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     Abstract. This paper complements a series of now four publications that document the release of the Earth System Model 

Evaluation Tool (ESMValTool) v2.0. It describes new diagnostics on the hydrological cycle, extreme events, impact 

assessment, regional evaluations, and ensemble member selection. The diagnostics are developed by a large community of 

scientists aiming to facilitate the evaluation and comparison of Earth System Models (ESMs) which are participating in the 25 

Coupled Model Intercomparison Project (CMIP). The second release of this tool aims to support the evaluation of ESMs 

participating in CMIP Phase 6 (CMIP6). Furthermore, data sets from other models and observations can be analysed. The 

diagnostics for the hydrological cycle include several precipitation and drought indices, as well as hydroclimatic intensity and 

indices from the Expert Team on Climate Change Detection and Indices (ETCCDI). The latter are also used for identification 

of extreme events and for impact assessment, and to project and characterize the risks and impacts of climate change for natural 30 

and socio-economic systems. Further impact assessment diagnostics are included to compute daily temperature ranges and 

capacity factors for wind and solar energy generation. Regional scales can be analysed with new diagnostics implemented for 

selected regions and stochastic downscaling. ESMValTool v2.0 also includes diagnostics to analyse large multi-model 
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ensembles including grouping and selecting ensemble members by user specified criteria. Here, we present examples for their 

capabilities based on the well-established CMIP Phase 5 (CMIP5) data set.  35 

1 Introduction 

Climate change is affecting the Earth system in many different ways. To be able to assess the impacts of climate change on 

society and to develop strategies for mitigation and adaptation, a detailed knowledge of the climate system and the key 

processes driving climate change is necessary. This is particularly the case for changes in the hydrological cycle and climate 

extreme events, both having direct consequences on ecosystems and society (Eyring et al., 2020). With rising greenhouse gas 40 

concentrations the hydroclimatic regime is expected to change (Giorgi et al., 2019). As the intensity and distribution of 

precipitation determines the availability of fresh water in a certain region, it is also related to the severity of hazardous events 

such as flooding or droughts. The impact of extreme events on many socio-economic factors increases with their severity, but 

the rare occurrence of these events makes an assessment of the effect of climate change on such events challenging (Zhang et 

al., 2011). Especially compound events, caused by a combination of processes on multiple spatial and temporal scales, lead to 45 

severe impacts (Zscheischler et al., 2018). 

Changes in climate can alter both the strength and the probability of extreme events (Seneviratne et al., 2012; IPCC, 2012). 

For various extreme events an increase in severity and frequency was observed in the past decades and is expected with rising 

temperatures, as, for instance, for warm temperature extremes (Alexander, 2016). With rising temperatures an increase is also 

expected for the amount of precipitation. For wet precipitation extremes this increase is expected to happen faster than for the 50 

total wet-day (days with precipitation > 1 mm) precipitation (Sillmann et al., 2013b). Several studies project that dry regions 

become drier and wet regions wetter (Martin, 2018; Greve et al., 2014), which is expected to result in an increase in both wet 

and dry extreme events, depending on the region. This tendency was highlighted by a general increase of the hydroclimatic 

intensity, which gives a joint measure of dry and wet conditions in a warming climate (Giorgi et al., 2011). Studies by Donat 

et al. (2019) and Pfahl et al. (2017) show an increase in observed precipitation extremes in humid regions whereas there is no 55 

clear indication on the change of precipitation extreme events in arid regions. The impact of different climate forcers such as 

greenhouse gases and aerosols on droughts remains to be understood in more detail (Marvel et al., 2019). 

Although the climate system is of global extent, its manifestations have regional and local impacts (IPCC, 2014a). Especially 

for regional climate changes, robust projections require not only an understanding of the underlying physics and internal 

variability but also a reduction of model biases is essential (Xie et al., 2015). If model biases are corrected without considering 60 

the underlying physical processes, however, downscaling of ESM results to regional scales can result in unwanted artefacts 

(Maraun et al., 2017). Observed changes on the regional scale depend to a large extent on atmospheric dynamics, therefore the 

signal of climate change is often smaller than the internal variability (Deser et al., 2012) while large differences are found in 

the modelled future scenarios (Shepherd, 2014). Stochastic downscaling of precipitation can aid in this direction as the fields 
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at regional scale are derived from the spectral properties of the fields at large scale, with an ability in the reproduction of 65 

extremes even over complex orography (Rebora et al. 2006; D’Onofrio et al. 2014; Terzago et al., 2018). Model ensembles 

can be used to quantify uncertainties in climate change projections due to internal variability (Xie et al., 2015) and clustering 

analysis to inter-compare and group ensemble members based on similar characteristics and select the most representative 

ones, going beyond the biases of individual models (Straus et al., 2007). 

The Earth System Model Evaluation Tool (ESMValTool) version 2.0 (v2.0) includes diagnostics and performance metrics for 70 

the analysis and evaluation of ESMs with observations. It is developed by a large community, which involves more than 150 

scientists from over 60 institutions. Figures and other output produced by the tool include full provenance information to allow 

for traceability and reproducibility of the results. The main focus is on the analysis of ESM simulations from the Coupled 

Model Intercomparison Project (CMIP) of the World Climate Research Programme (WCRP). CMIP started in 1995 (Meehl et 

al., 2000) with the aim of providing scientists with comparable coupled model runs based on standardized boundary conditions 75 

(Covey et al., 2003). CMIP results from Phase 5 (CMIP5) (Taylor et al., 2012) are the basis for many assessments in the 

IPCC’s Fifth Assessment Report (AR5) (IPCC 2013). Now, data from Phase 6 (CMIP6) (Eyring et al., 2016) are available. 

With every phase of CMIP the volume of data increases: for CMIP6 a total data volume of about 20 to 40 PB is expected. This 

emphasizes the need for a fast and comprehensive tool like the ESMValTool (v2.0) to evaluate these model results. In this 

work, the diagnostics which focus on climate impacts are described and their output using the well-established CMIP5 data is 80 

shown. 

In this study we present diagnostics included in the ESMValTool specifically for the analysis of the hydrological cycle, extreme 

events, climate impacts, multi-model ensemble member sub-selection, and regional model evaluation. This article completes 

a series of publications documenting ESMValTool v2.0: Righi et al. (2020) describes the technical aspects, (Eyring et al., 

2020) the new large-scale diagnostics, and (Lauer et al., 2020) emergent constraints and diagnostics for future projections from 85 

ESMs in CMIP. 

This paper is organized as follows: Section 2 describes the model and observation data used. Section 3 presents the 

ESMValTool recipes for the analyses of hydroclimatic intensity, droughts, extreme events, model impact evaluation, multi-

model ensemble member sub-selection, and regional model evaluation. It also describes use of the ESMValTool as a post-

processing tool for further downscaling applications. Section 4 closes with a summary.  90 

2 Models and observations 

ESMValTool v2.0 was developed particularly for the analysis of CMIP data (Righi et al., 2020). This work mainly presents 

results based on the well-established CMIP5 model ensemble, but other model output and observational data, e.g. provided by 

observations for Model Intercomparison Project (obs4MIPs; Teixeira et al., 2014; Waliser et al., 2020), can also be analysed. 

As in version v1.0 (Eyring et al., 2016) ESMValTool v2.0 expects input data to be in a Climate and Forecast (CF) Metadata 95 
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compliant Network Common Data Format (netCDF) following the Climate Model Output Rewrite (CMOR) standard. The 

detailed requirements for CMOR can be found in these tables (http://pcmdi.github.io/cmor-site/tables.html). For the recipes 

described here, European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim and Climatic Research Unit 

(CRU) reanalysis data are used for the evaluation of the model results. Table 1 lists these data in case they are used for a recipe. 

These datasets should be seen as examples as they can easily be replaced by other reanalysis or observational datasets. 100 

Reformatting scripts with downloading instructions are provided with the ESMValTool v2.0 to convert many observational 

datasets to the CMOR standard. A list of observational datasets available can be found in Righi et al. (2020) and in the user's 

guide at https://docs.esmvaltool.org/en/latest/input.html#supported-datasets", where it is updated for newly included datasets. 

For ECMWF ERA5 a “cmorization-on-the-fly” is implemented, which works on the ERA5 netCDF data directly and does not 

require prior reformatting. 105 

3 Overview of recipes included in ESMValTool v2.0 

This section describes the new and extended ESMValTool v2.0 recipes for analysis of extreme events, regional model output, 

and for applying ESM output in the assessments of the impact of climate change as well as to carry out model ensemble sub-

selection. In ESMValTool v2.0, a recipe is a *.yml file used to define the diagnostics and performance metrics to apply to the 

simulation output, as well as the datasets and variables used. The ESMValTool is started from the command line, using for 110 

example: 

esmvaltool run esmvaltool/recipes/examples/recipe_python.yml 

Where “esmvaltool/recipes/examples/recipe_python.yml” is one possible recipe. Instead of this example, any other recipe 

provided with the ESMValTool or created by the user can be used. For a more detailed instructions how to run the tool and 

modify or create recipes, see the documentation at https://docs.esmvaltool.org/.  115 

In the following, the recipes are briefly described and illustrated with example figures using CMIP5 data. All recipes presented 

in this work are summarized in Table 1, which includes a short description, together with the analysed variables used, the 

applied diagnostics and their purpose, as well as the references the diagnostics are based on. Because the online documentation 

for the ESMValTool v2.0 at https://docs.esmvaltool.org/ was written simultaneously to this paper by the same authors, there 

is a considerable overlap to this not peer-reviewed document.  120 

Section 3.1 describes recipes for the hydrological cycle, including indices for hydroclimatic intensity and drought detection. 

In section 3.2 recipes for other extreme events are presented. Recipes for model impact assessment are described in Section 

3.3, and recipes for regional model evaluation in Section 3.4. Section 3.5 presents a recipe for the sub-selection of multi-model 

ensemble members. 

http://pcmdi.github.io/cmor-site/tables.html
https://docs.esmvaltool.org/
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3.1 Hydrological cycle 125 

3.1.1 Hydroclimatic intensity and related indices 

The Earth’s hydrological cycle is a key element of the climate system with important impacts on the society. For example, the 

intensity and distribution of precipitation determines the abundance or scarcity of fresh water in a certain region. It is also 

related to the severity of hazardous events such as flooding or droughts. Several studies have shown an acceleration of the 

hydrological cycle and an intensification of both dry and wet extremes in a warming climate (IPCC, 2013). A simple 130 

investigation of total precipitation-related quantities can hide some of the most relevant aspects of the hydrological cycle and 

its extremes, which can be highlighted through the joint use of the concept of hydroclimatic intensity and related indices (e.g., 

Giorgi et al., 2014). The hydroclimatic intensity (Giorgi et al., 2011), derived as the product of mean daily precipitation and 

dry spell length normalized over a reference period, offers a joint view of both dry and wet conditions, allowing to uniquely 

quantify the response in the intensity of the hydrological cycle in a changing climate. The hyint (hydroclimatic intensity) 135 

diagnostic was developed to calculate several indices for hydroclimatic and climate extremes and allow a multi-index 

evaluation of climate models. 

The recipe_hyint.yml calculates six indices for evaluating the to global warming response of the hydrological cycle including 

both, wet and dry extremes. The indices are selected according to Giorgi et al. (2014), including the simple precipitation 

intensity index (SDII), the maximum dry spell length (DSL) and wet spell length (WSL), the hydroclimatic intensity index 140 

(HY-INT, calculated as normalized DSL times normalized SDII), which is a measure of the intensity of the hydroclimatic 

cycle compared to a reference period (Giorgi et al., 2011), and the precipitation area (PA), i.e. the area over which precipitation 

occurs at any given day (Giorgi et al., 2014). The recipe_hyint_extreme_events.yml can also ingest the 27 temperature and 

precipitation-based Expert Team on Climate Change Detection and Indices (ETCCDI) (Zhang et al., 2011) calculated by the 

recipe_extreme_events.yml to produce a multi-index analysis (see Sec. 3.2 for further details). The diagnostics perform a 145 

subsequent analysis calculating time series and trends of the selected indices for predefined continental areas, normalized to a 

reference period. The linear model (lm) function of R is used to calculate trends. Statistical significance is tested based on a 

Student’s t-test under a non-null coefficients hypothesis. Trend coefficients and their statistics including standard error, p-

value and precipitation above the 95% percentile of the reference distribution are stored. The recipe created several plots, 

amongst others global and regional maps, timeseries with spread, trend lines and summary plots of trend coefficients. Results 150 

are stored in netCDF files including relevant information such as normalization functions and thresholds, and as figures. 

Figures 1 and 2 show examples of an analysis performed with the hyint diagnostic. A map of the HY-INT index (Fig. 1) 

calculated from EC-EARTH model data shows the projected average HY-INT compared to the reference period (1976-2005): 

hydroclimatic intensity is projected to greatly increase in some regions (e.g., eastern South America, northern Africa and the 

Arabian peninsula) and to decrease over other regions (e.g., Antarctica, Greenland, central and North-East Asia, central Africa 155 

and western and northern South America) with large areas showing only moderate changes. Trends shown in Fig. 2 exhibit a 
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relatively low inter-model spread for HY-INT. The projected increase in HY-INT seen for all models with values ranging 

around 10% per century models (also reflected as large geographical patterns) can also be seen in the precipitation intensity 

(SDI) and heavy precipitation indices (R95), the latter with an increase spread between 10 and 30% per century. Precipitation 

area (PA) is projected to increase by most models, whereas for projected changes in the dry spell length (DSL) and especially 160 

in the wet spell length (WSL) models do not agree on the sign of the projected changes, reflected also in high geographical 

variability (not shown). 

3.1.2 Droughts 

Three main types of droughts can be separated: (i) meteorological, (ii) hydrological, and (iii) agricultural droughts. Any type 

of drought needs to be defined in the context of local and seasonal characteristics implying that a drought should be identified 165 

rather as anomalous condition than based on an absolute threshold. 

Meteorological droughts are negative anomalies in precipitation. Depending on the local characteristics, a drought can be 

defined as an extended period of daily precipitation amounts below a given threshold. The threshold value is defined as the 

minimum amount of precipitation that is needed to recharge the soil moisture content. This approach requires good knowledge 

of the local and seasonal characteristics of the soil moisture content. However, it is a useful analysis to investigate climate 170 

models’ distributions of wet/dry periods which are indicative of how well suited the model is to couple to hydrological impact 

models. E.g., CMIP5 models have been shown to generally underestimate the number of consecutive dry days (Sillmann et 

al., 2013b; Cheng et al., 2016). The standardized precipitation index (SPI, McKee et al., 1993) describes local precipitation 

anomalies and is often used to identify Meteorological droughts. The SPI was developed as a replacement of the commonly 

used Palmer drought indices (Palmer, 1965) to better capture dry and wet anomalies. The SPI is calculated using monthly 175 

mean precipitation. Therefore, it does not account for the intensity of single precipitation events and the runoff process. 

Furthermore, SPI does not account for evaporation from the surface This implies, that one component of the water fluxes at 

the surface is lacking, which makes SPI incompatible with the concept of hydrological droughts. Evaluation of SPI from 

CMIP5 models shows large model biases (Ukkola et al., 2018). 

A hydrological drought occurs when low water supply effects streams, reservoirs, and groundwater levels and is usually caused 180 

by extended periods of meteorological droughts. These hydrological processes are usually not simulated with sufficient details 

in climate models. As a consequence, also agricultural droughts (i.e. when crops become affected by the hydrological drought) 

cannot be simulated properly by the models. Hydrological droughts can, however, be estimated in climate models by 

accounting for evapotranspiration. This allows the estimation of surface water retention. The standardized precipitation-

evapotranspiration index (SPEI, Vicente-Serrano et al., 2010) has been developed to take into account the effect of 185 

evapotranspiration on surface water fluxes. Evapotranspiration is typically not provided by CMIP models, so SPEI often takes 

other inputs to estimate the it, e.g. with the Thornthwaite method based on temperature (Thornthwaite, 1948), the Hargreaves 

method using the monthly mean of daily minimum and maximum near-surface temperature (tasmin and tasmax) (Hargreaves, 
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1994), or the Penman-Monteith method using minimum and maximum temperature together with 2 m wind speed (Allen et 

al., 1994), which is estimated from the surface wind (at 10 m). However, it has been shown that the method used to derive the 190 

potential evapotranspiration has little impact on the drought statistics (Burke et al., 2006). In contrast to this finding, (Shaw 

and Riha, 2011) conclude that especially for future scenarios with rising temperatures potential evapotranspiration based on 

estimates considering temperature only can lead to an overestimation of SPEI. 

In order to assess the performance of drought characteristics in climate models, three diagnostics have been implemented into 

the ESMValTool (v2.0): consecutive dry days, SPI and SPEI. The consecutive dry days diagnostic (recipe_consecdrydays.yml) 195 

has been implemented consistently with the CDO method ‘eca_cdd’ (Climate Data Operators, Schulzweida, 2018), and the 

SPI and SPEI diagnostics (recipe_spei.yml) are based on the R-package SPEI (https://cran.r-

project.org/web/packages/SPEI/SPEI.pdf; Vicente-Serrano et al., 2010). The recipe recipe_spei.yml computes the SPI and 

SPEI quantities for each model and summarizes the statistics of both indices as global averages in categories from “extremely 

dry” to “extremely wet”, see Fig. 3 and Fig. 4. By including an estimate for evapotranspiration, the model biases are reduced, 200 

particularly for the too frequent “moderately wet” category. For SPI (Fig. 3), the bias plot shows a clear underestimation of 

dry and wet conditions, which are mainly compensated by too frequent moderately and extremely wet conditions. For the 

neutral condition category, the results differ depending on the models with a tendency towards too frequent occurrence in most 

models. For SPEI (Fig. 4) the bias plot indicates too frequent neutral conditions, at the expense of mainly dry and wet 

conditions. Moderate and extreme wet conditions are overestimated in practically all models, whereas moderately and extreme 205 

dry conditions show the opposite behaviour. 

Using the SPI calculation described above, a recipe analysing drought events (recipe_martin18.yml) has been developed. 

Following Martin (2018), a drought event is defined as any consecutive number of months with “extremely dry” conditions 

(SPI < -2). The characteristics of these events from historical and future scenario model runs (see Fig. 5) as well as from 

observational data are then compared. The characteristics investigated are frequency, length, average SPI, and the severity 210 

index following Peters (2014), which is a measure combining the length and the SPI value of a drought. Figure 5 shows an 

increase in the number of drought events, the severity index and to a smaller amount the duration of drought events in the 

RCP8.5 scenario compared to the historical model runs, especially in the subtropical areas. The results support the finding, 

that regions with already dry conditions are much more likely to show a higher number of drought events for the RCP 8.5 

scenario, known as the “dry gets drier and the wet gets wetter” (DDWW) paradigm (Greve et al. 2014). 215 

3.2 Extreme events 

Changes in climate extremes are of utmost concern for society as the consequences of climate change will be strongly 

manifested in the severe impacts of extreme events, such as heatwaves and extreme precipitation, on human and natural 

systems. Some confidence in future projections of extreme events can be gained by evaluating the models’ performance in 

simulating historical events against observational data and reanalysis datasets. The 27 core climate extremes indices defined 220 
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by the ETCCDI (Zhang et al., 2011) are able to capture different characteristics of temperature and precipitation extremes and 

are suitable for monitoring observed climate extremes, model evaluation and analysis of changes in climate extremes in future 

climate projections (e.g. Sillmann et al., 2013a; Sillmann et al., 2013b; Donat et al., 2013). To calculate these indices, daily 

values of total precipitation (pr), daily mean near-surface air temperature (tas), daily minimum near-surface air temperature 

(tasmin) and maximum minimum near-surface air temperature (tasmax) are required. 225 

The recipe_extreme_events.yml calculates climate extremes indices and produces diagnostic figures for comparing model and 

observational extremes indices as presented in IPCC AR5 chapter 9 (Flato et al., 2013) and Sillmann et al. (2013a).  

The index computation is performed according to Zhang et al. (2005b). The indices are calculated from CMIP models and 

gridded observational/reanalysis data. Calculating the indices can take several hours up to days, depending on the number of 

models/observations, length of the time periods analysed and spatial resolution of the datasets as well as the computational 230 

resources. If possible, it is recommended to run this processing step on a parallel computing system, taking advantage of the 

ESMValTool task-based parallelization feature (Righi et al., 2020).  

There are two types of diagnostic plots that can be produced together and that reproduce the analysis shown in figure 9.37 of 

IPCC AR5 (Flato et al., 2013) for a given reanalysis and model dataset. The first one (see Fig. 6), shows time series providing 

a temporal comparison between the mean and spread (interquartile range) of the CMIP5 model ensemble and the individual 235 

observations for a single index. In Fig. 6, the agreement in trends between the CMIP5 models and reanalyses can be captured 

very well, due to the construction of the percentile-threshold based indices. Deviations from the nominal level of 10% outside 

the base period are mainly due to differences in the estimated trends in tasmin and tasmax of the individual models as compared 

to the respective reanalysis data set. In Sillmann et al. (2014) an alternative approach is described to evaluate percentile-

threshold based indices accounting for potential model biases in the mean. 240 

The second diagnostic plot (Fig. 7) shows performance metrics “portrait diagram”, which compare multiple models with up to 

4 different observations for multiple indices. The root-mean-square error (RMSE) between each model and each 

observational/reanalysis dataset is used as a measure for model performance. Figure 7 shows that the magnitude of median 

RMSE normalized by the spatial standard deviation of the index climatology 

in the reanalyses (RMSEstd) is generally larger for precipitation indices than for the absolute and percentile-threshold indices 245 

based on temperature with the exception of csdi and wsdi. For the temperature-based percentile-threshold indices (i.e., tx90p, 

tx10p, tn90p, and tn10p), the models generally perform well (except IPSL-CM5A-LR) due to their construction. This results 

in good agreement for the ensemble mean and medians compared to reanalysis data, whereas the root-mean-square error is too 

large as it is dominated by the outlier model (IPSL-CM5A-LR). 

Indices of climate extremes are a natural extension of those on the hydrological cycle discussed in Sect. 3.1 and an effort was 250 

made to make them available within the same analysis tool. As mentioned before, the ETCCDI computed by 

recipe_extreme_events.yml can be further processed by the recipe recipe_hyint_extreme_events.yml. Analogous to the 

recipe_hyint.yml (see also Sec. 3.1.1), it computes maps and box-averaged time series for pre-selected continental or user 

defined regions, computing trends and performing significance testing over the complete set of 6+27 indices. Depending on 
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the specific objective, the user can select the needed subset of indices. Significance testing is performed with a Student’s t-test 255 

on non-null coefficients hypothesis and trend coefficients are stored together with their statistics. The recipe produces a variety 

of plot types for the indices, including maps and time series with their spread, trends, and summary plots of trend coefficients. 

3.3 Impacts of climate change 

3.3.1 Heat and cold wave duration 

Heat waves are expected to become one of the greatest threats to human health in the 21st century due to projected increases 260 

in both frequency and severity (IPCC, 2013; Ouzeau et al., 2016), while the duration, intensity and frequency of cold waves 

are expected to decrease. It is not clear yet, however, what the impact of changes in heat and cold waves on related mortality 

will be, since mortality due to heat waves and cold waves inferred from historical simulations is typically overestimated. This 

is partly due to challenges in the correct simulation of extremes (Wang et al., 2016). In the case of heat waves in particular, 

models have been shown to contain biases in the 90th and 10th percentiles over the historical period (Pereira et al., 2017). 265 

However, by using a bias adjustment method based on percentiles, climate models are able to produce output which is 

consistent with events observed during the historical period (Ouzeau et al., 2016). 

The diagnostics of the recipe_heatwaves_coldwaves.yml uses the daily maximum or minimum temperatures to estimate the 

relative change in heat as well as cold wave characteristics in future climates compared to a reference period . The user selects 

the model, emissions scenario, the region of interest and the reference as well as the projection periods and the percentile which 270 

will be used to compute the threshold for exceedance or non-exceedance from the reference period (a separate threshold is 

computed for each day of the selected season and grid point using the quantile bootstrapping method described in Zhang et al. 

(2005b)). Further options, which can be selected include whether to compute the frequency of exceedances or non-exceedances 

of extreme high or extreme low temperature events, respectively. Additionally, the minimum duration of an event to be 

classified as a heat/cold wave and the season of interest can be set. The diagnostic calculates the number of consecutive days 275 

over which temperature exceeds or does not exceed the given threshold in future climate projections. The result is presented 

as annual time series of the total number of heat or cold wave days for the selected season at each grid point and the average 

number of these days for the selected season in the future climate projections is calculated, see Fig. 8. 

3.3.2 Combined Climate Extreme Index 

High mortality rates, increases in hospital admissions as well as major economic losses are often associated with extreme 280 

events (Meehl et al., 2000; Zhang et al., 2011; Fouillet et al., 2006; Whitman et al., 1997). This emphasizes the need for 

monitoring and forecasting extreme events, in particular since some studies suggest that extremes are increasing in both 

frequency and severity with increasing anthropogenic greenhouse gases (Alexander et al., 2006; Donat et al., 2013). 
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The recipe recipe_extreme_index.yml allows a user to compute the Combined Climate Extreme Index, which is defined as a 

combination of different extreme values linked to precipitation, surface temperature and surface wind speed. This index is 285 

similar to the Climate Extremes Index (CEI; Karl et al., 1996), the modified CEI (mCEI; Gleason et al., 2008) or the Actuaries 

Climate Index (ACI; American Academy of Actuaries, 2018). In recipe_extreme_index.yml, the user defines the area, the 

reference period, the period of interest and the weights assigned for each individual component of the index. The weights allow 

the user to put the emphasis on the extremes that are more relevant to them and/or completely exclude non relevant ones. 

Temperature and precipitation extremes are defined in a similar fashion as in Donat et al. (2013) and are part of the larger set 290 

of extreme indices compiled by the ETCCDI (Zhang et al., 2011). The different components of the multi-metric index are 

- weight_t90p: the number of days when the maximum temperature exceeds the 90th percentile,  

- weight_t10p: the number of days when the minimum temperature falls below the 10th percentile,  

- weight_Wx: the number of days when wind power (third power of wind speed) exceeds the 90th percentile, 

- weight_cdd: the maximum length of a dry spell, defined as the maximum number of consecutive days when the daily 295 

precipitation is below 1 mm, and 

- weight_rx5day:  the maximum precipitation accumulated during 5 consecutive days.  

The thresholds are computed for each day in a season using a five-day running window as described in (Zhang et al., 2005a). 

For the calculation of the index a user-defined reference period is used for normalization and computation of the threshold 

corresponding to the selected metric. This recipe creates a plot containing the time average of the components listed above for 300 

the period of interest (Fig. 9a to 9e). The recipe also computes the area-weighted average of those components and combines 

them into a single index using the weights and the running mean (running_mean parameter) defined by the user. The output 

of the recipe consists of a netCDF file of the area-weighted and multi-model multi-metric index and a plot of the time series 

of that index over the selected period.  

3.3.3 Daily temperature range variation 305 

The daily temperature range (DTR) corresponds to the difference between the minimum and maximum temperature within a 

period of 24 hours at a given location. The usefulness of the global-average DTR has been proved using both observations and 

climate model simulations (Braganza et al., 2004). Changes in the mean and variability of the DTR have been shown to have 

a wide range of impacts on society, for example on the transmission of diseases (Lambrechts et al., 2011; Paaijmans et al., 

2010) and energy consumption (Déandreis et al., 2014). 310 

In the energy sector, a vulnerability indicator based on the DTR has been defined to identify locations which may experience 

increased diurnal temperature variations in the future (Déandreis et al., 2014). Increased diurnal temperature variations put 

additional stress on the operational management of urban heating systems. A measure for increased diurnal temperature 

variations is defined as the DTR exceeding the value of the reference period by 5 K at a given location and for a given day of 
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the year. Projections of this measure are currently subject to large uncertainties as both projections of daily maximum and 315 

minimum near-surface temperature (tasmax and tasmin) in future climate projections are highly uncertain.  

The recipe recipe_diurnal_temperature_index.yml computes the mean DTR for a given reference period using historical 

simulations and then the number of days on which the DTR in future climate projections exceeds that of the reference period 

by 5K or more. The user can define both the reference and projection periods, and the region to be analysed. The output 

produced by this recipe consists of a four-panel plot showing the maps of the projected mean DTR indicator for each season 320 

(see Fig. 10) and a netCDF file containing the corresponding data. 

3.3.4 Capacity factor 

The energy sector is the largest contributor to greenhouse gas (GHG) emissions (IPCC, 2014b). Therefore, many countries 

have adopted mitigation strategies to increase the fraction of energy generated from renewable sources in the forthcoming 

years. However, renewable energy sources like wind power and solar power rely heavily on atmospheric conditions to produce 325 

energy and are therefore exposed to risks from climate variability and long-term change in case they lead to detrimental 

atmospheric conditions. The relationship between wind speed and energy production by wind turbines is highly non-linear 

because turbines are designed to be efficient for a narrow band of wind speed conditions. Therefore, changes in the wind speed 

distribution can impact electricity generation and thus the revenues and economic viability of wind farms. The capacity factor 

is a normalized indicator of the suitability of wind speed conditions to produce electricity, irrespective of the size and number 330 

of installed turbines. The factor is provided for wind turbines designed for low, medium and high wind speed conditions in 

grouped in three different classed (IEC, 2005). 

The recipe recipe_capacity_factor.yml computes the wind capacity factor for these three wind turbine classes (see Fig. 11), 

taking as input the daily instantaneous surface wind speed, extrapolating to the wind speed at 100 m height as described in 

(Lledo et al., 2019). The user can select the region, period and season of interest. The result of the recipe is the capacity factor 335 

for each of the three turbine classes saved as netCDF file.  

The output of solar photovoltaic (PV) systems depends on the time of the day, season, and weather conditions. The PV capacity 

factor is a measure of which fraction of the maximum possible energy is produced per grid cell. The solar power generation of 

a PV system mainly depends on the amount of incoming surface solar radiation but is also influenced by other atmospheric 

variables that affect the efficiency of PV cells, which decreases as their temperature increases. The 340 

recipe_pv_capacity_factor.yml computes the PV capacity factor using the daily incoming surface solar radiation and the 

surface temperature with a method described in Bett and Thornton (2016). The user can select temporal range, season, and 

region of interest. An example for is shown in Fig. 12 for ERA-Interim and five CMIP 5 models. 
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3.4 Applications for regional scales 

3.4.1 Evaluation of global climate models for selected regions 345 

Climate or Earth system models with a fully coupled ocean are important tools to project the future evolution of the climate 

system in response to anthropogenic forcings, such as the increase in GHG concentrations. Despite their coarse horizontal 

resolutions (typically in the order of a hundred kilometres or less) these models can provide climate information at the regional 

scale to allow for assessing the impacts of climate change. The ability of these models to simulate regional climate is an 

important aspect of model evaluation.  350 

The recipe recipe_flato13ipcc.yml includes a subset of diagnostics and figures from the model evaluation chapter of the IPCC 

AR5 (Chapter 9, Flato et al., 2013), which compare surface parameters (such as temperature and precipitation) from models 

and observations at regional scales. 

Mean seasonal cycle of precipitation and temperature is calculated over land areas within selected regions for individual 

models, the multi-model mean and observation/reanalysis data (see Fig. 13). Regional biases, including 5th, 25th, 50th, 75th 355 

and 95th percentiles of the biases, in seasonal and annual mean temperature and precipitation are evaluated for several land, 

polar and oceanic regions (see Figs. 14 and 15). Diagnostics allow the comparison of the multi-model mean for different 

projects (i.e. CMIP3, CMIP5) including information on the amplitude of the root-mean-square error. The regions used in this 

recipe can be irregular polygons and are defined following the IPCC Special Report on Managing the Risks of Extreme Events 

and Disasters to Advance Climate Change Adaptation (SREX) land regions (Seneviratne et al., 2012). In addition to the regions 360 

described here, the ESMValTool preprocessor can be used to run many diagnostics on distinct regions defined by latitude and 

longitude limits. We plan to also include regions with more complex boundaries like the CORDEX (Coordinated Regional 

Downscaling Experiment) regions (Gutowski et al., 2016). 

Systematic biases in modelled projections (Boberg and Christensen, 2012) can be investigated by ranking models against 

observed monthly mean temperature (see Fig. 16). 365 

3.4.2 Stochastic Downscaling 

The stochastic downscaling recipe is an example of how the ESMValTool (including its pre-processing functionalities) can be 

used to create a post-processing chain for further downscaling applications, but strictly speaking not a diagnostic. 

The application of climate model projections and forecasts to impact studies at small scales, such as hydrological modelling 

or ecological modelling, requires to bridge the large gap between the spatial resolution of current global and regional climate 370 

models and the scales required for a correct representation of the spatial and temporal structure of precipitation at fine-scales 

and of the probability of extreme precipitation events. In absence of a dynamical, physically based representation, a possible 

approach is the use of stochastic rainfall downscaling techniques. In particular, the Rainfall Filtered AutoRegressive Model 

(RainFARM; Rebora et al., 2006; D'Onofrio et al., 2014; Terzago et al., 2018) method is a weather generator which has only 
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one free parameter (which can be derived from the large scales) and which requires no further calibration. RainFARM can 375 

create ensembles of high-resolution precipitation fields from coarse scale climate model data. This method also allows 

quantification of uncertainties and a realistic representation of subgrid-scale variability of precipitation and of precipitation 

extremes, which is a crucial prerequisite for impact studies in the water sector. 

The recipe recipe_rainfarm.yml allows running RainFARM within the ESMValTool. Downscaled output can be produced 

directly from the climate model results read by the ESMValTool and exploiting its input checking, validation and pre-380 

processing features. The recipe produces ensembles of downscaled fields (see Fig. 17) over selected regions in netCDF format, 

which can then be used by users for further analysis. Notice how the downscaled fields introduce fine scale precipitation 

structures, while still maintaining on average the original coarse-resolution precipitation. Different stochastic realizations are 

shown to demonstrate how an ensemble of realizations can be used to reproduce unresolved sub grid variability. 

3.5 Multi-model ensemble member sub-selection 385 

Large multi-model ensembles are a way to assess model and scenario uncertainties in future climate projections and other 

model experiments. However, considering constraints in the availability of computer time and human resources, not all 

available ensemble members can be included in most detailed climate impact studies associated to a given future scenario. 

Therefore, despite the importance of using an ensemble that is representative for the region and process of interest covering 

their full uncertainty range, one or few ensemble members are often rather subjectively selected depending on, for example, 390 

their availability and simplicity to access the datasets. Using more specific information about the needs of the impact study as 

guidance for the selection of simulations, the resulting subset can be better suited for the purpose of climate change impact 

research. Here, we present an efficient and flexible tool that makes better use of the ensemble by reducing its size while 

maintaining important ensemble characteristics. 

To find an optimal subset of significantly different model projections for a given emission scenario, a clustering algorithm is 395 

applied to the multi-model ensemble for data reduction. This technique is already used to characterize the most likely scenarios 

in an ensemble of weather forecasts (Ferranti and Corti, 2011; Straus et al., 2017). Similar methodologies also based on cluster 

analysis have been explored to select a subset from an ensemble of climate simulations (Wilcke and Barring, 2016). This 

approach, applied at a regional level, can also be used to identify the subset of climate model ensemble members that best 

represent the full range of results for further downscaling applications.  400 

The choice of the ensemble members is made flexible in order to meet the requirements of specific (regional) climate products 

and can be defined according to region and user needs. The decision of which variables are considered depends on the type 

and goals of the climate change impact assessment. For example, a study on future hydrological floods would require in 

particular changes of precipitation extreme quantiles, a study on the impact of climate change on the exploitation of ski slopes 

would require information about changes in winter temperatures and precipitation. 405 
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EnsClus (recipe recipe_ensclus.yml) is a cluster analysis tool in written in Python for ensembles of climate model simulations. 

The tool is based on the k-means algorithm with the aim to group ensemble members by similar characteristics and to select 

the most representative member for each cluster. The user chooses which characteristic is used to group the ensemble members 

by the clustering: maximum, a given percentile (75% in the example below), mean, standard deviation or trend over the period. 

For each ensemble member this value is computed at each grid point. This results in N latitude-longitude maps, where N is the 410 

number of ensemble members. The anomalies are computed by subtracting the ensemble mean of these maps from each of the 

individual maps. The anomalies are therefore not computed with respect to time but to the ensemble members An Empirical 

Orthogonal Function (EOF) analysis is performed on these anomaly maps. For the EOF analysis, the user can set either how 

many Principal Components (PCs) should be calculated or the minimum percentage of the explained variance which should 

be covered. After reducing dimensionality via EOF analysis, the k-means algorithm is applied using the selected PCs (the 415 

number k of clusters needs to be defined prior to the analysis). The output of the recipe is a classification by clusters, i.e. which 

ensemble member belongs to which cluster and the most representative ensemble member for each cluster, defined by the 

member being closest to the cluster centroid. Additionally, output of the recipe includes the statistics of clustering: in the PC 

space, the minimum and the maximum distance between a member in a cluster and the cluster centroid (i.e. the closest and the 

farthest member), and the intra-cluster standard deviation for each cluster (i.e. compactness of the cluster). An example is 420 

shown in Fig. 18. The figure shows a clustering based on the 75th percentile of historical summer (JJA) precipitation rate for 

32 CMIP5 models for the period 1900-2005. Based on the principal components explaining 80% of the variance three clusters 

are computed. The green cluster is the most populated with 16 ensemble members. It is mostly characterized by a positive 

anomaly over central-north Europe. The red cluster contains 12 ensemble members. It exhibits a negative anomaly centred 

over southern Europe and in few cases (e.g. No.12 and No.23) extending north. The third cluster (blue) includes only 4 models. 425 

It is showing a north-south dipolar precipitation anomaly, with a wetter than average Mediterranean counteracting dryer North-

Europe. Ensemble members No.9, No.26 and No.19 are the “specimen” of each cluster, i.e. the model simulations that best 

represent the main features of that cluster. These three ensemble members can eventually be used as representative of the 

whole possible outcomes of the multi-model ensemble distribution associated to the 32 CMIP5 historical integrations for the 

summer precipitation rate 75th percentile over Europe. This reduces the outcomes from 32 to 3 ensemble members. The 430 

number of ensemble members of each cluster might provide a measure of the probability of occurrence of each cluster. 

However, the final results are sensitive to models’ bias and to the metric used, as in any selection exercise. 

4. Summary  

This paper summarizes the recipes available within the ESMValTool v2.0 for the analysis of extreme events, droughts, model 

impact assessment, sub-selection of multi-model ensemble members e.g. for downscaling applications, as well as model 435 

evaluation on regional scales. It complements the series of papers that have been published on ESMValTool v2.0 by Righi et 
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al. (2020) describing the technical aspects of ESMValTool v2.0, Eyring et al. (2020) presenting the new large-scale diagnostics 

that have been included in v2.0 since the first release in 2016 (Eyring et al., 2016), and Lauer et al. (2020) covering emergent 

constraints and diagnostics for the analysis of future projections from ESMs in CMIP. 

For droughts, recipes calculating the consecutive number of dry days, the SPI, and the SPEI have been newly included in 440 

ESMValTool v2.0 as well as a recipe to analyse the frequency, length, and severity of drought events based on the SPI.  

For further analysis of extreme events, climate extreme indices of the Expert Team on Climate Change Detection and Indices 

(ETCCDI) based on Zhang et al. (2011) have been included. These indices are calculated based on daily total precipitation, 

and the mean, minimum and maximum of the near-surface air temperature. The indices can then be plotted, used as a measure 

of model performance, and further processed to calculate index trends and their significance.   445 

For model impact assessments, recipes to analyse heat and cold wave duration, diurnal temperature variations, as well as 

different extreme indices are included in ESMValTool v2.0. Additional recipes compute capacity factors to analyse the impact 

of climate change on the wind and solar energy production.   

For the analysis of ensembles of climate models, ESMValTool v2.0 provides a cluster analysis based on a k-means algorithm 

where the ensemble members are divided into clusters and can be plotted along with the properties of the clusters and the most 450 

representative member of each cluster. 

ESMValTool v2.0 also includes diagnostics for model evaluation on regional scales. Surface parameters such as temperature 

and precipitation can be evaluated for regions defined by polygons following the SPEX definitions of land regions. 

Additionally, the ESMValTool output can be used to be processed further by tools for stochastic downscaling, like RainFARM 

which is also implemented in v2.0. 455 

Although the recipes here are presented using CMIP5 data, ESMValTool v2.0 can be run to perform the same analysis for 

CMIP6 data. As an open-source project, the capabilities of the ESMValTool continue to grow with contributions from the 

scientific community being highly welcome. Users can analyse data using a wealth of existing recipes or join the ESMValTool 

development team and add new recipes and diagnostics. 

5. Code availability and data availability 460 

Code and data availability. ESMValTool v2.2 is released under the Apache License, Version 2.0. The latest release of 

ESMValTool v2.2 is publicly available on Zenodo at  http://doi.org/10.5281/zenodo.4562215 (Andela et al., 2021a). The 

source code of the ESMValCore package, which is installed as a dependency of the ESMValTool v2.2, is also publicly 

available on Zenodo at http://doi.org/10.5281/zenodo.4525749 (Andela et al., 2021b). ESMValTool and ESMValCore are 

developed on the GitHub repositories available at https://github.com/ESMValGroup (last access: 24 July 2020). CMIP5 data 465 

are available freely and publicly from the Earth System Grid Federation. Observations used in the evaluation are detailed in 

http://doi.org/10.5281/zenodo.4562215
http://doi.org/10.5281/zenodo.4525749
https://github.com/ESMValGroup
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the various sections of the paper and listed in Table 1. They are not distributed with ESMValTool, which is restricted to the 

code as open-source software. 
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Table 1. Overview of recipes implemented in ESMValTool v2.0 along with the section they are described, a brief description, the variables used, 

and the diagnostic scripts included. For further details, we refer to the GitHub repository and documentation at https://docs.esmvaltool.org/. 690 

Recipe name Section 

(Figures) 
Description, References Variables 

(Observational 

datasets) 

Diagnostic scripts 

Section 3.1: Hydrological cycle 

recipe_hyint.yml 3.1.1 

(Fig 1) 

Recipe for evaluating the intensity of the 

hydroclimatic cycle, calculating a set of 6 

indices following Giorgi et al. (2011, 2014): 

simple precipitation intensity index (SDII), 

maximum dry spell length (DSL) and wet 

spell length (WSL), hydroclimatic intensity 

index (HY-INT), which is a measure of the 

overall behaviour of the hydroclimatic 

cycle, and precipitation area (PA), i.e. the 

area over which on any given day 

precipitation occurs. 

pr hyint/hyint.R 

recipe_hyint_extreme_events.yml 3.1.1 

(Fig 2) 

Multi-diagnostic version of hyint, 

which allows to include ETCCDI 

results from the extreme_events 

diagnostics and performs joint analysis 

of indices for hydroclimatic intensity 

and extreme events. Giorgi et al. (2014); 

Giorgi et al. (2011); (Sillmann et al. 2013a) 
      

pr 

tasmin 

tasmax 

 

hyint/hyint.R 

extreme_events/extreme_events.R 

recipe_consecdrydays.yml 3.1.2 Dry day definition (precip limit 

mm/day) and drought duration (days) 

can be set by the user. 

Output as netCDF files for each model 

possible. Computed consistently with 

the CDO method “eca_cdd” in 

Schulzweida (2018) 

pr droughtindex/diag_cdd.py 

recipe_spei.yml 3.1.2 

(Figs. 3, 

4) 

Global average histogram of SPI and 

SPEI, as absolute values and as bias. 

The calculations are based on pr for 

both indices, but for SPEI with the 

additional use of ta to derive 

pr 

(ERA-Interim) 

ta 

(CRUts4.01) 

droughtindex/diag_spi.r 

droughtindex/diag_spei.r 

https://doi.org/10.1002/2014JD022238
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evapotranspiration using the 

Thornthwaite method. 

Requires a reference dataset and 

calculates a global cosine of latitude 

weighted histogram for all valid grid 

points of the reference data set. 

Calculation of SPI and SPEI based on  

Vicente-Serrano et al. (2010) 

recipe_martin18grl.yml 3.1.2 

(Fig. 5) 

Computes a monthly time series of SPI, 

based on diag_spi.r (distribution and  

representing time scale can be set by the 

user) and calculates drought events as 

consecutive number of months with SPI 

< -2. For each grid point the drought 

characteristics (frequency, average 

duration, and SPI as well as the severity 

index) based on  

Martin (2018) are calculated. 

Differences between individual models 

or a multi model mean and observations 

or future scenarios and historical model 

runs are calculated.  

pr (CRU) droughtindex/diag_save_spi.R 

droughtindex/collect_drought_func.py 

droughtindex/collect_drought_obs_multi.py  

droughtindex/collect_drought_model.py 

Section 3.2: Extreme events   

recipe_extreme_events.yml 3.2 

(Figs. 6, 

7) 

Calculate indices for monitoring 

changes in extremes (Sillmann et al., 

2013a) based on daily temperature and 

precipitation data. Produces Glecker 

and time series plots as shown in the 

IPCC AR5 report (Flato et al., 2013)  

pr  
tas 

tasmin 

tasmax 

(ERA-

Interim) 

extreme_events/extreme_events.R 

Section 3.3: Evaluation for impact assessments   

recipe_heatwaves_coldwaves.yml 

 

3.3.1 

(Fig. 8) 

MAGIC, time averages, differences 

between historical simulations and a 

future scenario, calculates the number 

of days exceeding a given quantile for a 

minimum number of consecutive days. 

Watts et al. (2015) 

Tasmin 

Tasmax 
magic_bsc/extreme_spells.r 
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recipe_extreme_index.yml 3.3.2 

(Fig. 9) 

MAGIC, computes time series of the 

number of several extreme events: 

heatwave, 

 cold wave, heavy precipitation, 

drought, and high wind. 

Karl et al. (1996); Gleason et al. (2008); 

American Academy of Actuaries 

(2018) 

Tasmin 

tasmax 

pr 

scfWind 

magic_bsc/extreme_index.r 

recipe_diurnal_temperature_index.yml 3.3.3 

(Fig. 10) 

MAGIC, time averages, difference 

between historical and future scenario, 

computes the dates where the DTR 

exceeds a threshold, 

Déandreis et al. (2014) 

tasmin 

tasmax 
magic_bsc/diurnal_temp_index.r 

recipe_capacity_factor.yml 3.3.4 

(Fig. 11) 

MAGIC, calculates the wind power 

capacity factor, 

Lledo et al. (2019) 

scfWind magic_bsc/capacity_factor.r 

recipe_pv_capacity_factor.yml 3.3.4 

(Fig. 12) 

Photo voltaic capacity factor. tasmax 

rsds 

(ERA-Interim) 

pv_capacityfactor/pv_capacity_factor.R 

Section 3.4: Regional model evaluation   

recipe_flato13ipcc.yml 3.4.1 

(Figs. 

13, 14, 

14, 16) 

Figures similar to figures of the IPCC 

AR5 (Flato et al., 2013). 

Fig. 13: Seasonal cycle over land within 

defined regions (like Fig. 9.38) 

Fig 14: Downscaling: Seasonal bias 

box plot within defined regions (like 

Fig. 9.39) 

Fig. 15: Downscaling: Seasonal bias 

box plot within defined polar and ocean 

regions (like Fig. 9.40)  

Fig. 16: Downscaling: observations 

versus models within defined regions 

(like Fig. 9.41)  

 

tas (ERA-

Interim, CRU) 

pr (CRU) 

regional_downscaling/Figure9.38.ncl 

regional_downscaling/Figure9.38.ncl 

regional_downscaling/Figure9.38.ncl 

regional_downscaling/Figure9.38.ncl 

 

recipe_rainfarm.yml 3.4.2 

(Fig. 17) 

MAGIC, Stochastic spatial 

donwscaling of daily precipitation 

using the RainFARM method (Rebora 

et al. 2006; D'Onofrio et al. 2014). 

pr rainfarm/rainfarm.R 
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Allows calculation of climatological 

weights to take into account the effect 

of orography following Terzago et al. 

(2018). Produces ensembles of 

downscaled precipitation fields in 

netCDF format. No plots are produced. 

Section 3.5: Multi-model ensemble member sub-selection   

recipe_ensclus.yml 3.5 (Fig. 

18) 

Cluster analysis tool for ensembles of 

climate model simulations. EnsClus 

groups ensemble members according to 

similar characteristics (based on the k-

means algorithm) and selects the most 

representative member for each cluster 

(Straus et al., 2007) 

Pr 

tas 
ensclus/ensclus.py 
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Figure 1: Mean hydroclimatic intensity index (i.e., a combination of precipitation intensity and dry spell length normalized compared 

to a reference period) over the years 2006-2099, for the EC-EARTH model RCP 8.5 projection. The historical years 1976-2005 were 

used as the reference period. The figure is an example of a large number of different plots which can be produced with 700 

recipe_hyint.yml, similar to (Giorgi et al., 2014). For details see Section 3.1.1. 
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Figure 2: Trend in selected indices for an ensemble of CMIP5 models (historical + RCP 8.5 projection) over the time period 1976-

2099. The trends are calculated over the latitude band 60°S-60°N. Data were normalized to the historical 1976-2005 period. Indices 705 

include the precipitation area (PA), hydroclimatic intensity (HY-INT), precipitation intensity (SDII), heavy precipitation (R95), wet 

and dry spell length (WSL and DSL) following Giorgi et al. (2014). Error bars show the geographical variability (standard deviation) 

within the region, colours the statistical significance of the trend (90% grey, 95% blue). This is an example of a large number of 

different plots which can be produced with recipe_hyint.yml, similar to Giorgi et al. (2014). For details see Section 3.1.1. 

 710 
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Figure 3: Output from SPI diagnostic in recipe_spei.yml with globally averaged histograms of SPI over land areas, weighted by the 

cosine of latitude for a selection of CMIP5 models and using gridded observations from CRUts4.01. (top) Absolute values, and 

(bottom) bias of all models compared to CRUts4.01, for details see Section 3.1.2. 

 715 

Figure 4: Output from the SPEI diagnostic in recipe_spei.yml with globally averaged histograms of SPEI over land areas, weighted 



 

30 

 

by the cosine of latitude for a selection of CMIP5 models and using gridded observations from CRUts4.01. (top) Absolute values, 

and (bottom) bias of all models compared to CRUts4.01, for details see Section 3.1.2. 

 720 

 

Figure 5: Difference in number (a), duration (b), average SPI (c), and Severity Index (d) of drought events between the RCP8.5 

(2050-2100) and historic (1950 to 2000) multi-model mean of 15 CMIP5 models. Here, a drought event is defined as any number of 

consecutive months with an SPI < -2. For the SPI calculation a Gamma distribution and a representative time scale of 6 months is 725 

used. The Figure is similar to Figure 3 a – d of (Martin, 2018) and produced with recipe_martin18grl.yml, for details see Section 

3.1.2. 
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Figure 6: Time series plot of the annual percentage of days when the daily maximum temperature is higher than the 90th percentile 730 

for the respective calendar day. Percentile thresholds are calculated following (Zhang et al., 2005b) for the base period 1980-2004. 

The shading indicates the interquartile ensemble spread (range between the 25th and 75th quantiles). The CMIP5 ensemble mean 

(blue line, 5 models in this example) averaged over all land grid boxes is compared with the reanalysis datasets MERRA-2 (green 

dashed line) and ERA-Interim (red dashed line). Similar to Figure 9.37 e of IPCC AR5 (Flato et al., 2013) and produced with 

recipe_extreme_events.yml, for details see Section 3.2. 735 
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Figure 7: “Portrait” diagram showing relative spatially averaged root-mean-square errors (RMSE) in the 1980–2004 climatologies 

of 12 temperature and 3 precipitation indices (marked with a blue rectangle) simulated by CMIP5 models (5 in this example along 

x-axis) with respect to the two reanalyses ERA-Interim (upper triangle) and MERRA2 (lower triangle). The RMSEs are spatially 740 

averaged over all land grid points. The top row (RMSEall) indicates the mean relative RMSE across all indices for the CMIP5 

ensemble mean (first column) and median (second column) and each model individually. Blue (red) colours indicate that a model 

performs better (worse) than the median of all model results when compared to the respective reanalysis dataset. The grey shaded 

column at the right-hand side indicates the median RMSE normalized by the spatial standard deviation of the index climatology in 

the reanalyses (RMSEstd). The root-mean-square error is shown in greyscale on the right. See (Sillmann et al., 2013a) for details. 745 

Similar to Figure 9.37a of the IPCC AR5 report (Flato et al., 2013) and produced with recipe_extreme_events.yml, for details see 

Section 3.2. 
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Figure 8: a) Average annual number of summer days during the time period 2060-2080 when the daily maximum near-surface air 750 

temperature exceeds the 80th percentile of the 1971-2000 reference period. The minimum duration of a heatwave event can be chosen 

in the recipe and is set to 5 days here. b) Mean annual number of summer days when the daily maximum near-surface air 

temperature exceeds the 80th percentile of the 1971-2000 reference period averaged over the region shown in a). Results shown are 

for the RCP 8.5 scenario simulated by BCC-CSM1-1 (see Section 3.3.1 for details on recipe_heatwaves_coldwaves.yml). 
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Figure 9: a-e) Average change in each of the components of the Combined Climate Extreme Index for the time period 2020-2040 

compared to the 1971-2000 reference period (a) upper temperature percentile, b) lower temperature percentile, c) wind, d) drought 

e) maximum precipitation). Figure 9f shows a time series for the combined index for 2020-2040. The results are shown for the RCP 

8.5 scenario simulated by MPI-ESM-MR (see Section 3.3.2 for details on recipe_extreme_index.yml). 760 
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Figure 10: Average number of days/year exceeding the Diurnal Temperature Range (DTR) of the historical period (1961-1990) by 

5 degrees during the period 2030-2080. The example shown is calculated for the RCP 8.5 scenario simulated by MPI-ESM-MR (see 

Section 3.3.3 for details on recipe_diurnal_temperature_index.yml). 765 
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Figure 11: Wind capacity factor for five kinds of wind turbines: Enercon E70 (top-left), Gamesa G80 (middle-top), Gamesa G87 

(top-right), Vestas V100 (bottom-left) and Vestas V110 (middle-bottom) using the IPSL-CM5A-MR simulation for the rcp8.5 

scenario during the period 2021-2050 (see Section 3.3.4 for details on recipe_capacity_factor.yml). 770 
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Figure 12: Photovoltaic capacity factor during the DJF period 1980-2005 using ERA-Interim (a), CMCC-CM(b ), CNRM-CM5 (c), 

IPSL-CM5-MR (d), MIROC5 (e) and MRI-CGCM3 (f) (see Section 3.3.4 for details on recipe_pv_capacity_factor.yml). 
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Figure 13: Difference of the mean seasonal cycle for the surface temperature (tas) between 38 CMIP 5 models and ERA-Interim 775 

data averaged for 1980-1999 over land in different regions: Western North America (WNA), Eastern North America (ENA), Central 

America (CAM), Tropical South America (TSA), Southern South America (SSA), Europe and Mediterranean (EUM), North Africa 

(NAF), Central Africa (CAF), South Africa (SAF), North Asia (NAS), Central Asia (CAS), East Asia (EAS), South Asia (SAS), 

Southeast Asia (SEA), and Australia (AUS). Similar to Figure 9.38a of the IPCC AR5 report (Flato et al., 2013) and produced with 

recipe_flato13ipcc.yml, for details see Section 3.4.1. 780 
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Figure 14: Box and whisker plots showing the 5th, 25th, 50th, 75th and 95th percentiles of the seasonal- and annual mean biases for 

the surface temperature (tas) between 34 CMIP5 models and ERA-Interim data. The regions are: Alaska/NW Canada (ALAs), 

Eastern Canada/Greenland/Iceland (CGIs), Western North America(WNAs), Central North America (CNAs), Eastern North 785 

America (ENAs), Central America/Mexico (CAMs), Amazon (AMZs), NE Brazil (NEBs), West Coast South America (WSAs), South-

Eastern South America (SSAs), Northern Europe (NEUs), Central Europe (CEUs), Southern Europe/the Mediterranean (MEDs), 

Sahara (SAHs), Western Africa (WAFs), Eastern Africa (EAFs), Southern Africa (SAFs), Northern Asia (NASs), Western Asia 

(WASs), Central Asia (CASs), Tibetan Plateau (TIBs), Eastern Asia (EASs), Southern Asia (SASs), Southeast Asia (SEAs), Northern 

Australia (NASs) and Southern Australia/New Zealand (SAUs). The positions of these regions is shown in the map, they differ from 790 

the ones in Fig. 12 and are defined following (Seneviratne et al., 2012). Similar to Figure 9.39a,c,e of the IPCC AR5 report (Flato et 

al., 2013) and produced with recipe_flato13ipcc.yml, for details see Section 3.4.1. 
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Figure 15: Box and whisker plots showing the 5th, 25th, 50th, 75th and 95th percentiles of the seasonal- and annual mean biases for 

the precipitation (pr) for oceanic and polar regions between 38 CMIP5 models and CRU data. Similar to Figure 9.40b,d,f of the 

IPCC AR5 report (Flato et al., 2013) and produced with recipe_flato13ipcc.yml, for details see Section 3.4.1. 
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Figure 16: Ranked modelled versus ERA-Interim mean temperature for 38 CMIP5 models in the Mediterranean region (defined as 

in Fig. 14) for the 1979–2000 period. Similar to Figure 9.41b of the IPCC AR5 report (Flato et al., 2013) and produced with 

recipe_flato13ipcc.yml, for details see Section 3.4.1. 
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Figure 17: Left panel: Example of daily accumulated precipitation from the EC-EARTH CMIP5 model on a specific day (artificial 

date, not a real precipitation event), downscaled using RainFARM from its original resolution (1.125°). Central and right panel: 

Two stochastic realizations for increasing the spatial resolution by a factor of 8 to 0.14°; A fixed spectral slope of s=1.7 was used. 

The data were produced by recipe_rainfarm.yml but this plot was not produced by ESMValTool - the recipe output is netCDF only. 

 810 
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Figure 18: Clustering based on the 75th percentile of historical summer (JJA) daily precipitation rate for 32 CMIP5 models for the 

period 1900-2005. The colour of the model number of each ensemble member indicates the cluster to which they belong. The most 

representative members of each cluster is marked with a coloured border. See section 3.5 for details on recipe_ensclus.yml. 815 

 


