
Responses to the comments of Referee 1 

The manuscript introduces a new application of the Ring Average technique to be 
used in Global Circulation Models (GCMs). With this new technique, the numerical 
constraints imposed on the timestep could be eased, especially at the polar regions 
where azimuthal grid dimensions become very small. The paper demonstrates the 
feasibility of the method first in a simpler problem, in which the advection equation is 
solved on a spherical domain. The results from the Ring Average technique applied 
solution are compared with the Fast Fourier Transform (FFT) filter applied solution 
and a 4th order numerical solution. Ring Average method had a better performance 
requiring a smaller time step, further establishing its feasibility in improving the 
numerical resolution around the polar region. The second application was conducted 
by applying FFT Filter to the TIE-GCM results and using the Ring Average technique 
implemented version of TIE-GCM for the 17 March 2013 storm. The results showed 
that the Ring Average technique was able to preserve the directions of vector 
properties and didn’t introduce numerical artifacts that are seen in the polar region 
with the FFT applied simulation results. The Ring Average technique is a 
non-intrusive method to increase spatial resolution without suffering from small 
timestep limitations for convergence and stability in GCMs. 

General Comments: The manuscript does a commendable job in presenting the new 
Ring Average method. The need for remedying the resolution problem in GCMs at the 
polar regions is sufficiently laid out with proper referencing to the literature. The 
derivation and the implementation of the technique are intuitive and coherent. The 
results from the introduced model are evaluated in two different examples and clearly 
demonstrated an advancement in performance with a strong potential to further the 
science. In addition, the code repositories are provided in the "Code Availability" 
section and the codes are presented in a user-friendly and self-explanatory manner. 
Overall, the paper is exceptionally well-written and organized. 

Thanks very much for your thoughtful and positive comments. 

Specific Comments: 1. Please consider revising Key Point 2 to clarify what is meant 
by "more complicated geoscientific models". The paper only discusses the application 
to TIE-GCM and WACCM-X models and it is not immediately clear how these 
models compare geoscientifically.  

Response: Thanks for your comments. We have revised Key Point 2 as “The Ring 
Average technique is applied to develop a 0.625×0.625 high-resolution TIE-GCM and 
more complicated geoscientific models with polar/spherical coordinates and finite 
difference numerical schemes”. 

2. Please consider adding "forward" to Line 134 to read as "a central difference 
forward Euler". 

Response: Added as suggested in Line 133. 



Technical Comments: 1. Please consider replacing "On the other hand" with "In 
addition" or "Furthermore" on Line 171.  

Response: We changed it as “Furthermore” in Line 170 as suggested. 

2. Please extend Figure 1 caption to include how the information in Lines 123-124 
about the number of "chunks". 

Response: We added “For example, the 144 azimuthal cells in the most inside 
(highest latitude) grid (Figure 1a) have been grouped to 9 effective cells (chunks), 
with 16 original cells in each chunk. In the effective grid, the numbers of chunks from 
inside to outside are 9, 9, 18, 18, 36, 36, 72, 72, 72, and 72, respectively.” In the 
caption of Figure 1.  



Responses to the comments of Referee 2 

This paper addresses means of overcoming the problems introduced by the small cell 
size near the poles when solving equations numerically on a spherical grid. It 
describes a solution using the Ring Average technique which is then illustrated using a 
widely used upper atmosphere community model, the TIE-GCM. The authors show 
that the Ring Average technique allows the TIE-GCM to be run at significantly higher 
spatial resolution without increasing computational costs significantly or introducing 
numerical artifacts that other methods do. I found the paper to be clear and well 
written. I recommend publication after correction of some minor errors and typos. 

Thanks very much for your thoughtful and positive comments. 

Minor errors: Line 305: should read “continuity equation” Line 331: replace 
“transportation” with “transport” Line 349: delete “a” Line 398: “major” is mistyped 
Line 401: “Figure 6a” and “Figure 6b” – remove the “s” Line 479: “resolution” is 
mistyped. 

Response: We corrected the English errors as suggested.  



Reply to the Executive Editor 
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available on the GMD website in the ‘Manuscript Types’ section: 
http://www.geoscientific-modeldevelopment. net/submission/manuscript_types.html 

In particular, please note that for your paper, the following requirements have not 
been met in the Discussions paper: "The main paper must give the model name and 
version number (or other unique identifier) in the title."  

Code must be published on a persistent public archive with a unique identifier for the 
exact model version described in the paper or uploaded to the supplement, unless this 
is impossible for reasons beyond the control of authors. All papers must include a 
section, at the end of the paper, entitled "Code availability". Here, either instructions 
for obtaining the code, or the reasons why the code is not available should be clearly 
stated. It is preferred for the code to be uploaded as a supplement or to be made 
available at a data repository with an associated DOI (digital object identifier) for the 
exact model version described in the paper. Alternatively, for established models, 
there may be an existing means of accessing the code through a particular system. In 
this case, there must exist a means of permanently accessing the precise model 
version described in the paper. In some cases, authors may prefer to put models on 
their own website, or to act as a point of contact for obtaining the code. Given the 
impermanence of websites and email addresses, this is not encouraged, and authors 
should consider improving the availability with a more permanent arrangement. 
Making code available through personal websites or via email contact to the authors is 
not sufficient. After the paper is accepted the model archive should be updated to 
include a link to the GMD paper.  

Please provide the TIE-GCM version number in the title of your revised manuscript. 
Additionally, it might be useful to define a version number for the Ring Average 
technique. 

Response:  

Dear editor, 

Thanks very much for your comments. We have used “TIEGCM 2.0r” as the model 
version and uploaded the source files of the model directed to Github as suggested 
(https://github.com/dangt-ustc/TIEGCM2.0r). The Ring Average technique and 
numerical experiments used in this study is available at 
https://doi.org/10.5281/zenodo.3719295. In addition, to broaden the application of the 
ring average method in GCMs with finite difference scheme and spherical geometry, 
our contributing authors suggested to change the manuscript title as: 
“Averaging-reconstructing filtering techniques for finite-difference general circulation 
models in spherical geometry”. We added these statements in Code Availability 
section in Lines 496-498. 
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Abstract. When solving hydrodynamic equations in spherical/cylindrical geometry using explicit finite difference schemes, a13

major difficulty is that the time step is greatly restricted by the clustering of azimuthal cells near the pole due to the Courant-14

Friedrichs-Lewy condition. This paper adapts the azimuthal averaging-reconstruction (Ring Average) technique to finite differ-15

ence schemes in order to mitigate the time step constraint in spherical/cylindrical coordinates. The finite-difference Ring Average16

technique averages physical quantities based on an effective grid and then reconstructs the solution back to the original grid in a17

piece-wise, monotonic way. The algorithm is implemented in a community upper atmospheric model Thermosphere-Ionosphere18

Electrodynamics General Circulation Model (TIE-GCM), with horizontal resolution up to 0.625◦ × 0.625◦ in the geographic19

longitude-latitude coordinates, which enables the capability of resolving critical mesoscale structures within the TIE-GCM. Nu-20

merical experiments have shown that the Ring Average technique introduces minimal artifacts in the polar region of the GCM21

solutions, which is a significant improvement compared to the commonly used low-pass filtering techniques such as the fast22

Fourier transform method. Since the finite-difference adaption of the Ring Average technique is a post-solver type algorithm,23

which requires no changes to the original computational grid and numerical algorithms, it has also been implemented in much24

more complicated models with extended physical/chemical modules such as the coupled Magnetosphere Ionosphere Thermo-25

sphere (CMIT) model and the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension26

(WACCM-X). The implementation of the Ring Average techniques in both models enables CMIT and WACCM-X to perform27

global simulations with a much higher resolution than that used in the community versions. The new technique is not only a28

significant improvement in space weather modeling capability, but can also be adapted to more general finite difference solvers29

for hyperbolic equations in spherical/polar geometries.30

Key Points:31

• Ring Average technique is adapted to solve the issue of clustered grid cells in polar/spherical coordinate with finite32

difference method.33

• The Ring Average technique is applied to develop a 0.625◦ × 0.625◦ high-resolution TIE-GCM and more complicated34

geoscientific models with polar/spherical coordinates and finite difference numerical schemes.35

• The high-resolution TIE-GCM shows good capability in resolving mesoscale structures in the I-T system.36

Keywords: Finite difference method, Spherical geometry, Ionosphere-thermospehre system, General circulation model, CFL37

condition.38

1 Introduction39

Mesoscale structures with typical horizontal size of 100∼500 km, have gained more and more attention40

in the research of the dynamics of the upper atmospheric system. A number of studies have been carried41
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out to investigate these structures, including the formation and evolution of polar cap patches and tongues42

of ionization [Basu et al., 1995; Foster et al., 2005; Zhang et al., 2013], dynamics of ionospheric irreg-43

ularities [Makela and Otsuka, 2012; Sun et al., 2015], variations of polar thermospheric density anomaly44

[Crowley et al., 2010; Lühr et al., 2004], and the space weather effects of mesoscale electric field vari-45

ability [Codrescu et al., 1995; Matsuo and Richmond, 2008; Zhu et al., 2018; Lotko and Zhang, 2018].46

These dynamic mesoscale structures have shown critical importance in both understanding the physics of47

the solar-terrestrial system and space weather predictions, which challenges the resolution and accuracy of48

numerical models of the upper atmospheric system in resolving these important mesoscale signatures.49

Spherical or cylindrical coordinates are commonly used in solving geophysical problems, including50

the modeling of the upper atmospheric systems. As a workhorse for space weather research, a number51

of global circulation models (GCMs) for the coupled ionosphere-thermosphere (I-T) system have been52

developed based on spherical coordinates using finite difference schemes [e.g., Richmond et al., 1992;53

Fuller-Rowell et al., 1996; Ridley et al., 2006; Ren et al., 2009]. However, restricted by the longitudinal54

grid resolution, current horizontal resolutions used in I-T GCMs are still insufficient for fully resolving55

mesoscale atmospheric structures, which are either marginal or sub-grid. The latest released version of the56

community code, Thermosphere Ionosphere Electrodynamic General Circulation Model (TIE-GCM), has a57

longitude-latitude resolution of 2.5◦ × 2.5◦; the Coupled Thermosphere/Ionosphere Plasmasphere (CTIP)58

Model has a latitude resolution of 2◦ and a longitude resolution of 18◦; the most recent version of the Global59

Ionosphere Thermosphere Model (GITM) has a flexible grid with latitudinal resolution up to 0.3125◦ but the60

typical longitudinal resolution remains 2.5◦ due to severe time step restrictions for global-scale calculations.61

The major difficulty in increasing longitudinal resolution in spherical geometry based GCMs is that the62

explicit time stepping is constrained by the clustering azimuthal cells near the pole due to the Courant-63

Friedrichs–Lewy (CFL) condition [Courant et al., 1928]. A number of attempts have been proposed to64

address this coordinate singularity issue ([e.g., Purser, 1988; Bouaoudia and Marcus, 1991; Williamson65

et al., 1992; Takacs, 1999; Fukagata and Kasagi, 2002; Prusa, 2018]). To use a time step that is larger than66

the global minimum requirement from the CFL conditions, one common method used in a spherical GCM67

is to employ a low-pass Fourier filter at polar latitudes, which removes non-physical, high-frequency zonal68

waves generated due to numerical instability caused by the local violation of the CFL conditions [e.g., Ska-69

marock et al., 2008]. Although the Fourier filter can maintain the computational stability and permit a much70

larger temporal step, the applicability of the Fast Fourier Transform (FFT) filter method is problem depen-71
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dent, which also bring barriers in moving models forward to finer spatial resolutions. Moreover, the linear72

filtering of zonal components generated through a non-physical time step may decrease the accuracy of the73

model calculations near the polar region, which affects physical conservations of e.g. mass, momentum and74

energy that are essential for long-term behavior of the GCM [Williamson and Browning, 1973].75

Recently, Zhang et al. [2019] developed a new technique named the “Ring Average” method for hy-76

perbolic equations to mitigate the CFL restrictions in spherical polar geometry, on the basis of the method77

originally proposed in the Lyon-Fedder-Mobarry (LFM) MHD simulations [Lyon et al., 2004]. The method78

is a “post-solver” type algorithm applied after solving all the physical quantities in the original spherical79

polar coordinates, thus no modification to either the numerical solver or the computational grid is required80

when applying the Ring Average. Test simulation results have shown the effectiveness of the Ring Average81

algorithm in increasing the time step by a factor of 100 while maintaining the fidelity of the solutions. The82

original Ring Average technique was developed for solving hyperbolic equations in spherical/polar geom-83

etry based on finite volume schemes, which redistributes the solution azimuthally through a conservative84

averaging-reconstruction algorithm. The finite-volume version of the Ring Average technique not only re-85

leases the time step constraint in spherical geometry, but also keeps the conservative nature of finite-volume86

schemes to machine precision. In this paper, we adapt the Ring Average technique to finite difference87

schemes for solving hyperbolic equations. Defined on an effective reduced polar grid, the finite-difference88

adaption of the Ring Average technique also conducts a “post-solver” step of averaging-reconstruction in89

each azimuthal ring to maintain the numerical stability and relax the severe computational time step con-90

straint. To demonstrate the effectiveness of the finite-difference version of the Ring Average technique,91

we use solutions from both linear advection equations and the TIE-GCM as test beds. The Ring Average92

algorithm enables the use of high-resolution TIE-GCM such as 0.625◦ × 0.625◦ in longitude and latitude93

with reasonable time steps and minimal numerical artifacts. Further applications of the technique on cou-94

pled Magnetosphere Ionosphere Thermosphere (CMIT) and Whole Atmosphere Community Climate Model95

with thermosphere and ionosphere extension (WACCM-X) are also addressed.96

This paper is organized as follows: In Section 2, we describe the details of the model and the Ring97

Average technique to solve the clustering of polar grid cells problem. A hydrodynamic convection experi-98

ment with the Ring Average technique has also been conducted to test the capability of the method. Section99

3 shows the preliminary results of the high-resolution TIE-GCM with the Ring Average technique imple-100

mented as well as the further applications of the technique. The findings of this work are summarized in101
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Section 4.102

2 Methodology103

2.1 Ring Average in the Finite-Difference Form104

An example of the standard polar grids with a horizontal resolution of 2.5◦ × 2.5◦ (longitude×latitude)105

in the TIE-GCM is shown in Figure 1. It is evident that in Figure 1a, the azimuthal (longitudinal) com-106

putational nodes in the standard polar grid are significantly clustered near the pole even with 144 cells in107

the azimuthal direction, resulting in very “thin” cells with small azimuthal extensions which restricts the108

explicit time step for the advection equations. This azimuthal clustering becomes even worse when grid109

resolution increases, namely the time step drops to 1/4 while the grid resolution doubles, corresponding110

to at least 32 times increases in computational resource, which becomes expensive especially for global111

simulations with high spatial resolutions in order to resolve mesoscale structures.112

Fig 1 The (a) original and (b) effective 2.5◦× 2.5◦ TIE-GCM polar longitude-latitude grid. For example, the 144 azimuthal cells
in the most inside (highest latitude) grid (Figure 1a) have been grouped to 9 effective cells (chunks), with 16 original cells in each
chunk. In the effective grid, the numbers of chunks from inside to outside are 9, 9, 18, 18, 36, 36, 72, 72, 72, and 72, respectively.

The finite difference adaption of the Ring Average algorithm is based on a similar averaging-reconstruction113
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process over a pre-defined, “effective” azimuthal grid as used in the finite-volume version of the algorithm.114

Figure 1b shows an example of “effective” polar grid for applying the finite-difference Ring Average tech-115

nique. In the polar grid shown in Figure 1b, since the reconstructed solution is monotonic within each116

effective computational cell, a much larger time step is allowed compared to the original grid shown in117

Figure 1a. As shown in Figure 1b, the effective longitudinal grid resolutions have been reduced and are118

less clustered towards the pole. For the most inside (highest latitude) grids, the 144 azimuthal cells (Figure119

1a) have been grouped to 9 effective cells (chunks), with 16 original cells in each chunk. Moving away120

from the pole, more chunks are employed. As an example, the numbers of chunks from inside to outside121

shown in Figure 1b in the effective grid are 9, 9, 18, 18, 36, 36, 72, 72, 72, and 72, respectively, allowing122

a relative smooth transition in the size of the cells going radially outward. Note that the choice of the num-123

ber of chunks in each ring is non-unique. Numerical tests with the Finite-Volume solvers have shown that124

the computational solution, under both smooth and discontinuous flow conditions, is insensitive to small125

changes in the chunk configuration [Zhang et al., 2019].126
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Fig 2 Schematic of grid cells within effective chunks

We use the following example of solving the linear advection equation to illustrate the averaging-127

reconstruction process within each chunk. Consider the following linear advection equation of an incom-128

pressible fluid in the azimuthal direction as an example:129

∂ρ

∂t
+ v

∂ρ

∂x
= 0, (1)130

where v is the advection velocity, ρ is the density profile, and x is the azimuthal dimension (x ∈ [0 2π])131

5



along one ring. Assuming the x direction is uniformly discretized into Ntotal computational cells with132

∆x = 2π
Ntotal

, a central difference forward Euler form of Equation (1) for density ρ in cell k between time n133

and n+ 1 is written as134

1

∆t

(
ρn+1
k − ρnk

)
= − v

2∆x

(
ρnk+1 − ρnk−1

)
, (2)135

where k denotes the index of an individual “thin” cell in the original azimuthal grid. ∆t is the time step136

regulated by the CFL condition. Without ring average type of treatment, the time step ∆t is restricted137

by the fact that “thin” azimuthal cells cluster near the pole. The ring average technique takes the average138

solution within a chunk m that contains 2s cells in the original grid as shown in Figure 2. Summing over139

the finite-difference form of Equation (1) within chunk m gives:140

i+s∑
k=i−s+1

1

∆t

(
ρn+1
k − ρnk

)
= − v

2∆x

i+s∑
k=i−s+1

(
ρnk+1 − ρnk−1

)
. (3)141

Then summing over the k indices within chunk m, Equation (3) becomes:142

1

∆t

(
i+s∑

k=i−s+1

ρn+1
k −

i+s∑
k=i−s+1

ρnk

)
= − v

2∆x

i+s∑
k=i−s+1

[(
ρnk+1 − ρnk

)
+
(
ρnk − ρnk−1

)]
(4)143

= − v

2∆x

[(
ρni+s+1 − ρni−s+1

)
+
(
ρni+s − ρni−s

)]
(5)144

= − v

∆x

(
ρni+s+1 + ρni+s

2
−
ρni−s+1 + ρni−s

2

)
(6)145

= − v

∆x

(
ρn
i+s+ 1

2
− ρn

i−s+ 1
2

)
, (7)146

where ρn
i−s+ 1

2

and ρn
i+s+ 1

2

are the left- and right-values on the boundary of chunk m, as indicated by the red147

triangles in Figure 2. The LHS of Equation (7) is basically the time rate of the change in terms of the chunk148

density %m:149

1

∆t

(
%n+1
m − %nm

)
, (8)150

where %n+1
m =

∑i+s
k=i−s+1 ρ

n+1
k and %nm =

∑i+s
k=i−s+1 ρ

n
k . If assuming smoothness of the solution which151

applies to typical upper atmospheric flow conditions, and using a piece-wise linear reconstruction for the152
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two interface values at time level n:153

ρn
i+s+ 1

2
=
%m+1 + %m

2
(9)154

ρn
i−s+ 1

2
=
%m + %m−1

2
, (10)155

the RHS of Equation (7) is in the form of a central difference approximation of the spatial derivative ∂%
∂x

in156

chunk m:157

− v

∆x

%nm+1 − %nm−1
2

. (11)158

Equating Equation (8) and Equation (11) and considering the fact that the ∆X in computing the chunk159

derivative is actually 2s∆x, we obtain:160

1

∆T

(
%n+1
m − %nm

)
= −v

%nm+1 − %nm−1
2∆X

, (12)161

where ∆T = 2s∆t. Equation (12) is in the same numerical differential form of the advection equation in162

terms of the chunk density % in the effective grid, within the same order of finite difference approximation:163

∂%

∂t
= −v ∂%

∂x
+O

(
∆X2

)
. (13)164

Equation (12) also suggests that in principle the ring average method is capable of using a time step that165

is approximately 2s times larger than the original ∆t restricted by the “thin” cells (assuming the CFL166

condition is dominated by the azimuthal direction in the innermost ring). Note that the above derivation167

of the finite-difference version of the Ring Average algorithm is independent of the numerical schemes168

solving the linear advection equation (1). Thus, the Ring Average algorithm requires no modifications169

to the existing hydrodynamic equations solved by GCMs. FurthermoreOn the other hand, since the Ring170

Average algorithm is applied after all the variables are solved on the original spherical grid, it requires no171

changes to the existing computational grid.172

In the reconstruction step, the above algorithm uses the piecewise linear method (PLM) to reconstruct173

solutions within each chunk for the next time step of the GCM calculations, resulting in a 2nd-order accuracy.174

To achieve higher accuracy in the reconstruction step, a piecewise parabolic reconstruction method (PPM)175

[Colella and Woodward, 1984] may be used in the algorithm, which provides a 4th-order accuracy for the176
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reconstruction step. In the following section when applying the Ring Average algorithm in a GCM, we177

use both PPM and PLM for different variables. The criteria using PPM or PLM here depends on their178

spatial gradient from the fluid calculations. For variables which have relatively greater spatial gradient, we179

use PPM method to reach a high accuracy and maintain the stability, otherwise the PLM is used for the180

calculations.181

F(x) F’(x)FA FL FR

Step 1 Step 2 Step 3

Linear

Parabolic

Step 0

P(x)

Fourier
Expansion

PLM

PPM

Averaging

RING-AVERAGE ALGORITHM

ReconstructionTrunk division

Fig 3 The Ring Average Algorithm with both PLM and PPM methods

The algorithm shown in Figure 3 illustrates the steps of applying the Ring Average technique using either182

PLM or PPM. The steps consist of chunk division, chunk averaging and reconstruction. The averaging-183

reconstruction process (Ring Average) in this study is similar to Zhang et al. [2019], with modifications on184

the reconstruction method (PPM or PLM) adapted to finite difference schemes. The detailed procedures of185

Ring Average technique in this study are described as follows:186

For variables using the PLM reconstruction187

Step 1. Divide the azimuthal grid cells into chunks and pull data into the chunks.188

Step 2. Calculate the average value FA, left interface value FL, and right interface value FR at chunk189

m (m is the index of the chunk number in an azimuthal ring). FL and FR are the interface values in each190
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chunk and determined by the following parabola functions:191

FL = (−Fm−2 + 7Fm−1 + 7Fm − Fm+1)/12 (14)192

FR = (−Fm−1 + 7Fm + 7Fm+1 − Fm+2)/12, (15)193

where Fm−2, Fm−1, Fm, Fm+1, and Fm+2 are the average values FA at chunks with index of m− 2, m− 1,194

m, m+ 1, m+ 2, respectively.195

Step 3. Reconstruct the variables by interpolating the average data linearly in each chunk:196

Fk = (1− k

N
)FL +

k

N
FR, (16)197

where N is the number of cells within each chunk and k is the local index ranging from 1 to N .198

Step 4. Re-do the above procedures to the next azimuthal ring until ring average is not needed.199

For variables using the PPM reconstruction200

The procedures in PPM are the same with PLM except for Step 3.201

Step 3. Reconstruct the variables parabolically in each chunk using the following function:202

Fk =
A

3N2
(3k2 − 3k + 1) +

B

2N
(2k − 1) + C, (17)203

where A, B, and C are constants representing the parabolic function which connects FL and FR:204

A = 3(FL − FR − 2FA)

B = 2(3FA − 2FL − FR)

C = FL.

(18)205

For vector variables using the PLM reconstruction and Fourier reduction206

The “Step 0” in Figure 3 corresponds to a Fourier expansion (reduction) step that is required for vector207

GCM variables in spherical coordinates before applying the Ring Average process. The main purpose of208

the Fourier reduction step is to maintain the direction of vectors after Ring Average, especially for the209

neutral meridional and zonal wind across the pole. Thus only the second and higher Fourier components of210
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the data in the azimuthal cell is smoothed using the Ring Average filter, while the zeroth and first Fourier211

components are kept unchanged. Here are the details of the Fourier expansion process:212

Step 0. Calculate the Fourier components of the azimuthal data:213

Pi = A0 + A1 cos (2πi/Ntotal) +B1 sin (2πi/Ntotal) + Fi, (19)214

where i is the thin cell index along the azimuthal direction ranging from 1 to Ntotal, where Ntotal is the total215

thin cell number in the azimuthal direction, Fi is the second and higher Fourier components which will be216

later reconstructed, A0, A1, B1 are the zero and first Fourier coefficients:217

A0 =
1

L

i=L∑
i=1

Pi

A1 =
1

L

i=L∑
i=1

Pi cos (2πi/L)

B1 =
2

L

i=L∑
i=1

Pi sin (2πi/L).

(20)218

The higher Fourier components Fi are pulled into chunks for the Ring Average processes.219

Step 1-4: Same with the above PLM methods, except that the reconstructed data F ′
i is brought back220

together with the first two Fourier components after the reconstruction:221

Pi = A0 + A1 cos (2πi/L) +B1 sin (2πi/L) + F
′

i . (21)222

2.2 Ring Average for the Advection Equation223

In this section, in order to illustrate the implementation of the Ring Average algorithm in a finite dif-224

ference code, we solve the two-dimensional (2D) linear advection equation in the polar geometry as an225

example. The code used in the 2D linear advection solver is a main subroutine used in the Ring Average226

module for the GCMs. This two-dimensional advection test in polar geometry is also useful to demonstrate227

the effectiveness of the finite-difference Ring Average technique in handling a strong, narrow shear flow228

near the pole. A fourth-order central finite difference scheme is used to solve the following mass continuity229
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equation under the incompressible assumption:230

∂ρ

∂t
+ u · ∇ρ = 0, (22)231

where ρ is the density, and u is the time-stationary flow velocity defined in polar coordinate (r, θ). The polar232

geometry of this test is defined with a resolution of 0.625◦ in both longitude and latitude, with 144 cells in233

the r-direction uniformly distributed between (0, 1) and 576 cells in the θ-direction uniformly distributed234

between (0, 2π).235

Figure 4a shows the initial state (t = 0) of ρ, ranging linearly along the y direction from a magnitude of236

2 at the topside to 0.01 at the bottomside:237

ρ =

2 y > 0.65

(y − 0.65)/(0.65 + 1) ∗ (2− 0.01) + 2 y < 0.65.

(23)238

The time-independent flow velocity u is set as a Gaussian-distributed shear flow towards −y and centered239

at x = 0.15 with a peak velocity of −1 and a half width of 0.01:240

u = − exp
[
−(x− 0.15)2

0.01

]
. (24)241

As simulation time evolves, a large density gradient occurs near the pole driven by the time-stationary shear242

flow, with its pattern following the analytical distribution of the flow velocity u. Figures 4a-4c show three243

snapshots of the density in the linear advection experiment at t = 0, t = 0.75, and t = 1.5 using the finite244

difference version of the Ring Average technique with PPM reconstructions, as described in Section 2.1.245

For comparisons, Figures 4d-4f show the corresponding snapshots derived from another simulation using an246

FFT filter, and Figures 4g-4i show the results at the same simulation time calculated from the fourth-order247

finite difference scheme without applying any filtering technique. In the simulation using Ring Average,248

the number of the averaging chunks in each azimuthal ring near the pole is set to be [18 18 18 18 36 36249

36 36 72 72 72 72 144 144 144 144], from the first ring to the 16th ring, as indicated by the white circles250

in the top panels around 80◦N. For the FFT filter, a Fourier expansion is applied in the azimuthal direction251

at each time step to the fluid density. Waves with frequencies that are higher than the cutoff frequencies252

are eliminated from the Fourier spectra of prognostic variables. The values of prognostic variables are then253
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reconstructed through an inverse Fourier transform using the modified Fourier spectra. Each latitude grid254

has its own cutoff frequency and the wave number to be cut off in this experiment near the pole is set to be255

[1 1 2 2 2 2 4 4 4 4 8 8 8 8 10 10], which is similar to the TIE-GCM FFT filter spectrum [Wang, 1998].256

As shown in Figures 4b-4c, density structures with large spatial gradient flow across the pole as time257

progresses. Compared with the non-filter case in Figures 4h-4i, no evident numerical instability or artifi-258

cial structure occurred when applying the Ring Average technique. In contrast, the density structure using259

an FFT filter in Figures 4d-4f exhibits numerical oscillations in the radial direction, together with an ar-260

tificial depletion of density near the pole. This density depletion is due to the non-conservative nature of261

the FFT method by truncating high spatial frequency wave modes in a linear way. Figures 4j-4l show a262

one-dimensional comparison of the density profiles along x = 0.15, with the region of averaging chunks263

denoted by yellow. The comparisons suggest that the density flow is not noticeably affected by the imple-264

mentation of the Ring Average technique in the finite difference solver. Note that the time step used after265

applying the Ring Average technique is 0.0001 s, which is 25 times larger than that used in the simulation266

without Ring Average (dt = 0.000004s). Although the FFT filter can result in non-oscillatory solutions in267

the finte-difference solver, however, as shown by the one-dimensional profiles in Figure 4l, evident density268

oscillations occur near the pole due to numerical instability caused by the FFT method. The cut-off fre-269

quency of FFT filter is case-dependent and have a problem of mass-loss, as compared to the Ring Average270

method. The advection experiment illustrates that the Ring Average technique is capable of relaxing the271

severe time step constraint and resolving large density gradient when passing through the clustered grid272

cells near the pole.273
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Fig 4 The distribution of density at three simulation snapshots (t=0, 0.75 and 1.5). The first three panels from top show the results
with the Ring Average technique, with a FFT filter, and without any filter. The latitude boundaries of Ring Average and FFT filter
are marked by white circles in the upper two panels. The bottom panels show the comparison of distributions of density along the
line x = 0.15 (star) with Ring Average technique, (blue dot) with FFT filter, and (red circle) without filter at the three snapshots,
respectively. The number of averaging chunks for the Ring Average technique in each azimuthal ring near the pole is set to be
[18 18 18 18 36 36 36 36 72 72 72 72 144 144 144 144].
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2.3 Ring Average for GCMs274

We use the NCAR-TIE-GCM to demonstrate the effectiveness of the Ring Average technique in resolv-275

ing mesoscale upper atmospheric structures. TIE-GCM is a physics-based 3-D global model that solves276

the coupled equations of momentum, energy, and continuity for neutral and ion species of the upper atmo-277

spheric I-T system, using a fourth-order and centered finite difference scheme to evolve the advection terms278

on each pressure surface with a staggered vertical grid [Qian et al., 2014; Richmond et al., 1992; Roble279

et al., 1988]. The TIE-GCM utilizes a spherical coordinate system fixed with respect to the rotating Earth,280

with geographic latitude and longitude as the horizontal coordinates and pressure surface as the vertical281

coordinate. Following is a brief introduction of the basic equations in the TIE-GCM.282

The thermospheric energy equation is283

∂Tn
∂t

= −V·OTn+
geZ

p0Cp

∂

∂Z

{
KT

H

∂Tn
∂Z

+KEH
2CPρ

[
g

CP
+

1

H

∂Tn
∂Z

]}
−w
(
∂Tn
∂Z

+
R∗T

Cpm

)
+
Q− L
CP

, (25)284

with temperature Tn, time t, the vertical coordinate Z = ln(p0/p), the pressure p and p0 the reference285

pressure. g is gravity, KT is the molecular thermal conductivity, CP is the specific heat per unit mass, H is286

the pressure scale height, KE is the eddy diffusion coefficient, ρ is the atmospheric mass density, V is the287

horizontal neutral velocity with the zonal and meridional components un and vn, w is the vertical velocity288

defined by w = dZ/dt, R∗ is the universal gas constant, m is the mean atmospheric mass, and Q and L are289

the heating and cooling rates. The mean molecular mass m is determined by290

m =
[ΨO2

mO2

+
ΨO

mO

+
ΨN2

mN2

]
, (26)291

where Ψ and m represent the mass mixing ratio and the molecular mass for the three thermospheric major292

species O2, O, and N2, respectively.293

The zonal momentum equation is expressed as294

∂un
∂t

= −V · Oun +
geZ

p0

∂

∂Z
(
µ

H

∂un
∂Z

) + (f +
un
RE

tanλ)vn + λxx(ui − un)

+λxy(vi − vn)− w∂un
∂Z
− 1

RE cosλ

∂φ

∂ϕ
,

(27)295
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and the meridional momentum equation is296

∂vn
∂t

= −V · Ovn +
geZ

P0

∂

∂Z
(
µ

H

∂vn
∂Z

)− (f +
un
RE

tanλ)un + λyy(vi − vn)

+λyx(ui − un)− w∂vn
∂Z
− 1

RE

∂φ

∂λ
,

(28)297

where λ and ϕ represent the geographic latitude and longitude, respectively. RE is the radius of the Earth,298

µ is the viscosity coefficient which is the sum of eddy and molecular viscosity coefficients, f is the Coriolis299

parameter, φ is the geopotential, H is the pressure scale height, vi and ui are the meridional and zonal300

E×B ion drift velocities, and λxx, λxy, λyx, λyy are the ion-drag tensor coefficients. The TIE-GCM “vertical301

velocity” w = dZ/dt is determined by solving the continuity equation:302

1

r cosλ

∂

∂λ
(vn cosϕ) +

1

r cosλ

∂un
∂ϕ

+ eZ
∂

∂Z
(e−Zw) = 0. (29)303

The real vertical velocity is obtained by first integrating the continuitycontinuing equation (29) over Z to304

get w, and then multiplying w by the neutral pressure scale height to get the right unit.305

The thermospheric major species in the TIE-GCM includes O2, O, and N2. The continuity equation for306

the mass mixing ratio of O2 and O is given by307

∂Ψ̃

∂t
= −V · OΨ̃− eZ

τ

∂

∂Z
[
m

mN2

(
T00
Tn

)0.25α̃−1LΨ̃] + eZ
∂

∂Z
[K(z)e−Z

∂

∂Z
(1 +

1

m

∂m

∂Z
)Ψ̃]

+S̃ − R̃− w∂Ψ̃

∂Z
,

(30)308

where Ψ̃ = (ΨO2 ,ΨO), τ is the diffusion time scale and equals to 1.86× 103 s, mN2 is the molecular mass309

for molecular nitrogen, T00 = 273K is the standard temperature, α̃ is the matrix operator of the diffusion310

coefficients, K(Z) is the eddy diffusion coefficient, and S̃ and R̃ are the production and loss term for these311

two species. The diagonal matrix operator L has elements of the form312

Lii =
∂

∂Z
− (1− mi

m
− 1

m

∂m

∂Z
), (31)313

where i = 1, 2 denote O2 and O, respectively. The N2 mass mixing ratio is determined by314

ΨN2 = 1−ΨO2 −ΨO. (32)315
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The minor species in the TIE-GCM are N(4S), N(2D), and NO. The time scale of N(4S) is relatively316

short and thus is considered to be photochemical equilibrium. N(4S) and NO have longer life times so the317

transport effects must be taken into account. The governing equation for these two species is318

∂Ψ̃

∂t
= −V · OΨ̃− eZ ∂

∂Z
Ã(

∂

∂Z
− Ẽ)Ψ̃ + eZ

∂

∂Z
e−ZKE(Z)(

∂

∂Z
+

1

m

∂m

∂Z
)Ψ̃− w∂Ψ̃

∂Z
+ S̃ − R̃, (33)319

where320

E = (1− m̃

m
− 1

m

∂m

∂Z
)− α̃ 1

Tn

∂Tn
∂Z

+ F̃ Ψ̃, (34)321

where Ψ̃ = (ΨNO,ΨN(4S)), Ã is the vertical molecular diffusion coefficient, S̃ and R̃ are the production and322

loss terms for each species. Terms in Ẽ represent the effects of gravity, thermal diffusion and the frictional323

interaction with the major species on the vertical profiles of these two species. F̃ is a matrix operator for the324

frictional interactions, α̃ is the thermal diffusion coefficient, and m̃ is the molecular mass for the two minor325

species.326

The ions of the ionosphere in the TIE-GCM include O+, O+
2 , NO+, N+, and N+

2 , and the electron327

density is calculated by chemical equilibrium of these ions. All major ionospheric ions except O+ are328

assumed as photochemical equilibrium, thus their densities can be calculated simply by balancing the loss329

and production rates. TheO+ density is determined not only byO+ loss and production but also by transport330

transportation due to E×B drifts, neutral winds, and field-aligned ambipolar diffusion. The O+ continuity331

equation can be expressed as332

∂n

∂t
= −O · (nV) +Q− Ln, (35)333

where n is the O+ density, Q is the production rate, L is the loss rate, and O · (nV) is the transport term.334

The ion velocity is given by335

V = V‖ + V⊥ (36)336

V‖ =

{
b · 1

ν

[
g − 1

ρi
O(Pi + Pe)

]
+ b ·U

}
b (37)337

V⊥ =
E×B

|B|2
, (38)338

where V‖ and V⊥ are the parallel and perpendicular velocities with respect to the magnetic field line caused339

by ambipolar diffusion and neutral winds, and E×B drifts, respectively, b is a unit vector along the magnetic340
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field, ν is the ion-neutral collision frequency, g is the acceleration due to gravity, ρi is the ion mass density,341

Pi and Pe are the ion and electron pressures, respectively, U is the neutral velocity, B is the magnetic field,342

and E is the electric field.343

By assuming a thermal quasi-steady state, the electron energy equation is344

sin2 I
∂

H∂Z
(Ke ∂Te

H∂Z
) +

∑
Qe −

∑
Le = 0, (39)345

with I the geomagnetic dip angle, Ke the electron thermal conductivity parallel to the magnetic field,
∑
Qe346

the sum of all local electron heating rates, and
∑
Le the sum of all local cooling rates.347

For the electrodynamics, i.e. the “neutral wind dynamo process”, TIE-GCM assumes a steady state348

electrodynamics with a divergence free current density J for longer time scales:349

O ·
[
σP (E + U×B) + σHb× (E + U×B) + J|| + JM

]
= 0, (40)350

where σP and σH are the Pederson and Hall conductivities, and U is the neutral wind. J|| and JM are351

the ohmic component of current density parallel to the magnetic field and the non-ohmic magnetospheric352

component, respectively.353

The ionospheric convection pattern for computing the plasma advection velocity V⊥ at high latitudes354

is specified by either the Heelis et al. [1982] or the Weimer [2005] empirical model, while at the bottom355

boundary the migrating tides are specified using the Global-Scale Wave Model [Hagan and Forbes, 2002,356

2003]. The current standard version of TIE-GCM (TIE-GCM v2.0) provides two spatial resolution options:357

(1) 5◦×5◦ in horizontal geographic latitude-longitude grid and 1/2 scale height in the vertical direction, and358

(2) 2.5◦× 2.5◦ in horizontal geographic latitude-longitude grid and 1/4 scale height in the vertical direction.359

In this study, the Ring Average technique is implemented in the TIE-GCM v2.0 to solve the issue of360

clustering grid cells near the poles in the development of a high-resolution version of the TIE-GCM. This361

technique is applied as a post-processing treatment of the fluid variables including oxygen ion density O+,362

neutral temperature Tn, thermospheric compositions Ψ, meridional, zonal, and vertical winds (Un, Vn, w)363

at each time step, with different reconstruction methods (PPM or PLM) for different variables (Table 1).364

Due to the use of mpi parallelization in the TIE-GCM in supercomputers, the Ring Average technique365

firstly collects the azimuthal data in the root thread, conducts the averaging-reconstruction process and366

finally redistributes data into each mpi thread. Figure 5 illustrates Ring Average filters used in the main367
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Fig 5 The main Ring Average Algorithm in the TIE-GCM

algorithms of the TIE-GCM, including the thermosphere solvers in Equations (25-34), the ionosphere solver368

for O+ in Equations (35-39), and the dynamo solver for electrodynamic coupling in the Equation (40). For369

neutral variables in the thermosphere solver, the Ring Average technique with the PLM reconstruction370

method is utilized. Specifically, for the meridional and zonal neutral winds, the second and higher Fourier371

components are processed with the PLM Ring Average filter to maintain the direction of vectors across the372

pole, as displayed in Figure 5. The oxygen ion (O+) in the ionosphere usually has much sharper gradients373

than the neutral variables, e.g., Tongue of Ionization (TOI) structures, thus the PPM method is used in the374

reconstruction process to provide high-order accuracy and handle the larger local gradient. Meanwhile, to375

balance the numerical stability and computational speed, a sub-cycling technique, which has a smaller time376

step forO+ than neutral variables, has been applied in theO+ solver, because the ions can move much faster377

than the neutrals with the ExB drifts especially during major geomagnetic storms.378

On the basis of the Ring Average technique, a new high-resolution version of TIE-GCM with a hori-379

zontal longitude-latitude resolution as high as 0.625◦ × 0.625◦ is developed. Table 2 lists the Ring Average380

setup used in different TIE-GCM resolutions. The third column in Table 2 represents the number of av-381

eraging chunks in each azimuthal ring near the pole, from the first innermost to the outermost rings. For382
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Table 1 The Basic Ring Average Settings of Variables (Column 1), and the corresponding Reconstruction Method (Column 2),
Fourier Reduction (Column 3), and Sub-cycling (Column 4) in the TIE-GCM.

Variables Reconstruction Method Fourier Reduction Sub-Cycling
ΨO,ΨO2 ,ΨNO,ΨN(4S), w, Tn PLM No No

Un, Vn PLM Yes No
O+ PPM No Yes

Table 2 The Ring Average Setup for Different TIE-GCM Horizontal Resolutions (Column 1), Associated with the Number of
Longitude Grids (column 2), and the Number of Averaging Chunks in each azimuthal ring near the pole (column 3).

Horizontal Resolution
Number of

Longitude Grids Number of Chunks

2.5◦ × 2.5◦ 144 [9,18,36,36,72,72,72,72]

1.25◦ × 1.25◦ 288
[9,9,18,18,36,36,36,36,72,72,72,72,144,144,144,144,
144,144,144,144]

0.625◦ × 0.625◦ 576
[9,9,9,9,18,18,18,18,36,36,36,36,36,36,36,36,72,72,72,
72,72,72,72,72,144,144,144,144,144,144,144,144,288,
288,288,288,288,288,288,288]

example, in the first azimuthal ring near the pole of the 0.625◦ × 0.625◦ grid resolution, 64 longitude grids383

(576/9 = 64) and 40 longitude degrees (360◦/9 = 40◦) are grouped into a chunk. While in the outermost384

filtered ring (around 71.25◦ latitude), one averaging chunk only contains two longitude grids. Table 3 sum-385

marizes the information of different spatial resolutions of the TIE-GCM, including the current version of386

2.5◦×2.5◦ TIE-GCM with the default FFT filter, and 2.5◦×2.5◦, 1.25◦×1.25◦, and 0.625◦×0.625◦ resolu-387

tion TIE-GCM with the Ring Average filter, respectively. As the resolution doubles, the time step decreases388

approximately linearly rather than quadratically. In practice, the 0.625◦×0.625◦ resolution of the code runs389

about two times faster than real time with 256 processors on the NCAR/CISL Cheyenne supercomputer390

system (12 hours for one-day geomagnetic storm simulation), which is at fairly low computational cost for391

mesoscale-resolving global simulations. The preliminary results of the high-resolution TIE-GCM will be392

shown in the following section.393

3 Applications394

To show the capability of the new high-resolution TIE-GCM based on the Ring Average technique in395

resolving mesoscale I-T structures, we have simulated the ionospheric and thermospheric variations during396

the March 17, 2013 majormojor geomagnetic storm as an example. Figure 6 displays the comparison of po-397

lar maps of electron densities between different filter techniques with the 2.5◦ × 2.5◦ horizontal resolution.398

The electron density is plotted on pressure surface 2, which is near the F2 region peak (∼ 300 km altitude).399
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Table 3 Comparisons of Horizontal Resolution in Geographic Latitude-Longitude Grid (Column 1), Vertical Resolution (Column
2), Time Step (Column 3), O+ Sub-cycling Time Step (Column 4), and Polar Filter (Column 5) between Different TIE-GCM
Versionsa.

Horizontal Resolution
Vertical Resolution

(Scale Height) Time Step (s)
O+ Sub-cycling
Time Step (s) Polar Filter

2.5◦ × 2.5◦ 1/4 60 - FFT
2.5◦ × 2.5◦ 1/4 60 5 Ring Average

1.25◦ × 1.25◦ 1/4 20 2 Ring Average
0.625◦ × 0.625◦ 1/4 10 0.1 Ring Average

aIn colunms 3-4, the time step corresponds to the cases of geomagnetic storms. The time step
and sub-cycling time step would be more relaxed when the geomagnetic activity is quiet.

FigureFigures 6a corresponds to the standard TIE-GCM with the FFT filter, while FigureFigures 6b is the400

result using the Ring Average technique. Generally, the electron densities in two simulations in Figures 6a-401

6b are similar below 60◦N, with an evident electron density enhancement seen in the afternoon sector and402

negative storm effects in the morning at 10:50 UT during the storm. The dense ionospheric plasma in the403

afternoon sector is transported in the anti-sunward direction into the polar cap region by the dusk cell of the404

convection pattern. Consequently, prominent polar tongue of ionization (TOI) features can be seen as a nar-405

row density plume on the dayside, which stretches from 65◦N at noon to latitudes greater than 80◦N inside406

the polar cap. Those TOI features agree well with the polar Global Position System (GPS) total electron407

content (TEC) observations [e.g., Foster et al., 2005; Thomas et al., 2013]. It is evident that, in Figure 6a,408

the TOI cannot go through the polar cap region and generates an artificial “hole” structure at above 80◦N.409

This non-physical depletion is associated with the loss of electron density induced by the removal of high410

frequency in the FFT filter, as also indicated in the advection experiment in Figure 4f. Consequently, the411

plasma within the TOI accumulates around the “hole” and a “ring-like” structure appears at about 70◦N. In412

contrast, for the Ring Average technique, the electron densities in Figure 6b can successfully flow through413

the polar cap and arrive at the nightside, which is consistent with Figure 4c. Thus using the Ring Average,414

the artificial structures no longer exist in the polar cap region, indicating the advantage of Ring Average415

technique in handling the numerical instability by causing less artificial structures and preserving the real416

mesoscale structures.417

Figure 7 shows the comparison of the polar maps of electron densities between simulations with differ-418

ent spatial resolutions using the Ring Average technique bolstered TIE-GCM. The simulation results after419

using the Ring Average technique are generally similar among different simulations, with finer structures420

in higher spatial resolutions. Besides the ionospheric parameters, we have also tested the performance of421
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Fig 6 The simulated polar maps of electron densities using (left) FFT filter and (right) Ring Average at pressure surface 2 (near
F2-region peak, ∼ 300 km) at 10:50 UT on March 17, 2013 as a function of geographic latitude and local time. Both simulations
have a horizontal resolution of 2.5◦ × 2.5◦. The outer boundary is 45◦N geographic latitude.

Ring Average in the thermospheric simulations (not shown here), which indicates that the thermospheric422

variables generally converge between different spatial resolutions. The thermospheric temperature, O/N2,423

and thermospheric density simulated by two kinds of filters do not show distinct differences as compared424

with the ionospheric simulations, due to the relatively smoother variations of neutral parameters. Only425

slight deviation exists locally on a smaller scale in the polar thermosphere. The results from Figures 6426

and 7 demonstrate that the Ring Average technique can be applied in the finite difference method, which427

is usually considered to be less stable than the finite volume scheme. The Ring Average method can suc-428

cessfully maintain the numerical stability, even with the structures of large spatial gradients, and conserve429

true mesoscale structures. Meanwhile, the Ring Average technique shows advantages of inexpensive com-430

putational cost and easy implementation, as indicated by Table 3. By using the Ring Average, the time step431

has been greatly relaxed in the ideal advection experiment and the high-resolution TIE-GCM, which would432

maintain the computational cost to an acceptable level. Furthermore, the Ring Averaging can be applied433

as a post filter after each simulation step and would not require a modification of the underlying code and434

make the technique easily applied.435

Benefiting from the Ring Average technique, the newly developed high-resolution TIE-GCM has been436
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Fig 7 The polar maps of electron densities at pressure surface 2 (near the F2-region peak, ∼ 300 km) at 10:50 UT on March 17,
2013 as a function of geographic latitude and local time for (a) 2.5◦×2.5◦, (b) 1.25◦×1.25◦, and (c) 0.625◦×0.625◦ TIE-GCM
horizontal resolutions using the Ring Average technique.

applied to explore the mesoscale variations in the I-T system during space weather events. For instance,437

based on the 0.625◦ × 0.625◦ high-resolution TIE-GCM simulations as well as satellite observations, Dang438

et al. [2019] have reported the occurrence of double TOIs and carried out a comprehensive study on the439

dynamic evolution and formation mechanism of double TOIs. Lu et al. [2020] used the high-resolution440

model to study the ionospheric disturbances such as traveling ionospheric disturbances and storm enhanced441

density during geomagnetic disturbances. Besides, the high-resolution TIE-GCM has also been utilized442

to simulate the sub auroral polarization stream [Lin et al., 2019], neutral wind variabilities [Wu et al.,443

2019], and the responses of the I-T system to solar eclipses [Dang et al., 2018a,b; Lei et al., 2018; Wang444

et al., 2019]. These works highlight the enhanced capability of high-resolution TIE-GCM in resolving the445

ionospheric and thermospheric mesoscale structures that is enabled by the Ring Average technique.446

Simulating the mesoscale structures also requires a more realistic input from the upper and bottom447

boundaries of the I-T system, corresponding to the electric field and auroral precipitation from the magne-448

tosphere and the upward propagation of tides and waves from the lower atmosphere, respectively. In the449

TIE-GCM, these inputs are directly adopted from two empirical models, the Weimer model and GSWM450

model, which might not necessarily represent the complexity of the actual physical processes from the451

boundaries. To obtain a more physical upper boundary condition, the CMIT has been developed [Wang452

et al., 2004; Wiltberger et al., 2004] which couples the LFM global magnetosphere model with the I-T453

model TIE-GCM. The LFM provides the TIE-GCM with high latitude electric fields and auroral electron454
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Fig 8 Polar maps of the (a) total electron content (TEC) and (b) neutral temperature simulated by CMIT as a function of geo-
graphic latitude and local time at 17:30 UT on March 17, 2013. The vectors represent the (a) E × B drifts and (b) horizontal
neutral winds, respectively.

precipitations, and the TIE-GCM feeds ionospheric height-integrated conductance back to the LFM. The455

standard resolution of the ionosphere and thermosphere in CMIT is 2.5◦×2.5◦ which is the same as the stan-456

dard TIE-GCM. By implementing the high-resolution TIE-GCM in CMIT, the thermosphere-ionosphere457

part in CMIT has a horizontal resolution of 1.25◦ in both latitude and longitude, which is comparable to458

the magnetospheric resolution of 100 km mapped to the ionospheric reference altitude. Figure 8 shows an459

example of CMIT simulation of the ionosphere and thermosphere, at 17:30 UT during the March 17, 2013460

geomagnetic storm. The TEC in Figure 8a shows more dynamic and finer TOI variations driven by the461

magnetospheric convection during the storm time. Meanwhile, the thermospheric temperature in Figure 8b462

also exhibits distinct mesoscale structures, associated with changes in the neutral wind circulation and ion463

collisional heating. The results illustrate that, with the implementation of the Ring Average technique, the464

high-resolution CMIT show advantages in resolving the dynamic evolution of mesoscale structures in the465

coupled magnetosphere-ionosphere-thermosphere system.466

Furthermore, the Ring Average technique has also been applied in the WACCM-X which can provide467

a relatively more realistic bottom boundary for the I-T simulation. The WACCM-X is a whole atmosphere468

chemistry-climate general circulation model, spanning the range of altitude from the Earth’s surface to the469

upper thermosphere to simulate the entire atmosphere and ionosphere [Liu et al., 2018]. The ionosphere and470
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electrodynamo parts in WACCM-X are the same as in the TIE-GCM. The Ring Average scheme has been471

successfully implemented in the O+ transport module of the WACCM-X to get a higher spatial resolution472

resoultion of the ionosphere. Figure 9 shows the simulation results of 2013 March 17, 2013 geomagnetic473

storm from WACCM-X. For this simulation, the horizontal resolution is 1.25◦ × 0.9◦ in longitude and lat-474

itude directions, respectively, and the vertical resolution in the upper atmosphere is 1/4 of scale height.475

Detailed analyses and exploration of the CMIT and WACCM-X results are beyond the scope of this study476

and will be studied in the future. On-going efforts also include improving the resolution of vertical direc-477

tion and electrodynamo of the TIE-GCM and applying the Ring Average technique in high-resolution data478

assimilation and space weather prediction.479

Fig 9 Polar map of the electron density in the Southern Hemisphere at 14:00 UT on March 17, 2013 from the WACCM-X 1◦ deg
simulation.
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4 Summary480

In summary, a post-processing technique of averaging-reconstruction (Ring Average) algorithm is devel-481

oped to solve the problem of clustering of azimuthal cells in a spherical coordinate with the finite difference482

method. The Ring Average technique is conducted based on a reduced effective polar grid, by first averag-483

ing quantities within azimuthal effective “chunks” and then re-constructing them within each chunk. The484

Ring Average technique shows advantages of inexpensive computational cost, easy implementation, time485

step relaxation, and maintenance of the mesoscale structures without introducing artifacts, which allows486

for the development of high resolution GCMs to resolve mesoscale structures. We have developed a new487

version of the TIE-GCM which has a horizontal resolution of 0.625◦ × 0.625◦ in geographic longitude-488

latitude grid by implementing the Ring Average technique as a post-process step. The non-physical “hole”489

and “ring” structures, which are induced by FFT filter in the previous TIE-GCM version, no longer exist in490

the high-resolution TIE-GCM associated with the Ring Average technique. The simulation results illustrate491

that the high-resolution TIE-GCM is capable of resolving the mesoscale structures in the I-T system dur-492

ing a geomagnetic storm event. Moreover, the Ring Average scheme has also been implemented in CMIT493

and WACCM-X to enable a high spatial resolution self-consistent simulations of the whole geospace from494

ground to the magnetosphere.495
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[5] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichungen der mathematischen527

physik. Mathematische annalen, 100(1):32–74, 1928.528

[6] G. Crowley, D. J. Knipp, K. A. Drake, J. Lei, E. Sutton, and H. Lühr. Thermospheric density enhance-529
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