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Abstract. The uncertainty in the radiative forcing caused by aerosols and its effect on the climate change calls for research to

improve knowledge of the aerosol particle formation and growth processes. While the experimental research has provided large

amount of high quality data on aerosols in the last two decades, the inference of the process rates is still inadequate, mainly due

to limitations in the analysis of data. This paper focuses on developing computational methods to infer aerosol process rates

from size distribution measurements. In the proposed approach, the temporal evolution of aerosol size distributions is modeled5

with the general dynamic equation equipped with stochastic terms that account for the uncertainties of the process rates. The

time-dependent particle size distribution and the rates of the underlying formation and growth processes are reconstructed

based on time series of particle analyzer data using Bayesian state estimation – which not only provides (point) estimates for

the process rates but also enables quantifying their uncertainties. The feasibility of the proposed computational framework is

demonstrated by a set of numerical simulation studies.10

1 Introduction

Aerosols scatter and absorb solar radiation and affect the permeability of the atmosphere to solar energy (the direct effect). In

addition, aerosol particles act as seeds for cloud droplets (cloud condensation nuclei, CCN) and thus influence the properties of

clouds (the indirect effect, for example Ramanathan et al. (2001)
:::::::::::::::::::::
(Ramanathan et al., 2001)). Worldwide, particulate air pollu-

tants are also responsible for up to 7 million premature deaths per year (WHO 2014). The Intergovernmental Panel on Climate15

Change (IPCC, 2013 Stocker (2014)
:::::::::::::
(Stocker, 2014) and 2014 Pachauri et al. (2014)

::::::::::::::::::
(Pachauri et al., 2014)) recognized the un-

certainty in the radiative forcing caused by aerosols as the main individual factor limiting the scientific understanding of future

and past climate changes.

Some of the uncertainty is caused by the fact that the initial stages of the new particle formation (NPF) processes in the at-

mosphere are still not completely known. It has been known for close to a hundred years that photochemically driven NPF may20

occur in the atmosphere Aitken (1889)
::::::::::::
(Aitken, 1889). The fact that it occurs regularly throughout the troposphere has, how-

ever, become clear only during the last fifteen years or so Kulmala et al. (2004)
::::::::::::::::::
(Kulmala et al., 2004). Partly because of this,
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the systematic development of parameterizations describing tropospheric NPF as an active research topic has only just begun.

Studies with these models suggest that tropospheric NPF may have significant effects on cloud condensation nuclei (CCN),

and thus also, the global cloud albedo effects of atmospheric aerosols overall Merikanto et al. (2010)
:::::::::::::::::::
(Merikanto et al., 2010).25

One challenge in estimating the anthropogenic aerosol effect on climate is the need to know the preindustrial conditions and

dynamics, which is the baseline of forcing estimations Hansen et al. (1981)
::::::::::::::::
(Hansen et al., 1981). Very recently, Gordon et al.

Gordon et al. (2016) made new estimations of anthropogenic aerosol radiative forcing by assuming pure biogenic particle for-

mation, as suggested by Kirkby et al. Kirkby et al. (2016) based on the CLOUD-experiments at CERN. The increased particle

formation rates at the preindustrial conditions increased the CCN conditions and further, the cloud albedo — resulting in a30

0.22 W/m2 decrease in anthropogenic aerosol forcing. As the NPF treatment in global climate models is typically based on

parameterizing particle formation and growth rates from chamber experiments such as CLOUD or from field measurements, it

is of great importance to analyze the data with care , paying also attention to the
:::
and

::::
pay

:::::::
attention

::
to

:
uncertainties.

Most of the research dealing with NPF event analysis has used similar methodology as outlined in the ‘protocol’ described by

Kulmala et al. (2012); Dada et al. (2020)
:::::::::::::::::
Kulmala et al. (2012)

:::
and

:::::::::::::::
Dada et al. (2020). Particle formation rates, at the detection35

limit of the instrument (typically in the range 2-3 nm), are usually estimated from the time evolution of either the total number

concentration or the number concentration below a certain size (for example 20 nm), correcting for coagulation loss and

condensation growth with very simple and approximate balance equations. For condensational growth
:::
rate

::::
(GR), there have

been three main approaches: 1) Fitting the growing nucleation mode with a lognormal
::::::::
log-normal

:
function and the growth

of the mode GR is defined as the growth of the geometric mean size of the mode Leppä et al. (2011)
::::::::::::::::
(Leppä et al., 2011), 2)40

The so-called ‘maximum concentration method’ in which GR is estimated from the times when each measurement channel of

the instrument reaches its maximum concentration Lehtinen and Kulmala (2002)
::::::::::::::::::::::::
(Lehtinen and Kulmala, 2002), and 3) The so-

called ‘appearance time method’ in which GR is estimated from concentration rise times of each channel Lehtipalo et al. (2014)

::::::::::::::::::
(Lehtipalo et al., 2014). Methods 1 and 2 are applicable to cases , in which there is a clear nucleation mode growing, as is

the case, for example, for the multitude of events analyzed from the Hyytiälä forest station in Finland Maso et al. (2005)45

:::::::::::::::
(Maso et al., 2005). For chamber experiments, where the aerosol size distribution approaches steady state Dada et al. (2020)

:::::::::::::::
(Dada et al., 2020), these two approaches cannot be used. Method 3 can then be applied to the transition stage of the dynamics,

before steady-state is reached. All of these methods suffer from disturbances by other aerosol microphysical processes (for

example coagulation and deposition) and, in addition, cannot be used to estimate uncertainties related to GR. Deposition rates

are typically estimated by targeted experiments with either several different experiments with different monodisperse aerosol,50

or in the absence of vapors and with low enough concentrations that other microphysical processes do not affect the estimation.

The last decade has been a huge leap forward in atmospheric new particle formation research. Instrument development,

especially advances in particle detection efficiency and mass spectrometry, have allowed us to measure details of the dynam-

ics of the smallest clusters (for example Almeida et al. (2013)
::::::::::::::::::
(Almeida et al., 2013)). At the same time, however, potentially

superior advanced data analysis methods have not been used. Instead, NPF and particle growth rates have been analyzed with55

the above mentioned very simple regression or balance equation approaches (overview of typical methods in Kulmala et al.

(2012)), suffering from potentially crude approximations and permitting no proper estimation of the uncertainties. It is likely
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that there are significant inaccuracies in quantities such as particle formation and growth rates estimated previously, and at least

their uncertainties have typically not been quantified. Very recent studies by Kuerten et al. Kürten et al. (2018) have already

shown that the difference between nucleation rates estimated by fitting a sophisticated aerosol model to data and a ‘traditional’60

simple method can be as large as a factor of ten.

Studies on applying computational inversion methods to estimating the most important quantities of interest with re-

spect to particle fate and effects in the atmosphere, the formation and growth rates, are rare. Lehtinen et al. Lehtinen et al.

(2004) applied simple least squares based optimization of aerosol microphysics to measured data. This method was later im-

proved (more processes, less assumptions) by Verheggen et al. Verheggen and Mozurkewich (2006) and Kuang et al. (2012)65

::::::::::::::::::::::::::::::
Verheggen and Mozurkewich (2006)

:::
and Kuang et al. (2012). These studies, however, did not address the uncertainties in the

estimated parameters. Henze et al. (2004) Henze et al. (2004) used the method of adjoint equations to estimate condensation

rates based on measured evolution of the aerosol size distribution. Sandu et al. Sandu et al. (2005) presented adjoint equations

of the complete aerosol GDE which could be a basis of data-assimilation of aerosol dynamics. We are, however, not aware of

the methodology being used later.70

In the statistical (Bayesian) framework of inverse problems Kaipio and Somersalo (2006)
::::::::::::::::::::::::
(Kaipio and Somersalo, 2006), the

uncertainties of the model quantities are modeled statistically, and it offers an approach to uncertainty quantification, in addi-

tion to parameter estimation. In time-invariant case, the Bayesian approach was adopted to estimation of
:::::::
estimate aerosol size

distributions by Voutilainen et al. Voutilainen et al. (2001). Thus far, the only works where statistical approach has been taken to

inverse problems in aerosol size distribution dynamics are those on parameter estimation in aggregation-fragmentation models75

Ramachandran and Barton (2010); Bortz et al. (2015); Shcherbacheva et al. (2020)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ramachandran and Barton, 2010; Bortz et al., 2015; Shcherbacheva et al., 2020)

, estimating the size distribution evolution using Kalman filtering Voutilainen and Kaipio (2002); Viskari et al. (2012)
::::::::::::::::::::::::::::::::::::::::::
(Voutilainen and Kaipio, 2002; Viskari et al., 2012)

and estimating evaporation rates using a Markov Chain Monte-Carlo method Kupiainen-Määttä (2016)
:::::::::::::::::::::
(Kupiainen-Määttä, 2016)

. However, the statical
::::::::
statistical inversion framework, and Bayesian state estimation in particular, has been applied to several

other problems which are mathematically similar to parameter estimation in aerosol dynamics. Unknown coefficients have been80

estimated in, for example, Fokker-Planck equations Banks et al. (1993); Dimitriu (2002)
::::::::::::::::::::::::::::
(Banks et al., 1993; Dimitriu, 2002),

age-structured population dynamics models Rundell (1993); Cho and Kwon (1997)
:::::::::::::::::::::::::::::::
(Rundell, 1993; Cho and Kwon, 1997) as

well as algal and phytoplankton aggregation models Ackleh (1997); Ackleh and Miller (2018)
:::::::::::::::::::::::::::::::::
(Ackleh, 1997; Ackleh and Miller, 2018)

.

In this paper, we approach the problem of estimating unknown rate parameters in the aerosol general dynamic equation in the85

framework of Bayesian state estimation. We model the discretized particle size distribution as well as the unknown nucleation,

growth and deposition rates in GDE as multivariate random processes, and estimate them from sequential particle counter

measurements by using Extended Kalman filter (EKF) and Fixed Interval Kalman Smoother (FIKS). The feasibility of these

estimators to quantify the process rate parameters and their uncertainties is tested with series of numerical simulation studies.
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2 Estimation of parameters in GDE90

The temporal evolution of the aerosol size distribution n= n(dp, t) can be described by a population balance equation referred

to as the general dynamic equation (GDE) Zhang et al. (1999); Prakash et al. (2003); Lehtinen and Zachariah (2001); Smoluchowski (1916); Friedlander and Wang (1966)

.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zhang et al., 1999; Prakash et al., 2003; Lehtinen and Zachariah, 2001; Smoluchowski, 1916; Friedlander and Wang, 1966)

:
.

We write the continuous form of GDE as
:::
the

::::
GDE

::
as
:

∂n

∂t
(dp, t) =−∂g(dp, t)n(dp, t)

∂dp︸ ︷︷ ︸
growth by condensation

−n(dp, t)

∞∫
d?p

β(dp,s)n(s, t)ds

︸ ︷︷ ︸
coagulation sink

95

+
1

2

dp∫
d?p

β
(

3

√
d3

p− q3, q
)
n
(

3

√
d3

p− q3, t
)
n(q, t)dq

︸ ︷︷ ︸
coagulation source

−λ(dp, t)n(dp, t)︸ ︷︷ ︸
loss by deposition

(1)

where dp is the particle diameter and t is time. Further, g = g(dp, t) denotes the condensational growth rate, β = β(s,dp− s)
is the coagulation frequency, and λ= λ(dp, t) is the deposition rate.

The boundary conditions consist of fluxes of particles in and out of the considered size range
::::::::
[dmin

p ,d∞p ]. In reality, the

formation of particles occurs at very low size (typically at 1.5 - 2 nm scale) by nucleation; the theoretical size at which100

molecule clusters start being stable is referred to as critical size. However, since the measurable size range for size distribution

measurements is usually above the critical size, the particle flux to the smallest size class in the considered particle size range,

dmin
p , is driven by condensational growth

:::
and

:
is
:::::::
denoted

:::
d?p ::

in
:::::::
Equation

:
(1)

:
.
::::
Note

:::
that

:::
we

:::
do

:::
not

::::::
include

::
an

:::::::
explicit

::::::
source

::::
term

::
in

:::::::
Equation

:
(1)

:
to

::::::
model

:::
the

:::
true

:::::::::
nucleation

:::::::::
(spawning

:::::::
particles

:::
out

:::
of

:::::
vapor)

:::::
since

:::
we

:::
are

::::::::::
considering

::::::
typical

:::
size

::::::
ranges

:::
for

::::::
particle

:::::::
mobility

::::::::::::
measurements

:::::::
(DMPS

::
or

::::::
SMPS)

:::::
which

:::
are

:::::
above

:::
the

:::::::::
nucleation

::::
size.

::
In

::::::::
practice,

:
it
::::::
means

:::
that

::::
dmin

p ::
is

::::::
always105

::::::
chosen

:::::::::
sufficiently

::::::
larger

::::
than

:::
the

::::::
critical

::::
size

:::
d?p.

:::::
Then,

:::
the

::::::::::
appearance

:::
of

:::
new

::::::::
particles

::
to

:::
the

::::::::::::
measurement

:::::
range

::::::
occurs

::
by

:::::::::::::
condensational

::::::
growth

::
of

::::::
freshly

:::::::::
nucleated

:::::::
particles

::::
from

::::::
below

:::
the

:::::::::::
measurement

::::::
range.

::::
This

:::::::
process,

:::::::::
sometimes

::::::
called

:::::::
apparent

::::::
particle

:::::::::
formation

::::
(e.g.

::::::::::::::::::
(Lehtinen et al., 2007)

:
),
::
is

::::::::::
conveniently

::::::
treated

::
as

::
a

::::::::::::::::::
particle-concentration

::::
flux,

::
in

::::::::::
particle-size

::::
space

::::::::::
(cm−3s−1),

::
as
::
a
::::::::
boundary

::::::::
condition

:::
for

:::
the

::::
GDE. Hence, the nucleation J = J(t) is identified with the flux of particles

to the smallest size class by condensation, that is,110

g(dmin
p , t)n(dmin

p , t) = J(t). (2)

Similarly, we write for the outward flux of particles at the largest size class

g(d∞p , t)n(d∞p , t) = 0, (3)

which states that the growth of particles to size exceeding d∞p , the upper limit of the size range, is negligible.

The time- and/or size-dependent parameters g, β, λ and J characterize the microphysical properties of aerosols: these
:::::
These115

parameters, together with boundary conditions of GDE determine completely the evolution of the aerosol size distribution.
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However, the process rate parameters are usually not known. In this paper, we aim at estimating the growth, deposition and

nucleation rates (g, λ and J , respectively) based on particle size distribution measurements. For the coagulation coefficient β,

a fixed (known/approximate) value will be used.

The analysis proposed in this paper is applicable to both differential mobility particle sizer (DMPS) and scanning mobility120

particle sizer (SMPS) measurements. For the rest of the paper, however, we refer to measurement modality as SMPS, because

in the numerical example cases, the number of particle size classes is relatively high.

An SMPS measurement is vector yk ∈ RM which represents an indirect observation of the particle size density n(dp, tk),

corrupted by Poisson distributed noise, that is,

yk =
ỹk

V
, s.t. ỹk ∼ Poisson(V zk), and zk =Hn(dp, tk) (4)125

where V is a constant (the effective volume of the sample in the condensation particle counter),H is a device-dependent linear

operator, and M is the number of channels in the particle counter. In the following, we assume that the rate of time evolution

is negligible compared to the time required to measure M channels, or one frame, with SMPS. We denote the time of the

measurement of kth frame by tk.

Since SMPS measurements depend explicitly only on the size density n and not on g, λ and J , a measurement yk corre-130

sponding to a single time instant does not carry enough information for estimating these parameters. However, as g, λ and J

determine the temporal evolution of n, it might be possible to estimate them on the basis of a sequence of measurements yk

corresponding to a set of time instants tk, k = 1, . . . ,K.

In this section, we formulate the problem of estimating the time-dependent size density n and the process rate parameters g,

λ and J as a Bayesian state estimation problem. To this end, we first discretize the GDE with respect to size and time, and write135

it in a stochastic form in order to model its uncertainties. We also model the process rate parameters as discrete-time stochastic

processes. This formulation allows us to express the following questions in the Bayesian framework Gelb (1974)
::::::::::
(Gelb, 1974):

– What are the expected values of n(dp, tk),g(dp, tk),λ(dp, tk) and J(tk) at each time tk given a set of measurements

Y` = {y1, . . . ,y`} corresponding to discrete times t1, . . . , t`?

– How large are the uncertainties of the estimated quantities?140

The state estimation problems are referred to as prediction, filtering and smoothing depending on whether ` < k, `= k or ` > k,

respectively. While filtering is a suitable choice for on-line monitoring and control problems, smoothing is usually a preferable

choice when estimates are not needed on-line; the smoother estimates utilize also the future observations yk+1, . . . ,y` for the

estimate corresponding to time tk.

The latter question refers to posterior uncertainties, that is, uncertainties of the quantities given the measurements Y`. In145

the Bayesian framework, these uncertainties can be quantified by computing, for example, posterior variances and credible

intervals of the parameters.

In the simplest special case, where the evolution model and observation model are linear with respect to all parameters, and

all error terms are additive and Gaussian, the Bayesian filtering and smoothing problems can be solved by Kalman filter and
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Kalman smoother recursions, respectively Kalman (1960); Gelb (1974)
::::::::::::::::::::::
(Kalman, 1960; Gelb, 1974). In general cases, where150

models are non-linear or non-Gaussian, only approximate solutions are available. In principle, the best approximations of

the posterior estimates are obtained with sequential Monte Carlo methods, known as particle filters/smoothers Särkkä (2013)

::::::::::::
(Särkkä, 2013). However, these methods are limited to small dimensional cases, because of the high computational bur-

den. Computationally more efficient approximations include ensemble, unscented and extended Kalman filters/smoothers

Särkkä (2013)
::::::::::::
(Särkkä, 2013). In this paper, we choose the Extended Kalman filter (EKF) and Fixed Interval Kalman Smoother155

(FIKS), but we note that the other filters and smoothers developed for non-linear state estimation are applicable as well. In the

next section, the feasibility of the EKF and FIKS for the GDE parameter estimation problem will be tested numerically.

2.1 Evolution model

2.1.1 Discretized, stochastic GDE

To approximate the GDE (1) numerically, we partition the particle size variable dp into Q intervals (or bins) Ωi of widths160

∆di, i= 1, . . . ,Q. The discrete instants of time in the temporal discretization are denoted by tk, k = 1, . . . ,T , and the dif-

ferences between consecutive times by ∆tk = tk+1− tk. We denote the number concentration of particles corresponding to

ith bin at time tk by Nk
i , that is, Nk

i =
∫

Ωi
n(dp, tk)ddp, and a vector consisting of particle concentrations in all Q bins

at time tk by Nk, that is, Nk = [Nk
1 , . . . ,N

k
Q]T. We discretize the condensation and deposition rates accordingly, and write

gk = [gk1 , . . . ,g
k
Q]T, λk = [λk1 , . . . ,λ

k
Q]T. Further, the nucleation J is discretized with respect to time: Jk denotes the nucleation165

rate at time tk.

Using Euler’s method for time integration and 1st order upwinding
::::::
upwind

:
differencing for the condensation terms, we get

the discrete-time evolution model for the particle number concentrations in bins Ωi Korhonen et al. (2004)
::::::::::::::::::
(Korhonen et al., 2004)

:

Nk+1
1 =Nk

1 + ∆tk
(
Jk −

(
gk1

∆d1
+λ1

)
Nk

1

)
+C1(Nk) (5)170

Nk+1
i =Nk

i + ∆tk
(

gki−1

∆di−1
Nk
i−1−

(
gki

∆di
+λi

)
Nk
i

)
+Ci(N

k), (6)

for all 1< i≤Q, 1≤ k ≤ T

where Ci(Nk) is a non-linear coagulation term; for details, see Lehtinen and Zachariah (2001).
:::
The

::::::
choice

:::
for

::::::::::::
approximating

::
the

:::::::::
derivative

::
in

:::
the

:::::::
growth

::::
term

::
in
::::

the
:::::::::::
discretization

::
of
::::

the
::::
GDE

:::
is

:::::
made,

:::::
here,

::::::::
assuming

::::
that

:::
the

:::::::
particle

::::::
growth

::::
rate

::
is

:::::::
positive.

:::
The

:::::::::::
modification

::
to

:::::
cases

::::::
where

:::
the

:::::::
aerosols

::::::::
evaporate,

::::
i.e.,

:::::
where

:::::::
growth

:::
rate

::
is

::::::::
negative,

::
is

:::::::::::::
straightforward.

:::::
Such175

::::
time

:::::::::::
discretization

:::::::
scheme

::::
can

:::::::
become

:::::::
unstable,

::::::::
however,

::
it
:::

is
:::::::
possible

::
to

:::::
apply

::::::::
different

:::::::
method,

::::
e.g.

:::::::
implicit

:::::
Euler

:::
or

::::::::::::::
Crank-Nicholson

:::::::::::::::::
(Trangenstein, 2013).

:
Equations (5) – (6) can be written equivalently in vector form as

Nk+1 =A(gk,λk)Nk + s(Jk) +C(β,Nk) (7)
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where A=A(gk,λk) is a sparse matrix consisting of elements Aij :

Aij(g
k,λk) =


1−∆tk

(
gki

∆di
+λi

)
i= j

∆tk
gki−1

∆di−1
i= j+ 1> 1

0 otherwise,

(8)180

s= s(Jk) ∈ RQ is a vector of the form s(Jk) = [∆tkJk,0, . . . ,0]T, and the non-linear term C(β,Nk) is defined accordingly.

Finally, we complement the discretized GDE with a stochastic term εk ∈ RQ to account for modeling errors caused by, for

example, discretization and uncertainties of the boundary conditions, and write

Nk+1 = f(Nk) + εk (9)

where f : RQ→ RQ is of the form f(Nk) =A(gk,λk)Nk + s(Jk) +C(β,Nk). In this paper, the stochastic state noise term185

εk is modeled as Gaussian, εk ∼N (0,Γε), where Γε is the covariance matrix of εk. Equation (9) forms a discretized, stochastic

evolution model for the particle number concentration N .

2.1.2 Models for the parameters of GDE

All the unknown parameters of GDE (g, λ and J) are known to be non-negative. For this reason, we reparametrize these quan-

tities by writing gki = Pg(ξ
k
g,i), λki = Pλ(ξkλ,i) and Jk = PJ(ξkJ), where ξg,i, ξλ,i and ξJ are the (unconstrained) parameters,190

and mappings Pg , Pλ, PJ have the form of a so-called softplus function Dugas et al. (2001)
:::::::::::::::::
(Dugas et al., 2001) Pϕ : R→ R+

Pϕ(ξkϕ) =
1

α
log
(

1 + eαξ
k
ϕ

)
. (10)

::::
Note

:::
that

::::
this

::::::::::::::
parameterization

::::
only

:::::::::
constrains

:::
the

::::::::
parameter

:::::
from

:::::
below,

::::
but

:
if
:::
an

:::::
upper

::::::::
boundary

::
is

::::::
known,

:::
the

::::::::
function

::
in

:::::::
Equation

:
(10)

::::
could

:::
be

:::::::
changed

::
in

:::::
favor,

::::
e.g.,

:::
of

:
a
:::::::
logistic

:::::::
function

::::::
which

:::::
allows

:::
for

::::
both

::::::::::
constraints

::::
from

::::::
below

:::
and

:::::
from195

:::::
above.

:
We denote the vectors consisting of all condensation and deposition parameters at time tk by ξkg = [ξkg,1, . . . , ξ

k
g,Q]T and

ξkλ = [ξkλ,1, . . . , ξ
k
λ,Q]T, respectively.

As the process rates g, λ and J in GDE are time-varying, the state estimation requires modeling their time dependence. In

this paper, we model ξg,i, ξλ,i and ξJ either as first order Markov processes

ξk+1
ϕ = Ψϕξ

k
ϕ + ηkϕ (11)200

where Ψϕ is a diagonal matrix Ψϕ = rϕI , and rϕ ∈]0,1[
:::::::::
0< rϕ < 1, or as second order Markov processes

ξk+2
ϕ = Ψ1

ϕξ
k+1
ϕ + Ψ2

ϕξ
k
ϕ + ηkϕ (12)

with Ψ1
ϕ = r1

ϕI , Ψ2
ϕ = r2

ϕI . In both models, ηkϕ stands for Gaussian noise ηkϕ ∼N (0,Γηkϕ). To simplify the following descrip-

tion, we assume all the models to be of the form (11), but we note that the extension to second order models is straight-

forward: Higher order Markov models can be converted into the form of first order Markov models, by augmenting the205
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state variables corresponding to more than one time instant into a single vector. The second order models are suitable for

some of the quantities in GDE, because they imply temporal smoothness of those processes Kaipio and Somersalo (2006)

::::::::::::::::::::::::
(Kaipio and Somersalo, 2006). The specific choices of the state models and their parameters are discussed in Section 3

:::
and

:::::::
specified

::
in

:::::::::
Appendix

::
B.

The evolution models, such as (11 - 12) can be argued to be unrealistic, as they are not based on physics. The understanding,210

however, is that if the (co)variances of the driving noise processes ηkϕ are set high enough, such models are feasible in the sense

that the actual ξk+1
ϕ −Ψϕξ

k
ϕ are well supported by the modelled distribution of ηkϕ. There are systematic (state-space identifi-

cation) approaches that allow for testing the feasibility of the model for the driving noise distribution (variances) Gelb (1974)

::::::::::
(Gelb, 1974). In the next section, we test the state estimation based on the above models in cases, where the true evolution of

the quantities is not of the form of Markov models.215

2.1.3 Augmented evolution model for n, g, λ and J

To complete the evolution model, we define an augmented state variable Xk,

Xk =


Nk

ξkg

ξkλ

ξkJ

 (13)

and combine the evolution models written in Sections 2.1.1 and 2.1.2, yielding
Nk+1

ξk+1
g

ξk+1
λ

ξk+1
J

 =


A(Pg(ξ

k
g,i),Pλ(ξkλ,i)) 0 0 0

0 Ψg 0 0

0 0 Ψλ 0

0 0 0 ΨJ




Nk

ξkg

ξkλ

ξkJ

220

+


s(PJ(ξkJ))

0

0

0

+


C(β,Nk)

0

0

0

+


εk

ηkg

ηkλ

ηkJ

 (14)

or

Xk+1 = F (Xk) +wk. (15)

This is the evolution model for the augmented state variableXk, which includes not only the number concentrations of the size

sections but also the unknown process rates. Next, we write the observation model in terms of Xk, and then, in Section 2.3, we225

apply Bayesian state estimation to infer Xk, k = 1, . . . ,K based on sequential SMPS measurements.
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2.2 Observation model

A scanning mobility particle sizer (SMPS) consists of a differential mobility analyzer (DMA), which classifies charged particles

based on their mobility in an electric field, and a condensation particle counter (CPC) where the classified particles are grown

to sizes detectable for example optically. All particle counters provide only discrete, indirect and noisy data on the particle size230

distributions. Mathematically, each channel in a particle counter gives data that corresponds to convolution / projection of the

particle size distribution onto a space spanned by device-specific kernel functions; moreover, the counter data is corrupted by

Poisson distributed noise.

2.2.1 SMPS transfer function

The output of each DMA
::
is

:::
the

:::::::
detected

:::::::
number

:::::::::::
concentration

::
in

::
a
:::::::::
size-class;

::
in channel i corresponding to a discrete time235

index k
:
,
:
it
:
is of the form

:
:
:

zki =
1

V

t0+k∆t∫
t0+(k−1)∆t

φa(t)

∫
ωi

ψi(dp)n(dp, t)ddpdt (16)

where ψi(dp) is a time invariant kernel function, ωi is the support of ψi(dp), that is, the set of points where ψi(dp) is non-zero,

t0 is the initial time and ∆t is the duration of counting particles in the CPC for a single channel. Further, V is the volume of

the aerosol sample that passes through the CPC counter with a detector-sample-flow rate φa(t) in the period of time ∆t, that240

is, V =
∫ t0+k∆t

t0+(k−1)∆t
φa(t)dt.

2.2.2 CPC counting model

The measurement data of the ith channel of SMPS, yki , consists of Poisson distributed counts given by CPC:

yki =
ỹki
V
, with ỹki ∼ Poisson(V zki ) (17)

where V '∆tφa(t0 + k∆t) is the volume of sample used in the CPC for counting. In the numerical studies of this paper, we245

use this model when simulating the measurement data. In state estimation, however, we approximate the Poisson distributed

observations as Gaussian:

yki ∼N
(
zki ,γi

)
(18)

where γi is the approximate variance of the noise. In this paper, we use the same approximation as in Voutilainen et al. (2000)

and write γki =
yki
V .250

By discretizing the SMPS model (16) and using the above Gaussian approximation of the noise, we write an observation

model of the form

yk = H̄Nk + ẽk + ιk, (19)

9



where yk = [yk1 , . . . ,y
k
M ]T, H̄ is an observation matrix and ẽk is the Gaussian observation noise ẽk ∼N (0,Γkẽ). Here the

covariance of the observation noise is of diagonal form Γke = diag(γk1 , . . . ,γ
k
M ). The additional noise term, ιk is included in255

Equation (19) in order to account for errors caused by the discretization of the measurement operator in Equation (16). Here,

ιk is simply approximated as Gaussian distributed and zero-mean, ιk ∼N (0,Γkι ) and its components as mutually independent;

hence, the covariance matrix Γkι is of diagonal form. Furthermore, the approximation error term ιk is assumed to be independent

of the counting noise ẽk, and thus, the total error ek = ẽk + ιk ∼N (0,Γke), where Γke = Γkẽ + Γkι . For more rigorous approach

to handling modeling errors, we refer to book
::
the

:::::
book

::
by

:
Kaipio and Somersalo (2006).260

Finally, the model (19) can be written in terms of the state variable Xk defined in Equation (13),

yk =HXk + ek, (20)

where H is a block matrix of the form H = [H̄,0,0,0].

2.3 State estimation

The non-linear evolution model (15) and the linear observation model (20) form a system265

Xk+1 = F (Xk) +wk (21)

yk = HXk + ek, (22)

referred to as the state-space representation. The system is stochastic due to the state noise and observation noise processes,

wk and ek, respectively. In addition, we model the initial state X0 as a Gaussian random variable X0 ∼N (X0|0,Γ0|0). Given

this model, we can state the Bayesian filtering and smoothing problems as: Form the conditional probability density of the270

random variable Xk, given the sequence of measurements Y` = {y1, . . . ,y`}. In Extended Kalman filter and smoother, these

probability densities π(Xk|Y`), are approximated by Gaussian densities, that is,

π(Xk|Y`)≈N (Xk|`,Γk|`), (23)

whereXk|` and Γk|`, respectively, are approximations of the conditional expectation and covariance ofXk givenY` Gelb (1974)

::::::::::
(Gelb, 1974).275

Kalman filtering gives online estimates π(Xk|Yk) based on the data set from beginning up to the present time k, that is,

`= k, while in smoothing ` > k. In Fixed Interval Kalman Smoother (FIKS), in particular, `=K, where K is the index of the

final time step. In other words, the FIKS estimate π(Xk|YK) at each time k is based on the entire data set from the beginning

to the end of measurements. The EKF and and FIKS estimates (approximate expectations Xk|` and covariances Γk|`) are given

by the following forward and backward iterations Gelb (1974)
::::::::::
(Gelb, 1974):280
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Algorithm 1 Extended Kalman Filter (EKF)

Initial state: Expectation X0|0 and covariance Γ0|0

for k = 1, . . . ,K do

Prediction: Expectation and covariance

Xk|k−1 = F
(
Xk−1|k−1

)
Γk|k−1 = ∂F k−1Γk−1|k−1(∂F k−1)T + Γk−1

w

Kalman gain matrix:

Kk = Γk|k−1(Hk)T(HkΓk|k−1(Hk)T + Γke)−1

Measurement update: Filter expectation and covariance

Xk|k =Xk|k−1 +Kk(yk −HkXk|k−1)

Γk|k = (I −KkHk)Γk|k−1

end

Algorithm 2 Fixed Interval Kalman Smoother (FIKS)
Initialization: Run EKF (Algorithm 1), store all variables

for k =K − 1, . . . ,1 do

Backward gain matrix

Ak = Γk|k(∂F )T(Γk+1|k)−1

Smoother expectation and covariance

Xk|k =Xk|K +Ak
(
Xk+1|K −Xk+1|k)

Γk|K = Γk|k +Ak
(
Γk+1|K −Γk+1|k)(Ak)T

end

In Algorithms 1 and 2, ∂F k denotes the Jacobian matrix of the non-linear mapping F
(
Xk
)

at point Xk|k. Note that the

FIKS is based on a backward recursion, which starts from the filter estimate corresponding to final state: XK|K , ΓK|K .

3 Numerical simulations

In this section, the feasibility of the proposed estimation scheme is tested with numerical studies, where aerosol particle285

evolutions are
:::::::
evolution

::
is
:

simulated by numerical approximations of the GDE corresponding to a set of process rates, and

where synthetic SMPS data is computed by numerical modeling of the DMA and generating the Poisson distributed CPC

data. Two type of events are considered: In Cases 1 and 2, the evolution of the aerosol size distribution is governed by a

nucleation event (NE) and the subsequent growth of the nucleation mode in a background of existing aerosols. In Cases 3

and 4, new particles are formed in a continuous nucleation process and their further evolution is controlled by condensa-290
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tional growth and deposition, so that the size distribution approaches a steady state (SS). In all cases, the particle growth is

dominated by condensation, and the loss of particles (caused by wall depositionand sedimentation
:
,
::::::::::::
sedimentation,

::::::::
dilution,

::
etc) depends linearly on the size distribution function. Further, the coagulation kernel is chosen to have a form given in book

Seinfeld and Pandis (2016), for details see Appendix A
:::
the

::::
book

:::
by

:::::::::::::::::::::::
Seinfeld and Pandis (2016). In these numerical studies,

Cases 1 and 2 (NE) represent qualitatively a typical particle formation event in the atmosphere (for example Hyytiälä ; Dal295

Maso et al., 2005 Maso et al. (2005)
:::::::::::::::
(Maso et al., 2005)), whereas Cases 3 and 4 (SS) represent particle formation and growth

in a chamber experiment (for example CLOUD ; Lehtipalo et al., 2014 Lehtipalo et al. (2014)
::::::::::::::::::
(Lehtipalo et al., 2014)).

3.1 Cases 1 & 2: Nucleation event (NE)

3.1.1 NE: Data simulation

In the numerical simulation study, the temporally evolving particle size distribution is synthetically generated by using the300

(deterministic) discretized GDE model described by Equations (5) and (6) with predefined process rates g,λ, β and J . In the

estimation, however, g,λ and J are, of course, not known.

In the NE case, the process rates g,λ and J are chosen to have the following properties: The condensational growth rate g

is independent of particle size but depends on time, while the deposition
:::
loss

:
rate λ depends on particle size but not on time.

Further, the nucleation rate J is a time-dependent, continuous function which represents an NE in a time interval [t0 = 5h, t1 =305

10h] and is zero in all other instants within the period of interest [0,15h]. As noted above, the coagulation kernel is known, yet

the coarse discretization causes error also to this term. The detailed forms of the process rates are shown in Table A1 (Appendix

A).

When simulating the evolution of the particle distribution, the particle diameter dp ∈ [13.85nm,1000.0nm] is discretized

into Q= 2500 logarithmically distributed bins. Such a high size resolution is chosen in order to avoid numerical diffusion310

effects and to obtain a good approximation of the particle size density. The time step ∆tk in the explicit Euler time integra-

tion scheme is chosen based on the Courant–Friedrichs–Lewy condition Courant et al. (1928); Dullemond and Dominik (2005)

:::::::::::::::::::::::::::::::::::::::::::
(Courant et al., 1928; Dullemond and Dominik, 2005):

0<∆k
t <

1

max
i
{ g

k
i

∆di
+λi}

. (24)

The CFL criterion is applied in order to keep the time-integration stable with respect to condensational growth and deposition.315

Coagulation
:::
loss.

::::
The

::::::::::
coagulation

:
rates are not considered here, because coagulation is actually a dampening mechanism

that stabilizes time integration. The nucleation, growth and deposition
:::
loss

:
rates as well as the resulting particle size density

evolution for the NE cases are illustrated in Figure 1.

As explained in Section 2.2, the measurements consist of simulated counts modeling CPC combined with DMA. The

model for the kernel functions ψi(dp) corresponds to an SMPS3936 device, and it accounts for the most relevant effects320

Millikan (1923); Stolzenburg (1989); Flagan (1998); McMurry (2000); Boisdron and Brock (1970); Wiedensohler (1988)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Millikan, 1923; Stolzenburg, 1989; Flagan, 1998; McMurry, 2000; Boisdron and Brock, 1970; Wiedensohler, 1988)
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Figure 1. Cases 1 & 2, nucleation event; true (simulated) processes: a) particle size density (measurement), b) nucleation rate, c) growth rate,

and d) wall loss rate.

. We skip the details here, and only visualize the kernels, by plotting the size distribution
:::::::::::::
size-distribution

:
transfer function, or

the observation matrix H̄ , as a colormap (Figure 2 a)).

We simulate the synthetic CPC measurement yki corresponding to each CPC channel i at each time k by drawing samples

from a Poisson distribution, given in Equation (17) with mean V zki . Since the expectation of yki is zki and its variance zki /V ,325

the signal-to-noise ratio (SNR) of CPC data increases with V . In order to investigate the effect of SNR to the process rate

estimates, we generate the Poisson-distributed observations corresponding to two sample volumes: V = 90 cm3 (Case 1: NE,

high SNR) and V = 0.9 cm3 (Case 2: NE, low SNR).
::
In

::::
Case

::
1,

:::
the

:::::
range

::
of

::::
SNR

::::
was

:::::::
[0,6426]

:::
and

::
in
:::::
Case

:
2
::
it

:::
was

:::::::::
[0,64.26].

3.1.2 NE: Parameter estimation330

In this section, we briefly describe the assumptions made when constructing the models used for computing the state estimates

in the NE cases. The exact forms of the models as well as choices of parameters are listed in Appendix B.
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Figure 2. The size distribution transfer functions for a) simulating the measurement data, and b) observation model used in state estimation.

In the images, the horizontal axis corresponds to the size of the particle entering the device, and the vertical axis represents the channels of

the SMPS. The colors represent the values of the efficiency with which a given particle size will be classified in a given bin in particle sizer.

For evolution models used in state estimation, the particle size range [14.1nm,736.5nm] is divided into 111 bins, that is, the

size range is narrower and the discretization is significantly coarser than when simulating the data. The GDE-based, discrete

stochastic state evolution model (9) for the particle number N is written as described in Section 2.1.1. The covariance matrix335

Γε of the stochastic term εk is chosen to be of diagonal form.

In this case study, we assume to know that the condensation rate is time-dependent but size-independent. Moreover, both

the condensation and nucleation rates are assumed to be temporally smooth, and we model them as second order stochastic
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processes (Equation (12)). The wall loss factor λ is assumed to be a smooth function of the particle size. Further, we write a first

order Markov model (Equation (11)) for its temporal variation, that is, although the true wall loss factor is time-invariant, we340

do not assume to know this property in state estimation. This is done to study the stability of the estimation scheme: although

::::::::
Although the wall loss is modeled as time-varying, the estimation should yield essentially time-invariant estimates.

The covariance of the initial state, Γ0|0 is chosen to be diagonal; this signifies that the elements of X0 are mutually indepen-

dent. Moreover, the variances of X0 are chosen to be relatively large in comparison with the variances of the state noise vector

εk; this indicates a high uncertainty of the initial state. We note that the selection of the parameters in the stochastic terms345

is a crucial part of the state-space model. However, the state estimates are not extremely sensitive to these choices; choosing

parameters that are of right order of magnitude is usually enough – and since the stochastic models are written for physically

relevant quantities, ballpark ranges of the parameters are often available a priori.

The size distribution
:::::::::::::
size-distribution

:
transfer function corresponding to the discretization of the particle size in estimation

is illustrated in Figure 2 b). The approximate observation model is used in order to avoid so-called inverse crime, which means350

the use of unrealistically accurate models in the inversion of simulated data.
:
A

::::::::::
comparison

:::::::
between

:::
the

::::
true

:::::::
transfer

:::::::
function

:::
and

:::
the

::::::::::::
approximated

:::
one

:::::
used

::
in

:::
the

:::::::::
estimation

::
–
:::::
mean

::::
over

:::::
each

:::::::::::
discretization

::::
bins

::
–
::
is

:::::::
depicted

:::
in

::::::
Figure

:
2
:::
c)

:::
for

:::
the

::::
third

:::::::
channel.

:
Secondly, as noted in Section 2.2, instead of using the Poisson model for the measurements, the observation

noise is approximated as additive and Gaussian. This choice is made for computational convenience, as it allows for the direct

applications of EKF and FIKS into the state-space system.355

The Extended Kalman filter and smoother estimates are computed using Algorithms 1 and 2, respectively. From the resulting

state estimates Xk|`, `= k,K the approximate posterior expectations of the processes are computed using the models gki =

Pg(ξ
k
g,i), λki = Pλ(ξkλ,i) and Jk = PJ(ξkJ) (see Sections 2.1.2 and 2.1.3). We also compute approximate 68 % credible intervals

of the estimates, by mapping the values E(ξk∗,i|Y`)±
√

var(ξk∗,i|Y`), to the corresponding process rate spaces. Note, however,

that due to the linearizations / Gaussian approximation behind EKF, these approximate intervals do not necessarily represent360

the ranges within which the true parameter value is with probability 68 %. In the following, we refer to these approximate

credible intervals as posterior error intervals.

3.1.3 NE: Results and discussion

The results of Case 1 (NE, high SNR) are illustrated in Figure 3. The figure shows the Kalman smoother estimates for the

particle size density, and both the Kalman filter (EKF) and smoother (FIKS) estimates for the growth, nucleation and wall365

:::::::
apparent

::::::
particle

:::::::::
formation

:::
and

:
loss rates as well as for two instantaneous particle size densities ( ∆N

∆dp
at 2h and 10h). The wall

loss rate estimates correspond to time 10h. For the process rates and for the instantaneous size densities, the figure also shows

the EKF and FIKS based posterior error intervals – representing the uncertainty of the estimates – as well as the true values of

the corresponding quantities.

The estimated particle size density (Figure 3 a)) is in rather good correspondence with the true size density (Figure 1 a)).370

However, the size density estimates corresponding to times 2h and 10h (Figure 3 e)-f)) show that the peak values of the size

density are somewhat underestimated by both EKF and FIKS. Moreover, in these instants, the true values of the size density
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Figure 3. Case 1: NE, high SNR. State estimates for the particle size density (subfigures a, e and f), nucleation rate (b), growth rate (c), and

wall loss rate (d). The image in plot a) depicts the approximate posterior expectation for the entire time-evolution of the particle size density

given by FIKS, while e) and f) illustrate the EKF and FIKS estimates corresponding to times 2h and 10h, respectively. In plots b)–f), the blue

and orange lines represent the approximate posterior expectations for EKF and FIKS, respectively, and the areas shaded with light blue and

orange are the respective posterior error intervals. The true values of the corresponding quantities are drawn with green line.
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are partly outside the approximate posterior error intervals. Yet the 68 % posterior error intervals do not necessarily need to

contain the true values, the error intervals seem to be slightly too narrow. This underestimation of the uncertainty is due to

the linearizations/Gaussian approximation behind EKF and FIKS, as shown in Huttunen et al. (2018)
::
by

::::::::::::::::::
Huttunen et al. (2018)375

:
,
:::
and

:::
the

::::::
rather

::::::
simple

:::::::::::::
approximations

:::
of

:::
the

::::
error

:::
in

:::
the

::::::::
evolution

::::
and

:::
the

::::::::::::
measurement

::::::
models

:::
—

::::::::::::::
underestimating

:::
the

:::::::::
covariance

::
in

:::
the

::::::
models. The errors caused by model approximations become more influential with decreasing mean noise

level – the remedy for such errors would
::::
could

:
be the Bayesian approximation error method Kaipio and Somersalo (2006)

::::::::::::::::::::::::
(Kaipio and Somersalo, 2006), which, however, is out of the scope of this paper.

For the process rates, the approximate posterior means given by both EKF and FIKS are relatively close to
::
the

:
true values380

(Figure 3 b)–d)). Overall, the FIKS estimates for the process rate parameters are more accurate than the EKF estimates – this is

an expected result, because FIKS utilizes the entire data set up to the end of the process, while EKF uses only data up to time

t when estimating the variables at time t.

The filter and smoother show also differences in the posterior error intervals of the process rate parameters: The error

intervals given by EKF are systematically wider than those given by FIKS. This is again an expected result, because the use of385

the future data (FIKS) should, indeed, reduce the uncertainty in the estimated quantities. Furthermore, in almost all instants of

time, the process rate parameters (especially growth and nucleation
:::::::
apparent

::::::
particle

::::::::
formation

:
rates) are within the posterior

error intervals. This is a desired result, as it indicates that these approximate credible intervals give realistic measures of the

estimate uncertainties in these cases.

The wall loss rate estimate uncertainty depends strongly on the particle size: The posterior error intervals are wide in the390

lowest and highest size ranges, and rather narrow elsewhere. The high uncertainty of the wall loss factor at the high particle

size range dp > 400 nm is caused by the lack of data – in this size range, the particle density is nearly zero at all times, and

consequently, the SMPS data does not provide information on the wall loss factor. In the lowest size range, the width of the

credible interval depends also on time. From time t = 9 h, when the nucleation event is
::::::::
practically

:
over, the particle size density

in the lowest size range is almost zero, resulting again in high uncertainty in the wall loss factor estimate.
:::
The

:::
loss

::::
rate

:::::::
estimate395

:::
and

:::::::
posterior

:::::
error

::::::
interval

::::::::
resulting

::::
from

:::
the

:::::
FIKS

:::
are

:::::::
virtually

::::
time

::::::::
invariant,

::::
even

::::::
though

:::::
those

::::
from

:::
the

::::
EKF

:::::
show

:
a
::::::
strong

::::
time

::::::::::
dependence.

In Case 1, the SNR is high, and – apart from the aforementioned exceptions – the estimate uncertainty is very low. Figure

4 shows the results of Case 2, where the SNR is significantly lower. As exptected
:::::::
expected, the process rate estimates become

less accurate than in Case 1. However, the change in the accuracy is quite small, especially for FIKS – demonstrating that the400

Kalman smoother estimates tolerate measurement noise rather well. As expected, the posterior error intervals of all estimated

quantities are clearly wider than in the case of high SNR – this is a result of increased uncertainty in the particle counter

observations. Both,
:
EKF and FIKS,

:
lead to safe posterior error intervals for the process rate parameters, and again, FIKS gives

clearly more narrow posterior error intervals than EKF. Again, the true values of the process rate parameters are within the

posterior error intervals, further confirming the feasibility of Bayesian state estimation to quantifying the uncertainties of the405

process rates.
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:::
One

::::
may

:::::
notice

:::
the

::::::::::
appearance

::
of

:::::::
spurious

:::::::::
oscillations

::
in
:::
the

::::
size

:::::::::
distribution

::
at
::::
low

::::
sizes

::::::
during

::
the

:::::::
particle

::::::::
formation

:::::
event

::
in

::::
Case

:
2
:::::::
(Figure

:
4
:::
a)),

:::::
which

:::::
were

:::::::::
completely

::::::::
smoothed

:::
out

::
in

::::
Case

::
1
::::::
(Figure

::
3

:::
a)).

:::::
These

:::::::::
oscillations

:::
are

:::
due

::
to
:::
the

:::::::::
instability

::
of

::::::::
Equations

:
(5)

:::
and (6)

:::::
which

:::
are

::::::::
corrected

::::::
during

:::
the

:::::::::
estimation

::
by

:::
the

:::::::::::
assimilation

::
of

:::
the

::::
data.

:::::::::
However,

:::::
while

::
in

::::
Case

::
1

::
the

::::
data

:::::
allow

:::
for

::::::
neatly

::::::::
rectifying

:::
the

::::::::
estimates,

:::
in

::::
Case

::
2

:::
the

::::
data

:::
can

:::
not

:::::::::
completely

:::::
make

:::
up

:::
for

:::
the

:::::::::
instability.

::::
Note

::::
that410

::
the

::::::::
tolerance

::::
with

:::::::
respect

::
to

::::
such

::::::::
modeling

:::::
errors

::
–
:::
e.g.

::::::::::::
discretization

:
–
::::
can

::
be

::::::
further

::::::::
improved

:::
by

::::::::
so-called

::::::::::::
approximation

::::
error

:::::::
analysis

:::::::::::::::::::::::
(Huttunen and Kaipio, 2007)

:
.

3.2 Cases 3 & 4: Steady state (SS)

3.2.1 SS: Data simulation and parameter estimation

In the SS simulations of this paper, the condensation rate is both size- and time-dependent, and the wall loss rate is time-415

invariant but depends on size. Both the nucleation and condensation rates start from zero and grow within the first 30 min until

they reach their stationary values. In such a case, the new particle formation and condensational growth are compensated by

wall losses, leading to the number concentration function to reach a steady state. The simulated process rates and the particle

size density are illustrated in Figure 5. Here, the size range of particles is [0.87nm,10.00nm], and it is discretized into Q=

1731 logarithmically distributed bins.420

::::
Note

:::
that

:::
the

:::::
value

:::::::::::
d?p = 0.87nm

::
is
:::::
most

:::::::
certainly

::::::
below

:::
any

:::::::::
physically

:::::::
relevant

::::::
critical

:::::
sizes,

::::::::
however,

::::
from

::
a
:::::::::
simulation

::::
stand

:::::
point,

::::
any

:::
size

:::::
range

:::::
could

::::
have

::::
been

:::::::
utilized

::
to

:::::::
simulate

:
a
::::::
similar

:::::::
chamber

::::::::::
experiment,

::::
only

:::
the

::::::
values

::
of

:::
the

:::::::::
parameters

:::::
would

::::::
require

:::::::::::
adjustments.

The synthetic SMPS data is simulated similarly to Cases 1 and 2. Again, two cases corresponding to different SNRs are

simulated, by generating the Poisson-distributed observations corresponding to two sample volumes: V = 200 cm3 (Case 3:425

SS, high SNR) and V = 2 cm3 (Case 4: SS, low SNR).
::
In

::::
Case

::
3,

:::
the

:::::
range

::
of

::::
SNR

::::
was

:::::::
[0,4440]

:::
and

::
in
:::::
Case

:
4
::
it

:::
was

::::::::
[0,44.4].

::
In

:::
the

::::::::::
state-space,

:::
the

:::::
lower

::::
end

::
of

:::
the

::::
size

::::::::::::
discretization

::::
bin,

:::
i.e.

:::
Ω1 ::

in
:::::::
Section

:::::
2.1.1,

::
is

::::::::
centered

::
at

:::
1.1

:::
nm

:::
(its

::::::
lower

::::::::
boundary

::
is

:::::
about

::::
1.08

:::::
nm).

:::::
Many

::::::::
potential

::::
bins

:::::
would

::::::::
separate

:::
the

::::::
critical

::::
size

:::::::::::
d?p = 0.87nm

:::::
from

:::
the

:::::
lower

::::
end

:::
of

:::
the

:::::::::
state-space

:::::::::::::
dmin

p = 1.08nm.
:::
The

::::::
reason

:::
we

:::
are

:::
not

:::::
setting

:::::::::
dmin

p = d?p :
is
::::::::
because,

::::
with

:::
the

::::::
current

::::::::::
technology,

:
it
::
is

:::
not

:::::::
realistic

::
to430

::::::
assume

:::
that

:::
we

::::
can

::::::
acquire

:::::::
reliable

:::
data

:::::
down

::
to
:::
the

::::::
critical

:::::
size.

::::
Note

::::
that

:
it
::
is

::::::::
possible,

:::::::
however,

::
to
::::::
extend

:::
the

::::::
model

:::::
down

::
to

:::
the

::::::
critical

:::
size

::
in
:::::
order

::
to

::::::::
estimate

:::
the

:::
true

:::::::::
nucleation

::::
rate

::
—

::::::::
provided

:::
that

:::
the

:::::
GDE

::
is

:::
still

:::::
valid

:::
for

::::
such

:::::
small

::::::::
particles.

:::
But,

:::::::
without

:::::::::::
measurement

:::::
from

:::
the

:::::
lower

:::
end

::
of

:::
the

:::::::::
spectrum,

:::
the

:::::::::
uncertainty

::::
will

:::::::::
overwhelm

:::
the

:::::::::
estimates,

::::::::
rendering

:::::
them

:::::::::::::
non-informative.

::::
This

:::::::::
extension

:
is
:::
out

:::
of

:::
the

:::::
scope

::
of

:::
this

::::::
paper.

The time evolutions of the nucleation, growth and
::::::::
evolution

::
of

:::
the

:::::::
apparent

::::::
particle

:::::::::
formation

:::
and

::::::
growth

::::
rates

:::
are

::::::::
modeled435

::
as

::::::
second

:::::
order

:::::::
Markov

::::::::
processes

:::::::::
(Equation

:::::
(12)),

:::::
while

::::
the wall loss rates are modeled as first order Markov processes

(Equation (12
::
11)). The growth and wall loss rates are assumed to be smooth with respect to size, and hence, the state noises in

the corresponding evolution models are modeled as correlated. For details of the model choices we refer to Appendix 2.
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Figure 4. Case 2: NE, low SNR. State estimates for the particle size density (subfigures a, e and f), nucleation rate (b), growth rate (c), and

wall loss rate (d). The image in plot a) depicts the approximate posterior expectation for the entire time-evolution of the particle size density

given by FIKS, while e) and f) illustrate the EKF and FIKS estimates corresponding to times 2 h and 10 h, respectively. In plots b)–f), the

blue and orange lines represent the approximate posterior expectations for EKF and FIKS, respectively, and the areas shaded with light blue

and orange are the respective posterior error intervals. The true values of the corresponding quantities are drawn with green line.
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Figure 5. Cases 3 & 4, steady state system; true (simulated) processes: a) particle size density (measurement), b) nucleation rate, c) growth

rate, and d) wall loss rate.

3.2.2 SS: Results and discussion

Figure 6 illustrates the estimates of the particle size density and process rates in the case of high SNR (Case 3). For the particle440

size density and condensation rate, the images in Figs. 6 a) and c), respectively, show the approximate FIKS-based posterior

means of those time- and size-dependent variables. For the nucleation rate as well as for the instantaneous wall loss rate and

size densities, both the filter and smoother estimates (approximate posterior expectations and error intervals) are plotted.

In this case, the smoother estimate for the particle size density is in very good correspondence with the true density (cf.

Figure 5 a)). Further, the uncertainty estimates for the particle size density are feasibile
::::::
feasible: The true size density lays

:::
lies445

within the posterior error intervals given by EKF and FIKS.

The nucleation rate is clearly underestimated by both EKF and FIKS. The EKF based
:::::::
apparent

:::::::
particle

::::::::
formation

::::
rate

::
is

:::
well

:::::::::
estimated

::
by

::::
both

:::
the

:::::
EKF

:::
and

:::
the

:::::
FIKS;

:::
the

::::
true

:::::
value

:::
lies

::::::
within

:::
the posterior error intervals are wide, indicating high

uncertainty in the estimate, and the true nucleation rate lays mostly inside the EKF posterior error interval. The FIKS-based

posterior error interval, on the other hand, is too narrow as the true nucleation rate is outside it. This is again a consequence450
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of the modelling errors discussed in Section 3.1.3:
::::
most

::
of

:::
the

:::::
time.

:::::
Only

::
at

:::
the

:::::
onset

::
of

:::
the

:::::::::
appearance

:::
of

:::::::
particles

::::
into

:::
the

::::::::
measured

:::
size

:::::
range

:::
the

::::
true

::::
value

::::
does

:::
not

:::
lie

::
in

:::
the

:::::::::
uncertainty

::::::
range,

::::::
around

:::::::::
t= 25min.

::::::::
Similarly

::
to

:::
the

:::
NE

:::::
cases,

:::
the

:::::
FIKS

:::::::
estimates

:::
are

::::
less

::::::::
uncertain

::::
than

::::
those

:::
of

::::
from

:::
the

:::::
EKF,

:::
and

:::
the

::::
SNR

:::::
levels

:::
are

::
a

:::::
major

:::::
factor

::::::::::
determining

:::
the

::::::::
accuracy

::
of

:::
the

::::::::
estimates,

:::
the

::::::
higher

:::
the

::::
SNR

:::
the

:::::
better

:::
the

::::::::
estimate.

:
While the true nucleation rate plotted in

:::
dark

:
green takes place at 0.87

nm, in the state-space model, the diameter that corresponds to nucleation
:::
the

:::::::
apparent

::::::
particle

:::::::::
formation,

::::::
plotted

::
in

::::
light

::::::
green,455

is about 1.08 nm (the lower end of the smallest size bin, geometrical center at 1.1 nm). This difference between the model used

for simulating the data and the model used in estimation causes the systematic error — underestimation of the nucleation rate.

Further, because this modelling error is not accounted for in estimation, the approximate credible intervals of the nucleation

rate are too narrow.

Figure 6 c) shows a clear trend in the quality of the smoother estimate for the condensational growth rate: At an early stage460

of the process (time ∼ 0.25 h), FIKS infers the growth rate reliably only in the smallest size classes (diameter ∼ 1 nm); in the

larger particle sizes, the growth rate is heavily underestimated (cf. Figure 5 c)). As time progresses, the growth rate estimates

become gradually more reliable in larger and larger size classes.

The gradual improvement in the growth rate estimates in the larger size classes is a direct consequence of the propagation

of the particle number density towards large size classes. Indeed, comparison of Figures 6 a) and c) reveals that the size class465

where FIKS catches the increase in the growth rate parameter (light/yellow area in the condensation rate image Figure 6 c))

follows accurately the propagating front of the number density in Figure 6 a). The reason for this property of the growth

rate estimate is obvious: In the size classes where the particle number density is very low, the measurement data does not

carry information on the growth rate parameters. In the beginning of the process, the particle number density is low in all

classes. When nucleation starts producing particles to the smallest size class and these particles grow, the growth is sensed470

by the particle size analyzer measurements. When the particle sizes keep increasing due to condensation, the measurements

corresponding to increasingly larger size classes become sensitive to the process rate parameters.

Figure 7 illustrates the EKF and FIKS estimates of the growth rate corresponding to four instants of time. These plots

confirm the above discussion on the growth rate estimation: At time 45 min, both the EKF and FIKS based posterior means

underestimate the growth rate in the large size classes (above ∼ 1.5 nm), and in the subsequent times, the EKF and especially475

FIKS estimates become reliable in gradually increasing size classes. Furthermore, Figure 7 shows a trend in the evolution of

the posterior error intervals of the growth rate: At time 45 min, the posterior error intervals are really wide in classes > 1.5 nm,

reflecting high uncertainty in the growth rate estimates in this size range. As time progresses, the size range of low uncertainty

spreads towards large size classes. This result demonstrates that Bayesian filtering and smoothing yield feasible posterior error

estimates – indicating high uncertainty in the size ranges where the posterior expectations are unreliable in this example.480

The EKF estimates of the growth rate in Figure 7 show similar behaviour
:::::::
behavior as the FIKS estimates; the main differ-

ences are that, as expected, the posterior means given by EKF are more biased than those in FIKS, and posterior error intervals

are overall wider than with FIKS.
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Figure 6. Case 3: SS, high SNR. State estimates for the particle size density (subfigures a, e and f), nucleation rate (b), growth rate (c),

and wall loss rate (d). The images in plots a) and c) depict the approximate, FIKS-based posterior expectations for the entire time-evolutions

:::::::::::
time-evolution of the corresponding quantities. Plots e) and f) illustrate the EKF and FIKS estimates for the particle size density corresponding

to times 2 h
::
1h and 10 h

::
2h, respectively. In plots b) and d)–f), the blue and orange lines represent the approximate posterior expectations for

EKF and FIKS, respectively, and the areas shaded with light blue and orange are the respective posterior error intervals. The true values of

the corresponding quantities are drawn with green line.

Figures 8 and 9 show the results of Case 4: SS and low SNR data. The properties of the state estimates are very similar

to those in Case 3, except for the anticipated differences: The lower accuracy of the approximate posterior means, and wider485

posterior error intervals – again, indicating the increase of the uncertainty when the SNR of the measurements gets lower.
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Figure 7. Case 3: SS, high SNR. Condensational growth rate estimates corresponding to four instants of time. The blue and orange lines

represent the approximate posterior expectations for EKF and FIKS, respectively, and the areas shaded with light blue and orange are the

respective posterior error intervals. The true growth rates are marked with green lines.

4 Conclusions

The radiative forcing caused by aerosols – and the underlying processes of new particle formation and growth – are currently

understood to be the most uncertain factors in the prediction of climate change. While a significant effort has been directed into

experimental campaigns for collecting data that carries indirect information on these processes and their effects, computational490

methods for analyzing the data are still insufficient for reliable estimation of the process rates.

In this paper, the problem of estimating the nucleation
:::::::
apparent

::::::
particle

:::::::::
formation, growth and deposition

:::
loss rates of

aerosols was cast in the framework of Bayesian state estimation. We modeled the dynamics of aerosol size distributions with
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Figure 8. Case 4: SS, low SNR. State estimates for the particle size density (subfigures a, e and f), nucleation rate (b), growth rate (c),

and wall loss rate (d). The images in plots a) and c) depict the approximate, FIKS-based posterior expectations for the entire time-evolutions

:::::::::::
time-evolution of the corresponding quantities. Plots e) and f) illustrate the EKF and FIKS estimates for the particle size density corresponding

to times 2 h
::
1h and 10 h

::
2h, respectively. In plots b) and d)–f), the blue and orange lines represent the approximate posterior expectations for

EKF and FIKS, respectively, and the areas shaded with light blue and orange are the respective posterior error intervals. The true values of

the corresponding quantities are drawn with green line.

the general dynamics equation, and considered the (process rate) parameters in the model as unknown state variables. These

size- and/or time-dependent variables were estimated together with the particle number density based on sequential particle495
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Figure 9. Case 4: SS, low SNR. Condensational growth rate estimates corresponding to four instants of time. The blue and orange lines

represent the approximate posterior expectations for EKF and FIKS, respectively, and the areas shaded with light blue and orange are the

respective posterior error intervals. The true growth rates are marked with green lines.

counter measurements using Extended Kalman filter (EKF) and Fixed interval Kalman smoother (FIKS). Furthermore, to

quantify the uncertainties of the estimated variables, we also computed posterior error intervals for the process rate parameters.

The approach was tested with a set of numerical simulation studies, where two processes of different types were considered:

1) a nucleation event, which represents qualitatively a typical particle formation event in the atmosphere, and 2) a process

approaching steady state, a case, which represents particle formation and growth in a chamber experiment.500

The EKF- and especially FIKS-based estimates for the process rates were overall reliable, even in cases of low SNR data.

Also the posterior error intervals were feasible, that is, the true process rates lay
::
lie

:
mostly within the approximate error
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intervals. The reason why FIKS-estimates are overall superior to EKF-estimates is that Bayesian smoothers use also future

data when estimating a quantity at given time t, while filter estimates are based on only the data up to the point t. In on-

line and control applications, of course, the future data is not available, but in the applications targeted in this paper, the505

data analysis is done after the experiment, that is, the entire data set is available for Bayesian smoothning
::::::::
smoothing. The

results of the numerical studies support the feasibility of the proposed approach to estimating the aerosol formation, growth

and deposition rates, and quantifying their uncertainties. Based on these findings, we conclude that Bayesian state estimation

combined with aerosol particle dynamics modeling offer a reliable tool for analyzing sequentially measured particle counter

data. The estimated aerosol process rates and their uncertainties can improve the analysis of the experimental data, and provide510

better insight on the particle formation and growth in the atmosphere. In the future, such analysis can potentially offer improved

assessment of the radiative forcing by aerosols and its uncertainty. Eventually, this can lead to improved predictions and

uncertainty quantification of the climate change via combination of the enhanced process rate estimates and their uncertainties

with global aerosol-climate models.

Code and data availability. The current version of the code used to generate the data as well as the implementation of the estimation method515

will be made available upon publication under the MIT Expat License. The exact version of the code used to produce the results in this paper

will be the initial version of the code.
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Appendix A: Parameters in data simulation

Table A1 lists the models and parameters used for simulating the nucleation, condensation and deposition processes, and the

particle size density, as well as the modeling the particle counter data.

Appendix B: Model details and parameters in state estimation525

In this appendix, we describe the choices of models and parameters made for state estimation in the numerical examples

(Section 3). We start by summarizing qualitatively the choices of models for the process rates in the two example cases,

nucleation event (NE) and steady state (SS), see Table B1.
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Table A1. Summary of the models and parameters used for simulating data in cases of Nucleation Event (NE) and Steady State (SS). Here,

the growth rate g is assumed to be a product of a size- and time-dependent parts, that is, g = gd(dp)gt(dt).

Model/parameter Nucleation Event (NE) Steady State (SS)

g [nm h−1]
gd(dp) 9 5 · tanh(0.17 · (109 · dp + 0.8))

gt(dt)

 1
2
· (1− cos(2π t−t0

t1−t0
)) , t ∈ [t0, t1]

0 , otherwise

 1
2
· (1− cos( 2πt

t1
)) , t ∈ [0, t1]

1 , otherwise

λ [s−1] 2.5 · 10−4(
rdp
dmin
p

)−
3
2 + 5·10−5

1+exp

(
−
dp−dmin

p
σd

) 1.31·10−12

dp

J [#cm−3s−1]

 20 · (1− cos(2π t−t0
t1−t0

)) , t ∈ [t0, t1]

0 , otherwise

 50 · (1− cos( 2πt
t1

)) , t ∈ [0, t1]

1 , otherwise

β [#−1cm3s−1] Seinfeld and Pandis (2016)
:::::::::::::::::::::
(Seinfeld and Pandis, 2016) Seinfeld and Pandis (2016)

:::::::::::::::::::::
(Seinfeld and Pandis, 2016)

GDE

(evol.

model)

∆t 3s 3s

d0 13.85nm 0.87nm
di+1

di
1.0017 1.0014

Q 2500 1731

Particle

counter

(obs.

model)

∆t 120s 120s

d0 14.1nm 1.1nm
di+1

di
1.0366 1.0469

M 111 50

V 0.9,90cm3 2,200cm3

In the following, we first describe how the smoothness of the size-dependent parameters is formulated. Next, we discuss

modeling the time-dependence of by 1st and 2nd order Markov models. Finally, we list all parameter values chosen for each530

test case.

B0.1 Size-dependent processes, smoothness

The size-dependent process rate variables – deposition
:::
loss rate λ in all test cases and the growth rate g in the SS cases – are

assumed to be smooth functions of size. Since these variables also depend on time, we model them as multivariate stochastic

processes, particularly, 1st order Markov processes, as described below. The smoothness in size is accounted for by modeling535

elements of each of the associated random variables (size-discretized process rate variables ξkϕ = [ξkϕ,1, . . . , ξ
k
ϕ,Q]T, ϕ= λ,g)
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Table B1. Qualitative description of the models used in state estimation for Nucleation Event (NE) and Steady State (SS) cases.

Process NE (Cases 1 & 2) SS (Cases 3 & 4)

Growth rate g
Size-dependence - Smooth

Time-dependence 2nd order Markov process 1st
::
2nd

:
order Markov process

Deposition rate λ
Size-dependence Smooth Smooth

Time-dependence 1st order Markov process 1st order Markov process

Nucleation rate J
Size-dependence - -

Time-dependence 2nd order Markov process 1st
::
2nd

:
order Markov process

Coagulation fre-

quency β

Size-dependence Known Known

Time-dependence - -

at a given time k as mutually correlated.

Γξkϕ(i, j) =
√
σ2
ϕ,i

√
σ2
ϕ,j exp

::::::::::::::

−|i− j|
δϕ

::::::

 , for 1
::::

6 i, j
::

6M
::

(B1)

where σ2
ϕ,i is the variance of ξkϕ,i and δϕ is a parameter defining how steeply the cross-covariance between elements ξkϕ,i and

ξkϕ,j decreases as function of the difference between indices i and j.540

Figure B1 shows the covariance matrices of the two size-dependence variables: deposition
:::
Loss

:
rate λ in Cases 1 & 2 and

growth rate g in Cases 3 & 4. We note here that in Cases 1 & 2, σ2
λ,i is constant while in Cases 3 & 4, σ2

g,i increases with

particle size. For details of parameter values, see below.

B0.2 Time-dependence, 1st order Markov processes

Assume next that the process rate variable ξkϕ is modeled as a 1st order Markov process. Here, we fix the covariance of ξkϕ first,545

as well as the temporal smoothness (1st or 2nd order Markov process). Then, we determine the covariance of the driving noise

process.

When the covariance matrix Γξkϕ of ξkϕ is time-invariant, we can calculate the covariance matrix of the state noise ηkϕ using

Equation (11) as:

Γηkϕ = Γξkϕ −ΨϕΓξkϕΨT
ϕ . (B2)550

In cases of size-dependent variables, we construct the covariance matrix Γξkϕ as described above, fix the state transition matrix

Ψϕ = rϕI , by choosing the parameter rϕ ∈]0,1[, and finally, compute the state noise covariance matrix using Equation (B2).

In Cases 3 & 4, where also the nucleation rate is modeled as a 1st order Markov process, the procedure is exactly the same.
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Figure B1. Covariance matrices of, a) the deposition rate λ in Cases 1 & 2 and b) growth rate g in Cases 3 & 4.

Note, however, that in the case of variable J , which does not depend on size, the state-transition matrix and the covariance are

simply ΨJ = rJ and ΓξkJ = σ2
J,i, respectively.555

B0.3 Time-dependence, 2nd order Markov processes

As shown in Table B1, the size-independent variables in Cases 1 & 2 (g and J) are modeled as 2nd order Markov processes.

For these variables, we choose the root parameters r1
ϕ, r

2
ϕ in the evolution models by an approach adopted from the analysis of

second order systems, such as damped oscillators: We first define a characteristic time is Tϕ and damping ratio ζϕ, and then

calculate r1
ϕ and r2

ϕ by solving the set of equations560

r1
ϕ + r2

ϕ = 2

(
1− ζϕ

2π∆tk

Tϕ

)
(B3)

r1
ϕr

2
ϕ = 1− 4πζϕ

∆tk

Tϕ
+ 4π2

(
∆tk

Tϕ

)2

. (B4)

These parameters, together with separately chosen variances of the state noises ηkg and ηkJ as well as the expectations and

variances of the initial states ξ0
g and ξ0

J define the properties of the 2nd order Markov models.

B0.4 Parameter choices565

All parameter values chosen for state estimation in each test case are listed in Table B2
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Table B2. Parameters used in state estimation for Nucleation Event (NE) and Steady State (SS) cases.

Process NE (Cases 1 & 2) SS (Cases 3 & 4)

Growth rate g

ξ
0|0
g 0m s−1 −22.810−13 m s−1

Γ
0|0
ξg

(52.810−13)2 (m s−1)2 (162.810−13 tanh(0.17 · (109 · dp + 0.8)))2 (m s−1)2

σ2
ηg (52.810−13)2 (m s−1)2 (82.810−13 tanh(0.17 · (109 · dp + 0.8)))2 (m s−1)2

Tg 1800 s 300 s

ζg 0.95 0.95

δg not applicable 50

Deposition rate λ

λ0|0 610−5 s 1.31·10−12

dp
s

Γ
0|0
ξλ

(10−3)2 s−2 (0.1λ0|0)2 s−2

rλ 1 1

σ2
λ,i (10−3)2 s−2 (10−3)2 s−2

δλ 10 10

Nucleation rate J

ξ
0|0
J 0cm−3s−1 0cm−3s−1

Γ
0|0
ξJ

0.22 (cm−3s−1)2 102 (cm−3s−1)2

σ2
ηJ 0.22 (cm−3s−1)2 52 (cm−3s−1)2

TJ 1800 s 300 s

ζJ 0.95 0.95

Number density N

N0|0 H̄Ty1 cm−3 0cm−3

Γ
0|0
N 4 y

1+100
V

(cm−3)2 4 y
1+100
V

(cm−3)2

Γε 1(cm−3)2 4(cm−3)2

Modeling error ιk Γι
100
V

(cm−3)2 100
V

(cm−3)2
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