Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2020-239-SC1, 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive comment on “A note on
precision-preserving compression of scientific
data” by Rostislav Kouznetsov

Milan Kléwer
milan.kloewer@physics.ox.ac.uk

Received and published: 30 July 2020

The author discusses shortcomings of the some rounding methods for floating-point
numbers used in data compression techniques implemented in the NCO software li-
brary. The points adressed are worthwhile as the default rounding mode in NCO,
so-called BitGrooming, introduces artifacts that can be avoided with other techniques,
as shown in this manuscript. The author proposes a round-to-nearest mode as a de-
fault rounding mode and provides evidence for its advantages over the other rounding
modes such as BitGrooming, -Shaving, and halfshave. Methods to remove the short-
comings of bitgrooming from a previously groomed dataset are presented additionally.

C1

Printer-friendly version

Discussion paper

https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-239/gmd-2020-239-SC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-239
http://creativecommons.org/licenses/by/3.0/

1 General remarks
1.1 Tierules

The author introduces a round-to-nearest mode that is based on 1 floating-point
addition, 1 multiplication and two shave operations, which will be called the 2u-v
method from now on, as follows from the underlying equation in the manuscript. The
manuscript is currently lacking a discussion on the tie rules, i.e. the behaviour of the
2u-v rounding when a float is exactly between two representable quantums. If the dis-
tance between those is 1 ULP than | am referring to floats at 1/2 ULP. The 2u-v method
is equivalent to round-to-nearest tie away from zero, which is bias-free for data that is
symmetrically distributed around 0, but introduces a bias for data that is predominantly
positive or negative. | therefore propose to include this information in the manuscript
to distinguish the 2u-v method from the IEEE round-to-nearest tie-to-even (aka half to
even) standard. The author can make a point though, that in the case of data com-
pression rounding errors usually don’t accumulate as they can in e.g. simulations of
dynamical systems, and therefore might be negligible. In any case, it is proposed to
include a discussion around this bias (where it is also important to clarify that a tie-bias
is different to the bias introduced by bit-shaving for example, which scales with ULP)
and whether it is important in the typical use-cases of NCO.

| suggest to discuss how your method is different from round-to-nearest tie-to-even
which is already mentioned in IEEE-754 from 1985 as "An implementation of this stan-
dard shall provide round to nearest as the default rounding mode. In this mode therep-
resentable value nearest to the infinitely precise result shall be delivered; if the two
nearest representable values areequally near, the one with its least significant bit zero
[which is the "even" number] shall be delivered." (page 5 therein)

To illustrate this remark, consider the following float32 numbers. round refers here to
round-to-nearest tie-to-even ("half to even") and kouzround to the 2u-v method intro-

C2

Printer-friendly version

Discussion paper

https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-239/gmd-2020-239-SC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-239
http://creativecommons.org/licenses/by/3.0/

duced by the author.
Jjulia> a
S5-element Array{Float32,1}:

0.

O O O O

In its bit-representation they are (split into sign,exponent and significant bits)

09765625

.0041503906
.0061035156
.028320312
.033203125

julia> bitstring. (a, :split)
S5-element Array{String,1l}:

"0
"0
"0
"0
"0

Rounding these numbers with round-to-nearest tie-to-even (round towards zero in this

01111011
01110111
01110111
01111001
01111010

10010000000000000000000"
00010000000000000000000O"
10010000000000000000000"
11010000000000000000000"
00010000000000000000000™

case) and keeping 3 significant bits yields

julia> bitstring. (round(a, 3), :split)
5-element Array{String,1}:

"0
"0
"0
"0
"0

01111011
01110111
01110111
01111001
01111010

10000000000000000000000"
0000000000000000O0O0O0O0O00O0O™
10000000000000000000000™
11000000000000000000000"
00000000000000C0O0O0O0O0O000O0O™

C3

Printer-friendly version

Discussion paper

https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-239/gmd-2020-239-SC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-239
http://creativecommons.org/licenses/by/3.0/

In contrast, the 2u-v method (aka "kouzround") rounds these ties away from zero
julia> bitstring. (kouzround(a,3), :split)
5-element Array{String,1l}:

"0 01111011 10100000000000000000000"

"0 01110111 00100000000000000CO0COOQO"

"0 01110111 10100000000000000000000"

"0 01111001 1110000000000000000000Q"

"0 01111010 00100000000000000000C0QCOQ"

In the case where the even quantum is away from zero, both methods are indeed
identical

julia> b
0.030273438f£0

julia> bitstring (b, :split)
"0 01111001 11110000000000000000000"

julia> bitstring(round(b,3), :split)
"0 01111010 000000000000000000C0O0COQOQ"

julia> bitstring(kouzround (b, 3), :split)
"0 01111010 00000000000000000C0C0OC0O0O0OO"

Note how the carry bit carries correctly into the exponent bits, something that bitgroom-

. . . Printer-friendly version
ing, shaving and setting would never do.

Discussion paper

C4

https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-239/gmd-2020-239-SC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-239
http://creativecommons.org/licenses/by/3.0/

1.2 Implementing round-to-nearest tie-to-even with bitwise operations is "difficult”

Although | agree that the 2u-v method is fairly simple to understand conceptually and
therefore intuitively easier to implement, a bitwise round-to-nearest (tie-to-even) still
only requires 1 shift, 2 bitwise-AND, and 2 integer-ADD. | would therefore argue that
its implementation is of even lower algorithmic complexity than 2u-v rounding, which
involves, despite hidden, way more bitwise operations within calls to float-multiply and
float-subtract. Assume you want to keep 7 significant bits of a float32 number, in-
tepreted here as a unsigned integer ui, meaning there are 16 tailing bits. The algorithm
then reads

ntb = 16 # number of tailing bits, 16 here
shavemask = 0x0000_ffff # cover all tailing bits
mask2 = 0x0000_7fff # cover all tailing bits except the most signifcant

account for the carry bit
ui += mask2 + ((ui >> ntb) & 0x0000_0001)
ui &= shavemask # shave tailing bits

Which can be easily generalised for various numbers of keepbits. It is still very much
worthwhile to introduce your method, such that libraries similar to NCO can make use
of it. However, if you introduce a rounding method that does not

2 Minor remarks

(i) L.48-49

the least-significant bits (LSBs) of mantissa contain arbitrary, often chaotic informa-
tion,which makes lossless-compression algorithms inefficient”
C5

Printer-friendly version

Discussion paper

https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-239/gmd-2020-239-SC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-239
http://creativecommons.org/licenses/by/3.0/

in comparison to L.19-20

non-significant bits of the value scontain arbitrary numbers with high entropy, that are
difficult to compress

| agree with you that the tailing bits contain seemingly random or arbitrary bits, which
have a high entropy and are therefore difficult to compress. | use the words "seemingly
random" as these bits don’t have to be truly random but at least somewhat irregular.
| find it problematic to use "chaotic" as also non-chaotic systems can produce those.
E.g. even the exp-function will produce

julia> bitstring. (exp. (Float32. (1:10)))

10-element Array{String,1l}:
"01000000001011011111100001010100"
"010000001110110001110011001001210"
"01000001101000001010111100101110"
"01000010010110100110010010000010"
"01000011000101000110100111000101"
"01000011110010011011011011100011"
"01000100100010010001010001000011"
"01000101001110100100111101010100"
"01000101111111010011100010101100"
"01000110101011000001010011101110"

As e is transcendental, so is e? etc. which also means that in binary they will have an
irregular sequence of bits (at least in the significant). | therefore suggest to change your
wording slightly to give the reader a better understanding of what "difficult to compress”
means: (i) Seemingly random, such that a loss-less algorithm can’t identify a pattern
and (i) high entropy, such that entropy-encodings will not yield any benefits.

C6

Printer-friendly version

Discussion paper

https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-239/gmd-2020-239-SC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-239
http://creativecommons.org/licenses/by/3.0/

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-239,
2020. GMDD

Interactive
comment

St

C7

https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-239/gmd-2020-239-SC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-239
http://creativecommons.org/licenses/by/3.0/

	General remarks
	Tie rules
	Implementing round-to-nearest tie-to-even with bitwise operations is "difficult"

	Minor remarks

