m based on an observed discontinuity.

Sigma Space (part of Hexagon) Mini Micro Pulse Lidar (MiniMPL) (Spinhirne, 1993; Campbell et al., 2002; Flynn et al.,15

2007) is a dual-polarisation micro pulse lidar (meaning that it uses a high pulse repetition rate (PRF) and low pulse power)

operating at a wavelength of 532 nm (green) in the visible spectrum. The maximum range of the instrument is 30 km. The

vertical resolution is up to 5 m and sampling rate up to 1 s. The shorter wavelength is affected by stronger molecular backscatter

than 910 nm and 1064 nm. The instrument can be housed in a protective enclosure, which makes it suitable for deployment

in a relatively harsh environment. A scanning head can be mounted on the enclosure which provides configurable scanning by20

elevation angle and azimuth. The instrument produces data files containing raw backscatter which can be converted to NetCDF

containing normalised relative backscatter (NRB) with a vendor-provided tool SigmaMPL (see also mpl2nc in the Code and

data availability section).

3.2 Reanalyses and models

Below we briefly describe reanalyses and models1 used in the case studies presented here (Sect. 6). We used publicly available25

output from three reanalyses and one NWP model. In addition, we performed nudged GCM simulations with high-temporal

resolution output with the Unified Model (UM). Table 2 lists some of the main properties of the reanalyses and models.

The Antarctic Mesoscale Prediction System (AMPS) (Powers et al., 2003) is a limited-area NWP model based on the polar

fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (Polar MM5),

now known as the Polar Weather Research and Forecasting (WRF) model (Hines and Bromwich, 2008). The model serves30

operational and scientific needs in Antarctica, but its largest grid also covers the South Island of NZ. AMPS forecasts are

publicly available on the Earth System Grid (Williams et al., 2009). The forecasts are produced on several domains. The largest

1We use the term "reanalysis" when referring to ERA5, JRA-55 and MERRA-2 even though the reanalyses are based on atmospheric models. We use the

term "model" when referring to AMPS and the UM, which are atmospheric models.
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domain D01 used in the presented analysis covers NZ and has horizontal grid spacing of approximately 21 km over NZ. The

model uses 60 vertical levels. The model output is available in 3-hourly intervals and initialised at 00:00 and 12:00 UTC. The

initial and boundary conditions are based on the Global Forecasting System (GFS) global NWP model. AMPS assimilates local

Antarctic observations from human-operated stations, automatic weather stations (AWS), upper-air stations and satellites.

ERA5 (ECMWF, 2019) is a reanalysis produced by the European Centre For Medium-Range Weather Forecasts (ECMWF)5

currently available for the time period 1979 to present, with a plan to extend the time period to 1950. The reanalysis is based

on the global NWP model Integrated Forecast System (IFS) version CY41R2. It uses a 4D-Var assimilation of station, satellite,

radiosonde, radar, aircraft, ship-based and buoy data. The model has 137 vertical levels. Atmospheric fields are interpolated

from horizontal resolution equivalent of 31 km and 137 model levels on regular longitude-latitude grid of 0.25◦ and 37 pressure

levels, and made available to the end-users. In this analysis we use the hourly data on pressure and single levels.10

Japanese 55-year reanalysis (JRA-55) (Ebita et al., 2011; Kobayashi et al., 2015; Harada et al., 2016) is a global reanalysis

produced by the Japan Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry (CRIEPI)

based on the JMA Global Spectral Model (GSM). The reanalysis is available from 1958 onward. The reanalysis is based on the

JMA operational assimilation system. JRA-55 uses a 4D-Var assimilation of surface, upper-air, satellite, ship-based and aircraft

observations. The model uses 60 vertical levels and a horizontal grid with resolution approximately 60 km. In this analysis we15

use the 1.25◦ isobaric analysis and forecast fields interpolated to 37 pressure levels.

Modern-Era Retrospective analysis for Research and Applications (MERRA-2) (Gelaro et al., 2017) is a reanalysis produced

by the NASA Global Modeling and Assimilation Office (GMAO). The reanalysis is based on the Goddard Earth Observing

System (GEOS) atmospheric model. The model has approximately 0.5◦×0.65◦ horizontal resolution and 72 vertical levels. It

performs 3D-Var assimilation of station, upper-air, satellite, ship-based and aircraft data in 6-hourly cycles. In this analysis,20

we use the MERRA-2 3-hourly instantaneous model-level assimilated meteorological fields (M2I3NVASM) version 5.12.4

product.

The UK Met Office Unified Model (UM) (Walters et al., 2019) is an atmospheric model for weather forecasting and climate

projection developed by the UK Met Office and the Unified Model Partnership. The UM is the atmospheric component, called

Global Atmosphere (GA), of the HadGEM3–GC3.1 GCM and the UKESM1 earth system model (ESM). In this analysis we25

performed custom nudged runs of the UM (Telford et al., 2008) in the GA7.1 configuration with 20 min. time step and output

temporal resolution on a New Zealand eScience Infrastructure (NeSI)/National Institute of Water & Atmospheric Research

(NIWA) supercomputer (Williams et al., 2016). The model was nudged to the ERA-Interim (Dee et al., 2011) atmospheric

fields of horizontal wind speed and potential temperature and the HadISST sea surface temperature (SST) and sea ice dataset

(Rayner et al., 2003). The model uses 85 vertical levels and a horizontal grid resolution of 1.875◦×1.25◦.30

4 Lidar simulator

The COSP lidar simulator Active Remote Sensing Simulator (ACTSIM) was introduced by Chiriaco et al. (2006) for the

purpose of deriving simulated CALIOP measurements (Chepfer et al., 2007, 2008). The simulation is implemented by applying
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the lidar equation on model levels. Scattering by cloud particles and air molecules is calculated using the Mie and Rayleigh

theory, respectively. CALIOP operates at a wavelength of 532 nm, and calculations in the original COSP simulator use this

wavelength. We implemented a small set of changes to the lidar simulator to support a number of ALCs with different operating

wavelengths.

The lidar equation (Emeis, 2010) is based on the radiative transfer equation (Goody and Yung, 1995; Liou, 2002; Petty,5

2006; Zdunkowski et al., 2007), which relates transmission of radiation to scattering, emission and absorption in media such

as the atmosphere. The lidar equation assumes laser radiation passes through a horizontally homogeneous atmosphere where it

is absorbed and scattered. A fraction of laser radiation is scattered back to the instrument and reaches the receiver. Scattering

and absorption in the atmosphere is determined by its constituents – gases, liquid droplets, ice crystals and aerosol particles.

Atmospheric model output typically contains 4-dimensional fields of mass mixing ratios of liquid and ice and CF. The lidar10

equation can be applied on these output fields to simulate the backscattered radiation received by the instrument. Table 4 lists

physical quantities used in the following sections. Here, we use radiative transfer notation similar to Petty (2006) and the

notation of the original lidar simulator (Chiriaco et al., 2006).

4.1 Rayleigh and Mie scattering

The Rayleigh volume backscattering coefficient βmol (m−1sr−1) in ACTSIM is parametrised by the following equation (Eq.15

(8) in Chiriaco et al. (2006)):

βmol =
p

kBT
(5.45× 10−32)

(
λ

550nm

)−4.09

=
p

kBT
Cmol, (1)

where for lidar wavelength λ = 532 nm, Cmol = 6.2446× 10−32 ; kB is the Boltzmann constant kB ≈ 1.38× 10−23 JK−1, p

is the atmospheric pressure and T is the atmospheric temperature. We multiply this equation by exp(4.09(log(532)− log(λ)))

(where the value of λ is in nm) to get molecular backscatter for wavelengths other than 532 nm, which allows us to support20

multiple commercially available instruments. The strength of molecular backscattering is usually lower than backscattering

from clouds for the relevant wavelengths.

The lidar signal at visible or near IR wavelengths is scattered by atmospheric constituents of similar size in the Mie scattering

regime (Mie, 1908). In the most simple approximation, one can assume spherical dielectric particles. The scattering from these

particles depends on the relative size of the wavelength and the (spherical) particle radius r, expressed by the dimensionless25

size parameter x:

x=
2πr
λ
. (2)

While the wavelength is approximately constant during the operation of the lidar2, the particle size comes from a distribution

of sizes, typically approximated in NWP models and GCMs by a Gamma or log-normal distribution with a given mean and
2The actual lidar wavelength is not constant and is characterised by a central wavelength and width. The central wavelength may fluctuate with temperature

(Wiegner and Gasteiger, 2015).

8

https://doi.org/10.5194/gmd-2020-25
Preprint. Discussion started: 12 May 2020
c© Author(s) 2020. CC BY 4.0 License.



standard deviation. Some models provide the mean as effective radius reff. If the effective radius is not provided by the model,

the lidar simulator assumes a value reff = 30 µm by default, which is the value assumed by the original ACTSIM simulator.

In order to support multiple laser wavelengths, it is necessary to calculate backscattering efficiency due to scattering by a

distribution of particle sizes. We use the computer code MIEV developed by Warren J Wiscombe (Wiscombe, 1979, 1980)

to calculate backscattering efficiency for a range of the size parameter x and integrate for a distribution of particle sizes.5

The resulting pre-calculated LR (extinction-to-backscatter ratio) as a function of the effective radius is included in the lidar

simulator for fast lookup during the simulation.

Cloud droplet and ice crystal size distribution parameters are an important assumption in lidar simulation due to the depen-

dence of Mie scattering on the ratio of wavelength and particle size (the size parameter x). NWP models and GCMs traditionally

use the effective radius reff and effective standard deviation σeff (or an equivalent parameter such as effective variance νeff) to10

parametrise this distribution. Knowledge of the real distribution is likely highly uncertain due to a large variety of clouds

occurring globally and the limited ability to predict microphysical cloud properties in models. In this section we introduce

theoretical assumptions used in the lidar simulator based on established definitions of the effective radius and effective stan-

dard deviation and two common distributions. Edwards and Slingo (1996) discuss the effective radius in the context of model

radiation schemes, and we will primarily follow the definitions detailed in Chang and Li (2001) and Petty and Huang (2011).15

The practical result of this section (and the corresponding offline code) is pre-calculated backscatter-to-extinction ratios as a

function of the effective radius in the form of a lookup table included in the lidar simulator, and used in the online calculations.

The offline code is provided and can be re-used for calculation of the necessary lookup tables for different lidar wavelengths,

should the user of the code want to support another instrument.

The effective radius reff and effective standard deviation σeff are defined by:20

reff =

∫∞
0
r3n(r)dr∫∞

0
r2n(r)dr

, σ2
eff =

∫∞
0

(r− reff)2r2n(r)dr∫∞
0
r2n(r)dr

, (3)

where n(r) is the probability density function (PDF) of the distribution. Here, we follow Petty and Huang (2011), who

define the effective variance νeff which relates to σeff by νeff = σ2
eff/r

2
eff. Due to lack of knowledge about the real distribution

of particle radii, it has to be modelled by a theoretical distribution, such as a log-normal or Gamma distribution. The original

ACTSIM simulator assumes a log-normal distribution (Chiriaco et al., 2006) with the PDF:25

n(r)∝ 1
r

exp
(
− (logr−µ)2

2σ2

)
, (4)

where µ and σ are the mean and the standard deviation of the corresponding normal distribution, respectively. Chiriaco et al.

(2006) use the value of σ = log(1.2) = 0.18 "for ice clouds" (the value for liquid cloud does not appear to be documented).

In our parametrisation we used a combination of reff and σeff to constrain the theoretical distribution, where the effective

standard deviation σeff was assumed to be one fourth of the effective radius reff. This choice is approximately consistent with30

σ = log(1.2) = 0.18 at reff = 20 µm (see Table 5, described below). In future updates, the values could be based on in situ

studies of size distribution or taken from the atmospheric model output if available.
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From the expression for the n-th moment of the log-normal distribution E[Xn] = exp(nµ+n2 σ2

2 ) and Equation (3) we

calculate reff and σeff of the log-normal distribution:

reff =
E[r3]
E[r2]

= exp(µ+
5
2
σ2), (5)

σ2
eff =

E[(r− reff)2r2]
E[r2]

=
E[r4]− 2E[r3]reff + r2effE[r2]

E[r2]
=

exp(4µ+ 8σ2)− exp(4µ+ 7σ2)
exp(2µ+ 2σ2)

=

= exp(2µ+ 6σ2)− exp(2µ+ 5σ2). (6)5

We find µ and σ for given reff and σeff numerically by root-finding using the equations above. In practice, we find that the

root-finding converges well for reff between 5 and 50 µm, which is the range mostly likely to be applicable in practice.

The Gamma distribution follows the PDF:

n(r)∝ r(1−3νeff)/νeff exp
(
− r

reffνeff

)
(7)

(see e.g. Eq. 13 in Petty and Huang (2011) or Eq. 1 in Bréon and Doutriaux-Boucher (2005)). In this case, the distribution10

depends explicitly on reff and σeff, and as such does not require numerical root-finding.

Figure 3a shows the log-normal and Gamma distributions calculated for a number of reff and σeff values, and Table 5

summarises properties of these distributions. The actual mean and standard deviation of the distributions do no necessarily

correspond well with the effective radius and effective standard deviation.

In ACTSIM, the volume extinction coefficient αe is calculated by integrating the extinction by individual particles over the15

particle size distribution:

αe =

∞∫

0

Qeπr
2n(r)dr ≈Qeπ

∞∫

0

r2n(r)dr =Qe
3qρair

4ρreff
, (8)

assuming approximately constant extinction efficiency Qe ≈ 2 (which is approximately true for the interesting range of reff

and laser wavelengths), and using the relationship between the cloud liquid (or ice) mass mixing ratio q and
∫∞
0
r2n(r)dr:

qρair =

∞∫

0

4
3
πr3ρn(r)dr =

4
3
πρ

∞∫

0

r3n(r)dr =
4
3
πρreff

∞∫

0

r2n(r)dr, (9)20

where ρ and ρair are the densities of liquid water (or ice) and air, respectively.

Likewise, the volume backscatter coefficient from particles βp is calculated by integrating backscattering by individual

particles over the particle size distribution:

βp =

∞∫

0

Qsπr
2Pπ(π)

4π
n(r)dr. (10)
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where Qs is scattering efficiency and Pπ(π) is scattering phase function at 180◦. Since the normalisation of n(r) is not

known until the online phase of calculation, the backscatter-to-extinction ratio from particles kp = β/αe can be calculated

offline instead (the requirement for normalisation of n(r) is avoided by appearing in both the numerator and denominator):

kp = βp/αe =

∫∞
0
Qsr

2Pπ(π)/(4π)n(r)dr∫∞
0
Qer2n(r)dr

. (11)

We pre-calculate this integral numerically for a permissible interval of reff (5–50 µm) at 500 evenly spaced wavelengths,5

and store the result as a lookup table for the online phase. The integral in the numerator is numerically hard to calculate due to

strong dependency of Pπ(π) on r. Figure 3b shows LR as a function of reff, calculated for log-normal and Gamma particle size

distributions with σeff = 0.25reff and σeff = 0.5reff. This corresponds to the lookup table we use in the online phase of the lidar

simulator. As can be seen in Fig. 3, LR depends only weakly on the choice of the distribution type and the effective standard

deviation ratio.10

4.2 Cloud overlap and cloud fraction

Model cloud is defined by the liquid and ice mass mixing ratio and cloud fraction in each atmospheric layer. The lidar simulator

simulates radiation passing vertically at a random location within the grid cell. Therefore, it is necessary to generate a random

vertical cloud overlap based on the cloud fraction in each layer, as the overlap is not defined explicitly in the model output. Two

common methods of generating overlap are the random and maximum–random overlap (Geleyn and Hollingsworth, 1979). In15

the random overlap method, each layer is either cloudy or clear with a probability given by CF, independent of other layers. The

maximum–random overlap assumes that adjacent layers with non-zero CF are maximally overlapped, whereas layers separated

by zero CF layers are randomly overlapped. COSP implements cloud overlap generation in the Subgrid Cloud Overlap Profile

Sampler (SCOPS) (Klein and Jakob, 1999; Webb et al., 2001; Chepfer et al., 2008). The ALC lidar simulator uses SCOPS to

generate 10 random subcolumns for each profile, using the maximum–random overlap assumption as the default setting of a20

user-configurable option. The backscatter profile and cloud occurrence can be plotted for any subcolumn. Due to the random

nature of the overlap, the backscatter profile may differ from the observed profile even if the model is correct in its cloud

simulation. The random overlap generation should, however, result in unbiased cloud statistics.

4.3 Multiple scattering

Due to a finite FOV of the lidar receiver, a fraction of the laser radiation scattered forward will remain in FOV. Therefore, the25

effective attenuation is smaller than calculated with the assumption that all but the backscattered radiation is removed from

FOV and cannot reach the receiver. The forward scattering can be repeated multiple times before a fraction of the radiation is

backscattered, eventually reaching the receiver. To account for this multiple scattering effect, the COSP lidar simulator uses a

multiple scattering correction coefficient η, by which the volume scattering coefficient is multiplied before calculating the layer

optical thickness (Chiriaco et al., 2006; Chepfer et al., 2007, 2008). The theoretical value of η is between 0 and 1 and depends30

on the receiver FOV and optical properties of the cloud. For CALIOP at λ = 532 nm a value of 0.7 is used in the COSP lidar
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simulator. Hogan (2006) implemented fast approximate multiple scattering code. This code has recently been used by Hopkin

et al. (2019) in their ceilometer calibration method. They noted that η is usually between 0.7 and 0.85 for wavelengths between

905 and 1064 nm. The ALC simulator presented here does not use an explicit calculation of η, but retains the value of η = 0.7.

This value is also used when calculating LR from the vertically integrated backscatter (Sect. 5.2). The code of Hogan (2006)

"Multiscatter" is publicly available (http://www.met.reading.ac.uk/clouds/multiscatter/) and could be used in a later version of5

the framework to improve the accuracy of simulated attenuation and calibration.

5 Lidar data processing

Scheme in Fig. 1 outlines the processing done in the framework. The individual processing steps are described below.

5.1 Noise and subsampling

ALC signal reception is affected by a number of sources of noise such as sunlight and electronic noise (Kotthaus et al., 2016).10

Range-independent noise can be removed by assuming that the attenuated volume backscatter coefficient at the highest range

gate is dominated by noise. This is true if the highest range is not affected by clouds, aerosol, and if contributions from

molecular scattering are negligible. The supported instruments have a range of approximately 8 (CL31), 15 (CL51, CHM 15k)

and 30 km (MiniMPL). By assuming the distribution of noise at the highest level is approximately normal, the mean and

standard deviation can be calculated from a sample over a period of time such as 5 minutes, which is short enough to assume15

the noise is constant over this period, and long enough to achieve accurate estimates of the standard deviation. The mean and

standard deviation can then be scaled by the square of the range to estimate the distribution of range independent noise at each

range bin. By subtracting the noise mean from the measured backscatter we get the expected backscatter. The result of the

noise removal algorithm is the expected backscatter and its standard deviation at each range bin.

5.2 Backscatter calibration20

ALCs often report backscatter in arbitrary units (a.u.) or as NRB (MiniMPL). If they report it in units of m−1sr−1, these values

are often not calibrated to represent the true absolute backscatter. Assuming that range-dependent corrections (overlap, dead

time and afterpulse) have been applied on the backscatter in a. u., the reported backscatter is proportional to the true attenuated

backscatter (inclusive of noise backscatter). In order to have a comparable quantity to the lidar simulator and consistent input

to the subsequent processing (e.g. cloud detection), calibration is required. Several methods of calibration have been described25

previously: calibration based on LR in fully attenuating liquid stratocumulus clouds (O’Connor et al., 2004; Hopkin et al.,

2019), calibration based on molecular backscatter (Wiegner et al., 2014) and calibration based on a high spectral resolution

lidar reference (Heese et al., 2010; Jin et al., 2015). In addition, calibration can be assisted by sunphotometer or radiosonde

measurements (Wiegner et al., 2014).

A relatively large variability of the calibration coefficient has been determined for instruments of the same model (Hopkin30

et al., 2019). However, past studies can be useful for determining an approximate value of the coefficient before applying one
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of the calibration methods. For the CL51, Jin et al. (2015) reported a value of 1.2±0.1 based on a multi-wavelength lidar

reference. Hopkin et al. (2019) reported mean values 1.4–1.5 for a number of CL31 instruments (software version 202). For

CHM 15k, Hopkin et al. (2019) reported mean values between 0.3 and 0.8 for a majority of the instruments examined. The

ALCF provides per-instrument default values of the calibration coefficient (Table 6), but a unit-specific coefficient should be

determined for an analysed instrument during the lidar data processing step.5

Calibration based on LR in fully opaque liquid stratocumulus clouds has been applied successfully on large networks of

ALCs. It utilises the fact that given suitable conditions vertically integrated backscatter is proportional to LR of the cloud,

which can be theoretically derived if the cloud droplet effective radius can be assumed. The theoretically derived value is about

18.8 sr for common ALC wavelengths and a relatively large range of effective radii (O’Connor et al., 2004). Another factor

which needs to be known or assumed is the multiple scattering coefficient, which tends to be about 0.7-1.0 in common ALCs.10

Due to its relatively simple requirements, this method is possibly the easiest ALC calibration method. The ALCF implements

this calibration method by letting the user identify time periods with fully opaque liquid stratocumulus cloud, for which the

mean LR is calculated. The ratio of the observed LR and the theoretical LR is equivalent to the calibration coefficient. This

implementation, while very easy to perform, has multiple limitations, some of which are highlighted by Hopkin et al. (2019):

1. Aerosol can cause additional attenuation and scattering, which results in LR which is different from the theoretical value15

by an unknown factor. Therefore, a frequent re-calibration may be necessary.

2. The multiple scattering coefficient assumption may not be accurate for the given instrument.

3. The 910 nm wavelength of CL31 and CL51 is affected by water vapour absorption which causes additional attenuation,

which is currently not taken into account in the calculation of LR.

4. Near-range backscatter retrieval is affected by receiver saturation and incomplete overlap. Therefore, using stratocumulus20

clouds above approximately 2 km for this calibration method is recommended. This range is instrument dependent.

5. The composition of the stratocumulus cloud may be uncertain. At temperature between 0 and -30◦C these clouds may

contain both liquid and ice which results in a different LR than expected.

These limitations could be addressed in the future by (1) using sunphotometer observations as an optional input to determine

the aerosol optical depth (AOD), (2) calculating the multiple scattering coefficient more accurately (such as with the Multiscat-25

ter package of Hogan (2006)), (3) calculating the water vapour absorption explicitly based on water vapour, temperature and

pressure fields from a reanalysis or radiosonde profile data, (4) correcting the near-range backscatter based on the integrated

backscatter distribution as a function of height of the maximum backscatter (Hopkin et al., 2019, Sect. 5.1), (5) combining the

backscatter profile with temperature field from a reanalysis to exclude cold clouds.

Molecular (Rayleigh) backscattering can be accurately calculated if temperature and pressure of the atmospheric profile is30

known (Sect. 4.1). This can be employed for absolute calibration of ALCs. Given the low SNR of low-power ALCs, several

hours of integration are required to identify the molecular backscatter (Wiegner et al., 2014). The molecular backscatter is
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attenuated by an unknown amount of aerosol with unknown LR, and the near-range backscatter is affected by a potentially

inaccurate overlap correction. Therefore, this method alone produces calibration coefficient which depend on the atmospheric

conditions. We found that all studied ALCs except for the CL31 are capable of observing the molecular backscatter (Section 7).

Therefore, this method may be used in addition to the liquid stratocumulus LR method for cross-validation of the calibration.

5.3 Cloud detection5

Cloud is the most strongly attenuating feature in ALC backscatter measurements. Due to this attenuation, the lidar signal is

quickly attenuated in thick cloud and can fall below the noise level before reaching the top of the cloud. This means that

the first cloud base can be detected reliably (unless the cloud is too thin or too high and obscured by backscatter noise),

while the cloud top or multi-layer cloud cannot be observed reliably under all conditions. The opposite is true for spaceborne

lidars, which can detect the cloud top reliably but cannot always detect the cloud base. Therefore, ALC observations can be10

regarded as complementary to spaceborne lidar observations. By applying a suitable algorithm, one can detect CBH, CTH and

identify cloud layers. Instrument firmware often determines CBH and sometimes cloud layers as part of its internal processing,

often using an undisclosed algorithm which is not comparable between different instruments and potentially not even different

versions of the instrument firmware (Kotthaus et al., 2016). Mattis et al. (2016) compared a large number of ALCs and found

differences of up to 70 m between the reported CBH, and others found relatively large differences as well (Liu et al., 2015b;15

Silber et al., 2018). Alternatively to the instrument reported CBH and cloud layers, it is possible to detect cloud based on

the backscatter profile. A relatively large number of cloud detection algorithms have been proposed (Wang and Sassen, 2001;

Morille et al., 2007; Martucci et al., 2010; Van Tricht et al., 2014; Silber et al., 2018; Cromwell and Flynn, 2019). We use a

simple algorithm based on a backscatter threshold applied on the denoised attenuated backscatter, assuming that the noise can

be represented by a normal distribution at the highest range, which is unlikely to contain cloud or aerosol if the instrument is20

pointing vertically (this may not be true, however, for CL31 which has a maximum range of just 7.7 km). This assumption

neglects the range-dependent molecular backscatter, which is relatively small at the ceilometer wavelengths examined (910 nm

and 1064 nm). A cloud mask is determined positive where the backscatter is greater than a chosen threshold plus three standard

deviations of noise at the given range. A threshold of 2 ×10−6m−1sr−1 was found to be a good compromise between false

detection and misses. This value is above the maximum molecular backscatter, which is approximately 1.54×10−6m−1sr−125

at the surface in the case of the MiniMPL (wavelength 532 nm). Noise is not simulated by the lidar simulator, but the cloud

detection algorithm allows for coupling of simulated and observed profiles, whereby the noise standard deviation is taken from

the corresponding location in the observed profile. With 5 minute averaging, when the standard deviation of noise is relatively

low, we found that the coupling does not make substantial differences to the detected cloud (not shown). While the threshold-

based algorithm is less sophisticated than other methods of cloud detection, the vertical resolution of the simulated backscatter30

is likely too low and the vertical derivatives of the simulated backscatter too crudely represented (as can be seen in Fig. 5b–f,

6b–f, 7b–e) to apply any algorithm based on the vertical derivatives of backscatter. Using the same cloud detection algorithm

on observed and simulated backscatter is essential for an unbiased one-to-one comparison of cloud.
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5.4 Water vapour absorption

Previous studies have noted that ceilometers which utilise the wavelength of 910 nm such as the Vaisala CL31 and CL51

are affected by additional absorption of laser radiation by water vapour (Wiegner and Gasteiger, 2015; Wiegner et al., 2019;

Hopkin et al., 2019). The wavelength coincides with water vapour absorption bands between 900 and 930 nm, while the other

common ceilometer wavelength of 1064 nm is not affected. Wiegner and Gasteiger (2015) reported that it can cause absorption5

of the order of 20% in the extratropics and 50% in the tropics. The lidar simulator does not currently account for this. However,

as the water vapour concentration is available from the reanalyses and models, it should be possible to use a line-by-line model

to calculate the water vapour volume absorption coefficient for each vertical layer during the integration process. Water vapour

also affects calibration of observed backscatter. In order to use the liquid stratocumulus LR calibration method, the backscatter

has to be corrected for water vapour absorption to achieve high accuracy of calibration. Hopkin et al. (2019) used a simplified10

approach based on a parametrised curve and reported a difference from explicit radiative transfer calculations of 2% in the

United Kingdom atmosphere (Middle Wallop). In the future either approach should be used to include water vapour absorption

in the simulator, or remove the effect of water vapour absorption from the observed lidar backscatter to achieve an improved

one-to-one comparison between the observations, reanalyses and models.

6 Description of case studies15

The case studies analysed here were selected to include all instruments supported by the framework. We compare four different

instruments (CHM 15k, CL31, CL51, MiniMPL) deployed at three locations in NZ (Lauder, Christchurch, Cass) with three

reanalyses (MERRA-2, ERA5, JRA-55), one NWP model (AMPS) and one GCM (UM). These case studies aim to demonstrate

capability rather than to comprehensively evaluate cloud simulation in the models and reanalyses. The work detailed in Kuma

et al. (2019) provides a detailed evaluation of the UM and MERRA-2 relative to shipborne ceilometer observations. Figure20

2 shows the location of the sites and Table 3 summarises the case studies, which are also described in greater detail below.

The sites were chosen from available datasets to demonstrate the use of the framework with all supported instruments. Two of

the sites also had co-located instruments: CL31 and MiniMPL in Lauder, and CHM 15k and MiniMPL in Christchurch. The

MiniMPL in Lauder and Christchurch were two different units.

Cass is a field station of the University of Canterbury located at an altitude of 577 m in the Southern Alps of the South Island25

of NZ. The station is located far from any settlements and likely affected little by anthropogenic aerosol relative to the other

sites. We have analysed 13 days of observations with a CL51 at this station performed in September and October 2014.

Lauder is a field station of NIWA located inland in the Central Otago region on the South Island of NZ. The station is

situated in a rural area relatively far from large human settlements. We have analysed 13 days of co-located MiniMPL and

CL31 observations made in January 2018. The MiniMPL was operated in a fixed vertical scanning mode during this period30

(elevation angle 90◦).

Observations at the Christchurch site were performed at the University of Canterbury campus on the Ernest Rutherford

building rooftop. Christchurch is located on the east coast of the South Island of NZ. Its climate is affected by the ocean,
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its proximity to the hilly area of the Banks Peninsula, the Canterbury Plains and föhn-type winds (Canterbury northwester)

resulting from its position on the lee side of the Southern Alps. The city is affected by significant wintertime air pollution

from domestic wood burning and transport. The orography of the city and the adjacent Canterbury Plains is very flat, making

it prone to inversions. The Ernest Rutherford building is a 5 floor building situated in an urban area, surrounded by multiple

buildings of similar height. We have analysed 24 days of co-located MiniMPL and CHM 15k observations performed in July5

and August 2019. The MiniMPL was operated in a fixed vertical scanning mode (elevation angle 90◦). The nudged run of the

UM was only available up to year 2018. Therefore, it was not analysed for this site.

7 Case study results

To demonstrate the ways that the ALCF can be used we compared a total of 50 days of ALC observations with simulated

lidar backscatter at three sites in NZ (Sect. 6). The observed backscatter was normalised to calibrated absolute range-corrected10

total volume backscattering coefficient. The noise mean as determined at the furthest range was removed from the backscatter.

Cloud detection based on an attenuated absolute backscatter coefficient threshold of 2×10−6m−1sr−2 and three noise standard

deviations was applied to derive a cloud mask and CBH. We compare the statistical cloud occurrence as a function of height

above the mean sea level (ASL) (Fig. 4) and individual backscatter profiles (selected profiles are shown in Fig. 5, 6 and 7) in

this section.15

We analysed 13 days of CL51 observations at the Cass field station in late winter. Due to the location of the station at a

relatively high altitude in a varied terrain of the Southern Alps, the models with their relatively coarse horizontal grid resolution

do not represent the terrain and position accurately. The orography representation of the models meant that the virtual altitude

of the station was 1115 m (AMPS), 1051 m (ERA5), 401 m (JRA-55), 914 m (MERRA-2) and 428 m (UM). The virtual

position, which is the centre of the nearest model grid cell to the site location, ranged from relatively close in the Southern Alps20

(AMPS, ERA5, MERRA-2, UM) to relatively far on the West Coast of NZ (JRA-55) depending on the horizontal resolution of

the grid. The time period examined was characterised by diverse cloud occurrence with periods of low cloud and precipitation,

mid-level cloud, fog, high cloud and clear skies. Precipitation, currently not simulated by the lidar simulator, was present in

about 18% of the observed backscatter profiles, as determined by visual inspection. Figure 4a shows that predominantly low

cloud and precipitation between the ground and 2 km ASL in 25% of profiles was observed. Cloud between 3 and 12 km25

ASL was observed about evenly in 2% of profiles. While the reanalyses and models were able to partially reproduce the peak

of cloud occurrence near 1 km ASL, the peak they displayed is less vertically broad than observed, and in the UM the peak

was much weaker than observed. The lack of precipitation simulation might also have contributed to this apparent difference

between observed and simulated cloud. Above 3 km ASL, the reanalyses and models tended to overestimate cloud, with only

ERA5 and JRA-55 simulating close to the observed cloud occurrence. The observed total CF was 62%. AMPS overestimated30

this value by 4 percentage points (pp), ERA5 and the UM reproduced almost the exact value (within 2 pp), while the other

reanalyses (JRA-55 and MERRA-2) underestimated CF by about 15 pp.
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We also analysed 13 days of CL31 and MiniMPL observations at the Lauder station in summer. During the time period

relatively diverse cloud was observed, with periods of low, mid- and high cloud, clear sky and a small fraction of profiles with

precipitation (about 3%). The altitude of the station of 370 m ASL generally had a much higher equivalent in the reanalyses and

models: 565 m (AMPS), 642 m (ERA5), 681 m (JRA-55) and 786 m (MERRA-2) due to the presence of hills in the surrounding

region (the station is in a high valley), with the exception of the UM where the altitude was 385 m. The virtual station position in5

the reanalyses and models ranged from relatively close to the station in the same geographical region (AMPS, ERA5), a nearby

location in a more hilly region (JRA-55), a relatively distant location in the adjacent Dunstan Mountains (MERRA-2) and a

relatively distant location in Central Otago (UM). Figure 4b shows that the CL31 observed relatively even cloud occurrence

between the ground and 3 km ASL at 8%, falling off to about 3% between 4 and 8 km ASL (the maximum lidar range of

CL31 is 7.7 km). The MiniMPL observed much weaker backscatter than CL31 below 3 km ASL, which was identified as an10

overlap calibration issue in the MiniMPL. The MiniMPL observed substantial amounts of cloud above 8 km, not present in the

CL31 observations due to its range limitation. Overall, the observed cloud occurrence had two peaks at ground to 3 km ASL

and at about 9 km ASL. The simulated cloud occurrence was generally underestimated between the ground and 5 km ASL,

with the exception of the UM which reproduced the lower half of the peak accurately, and ERA5 which reproduced the upper

half of the peak accurately. Above 5 km ASL, the cloud occurrence was well reproduced in ERA5 and JRA-55, and strongly15

overestimated in AMPS, MERRA-2 and the UM. The reanalyses and models also tended to have two peaks at about 2 km

ASL and 11 km ASL, but these were quite different from the observed peaks, with the lower peak underestimated by about 5

pp in the reanalyses and models and the higher peak overestimated by about 5–10 pp. The total CF was observed as 44% and

58% by CL31 and MiniMPL, respectively. CF observed by the MiniMPL was likely higher due to its higher maximum lidar

range (CL31 missed a substantial amounts of high cloud due to this limitation). The total CF was strongly underestimated by20

the reanalyses and models by up to 34 pp (CL31) and 38 pp (MiniMPL), with the exception of the UM which simulated the

correct CF within 3 pp.

The Christchurch observations were taken during a total of 24 days in mid- to late winter. The cloud situations were charac-

terised by the frequent occurrence of low cloud and fog, with relatively diverse mid- and high level cloud and periods of clear

sky also present (not shown). Precipitation was present in about 9% of profiles and fog in about 11% of profiles. As the site25

location is relatively flat (Canterbury Plains), the models didn’t have any difficulty in reproducing the altitude of the site, which

was 32 m (AMPS), 72 m (ERA5), 143 m (JRA-55) and 76 m (MERRA-2). The virtual location was within the boundaries of

the city (AMPS), on the Canterbury Plains close to the city boundaries (ERA5, MERRA-2), and over Lake Ellesmere about

20 km from the city (JRA-55). Figure 4c shows that the co-located CHM 15k and MiniMPL observed a strong peak of cloud

occurrence of 26% (CHM 15k) and 20% (MiniMPL) at about 500 m ASL. This was likely due to the combined precipitation30

and fog as well as false detection of aerosol as cloud. The observed cloud occurrence had a local minimum of 2% at about 5

km ASL, a secondary peak of 5% at 7 km ASL, and fell off 0% at 11 km ASL. The CHM 15k and MiniMPL observations

showed inconsistencies of up to 5 pp. The reanalyses and models strongly underestimated low cloud by about 10-20 pp. With

the exception of AMPS, they underestimated mid-level cloud by about 5 pp and represented high cloud relatively accurately.
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The total CF observed was 69% and 66% for the CHM 15k and MiniMPL, respectively, while the reanalyses and models

strongly underestimated CF by up to 36 pp (JRA-55), with underestimates around 20 pp common.

Figures 5, 6, 7 show images of backscatter for three separate days taken from the three case studies. The selected days

represent some of the best-matching profiles and demonstrate how well the reanalyses and models can simulate cloud under

favourable conditions. As can be seen in the figures, the UM performs the best in terms of temporal and height accuracy of the5

simulated cloud (Fig. 5f, 6f), followed by ERA5 (Fig. 5c, 6c, 7c). This is likely due to the high output temporal resolution of the

UM and ERA5 of 20 min. and 1 h, respectively. The UM and ERA5 were able to represent the relatively fine structure of cloud

and to a lesser extent the optical thickness (inferred from the strength of backscattering) of the cloud. Deficiencies, however,

are readily identifiable. The low cloud in the UM (Fig. 5f) appears to be shifted by several hours relative to observations (Fig.

5a) and the high cloud has a greater vertical extent in the UM. Likewise, the altocumulus cloud observed in Fig. 6a is shifted10

by several hours in the UM (Fig. 6f). The stratocumulus and nimbostratus cloud, identified visually based on the backscatter

profiles, in ERA5 (Fig. 5c) is markedly lower than observed (Fig. 5a), as well as optically thicker than in reality. The mid-level

cloud in ERA5 (Fig. 6c) was located about 2 km higher than observed (Fig. 6a). Precipitation observed in Fig. 7a towards the

end of the analysed period was not present in the ERA5 simulated profile (Fig. 7c) due to lack of precipitation simulation in the

current lidar simulator (even though rain and show specific content is available from the reanalysis). MERRA-2 was the third-15

best performing reanalysis in terms of cloud representation accuracy. The reanalysis managed to capture the overall structure of

clouds (Fig. 5c, g, k), but substantial discrepancies were present, some of which were likely due to the relatively low temporal

resolution of the reanalysis (3 h). AMPS was identified as the fourth-best in terms of cloud representation accuracy despite

the highest spatial resolution of the model. Fig. 5h shows that while the overall structure of the cloud is represented in the

reanalysis, it was not able to represent any of the finer details. This is likely partially due to the temporal resolution of the20

model output of just 3 h (AMPS has, however, relatively high horizontal grid resolution of 21 km). A visual comparison of

AMPS and MERRA-2 with observations suggests that the the MERRA-2 simulations are more accurate than AMPS despite

the fact that the horizontal grid resolution of AMPS is much finer than MERRA-2. This demonstrates that other factors in the

model than resolution have stronger influence on the quality of cloud simulation. JRA-55 was identified as the last in terms of

cloud representation accuracy. JRA-55 has the lowest temporal resolution of the studied reanalyses and models of just 6 h, as25

well as the lowest horizontal grid resolution of 139 km. Therefore, it cannot be expected to capture any fine details of cloud.

In the presented profiles (Fig. 5d, l) one can see that the cloud is only crudely represented. JRA-55 was able to represent the

stratocumulus cloud of Fig. 5a, although its temporal extent and optical thickness were overestimated. The mid-level cloud

of Fig. 5i was relatively well-represented in terms of height and optical thickness (Fig. 5l), given the low temporal resolution

of the reanalysis. We stress that a direct backscatter profile intercomparison is highly dependent on the temporal resolution of30

the model output. The statistical intercomparison, however, should still give unbiased results if the cloud physics is accurately

simulated by the atmospheric model.

The comparison between observations, reanalyses and models can be summarised by considering that the radiative effect of

clouds is the product of cloud occurrence/fraction and their albedo. CF can be derived from ALC observations by determining

the cloud mask and identifying cloudy profiles which contain detected cloud. Cloud albedo cannot be directly observed with35
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ALCs due to the unknown backscatter-to-extinction ratio of the cloud layers, which depends on the cloud phase, the effective

radius and the shape of ice crystals. However, we can use LR, calculated from the vertically integrated backscatter, as a proxy

for cloud albedo. Clouds which are not fully opaque result in LR which is greater than the expected theoretical LR based

on the Mie theory (Fig. 3). The inverse of LR (extinction-to-backscatter ratio) is therefore approximately proportional to the

albedo of the cloud. Figure 8a, b shows an absolute and relative (respectively) scatter plot of the average cloud fraction and the5

average of the inverse of LR calculated from cloudy profiles. As already shown in Fig. 4, the reanalyses and models generally

underestimate CF. However, Fig. 8 shows that this is compensated by overestimated albedo (higher LR−1 indicates higher

cloud albedo), which is higher in all reanalyses and models than the corresponding ALC observations. Further examination

shows that the UM and ERA5 show the closest proximity to the corresponding observations in terms of the average CF and

LR−1. The Lauder CL31 and MiniMPL also show a stark difference in CF, with the CL31 detecting much smaller CF due to10

its maximum vertical range limitation of 7.7 km, which causes a significant fraction of high cloud to be omitted. The results

shown in Fig. 8 suggest that the "too few too bright" model cloud problem identified in previous studies (Nam et al., 2012;

Klein et al., 2013; Wall et al., 2017; Kuma et al., 2019) is also observed in the current case studies, whereby the simulated CF is

too low, but its exaggerated albedo means that the top of atmosphere (TOA) shortwave radiative balance can be approximately

correct.15

Figure 9 shows backscatter histograms as a function of height for small values of backscatter (up to 2×10−6m−1sr−1)

observed and simulated at the sites of the case studies, calculated for the entire time period of each case study. The scale of

values is below cloud backscatter, and therefore shows backscatter which results from molecular and aerosol scattering and

noise. Molecular backscattering depends on the atmospheric pressure and temperature as well as the lidar wavelength. It causes

the main "streak" (a local maximum) visible in each of the histograms. The observed molecular backscattering value at the20

surface approximately corresponds to the theoretically calculated value at each wavelength: 0.0906×10−6m−1sr−1 (λ = 1064

nm), 0.172 ×10−6m−1sr−1 (λ = 910 nm) and 1.54 ×10−6m−1sr−1 (λ = 532 nm) at 1000 hPa and 20 ◦C (Table 6). The

molecular backscattering in the boundary layer is, however, superimposed on backscattering by aerosol and cloud. In the case

of the MiniMPL observations at the Christchurch site (Fig. 9i), the molecular backscatter streak has multiple secondary streaks.

These are caused by different levels of attenuation by cloud and aerosol during the period of the observations. These secondary25

streaks were also partially reproduced by the simulator (Fig. 9j). A smaller portion of the width of the streak is also caused

by fluctuations of atmospheric temperature and pressure. Under suitable conditions, the molecular backscatter can be used

for absolute calibration of an instrument. With the exception of CL31 (Fig. 9c), the molecular backscatter can be identified

in the observed backscatter in each case. Therefore, it is possible to choose a calibration coefficient such that the observed

and simulated molecular backscatter overlap. This can be considered a viable alternative to the liquid stratocumulus LR cal-30

ibration method, or as a means of cross-validating the instrument calibration. However, it should be noted that the accuracy

of this method is affected by an unknown amount of aerosol attenuation. Cloudy profiles can be filtered when calculating the

histogram, and therefore the effect of cloud attenuation can be minimised. In addition to the molecular backscatter streak, there

is a zero-centred streak visible in the histograms. This is caused by noise when the signal is fully attenuated by cloud. Lastly,

a zero-centred "cone" of noise is visible in the observed backscatter, increasing with the square of range. The size of this cone35
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is particularly large in the case of the CL31 (Fig. 9c), which is most likely the result of its low receiver sensitivity and low

power compared to the other instruments. The standard deviation of the cone at the furthest range is used to determine the noise

standard deviation used by the cloud detection algorithm (Sect. 5.3).

Figure 10 shows the same information as Fig. 9, but for clear sky profiles only. Here, it can be seen that the zero-centred peak

caused by the complete attenuation by cloud is no longer present. There is a clear overlap between the centre of the noise cone5

with the simulated molecular backscatter; i.e. the noise cone is centred at the observed molecular backscatter. This is visible

with all instruments including CL31 (Fig. 10c), where the overlap between the observed and simulated molecular backscatter

is most clearly visible at about 1 km ASL. Below 1 km ASL, the effect of boundary layer aerosol distorts the molecular

backscatter by an unknown quantity. The clear sky histograms as shown in Fig. 9 may therefore be preferable to the all-sky

histograms of Fig. 9 for calibration by fitting the molecular backscatter. Note that Figure 10i does not show a good match10

with the simulated molecular backscatter (Fig. 10j) likely due to miscalibration of the MiniMPL in the lower troposphere,

which causes spurious cloud to be detected. The majority of profiles were therefore filtered out as cloudy. The dead time,

afterpulse and overlap MiniMPL calibration supplied by the vendor appears to be deficient and causes range-dependent bias in

the backscatter profile.

We now examine the noise in each instrument using the ALCF. Figure 11 shows the distribution of standard deviation of15

backscatter noise determined at the highest observable range of each instrument and range-scaled to 7 km. It can be seen that

the CL31 is affected by the greatest amount of noise, peaking at about 2×10−6m−1sr−1. This is at the threshold of cloud

detection of 2×10−6m−1sr−1. Therefore, thin cloud may be obscured by noise at higher ranges with this instrument. The

MiniMPL, operating in the visible spectral range, shows a bimodal distribution of backscatter noise depending on sunlight.

During daytime, it peaks at about 0.7×10−6m−1sr−1, which is the second highest of the analysed instruments. During night-20

time, it peaks at about 0.02×10−6m−1sr−1, which is the lowest of the analysed instruments. The CHM 15k histogram peaks

between the nighttime and daytime MiniMPL at 0.2×10−6m−1sr−1. CL51 observed the second lowest amount of noise after

the nighttime MiniMPL at about 0.04×10−6m−1sr−1. The difference between nighttime and daytime backscatter noise in the

MiniMPL has been previously analysed by Silber et al. (2018) (Fig. S3) and these results confirm their findings.

8 Discussion and conclusions25

We presented the Automatic Lidar and Ceilometer Framework, which combines lidar processing and lidar simulation for

the purpose of model evaluation. The lidar simulation is based on the COSP spaceborne lidar simulator by accounting for

the different geometry and lidar wavelength. New lookup tables for Mie scattering were calculated for a number of ALC

wavelengths and noise removal and cloud detection algorithms were implemented. The framework supports the most common

ALCs and reanalyses. We demonstrated the use of the framework on ALC observations at three different sites in New Zealand,30

and applied the lidar simulator to three reanalyses and two models. We found that while some reanalyses and models such

as the UM and ERA5 show relatively good correspondence with observed cloud, others performed relatively poorly. All

reanalyses and models underestimated the total CF by up to 38 pp, with underestimation by 20 pp common. In some cases,
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the observed and simulated backscatter profiles matched relatively closely in terms of time and altitude, and a better match

was observed with reanalyses with high output temporal resolution such as the UM and ERA5, while reanalyses with low

temporal resolution didn’t allow for reliable direct (non-statistical) comparison of cloud. However, it is clear that more factors

than the horizontal and vertical resolution influence the cloud simulation accuracy; especially the cloud, boundary layer and

convection schemes employed by the atmospheric model. The reanalysis and model output temporal, horizontal grid resolution5

and vertical resolution are not always the same as the internal resolution of the underlying atmospheric model. Both have an

impact on the comparison between simulated and observed backscatter and cloud. While the output resolution should not have

an impact on the long-term statistics, it can be a limiting factor for direct backscatter profile comparison. We demonstrated

that the ALCF could be used to identify substantial differences in cloud backscatter which were present in all reanalyses and

models. We showed that all the studied instruments except for the CL31 are capable of detecting molecular backscatter and10

that this can be used for calibration or for cross-validation of other calibration methods. We found that the nighttime MiniMPL

was subject to the least amount of noise of all the instrument examined, followed by the CL51, CHM 15k, daytime MiniMPL

and CL31. Noise in the MiniMPL was shown to have a bimodal distribution due to day/nighttime. The ALCF can therefore be

useful for testing the quality of collected data.

Currently the framework has several limitations which should be addressed in the future. The water vapour absorption at15

910 nm likely affects the instrument calibration of the CL31 and CL51 ceilometers and limits the accuracy of the one-to-one

comparison, even though due to the relatively high backscatter caused by cloud, the calculated cloud masks are unlikely to

be strongly affected. The lidar simulator currently does not simulate backscattering from precipitation. Observed precipitation

is generally detected as "cloud" by the cloud detection algorithm, while the simulated profile contains no backscatter at the

location of precipitation (backscattering and attenuation by rain drops and snow should be implemented in the lidar simulator20

in the future). If desired, the backscatter profiles affected by precipitation can be excluded before the comparison or their

fraction determined by visually inspecting the observed backscatter to assess their possible effect on the statistical results. In

addition, backscattering from ice crystals is currently treated in the same way as backscattering from liquid droplets, i.e. the

same effective radius of spheres is assumed and the particle concentration is calculated from the model ice mass mixing ratio

in the atmosphere layer. In reality, the non-spherical shape of ice crystals, the different typical effective radius and refractive25

index of ice result in different backscattering from ice crystals versus liquid droplets for the same mass mixing ratio. The

ice mass mixing ratio reported by models is usually much lower than the liquid mass mixing ratio, therefore the simulated

backscatter from cold cloud tends to be much lower than from warm cloud. The ALCs also suffer from various measurement

deficiencies. Notably incomplete overlap, dead time and afterpulse corrections tend to give sub-optimal results at the near

range. It is possible to use semi-automated methods to correct for these deficiencies, such as by calculating the integrated30

backscatter distribution by height of the maximum backscatter and correcting for the range-dependent bias (Hopkin et al.,

2019, Sect. 5.1). This method could be implemented in the framework to enable range-dependent calibration of the observed

backscatter.

The presented framework streamlines lidar data processing and tasks related to lidar simulation and model comparison.

The framework was recently used by Kuma et al. (2019) for Southern Ocean model cloud evaluation in the GA7.1 model35
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and MERRA-2 reanalysis. Considering the existing extensive ALC networks worldwide there is a wealth of global data. We

therefore think that ALCs should have a greater role in model evaluation. Satellite observations have long been established in

this respect due to their availability, spatial and temporal coverage and their well-developed derived products and tools. ALCs,

with their diverse formats and decentralised nature, have so far lacked derived products and tools which would make them

more accessible for model evaluation. We hope that this software will enable more model evaluation studies based on ALC5

observations. Development of lidar data processing is currently hampered by closed development of code. We note that code

has very rarely been made available with past ALC studies. Continued improvement of publicly available code for lidar data

processing is needed to achieve faster development of ground-based remote sensing and make it more attractive for GCM,

NWP model and reanalysis evaluation.

Code and data availability. The ALCF is open source and available at https://alcf-lidar.github.io and as a permanent archive of code and10

technical documentation on Zenodo at https://doi.org/10.5281/zenodo.3779518. The technical documentation is also in the Supplementary

information. A tool for converting Vaisala CL31 and CL51 data files to NetCDF cl2nc is open source and available at https://github.com/

peterkuma/cl2nc. A tool for converting MiniMPL raw binary data files to NetCDF mpl2nc is open source and available at https://github.

com/peterkuma/mpl2nc. The observational data used in the case studies are available upon request. The reanalyses data used in the case

studies are publicly available online from the respective projects. The Unified Model data used in the case studies are available upon request.15

The Unified Model is proprietary to the UK Met Office and is made available under a licence. For more information, readers are advised to

contact the UK Met Office.
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Figure 1. (a) Scheme showing the operation of the ALCF and (b) the processing commands.
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Figure 2. Map showing the location of sites. Data at three sites in New Zealand were analysed: Cass, Lauder and Christchurch.
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Figure 3. (a) Theoretical distributions of cloud droplet radius based on the log-normal and Gamma distributions parametrised by multiple

choices of the effective radius reff and effective standard deviation σeff. (b) Lidar ratio (LR) as a function of effective radius calculated for

different theoretical cloud droplet size distributions, laser wavelengths and effective standard deviation ratios.
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Figure 4. Cloud occurrence histogram as a function of height above the mean sea level observed at three sites and simulated by the lidar

simulator based on atmospheric fields for five reanalyses and models. Shown is also the total cloud fraction (CF). The histogram is calculated

from the cloud mask as determined by the cloud detection algorithm.
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Cass (2014-09-25)

OBS (CL51)(a) AMPS (CL51)(b)

ERA5 (CL51)(c) MERRA-2 (CL51)(d)

JRA-55 (CL51)(e) UM (CL51)(f)

Figure 5. Examples of observed (OBS) and simulated backscatter profiles during 24 hours taken from the three case studies presented here.

The observed backscatter was normalised to absolute units and denoised. The vertical levels were interpolated based on the nearest neighbour

assumption. The cloud detection threshold of 2×10−6m−1sr−1 corresponds the low end of the colour scale, i.e. all visible backscatter in the

plots was determined as cloud, unless the difference from the threshold was smaller than three noise standard deviations. The first subcolumn

of 10 columns generated by the Subgrid Cloud Overlap Profile Sampler (SCOPS) was selected to make the plots. The red line signifies the

station altitude.
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Lauder (2018-01-16)

OBS (MiniMPL) AMPS (MiniMPL)(a) (b)

ERA5 (MiniMPL)(c) MERRA-2 (MiniMPL)(d)

JRA-55 (MiniMPL)(e) UM (MiniMPL)(f)

Figure 6. The same as Fig. 5 but for the Lauder site.
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Christchurch (2019-07-18)

JRA-55 (CHM 15k)(e)

ERA5 (CHM 15k)(c) (d) MERRA-2 (CHM 15k)

OBS (CHM 15k)(a) (b) AMPS (CHM 15k)

Figure 7. The same as Fig. 5 but for the Christchurch site.
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Figure 8. (a) Scatter plot showing the average cloud fraction calculated from all profiles and the average inverse lidar ratio (LR−1) calculated

from cloudy profiles for the case studies. The site and instrument are coded by the shape of the marker and the observation (legend in the

top left corner), reanalysis or model is coded by the colour of the marker (legend in the top right corner). (b) The same as (a), but showing

relative differences between the reanalyses and models relative to the corresponding observations.
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Figure 9. Backscatter histograms as a function of height observed and simulated at three different sites of the case studies calculated from

all profiles. The plots show the distribution of backscatter for values which are on the scale of noise, molecular and aerosol backscatter

([-0.5, 0.5] for CHM 15k, [-1, 1] for CL31 and CL51 and [-2, 2] ×10−6m−1sr−1 for MiniMPL). The simulated backscatter is based on

the ERA5 atmospheric fields. Visible in the plots is backscatter caused by molecular backscatter (the main "streak"), noise when signal is

fully attenuated by cloud (the zero-centred "streak"), and the range-dependent noise (the zero-centred "cone"). The molecular backscatter is

marked by a red dashed line on the observed backscatter plots, the shape of which is taken from the simulated molecular backscatter for the

corresponding instrument and site.
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Figure 10. The same as Fig. 9 but calculated from clear sky profiles only.
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Figure 11. Backscatter noise standard deviation histogram calculated for each instrument at sites of the case studies from clear sky profiles

over the whole time period. The noise distribution is calculated at the furthest range. Shown is the range-scaled noise distribution at a range of

7 km. The MiniMPL nighttime and daytime distributions are calculated from nighttime and daytime profiles only, determined the by position

of the Sun below and above the horizon, respectively, at the geographical position of the site and time when the profile was observed.
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Table 1. Table of ALCs and their technical parameters. Power is calculated as Pulse × Pulse Repetition Frequency (PRF).

Instrument λ (nm) Laser Rate1 (s) Res.2 (m) Depol.3 Pulse4 (µJ) Range5 (km) PRF (kHz) Overlap6 (m) Power (mW)

CHM 15k 1064 Nd:YAG 2–600 5 no 7–9 15.4 5–7 10007 48

CL31 910 InGaAs 2–120 10 no 1.2 7.7 10 707 12

CL51 910 InGaAs 6–120 10 no 3 15.4 6.5 2308 20

MiniMPL 532 Nd:YAG 1–900 5–75 yes 3–4 30.0 2.5 20008 9

1Sampling rate. 2Vertical (range) resolution. 3Depolarisation. 4Pulse energy. 5Maximum range. 6Range of full overlap. 7Hopkin et al. (2019). 8Madonna et al. (2018).

Table 2. Reanalyses and models used in the case studies and some of their main properties. The temporal and horizontal grid resolution

and vertical levels listed is the resolution of the model output available. The horizontal grid resolution is determined at 45◦S. The internal

resolution of the model may be different (see Sect. 3.2 for details). The reanalyses and the UM use regular longitude-latitude grids, while the

AMPS horizontal grid is regular in the South Pole stereographic projection.

Model/Grid Type Time resolution Horizontal grid resolution Vertical levels

AMPS/D01 NWP 3 h 0.27◦× 0.19◦ (21×21 km) 60

ERA5 Reanalysis 1 h 0.25◦×0.25◦ (20×28 km) 37

JRA-55 Reanalysis 6 h 1.25◦×1.25◦ (98×139 km) 37

MERRA-2 Reanalysis 3 h 0.625◦×0.50◦ (49×56 km) 72

UM (GA7.1)/N96 GCM 20 min. 1.875◦×1.25◦ (147×139 km) 85

Table 3. Location of sites and instruments. The time periods are inclusive.

Site Coordinates Surface altitude (m) Instruments Time period Missing period Days

Cass 43.0346◦S 171.7594◦E 577 CL51 19 Sep–1 Oct 2014 13

Lauder 45.0379◦S 169.6831◦E 370 MiniMPL, CL31 12–24 Jan 2018 13

Christchurch 43.5225◦S 172.5841◦E 45 MiniMPL, CHM 15k 17 July–19 August 2019 22–31 July 24
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Table 4. Table of physical quantities.

Symbol Name Units Expression

αs (αe) Volume scattering (extinction) coefficient m−1

Ω Solid angle sr

Pπ(θ) Scattering phase function at angle θ 1
∫
4π
Pπ(θ)dΩ = 4π

β Volume backscattering coefficient m−1sr−1 β = αsPπ(π)/(4π)

N Particle number concentration m−3

n(r) Number distribution of particle size m−4 N =
∫∞
0
n(r)dr

Qs (Qe) Scattering (extinction) efficiency of spherical particles 1 αs =Qsπr
2N , αe =Qeπr

2N

Qb Backscattering efficiency of spherical particles sr−1 β =Qbπr
2N

S Lidar ratio (extinction-to-backscatter ratio) sr S = αe/β

k Backscatter-to-extinction ratio sr−1 k = 1/S

reff Effective radius m reff =
∫∞
0
r3n(r)dr/

∫∞
0
r2n(r)dr

σeff Effective standard deviation m σeff =
(∫∞

0
(r− reff)

2r2n(r)dr
)
/
(∫∞

0
r2n(r)dr

)
kB Boltzmann constant JK−1 kB ≈ 1.38× 10−23 JK−1

p Atmospheric pressure Pa

T Atmospheric temperature K

ρ Liquid (or ice) density kg.m−3

ρair Air density kg.m−3

q Cloud liquid (or ice) mass mixing ratio 1

Table 5. Table of sensitivity tests of theoretical distribution assumption, effective radius reff and effective standard deviation σeff of the cloud

droplet/ice crystal size distribution. µ and σ are the mean and standard deviation of a normal distribution corresponding to the log-normal

distribution, calculated numerically from reff and σeff. µ∗ and σ∗ are the actual mean and standard deviation of the distribution (calculated

numerically).

Distribution reff (µm) σeff (µm) µ σ µ∗ (µm) σ∗ (µm)

log-normal 20 10 2.44 0.47 12.76 6.26

log-normal 20 5 2.84 0.25 17.72 4.43

log-normal 10 5 1.74 0.47 6.40 3.20

Gamma 20 10 9.98 7.00

Gamma 20 5 17.50 4.68

Gamma 10 5 5.00 3.54

44

https://doi.org/10.5194/gmd-2020-25
Preprint. Discussion started: 12 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 6. Theoretical molecular backscatter calculated at pressure 1000 hPa and temperature 20 ◦C and the calibration coefficient, relative

to the instrument native units, determined for the instrument based on the molecular backscatter and stratocumulus lidar ratio calibration

methods.

Instrument Wavelength (nm) Molecular backscatter (×10−6m−1sr−1) Calibration coefficient

CHM 15k 1064 0.0906 0.34

CL31 910 0.172 1.45×10−3

CL51 910 0.172 1.2×10−3

MiniMPL 532 1.54 3.75×10−6
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