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sosteni

Abstract. This papeicomplements series ohow four publications thattocumenthe release of the Earth System Model

Evaluation Tool(ESMValTool) v2.0 It describesnew diagnosticson the hydrological cycle, extreme events, impact

assessment, regionaVvaluatiors, and ensemble member selectithe diagnostics ardevelopedby a large community of
scientists aiming tdacilitate the evaluationand comparisorof Earth System Modsl(ESMs) which areparticipatingin the
Coupled Model Intercomparison Project (CNIFhe second release tfis toolaims to support the evaluation of ESM
participating inCMIP Phase 6MIP6). Furthermoredata sets from other models and observatiars beanalysed The
diagnostics for the hydrological cycle include severatipitation andirought indicesas well as hydroclimatic intensignd
indicesfrom the Expert Team on Climate Changetection and Indices (ETCCDI). Thegterare alsaisedfor identification

of extreme events and for impact assessnaglto project and characteritleerisks and impacts of climate charfge natural

and seio-economic systemd-urtherimpact assessmediagnostis are included tawompute daily temperature ranges and

capacity factors for wind and solar energy generategioral scalexan be analysedith newdiagnosticimplementedor

selectedregiors and stochastic downscalingESMValTool v2.0 also includes diagnostits analyse large muthodel
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ensembleincludinggrougng and seledhg ensemble membels user specified criteriddere, we present examples for their
capabilities based on the welstablishedCMIP Phase §CMIP5) data set

1 Introduction

Climatechange is affecting thBarth systemin many different waysTo be able taassess the impacts of climate change on
society and to develop strategies for mitigation and adaptadiatetded knowledge of theclimate system and the key
processes driving climate chanigenecessaryThis isparticulaty the casdor changesn the hydrological cycle and climate
extreme evenidoth having direct consequences on ecosystems and J@ujieityg et al., 2020)With rising greenhouse gas
concentrations the hydroclimatic regime is expected to chéBgegi et al., 2019)As the intensity and distribution of
precipitation determines travailability of fresh water in a certain region, it is also related to the severity of hazardous events
such as floding or droughtsThe impact of Btreme events on many soegconomic factorincreases with their severitgut
therare occurrencef these eventiakesanassessment of theffectof climate change on such events challengittang et

al., 2011) Especially compound events, caused by a combinatiprooEssesn multiple spatial and temporal scalé=ad to
severe impact&scheischler et al., 2018)

Changes in climate can alter both the strength and the probability of extreme (Sesr@sgiratne et al., 201FPCC, 2012)

become-drier-and-wetregions-wett€tor various extreme events an incremsseverity and frequenayas observeéh the
past decadeandis expected with rising temperatures, for instancefor warm temperature extreméalexander, 2016)

With rising temperaturesn increases also expected fathe amount oprecipitation For wet precipitation extremeis

increase is expected to hapgaster than for the totavetday(days with precipitation > finm) precipitation(Sillmann et al.,

detail(Marvel-et-al—2019)whichis expected to resuit an increasén both wet and drextremeevents depending on the

region.This tendency was highlightdsy a general increas# the hydroclimatic intensity, which gives a joint measure of dry
and wet conditions in a warming climg8iorgi et al., 2011)Studiesby Donat et al. (2019andPfahl et al. (20173how an
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increasen observedrecipitation extremeis humid regions wheredkere is no cleandication onthe change of precipitation

extreme events iarid regionsThe impact 6 different climateforcerssuch as greenhouse gases and aerasotiroughts

remains to be understood in more detisiarvel et al., 2019)
Although the climate system is of global extets manifestations have regional and local imp&t&c,2014b)IPCC
2014a) Especiallyfor regional climate changesbustprojectiorsrequirenot only arunderstading of the underlying physics

and internal variabilityout also a reduction ehodel biassis essentia{Xie et al.,2015) If model biases are corrected without
considering the underlyinghysicalprocessedjowever downscaling of ESM results to regional scalesresult inunwanted

artefacts(Maraun et al., 2017Pbserved-changes-dheregiona aldepend-to-alarge-extent-on-atmespheric-dynamics,

. Observed changes on the regional sdglpend to a large extent on atmospheric dynartiieseforethe signalof climate

change ioftensmalkerthanthe internal variabilitfDeser et al., 2012yhile large differenceare found in the modeeld future

scenariogShepherd, 20145tochastic downscaling of precipitation can aid in this directidhefields at regional scale are

derived from the spectral properties of the fields at large scale, with an ability iaptegluction of extremesven over
complex orographyRebora etal. 2000 6 On o f r i o; Tezago atlal., 202891dddl ensembles can be usedtantify

uncertaintiesn climate change projections due to internal variabiMie et al., 2015and clustering analysis to inteompare

and group ensemble membbesed orsimilar characteristics and select the most representative ones, going beyond the biases
of individual modelqStraus et al., 2007)
TheEarth System Model Evaluation To@SMValTool)version 2.qv2.0) includesdiagnostics and performance metrics for

the analysisind evaluatiomf ESMs with observationslt is developed by a large community, which involvesrenthan 150
scientistfrom over60 institutions Figures and other output produced by the itecildefull provenancenformation to allow

for traceability and reproducibilityfahe results The main focus is on the analysisE$M simulationsfrom the Coupled

Model Intercomparison Project (CMIBJ the World Climate Research Programme (WCRP). CMIP started in(bS&h| et

al., 2000)with the aimof providing scientists with comparable coupled model rureebaon standardized boundary conditions
{Cevey-et-al-2003)Covey etal., 2003) CMIP results fromPhase §CMIP5) (Taylor et al., 2012)arethe basis for many
assessments in the | PCCbdbs Fifth AssesBhase @GMIPR¢Eyringetal.( AR5)
2016)are available. With every phaseCMIP thevolumeof dataincreasesfor CMIP6 atotal data volumef about 20 to 40

PB is expected. This emphasizes the need for a fast and comprehensive tool like the ESMValTool ¢val0at® these

(1 PCC

2013) .

Now,
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model resultsin this work,the diagnosticsvhich focus on climate impactre describedndtheir output using the well
established CMIP5 data is shown.

In this study wepresentliagnostics included in the ESMValTool specifically for émalyss of thehydrologicalcycle,extreme
events, climate impacts, multiodel ensemble member ssblection, and regional model evaluation. This article completes
a series of publicationdocunenting ESMValTool v2.0Righi et al. (2020Xescribeshe technical aspect{Eyring et al.,
2020)the newlarge-scale diagnostics, arfdauer et al., 202@mergent constraintnd diagnostics for fute projectionérom
ESMs in CMIP

This paper is organized as followSection 2describesthe model and observation data used. Section 3 presents the
ESMValTool recipes for the analyses of hydroclimatic intensity, droughts, extreme events, model irajpeatiogy multi
model ensemble member ssblection, and regional model evaluatitinalso describesise ofthe ESMValToolas a post
processing tool for further downscaling applicatid®sction4 closes witha summary.

2 Models andobservations

ESMValTool v2.0 was developeghrticularlyfor the analysis o€EMIP data(Righi et al., 202Q) This work mainly presents
results based on the walbtablished CMIPBodel enemble but other model output and observatibdata, e.g. provided by
observations foModel Intercomparison Projefbs4MIPs; Teixeira et al., 201Waliser et al., 202Qan also be analysed.

As in version v1.0(Eyring et al., 2016ESMValTool v2.0 expects input data to be in a Climate and Forecast (CF) Metadata
compliant Network Common Data Format (netCDF) following the Clamidbdel Output Rewrite (CMOR) standard. The
detailed requirements for CMOR can be found in these tatligs/(pcmdi.github.io/cmesite/tables.htn)l Observationsor

the recipes describecele, European Centre for MediviRange Weather ForecagSCMWF) ERA-Interim andClimatic
Research UnifCRU) reanalysis data angsedinfor the evaluationaredesecribedn-thefollowing-sectionsof the manuseript

butmodel resultsTable 1 lists theseata in case they are used for a reciiese dataseshould be seen as examples as they

canbe-easily be replaced by otheranalysisor observationabatasetsyiven-that-they-alse-follow-the CMOR-convention

Reformatting scripts with downloading insttions are provided with the ESMValTool v2.0donvertmany observational

datasets tthe CMOR standard list of observational datasets available can be fourRighi et al. (2020gnd in the user's

guide at https://docs.esmvaltool.org/en/latest/input.html#suppdetbsets"where it is updated for newly included datasets

For ECMWF ERAGS dicmorizationon-thefly 0is implemented, which works on thé&kB5 netCDF data directly and does not

require prior reformatting
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3 Overview of recipes included in ESMValTool v2.0

This section describes the newdextendedESMValToolv2.0recipesfor analyss of extreme events, regional model output,
and for applyingeSM outputin theassessments of the impact of climate chameell as to carry out model ensemble-sub
selectionIn ESMValTool v2.0, aecipe isa *.yml file used todefinethediagnostics and performance metricapply tothe
simulation outputas well as the datasets and variables uBed.ESMValTool isstartedfrom thecommand ling usingfor
example

esmvaltool run esmvaltool/recipes/examples/recipe_python.yml

Wh e resmvdiool/recipes/examples/recipe_pythonyml i s one possible recipe. I nstead
provided with the ESMValTool or created by the user can be used. For a more detailed instructions how to ruarithe too
modify or create recipesee thelocumentation at https://docs.esmvaltool.org/

In the following,the recipes are briefigescribed and illustratesith example figuresisingCMIP5 data. All recipes presented

in this work are summarized in Table vhich includesa shortdescripion, together with the analysedariablesused the
applieddiagnostis andtheir purposeas well aghe references thdiagnostics arbased onBecause the online documentation
for the ESMValTool v2.0 alittps://docs.esmvaltool.org/as written simultaneously to this papmrthe same autharthere

is a considerable overlap to timist peesrevieweddocument.

Section 3.1 describes recipes for the hydrological cycle, including indices for hydroclinterisity and drought detection.

In section 3.2 recipes for other extreme events are presented. Recipes for model impact assessment are described in Section
3.3, and recipes for regional model evaluation in Section 3.4. Section 3.5 presents a recifzelfssdleetion of multmodel

ensemble members.
3.1 Hydrological cycle
3.1.1 Hydroclimatic intensity and related indices

The Eart hos h yakeyeldmenpithe alimatecsystewith impartant impacten thesociety. For example, the
intensityand distribution of precipitation determines #isundancer scarcity of fresh water in a certain regidnis also
related to the severity of hazardous events such as flooding or droBghésalstudies have shown an acceleration of the
hydrological gcle and an intensification of both dry and wet extremes in a warming climate (IPCC, 20%Bjple
investigation ototal precipitationrelatedquantities can hide some of the most relevant aspects of the hydrological cycle and
its extremeswhich can béighlighted through the joint us# the concept of hydroclimatic intensity and related indiees-,
Giergi-et-al;2014p.qg., Giorgi et al., 2014The hydroclimatic intensity (Giorgt al., 2011), derived as the product of mean
daily precipitationand dry spell length normalized over a reference period, offers a joint view of both dry and wet conditions,

allowing to uniquely quantify the response in the intensity of the hydrologicdé cn a changing climateThe hyint

of

this

exampl e,

an’
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155 (hydroclimatic intensityyiagnostic was developéd calculateseveralindices forhydroclimatic and climate extremesd
allow a multrindex evaluation of climate models.
Therecipe_hyint.ymtalculatessix indicesfor evaluaing theto global warmingesponse of the hydrological cydfeluding
both wet and dry extremes. The indicagselectedaccording tasiorgi-et-ak{(2014%iorgi et al. (2014)including the simple
precipitation intensity index (SDII), the maximum dry spelhgth (DSL) and wet spell length (WSL), the hydroclimatic
160 intensity index (H¥INT, calculated as normalized DSL times normalized SMhich is a measure of theverall-behavieur
of-the-hydroclimatic-cycléGiorgi-et-ak—204intensity of the hydroclimatic cycle compared to a reference ¢éBrgi et
al., 2011) and the precipitation area (PA), i.e. the area over which precipitation aaicary given dayGiorgi-et-alk,
2014\ Giorgi et al., 2014)Therecipe_hyint_extreme_events.yrahalsoingestthe 27 temperature and precipitatibased
Expert Team on Climate Change Detection and Indi¢(ESCCDI) (Zhang et al.,, 2011)calculated by the

165 recipe_extreme_events.yiol producea nulti-index analysigsee Sec. 3.2 for further detail)he diagnostis perform a
subsequent analysisiculating time series and trenafsthe selected indicdesr predefined continental areas, normalized to
reference period. fielinear model Ifn) function of R is used to calculate trendatisticalsignificanceis tested based ea
Studend &testunder anonnull coefficientshypothesis. Trend coefficientnd their statisticsincluding standard erromp-
value andprecipitation above th85% percentile of the reference distributiare storedTherecipecreated several plots,

170 amongst otherglobal and regional maps, timeseries with spread, trend lines and summary plots of trenéctseREsults
are stored in n@DF files including relevant information such as normalization functions and thresholds, and as figures.
Figures 1 and 2howexamples ofan analysisperformedwith the -hyint diagnostic A map of theHY-INT index (Fig. 1)
cdculated fromEC-EARTH modeldatashowsthe projectedverageHY-INT compared to the reference perid®762005:
hydroclimatic intensity is projected to greatly increase in some regionsegstern South Americaprthern Africa and the

175 Arabian peninsla) andto decreasever other regions (e.g., Antarctica, Greenland, central and {RashAsia, central Africa
andwestern andhorthern South America) with large areas showonly moderatehanges. Trends shown in Figeghibita
relativdy low inter-model spread foHY-INT. The projectedncreasein HY-INT seenfor all modelswith values ranging
around 10% per century models (also reflected as large geographical paterasjo beeen in the precipitation intensity
(SDI) and heavy prepitation indiceqR95), the latter with an increase spread between 10 and 30% per céheaipitation

180 area(PA)is projected to increag®sy most models, wheredsr projected changes the dry spell lengtfiDSL) and especially
in the wet spell lengtifWSL) models do not agreen the sign of the projected chasgeeflected also in high geographical

variability (not showip
3.1.2 Droughts

Three main types ofrdughts can be separated: (i) meteorological, (ii) hydrological, and (iii) agricultural dsoAglgttype
185 of drought needs to baefinedin thecontext of local and seasonal characteristigglying thata drought shoul@e identified

rather as anomalous condition than basedroabsolute threshold.
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Meteorological droughts amenegativeanemahananaliesin precipitation Depending on the local characteristics, a drought
can be defined as an extended period of daily precipitatioountsbelow a given threshold'he thresholdialue is defined

as the minimum amount of precipitation that is needetbarge thesoil moisture content. This approach requires good
knowledge dthelocal and seasonaharacteristics of the soil moisture contethowever, it is a usefanalysisto investigate
climate model sd6 di st r i lreindicative sf hawfwell\wwted thd mogel ip te coupte tb iydmibgical h
impact models. E.g., CMIP5 models have been shown to generally underestimate the number of consecutive dry days
(Sillmann et al., 2013Cheng et al., 2016J hestandardized precipitation indé&P}-Mekee-et-al-199@PI, McKee et al.,
1993)describes local precipitation anomala®d is often used to identify Meteorological drougfise SPIwas developed

as a replacement of the commonly used Palmer drought ingleeser-1965Palmer, 1965}o0 bettercapturedry and wet
anomaliesThe SPlis calculatedisingmonthly meamprecipitation Therefore it doesnot account for the intensity sfngle
precipitationeventsand the runoff process. Furtheore SPI does not account for evaporation fromghdaceThis implies,
thatone component of the water fluxes at the surfadacking, which makegie SPlandincompatible with the concept of
hydrological drought Evaluation of SPirom CMIP5 models shoslargemodelbiases(Ukkola et al., 2018)

A hydrological drought occurs when low water supgffectsstreams, reservoirs, and groundwater leastsisusuallycaused

by extended periods of meteorological drowgyfihese hydrologial processes are usually not simulated with sufficient details
in climate modelsAs a consequence, alagricultural droughtéi.e.when crops become affected by the hydrological drgught
cannot be simulated properly by the modeéfydrological drougtg can however,be estimatedn climate moded by
accounting for evapotranspiratioThis allows te—estimaing-the estimaton of surface water retention-ef—water The
standardized precipitatieevapotranspiration inde§sPEL-VicenteSerrane-et-al204BPEI, VicenteSerrano et al., 2010)
has been developéd take into account the effect of evapotranspiretio surface water fluxes. Evapotranspiratiotyscally
notealeutategrovidedby elimateCMIP models, so SPEI often takes other inputs to estimatié, tag. with the Thornthwaite
method based on temperatférornthwaite;194g T hornthwaite, 1948)the Hargreaves method usitihgg monthly mean of
daily minimum and maximummearsurfacetemperaturgtasmin and tasmaxHargreaves, 1994pr the Penmaivonteith
method using minimum and maximum temgtere together witRm2 m wind speedAlen-et-al-1994Allen et al., 1994)
which is estimated from thsurfacewind (at 20m10 m). However, it has been shown that the method used to derive the
potential evapotranspiration has little impact on the drought statiticke-et-al—2006(Burke et al., 2006)in cortrast to

this finding, (Shaw and Riha, 2011gonclude that especially for future scenarios with rising temperatures potential[ Feldfunktion ~geandert

evapotranspiration based ostimatesconsidering temperatunly can lead to an overestimation of SPEI.

In order to assess the performance of drought characteristics in climate models, three diagnostics have been imptemented in
theESMValTool (v2.0): consecutive dry days, SPI and SPEé. ddnsecutive dry dagliagnostiqrecipe_consecdrydays.yml

has been implementembnsistentywi t h t he
Data Operators, Schulzweida, 2018nd the SPI and SPEI dlagnostlmc(pe spei.ymlare based on the-package SPEI

Ojttps://crans

project.org/web/packages/SPEI/SPEI.pdf; Viceegrano et al., 2010The reciperecipe_spei.ymtomputes the SPI and
7




SPEI quantities for eaaghodel andsummarizes the statisticslobth indicess gl obal aver agetremelyn categories from fiex
dryo to fextFHge3nedFiy 4. Byeinclading a esématforevapotranspiration, theodelbiases are reduced
particularlyfort he t oo frequent 0 Mo 8R(Fig3) ¢he hias pla shows a ceareugderestinatd
dry and wet conditions, which are mainly compensated by too frequent moderately and extremely wet cdrdlitibes.

225 neutral conditiortategorythe results diffedepending on theodelswith atendencytowardstoo frequent occurrence in most
models For SPEI Fig. 4) the bias plot indicates too frequent neutral conditions, at the expense of mainly dry and wet
conditions. Moderate and extreme wet conditions are overestimated in practically all models, whereas moderately and extreme
dry conditions she the opposite behaviour
Using the SPI calculation described above, a reaipaysingdrought eventsrécipe martin18yml) has been developed.

|230 Follewing-Martin{2018Following Martin (2018) a drought evenis definedas any consecutive number of months with
fAextremely dr y é) Thechalacteristiosmfthess/8nisfrom kistorical and future scenario model runs (see

Fig. 5) as well agrom observationl dataarethen comparedThe characteristidsvestigatedarefrequency, length, average
| SPI, and theeverity index followingPeters{201Heters (2014 )which is a measure combining the length and the SPI value
of a droughtFigure 5shows an increase in the number ofudyht events, theeverity index and to a smaller amount the
235 duration of drought events in the RCP8.5 scenario compared to the historicalroreespecially in the subtropical areas.
The results support the finding, that regions with already dry dondiere much more likely to show a higher number of
drought events for the RCP 8.5 scenario, knomthed dr y gets drier and the wet gets wettero (DDWW) paradig
al. 2014).

3.2 Extreme everns

240 Changes in climate extremes are of utmost conéarrsociety as the consequences of climate change will be strongly
manifested in the severe impacts of extreme events, such as heatwaves and extreme precipitation, on human and natural
systemsSomeconfidence in future projections of extreme events cagaieedby evaluatingg he model sd6 per formance in
simulating historical events against observational data and reanalysis datasets. The 27 core climate extremes indices defined
by the ETCCDKZhang et al., 20113re able to capture different characteristics of temperature and precipitation extremes and

245 are suitable for monitoring observed climate extremesdel evaluation and analysis of changes in climate extremes in future
climate projectionge.g. Sillmann et al., 20&3Sillmann et al., 2013t)onat et al., 2013)To calculate these indices, daily
values of total precipitation (prjlaily mean neasurface air tempetare (tas)daily minimum neassurface air temperature
(tasmin) and maximum minimum nesurface air temperature (tasmax) are required.
Therecipe_extreme_events.yaalculate climate extremes indices and prodsideagnostic figures for comparing modeldan

250 observational extremes indices as presented in IPCC AR5 chapter@et-al.2013Flato et al., 2013andSillmann et al. ( Feldfunktion geandert )
(2013a)
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0050heindex computation is performed accordingtmang
et al. (2005h)Theindices are calculated from CMIP models and gridded obseradltieenalysis dataCalculating the indices

is-computationdy-demanding-andan takeseverahours up to dayslependingn the number of models/observatiolesigth
of the time periodsnalysedand spatial resolutioof the datasetsas well as the computational resourdépossible, it is

recommended to run this processistgpon aparallel computingystem taking advantage of the ESMValTool tds&sed
parallelization featuréRighi et al., 202Q)

TFhere-are-two-types-of-diagnostic-plots-that-can-be-producgtie(d are two types of diagnostic plots that can be produced
together and that reproduce #realysis shown in figure 9.37 of IPCC ARHato et al., 2013fpr a given reanalysis and model

dataset. The first one (see Fig. 6), shdinse series providing a temporal comparison between the mean and spread

(interquartile range) of theodel-ensemble-and-the-individual-observations-for-a-single-indesFigea);,(i)-performance

and the individual obseations for a single index. In Fig. 6, the agreement in trends between thé& @idtieéls and reanalyses

can be captured very well, due to the construction of the percémiishold based indices. Deviations from the nominal level
of 10% outside the basenm are mainly due to differences in the estimated trends in tasmin and tasmax of the individual
models as compared to the respective reanalysis data &itintann et al. (2014an alternative approach is described to

evaluate percentilthreshold based indices accountinggotential model biases in the mean.

igure7shows-thathe magnitude-of the-multhodel- median-erroron-a-globa ale(The secondliagnostic plo{Fig. 7)

shows performance metrics fAportrait di sentaebsetationsforimaliplec ompar e

indices. The roemeansquare error (RMSE) between each model and each observational/reanalysis dataset is used as a

measure for model performance. Figure 7 shows that the magweitudedian RMSE normalized by the spatitdrslard

deviation of the index climatology

in the reanalysedRMSEstd)is generally larger for precipitation indices than for the absolutgar@entilethreshold indices

based on temperature with the exception of csdi and wsdi. For the tempbestedepercentitehreshold indices (i.e., tx90p,

tx10p, tn90p, and tn10p), the models generally perform well (except GAMBBA-LR) due to their construction. This results

in goodagreementor the ensemble mean and mediaompared to reanalysis datehereas theootmeansquareerroris too

largeas it is dominated by the outlier model (IREM5A-LR).

Indices of climate extremes are a natural extension of those on the hydrological cycle discussed in Sect. 3.1 andaan effort w
made to make them availableithin the same analysis tool. Amentioned before the ETCCDI computed by
recipe_extreme_events.ymén be further processed by the recipeipe_hyint_etxeme_eventgml. Analogais to the
recipe_hyint.ym(see also Sec. 3.1,1) computesmaps andox-averaged timeseries for preselectedcontinental omuser

defined regions, computing trends and performing signif;cance temiiEigthe completset of 6+27 indicedDepending on

mul tiple

mo del

S
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the specific objective, the user can select the needed sifilisdicesSi gni fi cance testingtiess perfor med

on nonrnull coefficients hypothesasndtrend coefficients are stored together with their statisficsrecipeproduces a variety
of plot typesfor the indicesincluding maps and timgeries with thie spreadfrends,and summary plots of trend coefficients

3.3Impacts of climate change

3.3.1 Heat and cold wave duration

Heat waves are expecteditecomeone of the greatest threats to human health in the 21st century phageittedincreases

in both frequency and severifPCC, 2013,0uzeau et al., 2016yvhile the duration, intensity and frequency of cold waves
are expeted to decreasét is not cleayet, howeverwhat the impacof changes in heat and cold wawesrelated mortality

will be, since mortality due to heat waves and cold waves inferred from historical simulations is typically overestirngated. Th
is party dueto challenges in theorrectsimulation of extremeé/ang-et-al—2016)Wang et al., 2016)n the case of heat
waves in particular, models have been shown to contain biases in the 90th and 10th peveentiheshistorical period
{Pereiraetal201{Pereira et al., 2017However, by using a bias adjustment method based on percentiles, climate models
are able to produce output whiishconsistentvith events observed during the historical peri@dizeau-et-al,201@)uzeau

etal., 2016)

The diagnosticef the recipe_heatwaves_coldwaves.ymsks thedaily maximum or minimum temperaturés estimate the

relative change in heas well & cold wave characteristics in future climates compared to a reference period . The user selects
the model, emissions scenario, the region of interest and the refasamed as therojection periods and the percentile which

will be used to compute thtresholdfor exceedance or neexceedancérom the reference period (a separate threshold is
computed for each day of tiselectedseason and grid point using the quantile bootstrapping method descriieghi;et-al.
{2005bYhang et al. (2005h)Further options, which can be selected inclwtiether to compute the frequency of exceedances

or nonexceedancesf extreme high or extreme low temperature events, respectitijtionally, the minimum duratiorof

an event to be classified as a heat/cold wave and the season of raarbst setThe diagnostic calculates the number of
consecutivedaysover which temperature exceeds or does not exceedjitren threshold in future climate projections. The
result ispresented as annuahe series of the total number of heatold wave days for the selected season at each grid point
and theaverage number dhesedays for the selected season in the future climate projedsimasculatedseerig. 8.

3.3.2Combined Climate Extreme Index

High mortality rate, increase in hospital admissiomas well as major economic lossa® oftenassociated with extreme
events(Meehl et al., 2000Zhang et al., 2011Fouillet et al., 2006Whitman et al., 1997)This emphasizeshe need for
monitoring andforecastingextreme events, in particular sinseme studies suggeitat extremes are increasing in both

frequency and severity with incréag anthropogenic greenhouse gag&lexander et al., 2006onat et al., 2013)
10
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The reciperecipe_extreme_index.yrallows a user teompute the Combined Climate Extreme Index, which is defined as a
combination of different extreme values linked to precipitation, surface temperature and surface wind speed. This index is
similar to the Climate Extremes Ind : = El; Karl et al., 1996)the modified CEkmCEL-Gleasen-et

ak—2008]mCEIl; Gleason et al., 2008y the Actuaries Climate IndedeCh-American-Academy-of-Actuaries; 2018)Cl;
American Academy of Actuaries, 2018h recipe_extreme_index.yjthe user defines the area, the reference period, the

period of interest and the weights assigned for each individual component of theTihdaxeights allow the user to put the
emphasis on thextremesthat are more relevant to them and/or completely exeluun relevantones Temperature and
precipitation extremes are defined in a similar fashian &onat et al. (20133nd are part of the larger set of extrendides
compiled by the ETCCD(Zhang et al., 2011)The different components of theulti-metricindex are

- weight_t90pthe number of days when the maximum temperature exceeds the 90th percentile,

- weight_t10pthe number of days when the minimum temapere falls below the 10th percentile,

- weight_Wxthe number of days when wind power (third power of wind speed) exceeds the 90th percentile,

- weight_cddthe maximum length of a dry spell, defined as the maximum number of consecutive days when the daily

precipitation isbelow1 mm, and

- weight_rx5day:the maximum precipitation accumulated during 5 consecutive days.
The thresholds are computed for each day in a season usingdayivenning window as described(thang et al., 2005a)
For the calculation of thindex a usedefined reference period usedfor normalization and computation of the threshold
corresponding to the selected metiibis recipe creates a plot containing the time average of the compbstetaboveor
the period of interesfg. 9a to9e). The recipe also computes the aneaghted average of those components and combines
them into a single index using the weiglaind the running mearuning_mearparameter) defined by the user. The output
of the recipeconsists of a netCDF filef the areaveighted and mukimodel multimetric index and a plot of the time series

of that index over theelectegeriod
3.3.3Daily temperature range variation

The daily temperature range (DTR) corresponds talifierence betweethe minimum andmaximum temperature within a
period of 24 hours at a given location. The usefulness of the gdokehge DTR has beenovedusng both observations and

climate model simulatio ., raganza et al., 2004Changes in the mean and variabilitytbe DTR
have been shown to have a wide range of impacts on sdoegxampleon the transmission of diseageambrechts et al.,

2011;Paaijmans et al., 201@hd energy consumptigiéandreis et al., 2014) [ Feldfunktion ~ge&ndert

A-the-energy-sectoa Aerab Ad or-based-enthe DTFR K been-defined i i i athi y-experience

increased-diurnaltemperature-variaigmthefutureln the energy sector, a vulnerability indicator based on the DTR has been

defined to identify loctions which may experience increased diurnal temperature variations in the(éamdreis et al.,

2014) Increased diurnal temperature variations put additional stress on the operational management of urban heating systems.

11
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measure forricreased diurnal temperatwariationsis defined as the DTR exceeding the value of the reference period by 5

K at a given location and for a given day of the yPsojections of thisneasurearecurrentlysubject to largeincertaintiegs

both projections oflaily maximum and minimumearsurface temperature (tasmax and tasmin) in future climate projections
are highly uncertain

The reciperecipe_diurnal_temperature_index.ymbmputesthe mean DTR for agiven reference period using hsical
simulations and then the number of dayswhichthe DTRin future climate projections exceeds that of the reference period
by 5°€5K or more. The user can define both the reference and projection periods, and the regamatpsee The output
produced by this recipe consists ofoair-panelplot showing the maps of the projected mean DTR indicator for each season

(seeFig. 10) and a netCDF file containing the corresponding data.

3.3.4 Capacity factor

The energy sector is thengle-biggedarges contributorto greenhouse ga$SHG) emissiongtPEC,-2014a)IPCC, 2014b)

Therefore, many countries have adopted mitigatioategiesto increase théraction of energy generated from renewable
sources in the forthcoming years. However, renewable energy sources like wind power and solar power rely heavily on
atmospheric conditions to produerergy andirethereforeexposed taisks from climate variability and lorgerm changén

case they lead tdetrimentalatmospheric conditionsThe relationship between wind speed anérgy production byind

turbines is highly nonlinear because turbines are designed to be efficient feareow band of wind speed conditions.
Therefore, changes in the wind speed distribution can impact electricity generatidinuatide revenues and economic
viability of wind farms. The capacity factor is a normalized indicator of the suitability of speed conditions to produce
electricity, irrespective of the size and number of installed turbinesfattoris provided for wind turbinedesigned fotow,

medium and high wind speed conditiangyrouped in three different classgeC,-2005)(IEC, 2005)

The reciperecipe_capacity_factor.yndomputes the wind capacity factor for these three wind turbine clgs=efsig. 11),

taking as input the daily instantaneous surface wind spa#dpolating tahe wind speed at 100 heightas described in

(Lledo et al., 2019)The user can select the regiperiodand season of interest. Tresult of therecipe is the capacity factor

for each of the three turbine classesed as netCDF file

The output of slar photovoltaic (PV) systems depends on the time of the day, season, and weather conditions. The PV capacity
factor is a measure efhich fractionof the maximum possible energyproducedoergrid cell. The solar power generatioh

a PV systenmainly depends on the amount of incoming surface saldiation butis also influenced by other atmospheric

variables that affect the efficiency ofPV cells, which decreasesas their temperature increasesthe

interesTherecipe pv _capacity factor.ymtomputes the PV capacity factor using the daily incomsindace solar radiation

12
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and the surface temperature with a method describBdtirand Thornton (2016Yhe user can select temporal rarggason,

and region of interesAn example for is shown in Fig. 12 for ERAterim and five CMIP 5 models

3.4 Applications for regional scales

3.4.1 Evaluation of global climate models for selected regions

Climate or Eah system models with a fully coupled oceaeimportanttools to project the future evolution of the climate

system in response to anthropogenic forcings, such as the increase in GHG concentrations. Despite their coarse horizontal
resolutionstfypically in the order of Aundred kilometreer les3 these modslcan provide climate information at the regional

scaleto allow for assessg the impacts of climate change. The ability of these models to simulate regional climate is an
important aspect of model evaluation.

Thereciperecipe_flato13ipcc.ynihcludes asubset of diagnosti@ndfigures from thenodelevaluation chapter of the IPCC

AR5 (Chapter 9, Flate-etal-2018hapter 9, Flatoteal., 2013) which compare surface parameters (such as temperature and

precipitation) from models and observations at regional scales.

Mean seasonal cycle of precipitation and temperatuoal@ilatedover land aremwithin selected regions fdndividual
modelsthemulti-model mean and observation/reanalysis dataRge&213). Regional biases, including 5th, 25th, 50th, 75th
and 95th percentiles of the biases, in seasonal and annual mean temperature and precipitation are esduatat|émg

polar and oceanic regions (deigs.1314 and1415). Diagnostics allow the comparisontbe multi-modelmean for different
projects(i.e. CMIP3, CMIP5)ncludinginformation on the amplitude of the resteansquare errorThe regionsused inthis
recipecan be irregular polygorendare defined following the IPCC Special Report on Managing the Risks of Extreme Events
and Disasters to Advance Climate Change Adaptation (SREX) land ré§mmsviratne-etal204SBeneviratne et al., 201.2)

In additionto the regions described here, the ESMValTool preprocessor can be used to run many diagnostics on distinct regions

defined bylatitude and longitudémits. We plan toalso includeregions with more&complexboundaries likehe CORDEX

(Coordinated Regional Downscaling Experiment) regi@stowski etal., 2016)

Systematic biases in modelled projectiéBsberg-and-Christensen;20(Bdberg and Christensen, 20%#n be investigated
by ranking moded againsbbserved monthly mean temperature (Sige1516).

3.4.2 Stochastic Downscaling

The stochastic downscaling reciigan example of how the ESMValTool (includiitg pre-processig functionalitie§ can be
usedto create a pogirocessing chaifor further downscaling applicationsut strictly speaking not a diagnostic

The application of climate model projections ancef@rsts to impact studies at small scales, such as hydrologicdlingpde
or ecological modéing, requires to bridge the large gap between the spatial resobft@nrentglobal and regional climate
models and the scalesquiredfor a correct represertan of the spatial and temporal structure of precipitation atduaes

13



410 and of the probability of extreme precipitation events. In absence of a dyngohigsically based representatiorp@ssible
approach is the use of stochastic rainfall downscategniques. In particular, the Rainfall Filtered AutoRegressive Model
(RainFARM; Rebora et al., 2008;Onofrio et al., 2014Terzago et al., 2018pethod is a weather generator which has only
one free parameter (which che derived from the large scales) and which requires no further calibration. RainFARM can
create ensembles of higbsolution precipitation fields from coarse scalenate modeldata This method als@llows

415 quantification of uncertaifgs and a realisticepresentation of subgritalevariability of precipitation and of precipitation
extremeswhich is acrucialprerequisitéfor impact studies in the water sector.

The reciperecipe_rainfarm.ymhbllows ruming RainFARM within the ESMValTool Downscaled atput can beproducel
directly from theclimate model resuls read by the ESMValTool and exploiting its input checking, validation and-pre
processing features. The recipe produces ensembles of downscaled fieleig.(46&7) over selectedegionsin netCDF

420 format, which caithenbe used by users for further analyslstice how the downscaled fields introduce fine scale precipitation
structures, while still maintaining on average the original ceagselution precipitation. Different stochasti@lieations are

shown to demonstrate how an ensemble of realizations can be used to reproduce urn@sgrddariability.
3.5 Multi-model ensemble member subelection

Large multimodel ensembles are a way to assess model and sceneeidainies in future climate projectionsand other
425 model experimentsHowever, considering constraints in the avaiigbof computer time and human resowsceot all
available ensemble members can be includetast detailed climate impact studies associated toenduture scenario.
Therefore, despite the importance of using an ensemble that is represdatatieeregionand processf interestcovering
therr full uncertainty range, one or feensemble membegse oftenrathersubjectively selected depending, for example
their availability andsimplicity toaccesshe datasetdJsing more specific information about the needs of the impact study as
430 qguidance for the selection of simulations, thsultingsubset can bbetter suited fothe purpose of climatehange impact
research. Here, we present an efficient and flexible tool that makes better use of the ensemble by reducing its size while
maintaining important ensemble characteristics.
To find an optinal subset okignificantly differentmodel projectiongor a given emission scenariockustering algorithm is
applledto the multimodel ensemble for data reductlmwehmqaasa#eadwasedrweharaeteﬂ%&mehhe&seem%s

435 I technique is already used to characterize

the _mostlikely scenarios in an ensemble of weather forecéS¢sranti and Corti, 2011; Straus et al., 201Similar

methodologies also based on cluster analysie heen explored to select a subset from an ensemble of climate simulations
{Wileke-and-Barring,2016)Vilcke and Barring, 2016]This approach, applied at a regional level, can also be used to identify
the subset aflimate modeénsemble members that best represent the full i@firgsultsfor furtherdownscaling applications.

440 The choice of the ensemble members is made flekildeder to meet the requirements of specific (regional) climate products

and can be defined accordingremion and user needs. The decisdénvhich variables are considered depends ortythe
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and goals of the climate change impact assessment. Fopkeamstudy on future hydrological floo@uld require in
particularchanges of precipitation extreme quantiles, a study on the impact of climate onahgexploitation of ski slopes
would requireinformation abouthanges in winter temperatsr@ndprecipitation.

EnsClug(reciperecipe_ensclus.ymis a cluster analysis tool imritten in B/thon for ensembles of climate model simulations.
The tool isbased on the-kneans algorithmvith the aim to group ensemble memblkyssimilar characteristics and to select
the most representative member for each cluster. The user chooseshehadieristiés used to group the ensemble members
by the clustering: maximum,givenpercentile (75% in thexamplesxamplebelow), mean standard deviatioor trend over
the period For each ensemble member this value is computed at each gridTiéntesults inN latitude-longitude maps,
where N is the number of ensemble members. The aresrakcomputedby subtracting the ensemble mean of these maps
from each of théndividual maps. The anomiaks arethereforenotcomputed with respetd time butto the ensemble members
An Empirical Orthogonal Function (EOF) analysispierformed orthese anomaly mapBor the EOF analysis, the user can
seteither how many Principal Components (P€lspuld be calculatedr the minimum percentage ate explained variance
which should becovered After reducing dimensionality via EOF analydisek-means yorithmis applied using theelected
PCs(the number k of clusters needs to be defined prior to the analfsesputpubf the recipe is alassificatiorby clusters,

i.e. whichensemblenember belongs to which cluster and the most represen¢stsesnblenember for each clustedefined

by the member beinglosest to the cluster centroiidditionally, outputof the recipe includethe statistics of clustering: in

the PC space, the minimuand the maximum distance between a member in a cluster and the cluster centroid (i.e. the closest

and the &rthest membergndthe intracluster standard deviation for each cluster ¢ompactness dhe cluster)An example

is shown inFig. 1718. Thefigure shows a&lusteringbased on the 75th percentile of historical summer (JJA) precipitation rate
for 32 CMIP5 modelsveifor the periodl 900-2005 Basedon the principal components explaining 80% of the variimese
clusters are computedhe greercluster is the most populated with 16 ensemble membteismostly characterized by a
positive anomaly over centrabrth Europe. The red clusteontains12 ensembe members. lexhibits a negative anomaly
centredover southern Europend in few cases (e.g. No.12 and No.23) extending nohé third cluste(blue) includes only

4 models It is showing a nortksouth dipolar precipitation anomaly, with a wetter than average Mediterranean counteracting
dryer NorthEr ope. Ensembl e members No. 9, No. 26 and No. 19 are
thatbestrepresent the main features of that cluster. Thes®ensemble members can eventually be used as representative
of the whole possibleudgcomes of the mukinodel ensemble distribution associated to tR&€®IP5 historical integrations

for the summer precipitation rate 75th percentile over Eurpis reduces theutcomes from 3to 3 ensemble members
Thenumber of ensemble members otlealuster might provide a measure of the probability of occurrence of each cluster.
However, the final results ar e sasimanyselectiemextermisemodel sdé bi

15

t

as

he

and

t

he

ispeci menodo of

metri

C

each

us



4. Summary

This papersummarizes the recipes available witthe ESMValTool v2.0 for the analysis of extreme events, droughts, model
impact assessmengub-selection of multimodel ensemble membeesg. for downscaling applicationas well as model

475 evaluationon regional scale$t complemerd the series of papethat have been published on ESMValTool y&®ighi et
al. (2020)describinghetechnical aspects of ESMValTool v2Eyring et al. (2020presenting the nelarge-scale diagnostics
that have been included v2.0since thdirst release in 201€Eyring et al., 2016)ard Lauer et al. (20203overingemergent
constraintaind diagnostics fahe analysis ofuture projections from ESMs in CMIP
For droughts, recipes calculating the consecutive number of dsy theySPI, and the SPEBhave been newly included in

480 ESMVdTool v2.0as well as a recip® analy® the frequency, length, and severity of drought events based on the SPI.

For further analysis of extreme events, climate extreme indici® Expert Team on Climate Change Detection and Indices
(ETCCDI) based orzhang et al. (2011have been included. These indices @akeulatedbased ordaily total precipitation,
and the mean, minimum and maximum of the reaface air temperature. The indices tteanbeplotted usedas ameasure

of model performance, and further processed to calcindextrends and their significance.

485 For model impact assessmgmnecipes to analyse heat and cold wave duration, diurnal temperature variations, as well as
different extreme indices are incledlin ESMValTool v2.0. Additional recipes compute capacity factors to analyse the impact
of climate changen the wind and solar energy production.

For the analysis of ensembles of climate models, ESMValTool v2.0 provides a cluster analysis basetearsalgorithm
wherethe ensemble members aigidedinto clusters andan be plottedlong withthe properties of the clusters athé most

490 representative membef each cluster
ESMValTool v2.0also includesliagnosticfor model evaluation on regionstales. 8rface parameteuch agemperature
and precipitationcan be evaluatedor regions definedby polygons following the SPEXdefinitions of land regions.
Additionally, the ESMValTool output can be used to be procefssdtkrby tools for stochastic downscaling, like RainFARM
which isalsoimplementedn v2.0.

495 Although therecipes herare presentedsing CMIP5 data, ESMValTool v2.@an berun to performthe same analysis for
CMIP6 data. As ampen-sourceproject, the capabilities of the ESMValTool continue to greith contributions from the
scientific communityoeinghighly welcomeUseis can analyse datssing a wealth oéxisting recipesoin the ESMValTool

development team aratldnewrecipes and diagnostics.

5. Code availabilityand data availability

500 Code and data availability. ESMValTool @2.is released under the Apache LicengeRSIONVersion2.0. The latest release

of ESMValTool v202 is publicly available on Zenodo at htip:/dei.erg/t0.5281/zenede.3970975
http://doi.org/10.5281/zenodo.48B15(Andela et al.262620219. The source code of the ESMValCore package, which is
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530

installed as a dependency of the ESMValTool 2. —is—also—publicly—available-on—Zenedo—at
p-/ldeiorgl10.5281/zenode-395269%Andela—et—alk; 020H), is also publicly available on Zenodo at

http://doi.org/10.5281/zenodo.45257@ndela et al., 2021bESMValTool and ESMValCore are developed on the GitHub

repositories available &ttps://github.com/ESMValGrouflast access: 24 July 202@MIP5 data are available freely and

publicly from the Earth System Grid Federation. Observations used in the evaluation are detailed in the various sketions of t
paper and listed in Table 1. They are not distributed with ¥&bol, which is restricted to the code as oenrce software.
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Table 1. Overview of recipes implemented in ESMValTool v2.0 along with the section they are described, a brief de$eriptidablesised,

740 and the diagnostic scripts included. For further details, we refer Gittheb repositoryand documentatioat https://docs.esmvaltool.org/

Recipe name Section | Description, Variables Diagnostic scripts
(Figures) | References (Observational
datasety

Section 3.1: Hydrological cycle

recipe_hyint.yml 3.1.1 |Recipe for evaluatin|pr hyinthyint.R
(Fig 1) |the intensity of th
hydroclimatic  cycle
calculating a set of
indices following
Giorgi et al. (2011
2014y simple
precipitation intensity
index (SDlII),
maximum dry spe
length (DSL) and we
spell length (WSL)
hydroclimatic intensity
index (HY-INT),
which is a measure
the overall behavioy
of the hydroclimati
cycle, and precipitatio
area (PA), i.e. the ar¢
over which on any
given day precipitatio

occurs.
recipe_hyint_etxeme_eventgml 3.1.1 Multi -diagnostic pr hyint/hyint.R
(Fig 2) |version of hyint tasmin extreme_eventektreme_events.R

which allows tqtasmax
include ETCCD
results from th
extreme_events

diagnostics an
performs joint
analysis of indices
for  hydroclimatig
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https://doi.org/10.1002/2014JD022238
https://doi.org/10.1002/2014JD022238

intensity ang
extreme event
Giorgi et al. (2014)
Giorgi et al. (2011)
(Sillmann et al. 20134

recipe_consecdrydays.yml

3.1.2

Dry day definition
(precip limit
mm/day) and
drought duratio
(days)can be set b
the user.

Output as netCD
files for each mode
possible Cemputeq
consistentlywith the
CDO  method
feca—cdd——in
Sehulzweida
{2018 Computed
consistentlywith the
CDO method
fleca_cdd in
Schulzweida (2018

pr

droughtindex/diag_cdd.py

recipe_spei.yml

3.1.2
(Figs. 3,

Global averag
histogram of SPI an
SPEI, as absolu
values and as big
The calculations ar
based on pr for bot
indices but for SPE
with the additiona
use of ta to deriv|
evapotranspiration

using the
Thornthwaite
method.

Requires a referen
dataset and

calculates a glob

pr
(ERA-Interim)
ta

(CRUts4.01

droughtindex/diag_spi.r
droughtindex/diag_spei.r
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cosine of latitud
weighted histograrn
for all valid grid
points of the
reference data s
Calculation of SP
and SPEI based on
VicenteSerrano—¢
ak——2010Y/icente
Serrano et al. (2010

recipe_martin18rl.yml

3.1.2
(Fig. 5)

Computes anonthly
time series of SP
based on diag_sp
(distribution ang
representing  tim
scalecan be set b
the user and
calculates  drough
events a
consecutive numby
of monthlswith SPI <
-2. For ach grid
point the drough
characteristics

(frequency, averge
duration,and SPI a
well as theseverity
indeX based on

Martin—(2018)are|

Martin _ (2018) are
calculated.

Differences betwee

pr (CRU)

droughtindex/diag_save_sRi.
droughtindex/collectdrought func.py
droughtindex/collectdrought obs_multi.py
droughtindex/collectdrought model.py
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individual models o
a multi model mea|
and observations
future scenarios ar|
historical model run
are calculated.

Section 3.2: Extreme events

recipe_extreme_events.yml

3.2
(Figs. 6

- d pr
menitoring—change tas
in extremed tasmin
; tasmax
éggg 3 E; 2 ERA-
- | Interim)

In—the—REC—ARY

repat(Flato—et-—al.
2013y —Calculate

indices fo
monitoring change
in extreme
(Sillmann et al.
2013a) based o
daily temperatur
and precipitatio
data. Producs
Glecker and tim
series plots as sho
in the IPCC ARfH
report (Flato et al.

2013)

extreme_events/extreme_events.R

Section 3.3: Evaluation for impact assessments

recipe_heatwaves_coldwaves.yml

3.31
(Fig. 8)

MAGIC, time| Tasmin
averages, differengq Tasmax
between historica
simulations and a

magic_bsaxtreme_spells.r
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scenario
calculates th
number of day
exceeding a give
quantile for g
minimum number o
consecutive days

Watts et al. (2015)

future

recipe_extreme_index.yml

3.3.2
(Fig. 9

MAGIC, computed
time series of th
number of severg
extreme event
heatwave,
cold wave,
precipitation,
drought, and high
wind.

Karl et al. (1996)
Gleason et a
(2008);  American
Academy 0
Actuaries (®18)

heav|

Tasmin
tasmax
pr
scfWind

magic_bsa@xtreme_index.r

recipe_diurnal_temperature_index.y

3.3.3
(Fig. 10

MAGIC, time
averages, differeng
between historicg
and future scenario
computes the dat
where the DTH
exceeds #reshold,
Déandreis—et—a|
{2014 Déandreis et
al. (2014)

Fasmin
Fasmatasmin
tasmax

magic_bsdiurnal_temp_index.r

recipe_capacity_factor.yml

3.3.4
(Fig. 11)

MAGIC, calculateg
the wind powe
capacity factar

Lledo et al. (2019)

scfWind

magic_bsaapacity_factor.r

recipe pv_capacity factor.ymi

3.34

Photo voltaid

(Fig. 12)

capacity factar

tasmax
rsds

(ERA-Interim)

pv_capacityfactdpv _capacity factoR
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Section 3.4: Regional model evaluation

recipe_flato13ipcc.yml

34.1
(Figs.
12,13,
14,
1514,
16)

figures—et-thelPGC
AR5 (Flato—et—al.
2013) _
Fig—— 1 Figureq
similar to figures of
theIPCC AR5(Flato
etal., 2013)

Fig. 13: Seasong
cycle over lang
within defined
regions (like Fig.
9.3)

Fig 1314:
Downscaling:
Seasonal bias bg
plot within defined
regions (like Fig.
9.39

Fig. 1415:
Downscaling:
Seasonal bias bg
plot within defined
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HY-INT: World-EC-EARTH 2006-2099
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period) over the years 20062099, for theEC-EARTH model RCP 8.5 projection. The historical years 197€005 were used as the
reference period. The figure is an example af large number of different plots which can beproduced with recipe hyint.ym] similar

to (Giorgi et al., 2014) For details seeSection 3.1.1
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Figure 2: Trend in selected indices for an ensemble of CMIP5 models (historical + RCP 8.5 projectionyer the time period

200619762099 The trends are calculatedver thelatitude band 60

°S60°N. Data were normalized to the historical 9762005 period.

Indices include the precipitation area (PA), hydroclimatic intensity (HY-INT), precipitation intensity (SDII), heavy precipitation

|765 (R95), wet and dry spell length (WSL and DSL) followingsiergi-et-al-2014Giorgi et al. (2014) Error bars show thegeographical

variability (standard deviation) within the region, colairs the statistical significance of the trend (90% gey, 95% blue). This is an

exampleof a large number of different plots which can beproduced with recipe_hyint.ym| similar to Giergi-et-al—{20614)-Giorgi et

al. (2014) For details seeSection 3.1.1.
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Standardized precipitation index
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Figure 3: Output from SPI diagnostic in recipe_spei.ymwith globally averaged histograns of SPI over land areas, weighted by the
cosine of latitude for a selection of CMIP5 models and using gridded observations from CRUts4.01. (top) Abse values, and
(bottom) bias of all models compared to CRUts4.0%or details seeSection 3.1.2.
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Figure 4: Output from the SPEI diagnostic inrecipe_spei.ymbith globally averaged histograns of SPEI over land areas, weighted
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by the cosine of latitude for a selection of CMIP5 models and using gridded observations from CRUts4.01. (top) Absolute vajue
and (bottom) bias of all models compared to CRUts4.Qfor details seeSection 3.1.2.
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Figure 5: Difference in number (op-lefta), duration (tep-rightb), average SPIettomleftc), and severity-index{bottomrightSeverity
Index (d) of drought events between the RCP8.5 (2082100) and historic (1950 ta2:6€2000) multi-model mean of1315 CMIP5

785 models. Here, a drought event is defined as any number of consecutive mastith an SPI <-2. For the SPI calculation a Gamma
distribution and a representative time scale of 6 monthis used.The Figure is similar to Figure 3 ai d of (Martin—2018)(Martin
2018)and producedwith recipe_martin18grl .yml, for details seeSection 3.1.2.
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790 Figure 6: Time series plot of the annual percentage of days when the daily maximum temperature is higher than the 90th percentile
for the respective calendar day. Percentile thresholds are calculated followi - hang et al., 2005bfor the base
period £98%2010198)-2004. The shading indicates the interquartile ensemble spread (range between the 25th and 75th quantiles).

The CMIP5 ensemble meantue line, 5 models inthis example) averaged over all land grid boxes is compared with ttreanalysis

datasets MERRA2 (green dashed lingand ERA-Interim (red dashed ling. Similar to Figure 9.37 e of IPCC ARYFlato et al., 2013) [ Feldfunktion geandert

795 and produced with recipe_extreme_evengsnl, for details seeSection 3.2.
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