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Abstract. In this paper the CHemistry with Aerosol Microphysics in Python (PyCHAM) box model software for aerosol cham-

bers is described and assessed against benchmark simulations for accuracy. The model solves the coupled system of ordinary

differential equations for gas-phase chemistry, gas-particle partitioning and gas-wall partitioning. Additionally, it can solve

for coagulation, nucleation and particle loss to walls. PyCHAM is open source, whilst the graphical user interface, modular

structure, manual, example plotting scripts and suite of tests for troubleshooting and tracking the effect of modifications to5

individual modules have been designed for optimal usability. In this paper, the modelled processes are individually assessed

against benchmark simulations, and key parameters described. Examples of output when processes are coupled are also pro-

vided. Sensitivity of individual processes to relevant parameters is illustrated along with convergence of model output with

increasing temporal resolution and number of size bins. The latter sensitivity analysis informs our recommendations for model

setup. Where appropriate, parameterisations for specific processes have been chosen for their general applicability with their10

rationale detailed here. It is intended that PyCHAM aids the design and analysis of aerosol chamber experiments, with com-

parison of simulations against observations allowing improvement of process understanding that can be transferred to ambient

atmosphere simulations.

Copyright statement. will be included by Copernicus

1 Introduction15

Many major advances in atmospheric modeling have arisen from chamber observations. For example, the partitioning of

vapours to particles (Odum et al., 1996), the gas-phase chemistry of ozone as part of the Master Chemical Mechanism (MCM)

(Jenkin et al., 1997), the gas-phase chemistries of limonene (Carslaw et al., 2012) and β-caryophyllene (Jenkin et al., 2012).

Such advances can be incorporated into improved chamber models (e.g. Charan et al., 2019), aiding the design of experiments

to interrogate further processes and systems (e.g. Peräkylä et al., 2020). As chamber use has multiplied, so too have chamber20

models, with many now published (Naumann, 2003; Pierce et al., 2008; Lowe et al., 2009; Roldin et al., 2014; Sunol et al.,
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2018; Topping et al., 2018; Charan et al., 2019; Roldin et al., 2019). Chamber scientists without modelling expertise or access

may be limited in the design, interpretation and advancement of both chamber experiments and their contribution to models. To

address this requirement PyCHAM (CHemistry with Aerosol Microphysics in Python) has been developed in the framework

of the EUROCHAMP2020 Simulation Chamber Research Infrastructure (Oliveri, 2018).25

In this paper the processes represented in PyCHAM are described, along with details of software application. Where rele-

vant, equations are presented and output from PyCHAM is compared against benchmark simulations to assess accuracy and

determine whether calculations are performing as intended. It is not the intention of this paper to compare PyCHAM against

observations, which is the focus of future work. In the following two sections the objectives, rationale and structure of the

software are explained.30

2 Purpose and scientific basis

Consistent with the criteria set by the EUROCHAMP2020 research project (Oliveri, 2018), PyCHAM is open source (avail-

able at https://github.com/simonom/PyCHAM), user-friendly and aims to be capable of representing the latest scientific un-

derstanding. It has been designed and tested on desktop computers for Windows, Linux and Mac operating systems. Python

is the chosen language for two key reasons: code can be transferred between computers without the limitation of requiring a35

native or proprietary compiler (thereby improving ease of use and portability), and the relatively versatile parsing capability

which allows the user to readily vary model inputs. The accessibility, usability and basic functionality of PyCHAM has been

reviewed in O’Meara et al. (2020). The current paper presents a detailed description and introductory analysis of the PyCHAM

functionality that was not the focus of O’Meara et al. (2020).

Aerosol chambers (interchangeably called smog chambers), defined as those used for interrogating gas- and particle-phase40

processes, provide a method for isolating specific processes of interest without the conflating effects present in the ambient

atmosphere. Ultimately the goal of the chamber is to improve understanding and quantitative constraint on the evolution of

the physicochemical properties of the gas- and particle-phase (Schwantes et al., 2017; Charan et al., 2019; Hidy, 2019). A de-

scription of chamber processes first requires consideration of the chamber characteristics, including: wall material (frequently

fluorinated ethylene-propene film (FEP Teflon), though others are used), lighting, and dimensions. Two approaches are used45

to inlet components: batch mode whereby set volumes of gas or particle are injected at specific times, or in flow mode with a

constant influx of gas or particle (Jaoui et al., 2014). The model variables input file for PyCHAM allows users to setup simula-

tions for both modes along with other experiment descriptors that allow simulation of a broad range of chamber investigations:

with or without seed particles; with or without nucleation; variable temperature, pressure and relative humidity; for illuminated

experiments, either natural light intensity (for open roof chambers) or known actinic flux (for chambers with bulbs) that can be50

turned on and off at set times. The full introduction to model variables is given in Section 4.

Two previous models act as platforms on which PyCHAM developed: the Microphysical Aerosol Numerical model Incor-

porating Chemistry (MANIC) (Lowe et al., 2009) and PyBox (Topping et al., 2018), with the former guiding multi-phase

processes and the latter guiding python parsing and automatic generation of chemical reaction modules. PyCHAM treats gas-
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phase photochemistry, gas-particle and gas-wall partitioning, coagulation, nucleation and particle deposition to walls in zero55

dimensions. A key feature is its aim to be generally applicable, such that gas-wall partitioning, particle deposition to wall and

nucleation - all processes with outstanding uncertainties - are parameterised and may be fitted to observations. Below we detail

the constraint necessary for fitting the relevant parameters. The full list of PyCHAM applications is numerous and will increase

as chamber experiments evolve. Key applications include designing chamber experiments, developing gas-phase photochem-

istry mechanisms, quantifying gas-wall partitioning parameters, developing nucleation models and interrogating the effects of60

processes on secondary particulate matter (SPM) evolution.

The processes included in PyCHAM are typically a subset of those represented in large-scale (regional and global) atmo-

spheric models and it is intended that once a process has been successfully modelled by PyCHAM it can be transferred, possibly

via parameterisation, to a large-scale model for evaluation and application (as illustrated by the gas-particle partitioning and

gas-phase chemistry advances cited in the introduction). When interrogating the simulation of a given process it is necessary65

that conflating processes are modelled accurately, such that uncertainty around their effects is not compromising. Therefore,

the main objective of this paper is to assess the accuracy and precision of the fundamental representation of the individual pro-

cesses considered in PyCHAM through comparison with benchmark simulations. Comparison of some results presented below

with experimental observations is possible, however it is beyond the scope of this paper to investigate the accuracy of chemical

mechanisms or estimation methods that PyCHAM can use, rather the examples below illustrate the utility of PyCHAM to test70

the sensitivity of such techniques.

An example of PyCHAM application in which several major processes are influential is provided by simulating an experi-

ment based on the role of nitrate radical (NO3) oxidation of limonene in secondary organic particulate matter (SOPM) evolution

(Fig. 1). Such an experiment has implications for indoor air quality at night time when the photolysis of NO3 ceases (Waring

and Wells, 2015), therefore lights were turned off for this simulation. Following a similar approach to the experiment of Fry75

et al. (2011), the effect of NO3 in the presence of ozone (O3) is replicated by first injecting nitrogen dioxide (NO2), limonene

and carbon monoxide into the chamber, with the latter removing the effect of the hydroxyl radical - this initial injection of

components marks the start of the experiment. After 1.5 hours O3 is injected to initiate oxidation and in the absence of seed

particles Fry et al. (2011) show that this mixture initiates a nucleation event, which we simulate here through the nucleation

parameterisation described below. Another injection of O3, NO2 and limonene at 4 hours with the addition of seed aerosol80

simulates indoor environments with substantial existing particulate matter.

In Fig. 1 the particle organic nitrate curve demonstrates that around 15 % of SOPM comprises organonitrates that result

from NO3 reaction. Relative humidity was set to 50 % and water partitioning with particles is modelled using the gas-particle

partitioning calculations described below. The particle inorganic nitrate curve represents the contribution of dinitrogen pentox-

ide (N2O5) to the particle-phase in PyCHAM. Gas-particle partitioning of N2O5 is driven by near-instantaneous hydrolysis to85

nitrate ions on contact with the aqueous phase of particles, which maintains a zero particle-phase mole fraction of N2O5. Thus,

mass transfer of N2O5 to the particle continues according to the Raoult’s law partitioning theory that we detail in Section 6.

Here we simulate the instantaneous hydrolysis of N2O5 to nitrate ions by setting the activity coefficient to zero and estimating

the accommodation coefficient according to Lowe et al. (2015), which estimates the rate of condensation as dependent on the
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Figure 1. Limonene oxidation in the dark with and without seed particles. In (a), the gas-phase concentrations of key components and in

(b), the particle properties. At the start 10 ppb limonene, 22 ppb NO2 and 500 ppm CO are introduced. At 1.5 hours 38 ppb O3 and 8

ppb NO2 are injected (injection 1). At 4 hours a further injection of O3 (45 ppb), limonene (10 ppb) and NO2 (19 ppb) is coincident with

an injection of seed aerosol (10 µg m−3 with a mean diameter of 0.2 µm) (injection 2). In (b), the total particle number concentration (N )

corresponds to the the first of the right axes, mass concentrations of: secondary organic particulate matter (SOPM), components deposited to

walls (wall deposit), sum of particulate organic components with a nitrate functional group (particle organic nitrate) and sum of particulate

inorganic components with a nitrate functional group (particle inorganic nitrate) correspond to the second of the right axes. Number size

concentrations correspond to the filled contours, colour bar and left axis. Whilst N includes seed particles, SOPM excludes the seed material

and all mass concentrations exclude water.

Henry’s law constant and diffusion constant of N2O5in the aqueous phase. Assuming homogenous particles for a given size90

bin (j), Eq. 7 of Lowe et al. (2015) is:

αN2O5,j,t =
4RT (0.03HN2O5,aqDN2O5,aq)

cN2O5
rj,t

, (1)

where t represents time, R is the universal gas constant, T is temperature (set to 298 K), c is average velocity in the gas

phase and r is particle radius. HaqDaq is the product of the Henry’s law constant and diffusion constant in the aqueous phase

for N2O5, with the former set to 5x103 M atm−1 and the latter to 1x109 m2 s−1 (Lowe et al., 2015).95

A current limitation of PyCHAM is its lack of explicit treatment of particle-phase processes including reaction and disso-

lution. Furthermore, there is currently no thermodynamic module to estimate divergences from ideality. As a result of these

two limits, particle-phase processes can currently only be reproduced through manual setting of individual component activity
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coefficients, accommodation coefficients and vapour pressures. For the example of Fig. 1, N2O5 is the only component to be

treated non-ideally by setting of its activity coefficient to zero to simulate near-instantaneous hydrolysis to nitrate ions.100

Studies have recently revealed the role of highly oxidised molecules (HOM) (Ehn et al., 2014), with the Peroxy Radical

Autoxidation Mechanism (PRAM) simulating their chemistry (Roldin et al., 2019). For the results in Fig. 1, the PRAM scheme

has been coupled with that of the Master Chemical Mechanism (MCM) (Jenkin et al., 1997; Saunders et al., 2003). It is intended

that simulations such as Fig. 1 can help constrain uncertainties in new chemical schemes through comparison with observed

particulate loading and composition analysis.105

The primary difference between multiphase processes in simulation chambers and the real atmosphere is the presence of

walls. Accurate representation of these processes in chamber models requires reasonable and realistic representation of the

chamber walls (e.g Matsunaga and Ziemann, 2010; Zhang et al., 2015). Clearly PyCHAM must reasonably capture the par-

titioning of components and deposition of particles to chamber walls as incorrect reproduction makes comparison against

measurements misleading or impossible. However, with correct wall loss constraint, simulations such as Fig. 1 can be com-110

pared against observations for verifying process understanding.

3 PyCHAM structure

For ease of navigation, PyCHAM has a modular structure with each key physicochemical process assigned an individual

module. Unit tests are provided for modules, allowing the user to check a particular process is functioning correctly. It is

intended that these tests will be useful for troubleshooting and for analysing the effects of modifications to modules.115

At the core of PyCHAM lies simultaneous numerical integration of three coupled processes: gas-phase photochemistry,

gas-particle partitioning and gas-wall partitioning. The units for rate of change for all processes is # molecules cm−3 s−1 and

the Jacobian matrix is specified at each integration step. The ordinary differential equations (ODEs) for these processes are

solved by the backward differentiation formula, for which utility has been demonstrated in similar atmospheric applications

(Jacobson, 2005), from the CVODE Sundials software (Hindmarsh et al., 2005). We use Assimulo (Andersson et al., 2015), a120

python wrapper for sundials allowing communication between the solver and Python code.

The model structure is outlined in the schematic of Fig. 2, where we introduce the ’update time interval’, which is an

important input set by the user. This interval determines the frequency at which natural light flux is updated since it will change

during the course of an open-roof experiment (in contrast to chamber lamps that have a constant actinic flux). The update time

interval also sets the frequency at which particle number concentration is affected by coagulation, particle deposition to wall125

and nucleation (important for simulations involving particles). Particle number concentration and photolysis rates are constants

in the ODEs for gas-particle partitioning and gas-phase photochemistry, respectively. The update time interval is passed to the

integrator, which adaptively sets sub-time steps depending on problem stiffness. As such, a simulation without varying natural

light and without particles could have an update time interval equal to the total experiment time without any loss of detail.

For discontinuous changes to chamber conditions, such as turning lamps on/off, injection of gas-phase components or seed130

particles, automatic adaption of the update time interval ensures occurrence at the start of an integration step.
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Figure 2. Schematic outlining the PyCHAM structure. In the left column are the GUI buttons that initiate the action(s) in the central column.

On pressing the ’Run Model’ button PyCHAM loops over the ’update time interval’ until the experiment end time is reached. On each

loop PyCHAM first checks whether any discontinuous changes to the chamber condition occur during the proposed time interval, and

automatically reduces the interval if confirmed, such that the change can be implemented at the correct time at the start of the subsequent

interval. Depending on problem stiffness the integrator uses sub-time steps, with the model taking the result at the end of the integration

period. The final stage of a loop where the update time interval has been reached is solution of coagulation, particle deposition to walls and

nucleation, which update the particle number concentration. The right column notes these temporal resolution aspects, with the mentioned

sensitivity of key system properties investigated in Section 11.

Whilst coagulation and particle loss to wall have timescales of minutes to hours, nucleation can cause substantial changes

within seconds (Section 11). Users may increase the update time interval, which has the advantage of decreased processing

time, defined here as the time taken by a computer to complete all core PyCHAM commands, and the disadvantage of di-

vergence from high resolution estimates. Simulation sensitivity to temporal resolution is investigated in Section 11, including135

recommendations for maximum time intervals.

In the example model output of Fig. 1 several features of PyCHAM are demonstrated. First, the coupling of gas-phase

chemistry and resulting partitioning of vapours with sufficiently low volatility to particles and walls. Nucleation has been

simulated prior to the introduction of seed particles with values provided for the nucleation parameters (Section 10) that ensure

nucleation begins at the introduction of ozone, has a duration of thirty minutes and produces a peak number concentration140
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similar to that of the seed particle. Finally, coagulation and particle wall loss (the latter using the model of McMurry and Rader

(1985)), contribute to the decay in particle number concentration.

The PyCHAM software is initiated via the command line to generate a graphical user interface (GUI). Via the GUI, users

select three files (Fig. 2) representing: i) the chemical scheme, ii) a file associating the chemical identifiers inside the chemical

scheme to their Simplified Molecular Input Line Entry System (SMILE) strings (Weininger, 1988), and iii) a model variables145

file. A fourth button on the GUI starts the simulation.

A parsing module interprets the chemical scheme and uses the chemical identifier conversion file to match component

identifiers to their SMILE strings. For the chemical scheme file delimiting markers are required at certain points, however the

form of these markers and the structure of the chemical scheme file may vary so long as the markers are specified by the user

in the model variables file before running the programme. Consequently, a chemical scheme file downloaded directly from the150

MCM website may be used without modification in combination with a relevant model variables file.

On running PyCHAM, modules are automatically created that will track chemical tendencies (rate of change due to indi-

vidual chemical reactions) and process tendencies (rate of change due to gas-particle and gas-wall partitioning) of specified

components. A gas-phase initiation module interprets the user-defined starting concentrations of components, whilst a particle-

phase initiation module establishes any seed particles at experiment start. The integration module is then called where the155

ODEs for gas-phase photochemistry and partitioning are solved (Fig. 2). A saving module stores results by default for gas and

wall concentrations of all components, corresponding time and constants such as component molecular weight. If the user has

setup the simulation to include particles, then particulate concentration for all components and particle number size distribu-

tions (with and without water) are also saved. If the user has defined components to track, then the change tendencies of these

are saved, including rates of change due to photochemistry and partitioning to particles and walls.160

The fifth button on the GUI will display and save graphs of the temporal profiles of number size distribution, secondary

aerosol mass concentration, total particle number concentration, and the gas-phase concentrations of the components whose

initial concentrations are user-defined. Besides these default plots, utility is enhanced by additional examples of plotting scripts

(those used for figures here) in the PyCHAM repository. Furthermore, the script vol_contr_analys provides an example of

how to generate a comma separated value (csv) file containing the names of components, their saturation vapour pressures at165

298.15 K and particle-phase mass concentrations as a function of time. This script can also plot a volatility basis set analysis of

particle-phase mass fraction with time. The programme can be stopped via the terminal when in integration mode, or outside

this mode it can be terminated by closing the GUI.

Below we describe and verify the processes described above as coded in PyCHAM. Necessarily each process is examined

in isolation, however, Fig. 1 and its associated text illustrate the coupling of mechanisms for a real world application.170

4 Model variables and component properties

As described above, to initiate PyCHAM the user selects a completed model variables input file (an example is provided with

the software). The available variables are extensive to allow adaptability to a range of experiments, consequently for a given
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experiment, many of the variables in this file may be left empty. Here we introduce the available variables, whilst details such

as default values and units are provided in the appendix Table A. Several model variables (PyCHAM names of variables given175

in brackets) are purely functional, these include the name of the output file (res_file_name), whether to update the component

property estimation files (umansysprop_update), which are described below in this section, the markers used to separate sec-

tions of the chemical scheme (chem_scheme_markers), names of files containing actinic flux (act_flux_file) and absorption

cross-sections and quantum yields for photochemistry (photo_par_file). Total simulation time (total_model_time), the time

interval for updating integration constants (update_step) and the time interval for recording results (recording_time_step) are180

also available.

Chamber temperature (temperature) can change during a simulation by stating the corresponding time (tempt), whilst pres-

sure (p_init) and relative humidity (rh) are also input. All relevant thermodynamic properties change accordingly with temper-

ature, such as component vapour pressures and gas-phase diffusivities.

For simulations involving natural light, latitude (lat), longitude (lon), day of year (DayOfYear) and start time (daytime_start)185

are required inputs. Whether artificial or natural, users specify when (light_time) light is on or off (light_status). Any dilution

rate (dil_fac) should be stated, or else the default is zero.

Initial concentrations (C0) of specified trace gases (Comp0) are stated separately to the concentrations (Ct) of specified

trace gases (Compt) injected effectively instantaneously at set times (injectt) during the experiment. Specified components

(const_comp) will have a constant concentration for the entire experiment. The final option for introducing named components190

(const_infl) is to state the rate of their influx (Cinfl) during a set period of the experiment (const_infl_t). The change tendencies

(defined above) of certain components (tracked_comp) can be recorded, which is helpful for analysis and troubleshooting.

For specific components (vol_Comp), liquid-phase saturation vapour pressures can be manually assigned (volP). As can

activity coefficients (act_user) and accommodation coefficients (accom_coeff_user).

To simulate gas-wall partitioning, the mass transfer coefficient (mass_trans_coeff) and effective absorbing wall mass con-195

centrations (eff_abs_wall_massC) can be set.

For the particle phase, users state the number of size bins (number_size_bins), size at lowermost size bin boundary (lower_part_size)

and at uppermost boundary (upper_part_size), and whether to have linear or logarithmic spacing of size bins (space_mode).

Setting size bin number to zero turns off particle considerations. As detailed below, users can also specify whether to use the

moving-centre or full-moving size structures for dealing with changing particle number size distributions (size_structure).200

For seeded experiments, the component comprising the seed (seed_name), its molecular weight (seed_mw), density (seed_dens)

and dissociation constant (core_diss) can be input. Either the particle concentration per size bin or the total particle concentra-

tion can be input (pconc), along with the time of particle injection (pconct). If the total particle concentration is given, this can

be distributed across size bins by stating the mean radius (mean_rad) and standard deviation (std).

For nucleation experiments, the nucleating component (nuc_comp) can be changed from the default, as can the radius of205

newly nucleated particles (new_partr). To specify the temporal profile of nucleation, three parameters (detailed in Section 10)

are input (nucv1, nucv2, nucv3).
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Coagulation (coag_on) and particle loss to wall (McMurry_flag) can be turned off and on. If the latter is turned on, users can

specify the size-dependent loss to walls (inflectDp, Grad_pre_inflect, Grad_post_inflect and Rate_at_inflect), or can invoke

the McMurry and Rader (1985) model by also inputting the chamber wall surface area (Cham_SA), the charge per particle210

(part_charge_num) and the chamber electric field (elec_field), which are detailed in Section 9.

The components included in the user-defined chemical scheme are automatically allocated three properties by the PyCHAM

software: molecular weight, pure component liquid density and pure component liquid saturation vapour pressure. Molecular

weights are estimated by passing SMILE strings to the pybel module of the Open Babel chemical toolbox (O’Boyle et al., 2011).

Open Babel is installed as part of the PyCHAM package and generates unique chemical identifiers for each component based215

on their SMILE string. For estimating component densities and liquid-phase saturation vapour pressures, the pybel chemical

identifiers are passed to the UManSysProp module (Topping et al., 2016) which is updated on the first run of PyCHAM and

at the request of the user (via the model variables file) thereafter (requires internet connection). By default the UMansSysProp

module applies the liquid density estimation method of Girolami (1994) (recommended by Barley et al. (2013)) and the liquid

saturation vapour pressure estimation method of Nannoolal et al. (2008) (recommended by O’Meara et al. (2014)). Component220

vapour pressures have a first order effect on absorptive partitioning between phases, however estimates for components with

relatively low vapour pressures (below 1 Pa at 298.15 K) are associated with considerable uncertainty (O’Meara et al., 2014),

as these are most difficult to measure experimentally and therefore inform estimation methods. Consequently, users can also

specify the vapour pressures of certain components. Similarly, although the default activity and accommodation coefficient

for all components partitioning to particles and wall is unity, users may set an alternative value for specific components. At225

present, activity coefficient calculations are not incorporated into PyCHAM.

5 Gas-phase photochemistry

For a chamber experiment including injection of reactive components, chemical reactions in the gas-phase drive the dise-

quilibria that can affect the composition of gas, particle and wall. As mentioned above, schemes such as the MCM provide

near-explicit gas-phase chemistry mechanisms for numerous organic precursors, and developments such as PRAM (Roldin230

et al., 2019) can be used to provide supplementary detailed updates to our understanding of atmospheric chemistry. PyCHAM

is designed to accommodate any such detailed chemical schemes whilst also accepting very simplified or even empty (e.g.

for a control simulation comprising only seed particles) chemical equation files. Whilst the software manual details the re-

quirements for input chemical schemes and chemical identifier conversion files, here we describe how PyCHAM deals with

chemistry. Equations of the general form:235

sr1r1 + sr2r2 . . .→ sp1
p1 + sp2

p2 . . . (R1)

where s represents stoichiometric number, r reactants and p products, are expressed as the ODEs:
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d[ri]

dt
=−srikrΠn

j=1 ([rj ]
srj ) (2)

d[pi]

dt
= spikrΠn

j=1 ([rj ]
srj ) (3)

where n is the total number of reactants and rj is a given reactant for a given reaction. kr is the reaction rate coefficient.240

For simulations involving gas-phase chemistry, users must therefore provide a reaction(s) of the form in Eq. R1 and an

associated reaction rate coefficient inside a chemical scheme file. Naming of chemical components inside the chemical scheme

is unrestricted, however, the software must be able to convert names to SMILES (Weininger, 1988). Therefore, users must

provide a separate file stating a unique SMILES string for every component (Fig. 2). Examples of both the chemical scheme

and SMILES string conversion file are included in the software.245

Inside the parsing module, reaction rate coefficients, reactant and product identities and their stoichiometric numbers are

established from the chemical scheme file. To separate these properties either default formatting may be used, or a variant, so

long as the appropriate changes are made inside the model variables file. By default, MCM Kinetic PreProcessor (Sander and

Sandu, 2006) formatting is used (Jenkin et al., 1997; Saunders et al., 2003) and PyCHAM has been rigorously tested using

schemes and SMILE conversion files from the MCM website (Rickard and Young, 2020).250

Reaction rate coefficients can be functions of temperature, relative humidity, pressure and concentrations of: third body,

nitrogen, oxygen and peroxy radicals. Third body, nitrogen and oxygen concentrations are calculated by the ideal gas law with

the user-set temperature and pressure. As in the MCM, the chemical scheme file can include generic reaction rate coefficients

(those that have an identifier which is used as the reaction rate coefficient for one or more reactions).

Photochemistry is controlled through stating light on/off times inside the model variables file. The treatment of photochem-255

istry is determined by the user and depends on the chemical scheme employed. In the case of the MCM scheme and natural

sunlight, the scattering model based on Hayman (1997) and described in Saunders et al. (2003) is invoked by stating the rel-

evant spatial and temporal coordinates in the model variables file. For artificial lights, users must provide a file stating the

wavelength-dependent actinic flux (as described in the manual). The model then calls on either the absorption cross-section

and quantum yield estimates of MCM v3.3.1 or of a user-defined file.260

5.1 Assessment of gas-phase photochemistry accuracy

To assess the accuracy of the photochemistry section of PyCHAM, gas-particle partitioning and gas-wall partitioning were

turned off, leaving only gas-phase chemistry to be solved. Here we compare against AtChem2 (Sommariva et al., 2018) as

a model benchmark, with both using MCM chemical schemes. Figure 3 shows the deviation with experiment time for two

standard aerosol chamber characterisation experiments: α−pinene ozonolysis in the presence (plot a) and absence (plot b)265

of NOx. To test both dark and illuminated scenarios, the simulation is for an aerosol chamber with an open roof, starting at

midnight and finishing at midday. Initial concentrations of α−pinene and O3 were equal at 21.1 ppb for both experiments,

whilst for NOx the initial concentration was 9.8 ppb in Fig. 3a and 0 ppb in Fig. 3b. Latitude was set to 51.51, longitude to 0.13

(London, UK) and the date to 1 July. In both models, absolute error tolerance was set to 1x10−3 and relative tolerance was set
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Figure 3. Gas-phase photochemistry verified; simulations of photochemistry in an aerosol chamber exposed to natural light, where deviation

is defined in Eq. 4. α−pinene ozonolysis is simulated in both plots, with α−pinene and O3 given the same initial concentrations of 21.1

ppb, and initial NOx concentration in (a) 9.8 ppb and in (b) 0 ppb. For both simulations, the aerosol chamber is transparent and exposed

to daylight without cloud interference, with dawn at approximately 4 hours. Gas-wall partitioning is turned off in PyCHAM to be consistent

with the AtChem2 model and no particles are present in either model.

to 1x10−4. AtChem2 has no functionality for gas-particle partitioning which is fine for this section dealing with only gas-phase270

photochemistry, whilst PyCHAM had particle considerations turned off. The deviation between PyCHAM and AtChem2 was

calculated using:

σi,t =

(
si,t− bi,t
∨(bi)

)
100, (4)

where σi,t is the percentage deviation (%) for component i at time t, s is the PyCHAM result, b is the AtChem2 result. ∨(bi)

is the AtChem2 maximum for a given component during the simulation which is the chosen scaling factor for deviations as it275

means any difference between model estimates is referenced against a reasonable value for that component (in contrast scaling

by bi,t when bi,t�∨(bi) may introduce a very large percentage deviation for a relatively very small difference between model

estimates).

Whilst Fig. 3 indicates that PyCHAM performs well for components with both relatively short (e.g. OH) and long (e.g.

α−pinene) lifetimes, it is necessary to ascertain that agreement is gained through the correct mechanism. The chemical change280

tendencies of formaldehyde were tracked in both PyCHAM and AtChem2 for the α−pinene ozonolysis simulations used for

Fig. 3. Deviations of PyCHAM results from AtChem2 were calculated using Eq. 4, but with concentrations replaced by change

tendencies resulting from individual reaction channels. Of the loss and production channels for formaldehyde the two of each
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Figure 4. Deviation of PyCHAM change tendency (rate of change due to individual chemical reactions) for formaldehyde (HCHO) from

AtChem2 simulations for the MCM reactions given in the legends (the loss and production channels of formaldehyde with greatest deviation).

Where the definition for deviation is given by Eq. 4. Both plots are results for the α−pinene ozonolysis reaction described in the main text

for Fig. 3, with (a) in the presence of NOx and (b) in the absence of NOx.

with greatest deviation are shown in Fig. 4. The low deviation values in Fig. 4 demonstrate that PyCHAM indeed solves

gas-phase photochemistry correctly.285

5.2 PyCHAM sensitivity to temporal resolution of continuous photolysis change

For minimising processing time, users can increase the update time interval (Fig. 2), however this decreases the frequency of

update for natural light intensity (note that for artificial light simulations, PyCHAM automatically adapts the time interval to

coincide with timings of lights being turned on or off). For open roof experiments, increasing the update time interval therefore

reduces the accuracy of estimated photolysis rates. To illustrate and quantify the issue, the same scenario described above for290

Fig. 3 is used, i.e. gas-phase chemistry only simulation with increasing natural sunlight intensity. Now we compare PyCHAM

low temporal resolution (update time intervals of 6x102 and 6x103 s) with PyCHAM high resolution (updates every 6x101 s).

To quantify divergence of low resolution results from high we use Eq. 4. Fig. 5 shows the loss of accuracy rising to 20 % for the

lowest resolution case for both short- and long-lived components. Processing time for the 6x103 s resolution was 52 s using a

2.5 GHz Intel Core i5 processor; this increased by a factor of 7 for the 6x102 s resolution and by 53 for the 6x101 s resolution.295

Users should conduct a similar test if their chemical scheme or environmental conditions vary significantly from those here.

6 Gas-particle partitioning and sectional approach

PyCHAM simulations, like chamber experiments, are possible with and without seed particles. For seed particles, the user

defines number size distribution and composition inside the model variables input file. Furthermore, because PyCHAM uses
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Figure 5. Illustrating the effect of update time interval resolution in PyCHAM on gas-phase concentrations of α−pinene, O3 and OH for

the α−pinene ozonolysis in presence of NOx experiment described above for Fig. 3. Time intervals were set to 6x102 and 6x103 s as shown

in the legend, and the deviation is that from results for a time interval of 6x101 s.

size bins to discretise particles, users can state the number of size bins, lower and upper bin bounds and whether to use linear300

or logarithmic spacing of size bins.

Particle number size distribution can change as a direct consequence of four processes modelled by PyCHAM: gas-particle

partitioning, coagulation, nucleation and particle loss to walls. Whilst coagulation, nucleation and particle wall loss are dis-

cussed below, gas-particle partitioning is solved with (Zaveri et al., 2008):

dCi,g

dt
=−

N∑
j=1

ki,j(Ci,g −xi,jp0iKv,jγi,j), (5)305

dCi,j

dt
= ki,j(Ci,g −xi,jp0iKv,jγi), (6)

where component i is partitioning to a size bin j from the gas g, with N size bins present. x is the particle-phase mole

fraction, p0 is the pure component liquid (sub-cooled if necessary) vapour pressure, Kv is the Kelvin factor and γ is the

activity coefficient. ki,j is the first order mass transfer coefficient for component i to size bin j, which includes the transition

regime correction factor of Fuchs and Sutugin (1971). As suggested by Eq. 5 all components are allowed to partition between310

the gas and particle phase, with the concentrations of individual components in each size bin of the particle phase tracked in

addition to their gas-phase concentrations (both in units of molecules cm−3). The unit test test_partit_var is available to check

that the Kelvin and Raoult effects of the PyCHAM gas-particle partitioning equation are accurate (e.g. through comparison with

Fig. 16.1 of Jacobson (2005)). By default PyCHAM assumes an ideal system with no particle-phase mass transfer limitation to

partitioning. However, users can diverge from ideality through setting of γ and they may replicate changes in particle viscosity315

via the accommodation coefficient, which is used to estimate ki,j .
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In this section we focus on how PyCHAM treats changing particle number size distribution due predominantly to gas-particle

partitioning. PyCHAM provides the option of using either the moving-centre or full-moving size structure (Jacobson, 2005)

for evolving size distributions. The moving-centre approach has the advantage of minimal numerical diffusion and the readily

accommodates populations of particles of varying modes (e.g. a nucleation event in the presence of pre-existing particles).320

However, it suffers from loss of accuracy due to averaging of particles originally from different size bins that have grown,

shrunk or coagulated to a given size bin (Zhang et al., 1999). In contrast the full-moving structure does not average particles of

different size bins together following gas-particle partitioning, and can therefore exactly model certain chamber scenarios. The

full-moving structure less readily accommodates multiple populations of particle, such as the nucleation event followed by seed

particle injection used in Fig. 1. Therefore, in the interest of generality the default size structure in PyCHAM is moving-centre325

and unless otherwise stated all results in this paper use it.

Here we assess the moving-centre and full-moving size structures through analysis of output during two periods of rela-

tively substantial (and therefore testing) condensational growth and compare to benchmark simulations. The simulations also

illustrate two further means of component influx to chambers using PyCHAM in addition to the simulations above where

components were introduced with an initial pulse. In the first case a constant flux of sulphuric acid is added to a chamber330

with seed aerosol typical of hazy conditions following the benchmark simulation of Zhang et al. (1999). For consistency with

the benchmark, gas and particle partitioning to walls was turned off and sulphuric acid was assumed to be non-volatile. The

analysis section of Zhang et al. (1999) notes that to resolve the growth of smallest particles in this scenario, spatial resolution

must be at least 100 size bins, therefore we use this value and set the update time interval to 90 s for a total 12 hour simulation.

The exact solution to this condensational growth problem is given by the full-moving output in Fig. 6a, which replicates335

that in Fig. 3 of Zhang et al. (1999). Comparing the moving-centre output against the full-moving we see that the tri-modal

distribution is present with mean values at the correct particle size though with lower peak height and greater spread (for both

volume and number size distributions), indicating numerical diffusion. The degree of agreement is significantly better than for

the 13 size bin moving-centre simulation presented in Zhang et al. (1999) and indicates that PyCHAM is operating as intended.

Our results in Fig. 6a are a two-point moving average which is often necessary for the moving-centre structure because of its340

requirement that all particles in a size bin be transferred to the adjacent bin, meaning that some bins will intermittently have

zero particles.

Another case of relatively intense vapour-particle partitioning is provided by the example of cloud condensation nuclei

experiencing varying degrees of water vapour supersaturation. Chamber experiments may involve injections of a component at

specific times and the model variables input file can accommodate such a scenario. Making use of this function we reproduce345

the benchmark simulation of Jacobson (2005) (Fig. 13.8) where relative humidity is increased to 100.002 % every minute

(including at simulation start) for nine minutes, with results analysed after ten minutes. Seed particles are assumed non-volatile

and wall interactions are turned off. The parameters: temperature, seed component dissociation constant, molecular weight

and density are not disclosed by the reference simulation, therefore we set these as: 300 K, 1, 350 g mol−1 and 0.9 g cm−3,

respectively. The comparison between the Jacobson (2005) result in Fig. 6b and PyCHAM outputs certainly shows agreement in350

the main feature of this simulation, which is the initially larger particles out competing smaller particles for water condensation
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Figure 6. In (a), replication of Fig. 3 of Zhang et al. (1999) where a constant influx of sulphuric acid condenses to seed particles with the

shown initial volume size distribution (bottom and left axis, in black) and initial number size distribution (top and right axis, in blue), with

final results after 12 hours. In (b), replication of Fig. 13.8 of Jacobson (2005), where an initial distribution of particles are subject to a relative

humidity of 100.002 % at minute intervals for 9 minutes, with results shown after 10 minutes.

to grow to water droplet size (Dp > 10 µm). It should be noted that this is a very much more stringent test of the representation

of partitioning than is ever intended for PyCHAM, which will not generally be used for the huge mass flux of condensing

material experienced under water supersaturated conditions. Nevertheless, the PyCHAM result gives reasonable agreement

considering that key parameters (such as seed component dissociation) may vary between simulations and taken together with355

Fig. 6a verifies the operation of gas-particle partitioning and both the moving-centre and full-moving size structure.

7 Gas-wall partitioning

The partitioning of gases to the chamber wall is often termed wall loss as the net movement is from the gas phase to the wall

(for an initially clean chamber wall). Traditionally this process has been viewed as an inconvenience since chamber results

often depend on the concentration of gas- and particle-phases of certain components, whilst the fraction of these components360

lost to walls is poorly constrained. Several studies have focussed on partitioning to Teflon walls, which are frequently employed

(Matsunaga and Ziemann, 2010; Zhang et al., 2015; Zhao et al., 2018), however, the process remains poorly modelled across

the wide range of chamber materials, relative humidities, gas-phase loading, component volatilities and activity coefficients

present in chamber experiments (e.g. Stefenelli et al., 2018).
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A volatility-dependent gas-wall partitioning parameterisation for Teflon chambers has been suggested by Krechmer et al.365

(2016), however they recommend further investigation into its suitability across chamber experiment conditions. Because this

paper is focussed on describing PyCHAM in its most generally applicable form we do not analyse specific models here,

however, users are encouraged to adapt the programme based on their particular experiment conditions.

It is therefore preferable to allow the user to fit vapour losses to walls through the tuning of two wall loss parameters, one

primarily determining equilibrium, called the effective wall mass concentration (Cw), and one determining rate of partitioning,370

the mass transfer coefficient (kw). These influence gas-wall partitioning through an equation of the same framework as gas-

particle partitioning (which is described in Section 6 and in Zaveri et al. (2008)):

dCi,g

dt
=−kw(Ci,g −

Ci,w

Cw
p0i γi), (7)

dCi,w

dt
= kw(Ci,g −

Ci,w

Cw
p0i γi), (8)

where p0i is the liquid (sub-cooled if necessary) saturation vapour pressure of component i and γi is its activity coefficient on375

the wall. Following the conclusions of Matsunaga and Ziemann (2010) and Zhang et al. (2015), kw represents factors such as

gas- and wall-phase diffusion, turbulence, accommodation coefficient and the chamber surface area to volume ratio, whilst Cw

reflects the adsorbing and/or absorbing properties of the wall, including effects of relative humidity, surface area, diffusivity and

porosity. We recommend the iterative fitting of kw and Cw to observations through minimising observation-model residuals.

Cw in PyCHAM does not vary with the mass transferred to the wall, which is consistent with the findings of Matsunaga and380

Ziemann (2010) and Zhang et al. (2015) that indicate the effective mass concentration of the wall is much larger than the mass

concentration of transferred material.

7.1 Tuning gas-wall partitioning parameters

Next we illustrate the sensitivity to kw and Cw in Eq. 7. The same simulation setup described above for Fig. 3 was used

though with α−pinene replaced by isoprene (using the chemical scheme of MCM v3.3.1) with a concentration at experiment385

start of 63.4 ppb. Seed particles comprised of ammonium sulphate with mean diameter 1x10−1 µm and number concentration

1.5x104 cm−3 were introduced at experiment start, this equates to a mass concentration of 8 µg m−3 . Pure component liquid

saturation vapour pressures were estimated by the Nannoolal et al. (2008) method and activity coefficients for all components

were assumed to be unity. In this example and throughout this paper, all components are allowed to partition between the gas

and particle phase according to Eq. 5.390

To begin, both kw and Cw were set sufficiently low to effectively eliminate gas-wall partitioning. Second, Cw was set to

1x10−4 µg m−3 and kw set to 1x10−3 s−1 at which a notable decrease in secondary particulate matter (SPM) was observed.

Third, kw was held constant whilst Cw was raised two orders of magnitude greater to 1x10−2 µg m−3. Fourth, Cw was held

constant at 1x10−4 µg m−3 and kw was raised by five orders of magnitude to 1x102 s−1. The effect on secondary particulate

matter mass concentration is given in Fig. 7 and demonstrates that at sufficiently large values of Cw and kw, SPM production395

can be effectively suppressed through competitive uptake of vapours to chamber walls. However, it should be noted that for a
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Figure 7. In (a) sensitivity of SPM mass concentration to the gas-wall partitioning parameters kw and Cw from Eq. 7. Seed particles with

a concentration of 8 µg m−3 were present at the start of the experiment. Initial concentrations of O3, isoprene and NO2 were set to 21.1,

63.4 and 9.8 ppb, respectively. With regards to photolysis rates, the simulation made the same considerations as in Fig. 3, where natural

sunlight drove reactions after dawn at approximately 4 hours. Plot (b) illustrates a PyCHAM plotting tool for contributions of components

in volatility bands to secondary particulate matter as a function of time. The example given is for the No wall case of (a). In (c), sensitivity

of the gas-phase concentration decay of 2-methylglyceric acid is shown for a control experiment where only a single organic component is

present in the absence of particles. Wall loss parameters are given in the legend.

given Cw, there is a limit to suppression of SPM due to kw increase as it affects only the rate of partitioning with walls rather

than the condensable fraction.

Whilst the intention of this section is demonstration of gas-wall partitioning, and it is beyond the scope of this paper to

evaluate the chemical schemes or property estimation techniques that may be used by PyCHAM, comparison of Fig. 7a with400

observations is insightful. As discussed earlier, currently PyCHAM does not account for heterogenous or particle-phase re-

action or oligomerisation. However, these processes are reported to have a significant impact on secondary particulate matter

formation from isoprene (Sato et al., 2011; D’Ambro et al., 2017), therefore we would expect a lower yield in Fig. 7a than

reported from observational studies. Observations from a similar aerosol chamber experiment are presented in Table 1 (ex-

periment number 10) of Liu et al. (2016). Consistent with our expectation, after wall loss correction they report a secondary405

organic aerosol yield of 11.6 %, whereas for Fig. 7a here the No wall case gives a yield of 4.5 %. However, Sato et al. (2011)

observe a yield of 5.5 % for isoprene photooxidation in the presence of 22 ppb NOx and neutral seed particles. Given that Sato

et al. (2011) also observe up to 1/3 the organic particulate concentration comprising oligoesters that are not currently simulated

in PyCHAM, the yield found here is relatively high. Whilst not in the scope of the current paper to pinpoint the cause of this

discrepancy, it is worthwhile noting that in Table 6 of O’Meara et al. (2014) the Nannoolal et al. (2008) estimation method410

for component vapour pressures generated between two to three times more secondary particulate matter mass concentration

than when measured vapour pressures were used. This is due to the disproportionate effect on SPM from underestimating
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component vapour pressures compared to overestimating (the Nannoolal et al. (2008) method was found to have a relatively

low overall bias in O’Meara et al. (2014)).

In Fig. 7b is demonstrated a useful plotting tool (script name: vol_contr_analys) available to PyCHAM users for analysing the415

contribution of components in a volatility basis set (i.e. grouped into different volatility bands) to secondary particulate matter.

This plot relates to the No wall simulation in Fig. 7a and indicates substantial changes to the mass fraction contributed by each

volatility bin with time. Prior to dawn at approximately 4 hours, relatively low volatility components contribute significantly

to SPM. Also using the PyCHAM script vol_contr_analys, a comma separated value file with the vapour pressures and mass

concentrations of individual components in the particle-phase is produced. Analysis of this file shows that for the volatility band420

centred on 1x10−1.5 µg m−3, the component with MCM name C536OOH dominates the mass fraction, though we note that

checking the No wall curve in Fig. 7a, it’s absolute contribution to SPM is negligible relative to later SPM values. C536OOH

has three carboxylic acid groups and a ketone group. Whilst such highly functional components are expected to have relatively

low vapour pressures, we advise readers of the high error associated with estimated vapour pressures for such components;

Fig. 5 of O’Meara et al. (2014) demonstrates six orders of magnitude underestimation compared to measurements.425

To guide constraint for wall loss parameters, we follow the example of Matsunaga and Ziemann (2010), with a control

experiment comprising a single semi-volatile component introduced to the chamber at the start of the simulation at 50 ppb.

2-methylglyceric acid is selected as it has an estimated particle mass concentration saturation vapour pressure (C∗) of 1.15x102

µg m−3 at 298.15 K (the simulation temperature) and is an observed oxidation product of isoprene (Surratt et al., 2006). No

other components or particles are introduced. With regards to designing a control experiment for tuning Cw and kw, the results430

shown in Fig. 7c demonstrate that a component with a C∗ close to the Cw value has large sensitivity to Cw, thereby allowing

greatest ease of tuning. Note, that this sensitivity can be utilised through varying chamber temperature (and therefore the C∗

of a component), or through using a component with different volatility. Furthermore, to discern the effect of kw a component

with substantial partitioning to walls is required. When quantifying kw it is worthwhile considering the required precision,

because above a certain value, no further effect on SPM concentration results.435

8 Coagulation

Equations of coagulation kernels for Brownian diffusion, convective Brownian diffusion enhancement, gravitational collection,

turbulent inertial motion, turbulent shear and Van der Waals collision were taken from Jacobson (2005). The unit test test_coag

produces a plot of coagulation kernels that can be compared to Fig. 15.7 of Jacobson (2005) to verify accuracy. The number

concentrations of newly coagulated particles are allocated to size bin k if they fit within the bounding volumes and do not440
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include a particle originally from k; for combinations of size bins j and z the fraction of a newly coagulated particle contributing

to size bin k is:

fpz,j,k =


1 V bk,l ≤ (Vj 6=k,t−h +Vz 6=k,t−h)< V bk,u

0 j = k∨ z = k

0 (Vj,t−h +Vz,t−h)< V bk,l

0 (Vj,t−h +Vz,t−h)≥ V bk,u

(9)

where V is single particle volume, V bk,l and V bk,u are lower and upper volume bounds, respectively, and h is the time

interval for coagulation to occur over. Particle number concentration in size bin k decreases when coagulation of k particles445

with those from any size bin produce a particle of size greater than the upper size bin bound of k. If however, coagulation

produces a particle within size bin k, there is no loss of number concentration if coagulation is with a smaller size bin. If the

self-coagulation of k produces a particle in size bin k (a scenario dependent on the size bin width) the change is half that if the

coagulated particle fits a size bin larger than k:

flk,z =


1 (Vk,t−h +Vj,t−h)≥ V bk,u
0.5 (Vk,t−h +Vk,t−h)< V bk,u

0 (Vk,t−h +Vj 6=k,t−h)< V bk,u

(10)450

The semiimplicit coagulation equation from Jacobson (2005) is then used to estimate the new number concentration per size

bin (N (# cm−3)):

Nk,t =
Nk,t−h + 1

2h(
∑k

j=1(
∑k−1

z=1 fpz,j,kβz,jNz,tNj,t−h))

1 +h
∑A

j=1 flk,jβk,jNj,t−h
, (11)

where A is the total number of size bins. It is necessary to solve Eq. 11 in ascending order of size bins because for the

smallest bin, which cannot gain particles through coagulation, the term involving Nz,t is zero. This makes Eq. 11 explicit for455

the first size bin and allows estimates of Nz,t for larger size bins.

The semiimplicit approach has the advantage of being positive-definite and non-iterative, making it unconditionally stable

and with lower processing time than an implicit numerical approach. However, whilst conserving number, Eq. 11 is not mass-

conserving, whereas the implicit treatment (Jacobson, 2005) conserves both number and mass. It the intention of the core

development team to explore the feasibility of modelling with the implicit approach since guaranteed mass conservation is460

preferable. To estimate mass gained by size bin k due to coagulation, the number fraction of the original number of particles

per size bin represented by coagulating particles is found, with this fraction of the original mass per size bin moved to the new
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size bin. Considering now gain in mass concentration rather than number concentration, the contribution from size bins smaller

than k that coagulate with k must be considered, so:

fpz,j,k =


1 V bk,l ≤ (Vj,t−h +Vz 6=k,t−h)< V bk,u

0 z = k

0 (Vj,t−h +Vz,t−h)< V bk,l

0 (Vj,t−h +Vz,t−h)≥ V bk,u

(12)465

Now, for size bin k, the gain in mass concentration (C) of component i from smaller size bins (z) (based on Eq. 11 and

Eq. 12) is:

∆Ci,k,t =

k−1∑
z=1

h(
∑k

j=1 fpz,j,kβz,jNz,tNj,t−h)

Nz,t−h
Ci,z,t−h (13)

For the loss of mass concentration from size bin k, size bin pair fractions become:

flk,j =


1 (Vk,t−h +Vj,t−h)≥ V bk,u
0 (Vk,t−h +Vk,t−h)< V bk,u

0 (Vk,t−h +Vj 6=k,t−h)< V bk,u

(14)470

Loss of mass concentration due to coagulation of particles in k producing particles in larger size bins is then (based on Eq. 11

and Eq. 14):

∆Ci,k,t =−

(
1− 1

1 +h
∑A

j=1 flk,jβk,jNj,t−h

)
Ci,k,t−h, (15)

Equations 10-15 imply that coagulation directly influences the particle number- and mass-size distributions. We now asses

the sensitivity of the number size distribution and mass conservation to temporal resolution (represented by the time interval475

for updating coagulation) and number of size bins. A relatively complex initial distribution with four number modes is taken

from ambient observations at Claremont, California on August 27, 1987 (Jacobson, 2005) and assumed to comprise non-

volatile material. Results are presented for a six hour simulation in Fig. 8 where particle wall loss was turned off to allow

clearer assessment of the coagulation sensitivity. In the top row of Fig. 8 no gas-phase chemistry was allowed, whilst in

the bottom row, a single chemical reaction with reaction rate 5.6x10−17 molec−1s−1 between α−pinene and O3 (both with480

initial concentrations 100 ppb) was modelled to produce a single low volatility product with saturation vapour pressure of

1x10−10 Pa, whilst gas-wall partitioning was turned off. For the chemistry case, approximately 500 µg m−3 of secondary

material was formed, compared to 90 µg m−3 of seed material. Columns in Fig. 8 are distinguished by the number of size bins

as presented in the column titles, and within each plot temporal resolution is varied.
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Figure 8. Sensitivity of the coagulation process to changes in temporal resolution (given in the legend) and number of size bins (given in

column titles). In the top row no chemistry occurred whilst in the bottom row a semi-volatile species was produced, as detailed in the main

text. Results are for the end of a simulated six hour experiment. The ∆nvtemporal resolution value given in the inset text is the percentage

change in total non-volatile particle-phase material from the start to finish of the experiment, demonstrating mass conservation in the model.

The inset text of Fig. 8 (∆nv) gives the fractional change in non-volatile material from the start to end (six hours) of485

the simulation for the three temporal resolutions. It is clear that the coagulation equations introduce negligible error to mass

conservation. Two features are present in the top row (no chemistry) of Fig. 8: first, that in terms of number concentration,

coagulation overwhelmingly affects the number concentration of smaller particles - note that such particles are sufficiently

small in volume that they may coagulate with a larger particle without causing it to grow a size bin; second, that only for the

smallest particles (below a diameter of 3x10−2 µm in this case) is a sensitivity to temporal resolution clear across all size bin490

resolutions. For the no chemistry case there is demonstrable coupling of number of size bins and temporal resolution, with an

increase in the former indicating greater sensitivity to the latter. However, the resolution considerations change substantially

when we consider the case with gas-particle partitioning in the bottom row of Fig. 8. In this instance, the effect of partitioning

dominates the change in number-size distribution and no sensitivity of coagulation to number of size bins or temporal resolution

is discernible. This is consistent with the typical timescales associated with the two processes: seconds to minutes for gas-495

particle partitioning and minutes to hours for coagulation (Seinfeld and Pandis, 2006). We recommend users consider these

examples in addition to the nature of their simulation and objective when deciding whether temporal resolution or number of

size bins will significantly impact results.
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9 Particle deposition to walls

As with gas-wall partitioning, the loss of particles to chamber walls can significantly invalidate chamber results if unaccounted500

for and has been detailed in previous publications (Crump and Seinfeld, 1981; McMurry and Rader, 1985; Nah et al., 2017;

Wang et al., 2018). During control experiments the deposition rate of particles to walls can be inferred through observations

of the rate of decay of particles of varying size (with coagulation accounted for) (Charan et al., 2019). Several studies have

published results from such experiments (McMurry and Rader, 1985; Wang et al., 2018), including a relatively large dataset

from the EUROCHAMP2020 project (Oliveri, 2018). Comparison of inferred wall loss rates indicate that diffusion and settling505

enhance the loss rates of relatively small and relatively large particles, respectively (Crump and Seinfeld, 1981), however

the absolute values and size-dependent gradient of the loss rates vary significantly between control experiments. Even for a

given chamber, significant variations appear with changes to relative humidity, disturbance to walls due to air conditioning,

and, for teflon chambers, with time since the chamber walls experienced frictional force to create electrostatic charge (Wang

et al., 2018). Currently no method is available to measure the required inputs that a particle deposition model would need to510

satisfactorily reproduce observations across all chambers and conditions, therefore in PyCHAM users have three options to

estimate particle wall deposition. Here we describe the options and provide examples of their use.

Users select wall loss treatment with the McMurry_flag option in the model variables input file. The default (if left empty)

is no loss of particles to wall, which can be used for estimating wall loss corrected values such as aerosol yield. If set to one,

the model of McMurry and Rader (1985) is used, which is based on the particle deposition model of Crump and Seinfeld515

(1981) but with electrostatic effects. Studies have found the Crump and Seinfeld (1981) and McMurry and Rader (1985)

approach to reproduce measured particle wall losses well (Chen et al., 1992; Kim et al., 2001). Selecting McMurry and Rader

(1985) requires the user to also input the chamber surface area, the average charge per particle and the average electric field

inside the chamber, where the latter two may be set to zero for nullifying electrostatic effects. With the test_wallloss module

users can confirm that PyCHAM accurately reproduces Fig. 2 of McMurry and Rader (1985), as shown here in Fig. 9, which520

demonstrates the effect of changing the charge number per particle.

If user sets the McMurry_flag option to zero then a customised particle deposition rate dependence on particle size is

available. This option allows application of known or best estimate deposition rates (β) to the model, as recommended by Wang

et al. (2018). Four further inputs are required for this option: the particle diameter (m) at which the inflection in deposition

rates occurs (Dp,flec) (where the inflection point marks a change in dependance of deposition rate with particle size), the rate525

of particle deposition to wall (s−1) at the inflection point (βflec), and the gradients (s−1) of the deposition rate with respect

to particle diameter before (∇pre) and after the inflection (∇pro), where a linear dependence in log-log space is assumed,

consistent with observations (Charan et al., 2019). The equations for deposition rate in this instance are given in Eq. 16, and

example dependencies of rate with particle size provided by Fig. 9.
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Figure 9. Example dependencies of the particle deposition to wall rate using the model of McMurry and Rader (1985) in the solid lines,

where the charge per particle is given by n and other inputs given by inset text (R is spherical-equivalent chamber radius, E is the average

electric field in the chamber and ke is the coefficient of eddy diffusion). The dashed lines demonstrate the observation-based deposition rate

utility of PyCHAM given in Eq. 16, with inputs at the top of the plot.

Dp <Dp,flec530

log10(β(Dp)) = log10(Dp,flec)− log10(Dp)∇pre +βflec

Dp ≥Dp,flec

log10(β(Dp)) = log10(Dp)− log10(Dp,flec)∇pro +βflec (16)

10 Nucleation

The simulation of nucleation to produce newly-formed suspended particles is one of the most active areas of ongoing atmo-535

spheric research and many important advances in observing the nucleation process have been, and will continue to be, made

through appropriate measurements in chamber experiments and their interpretation (Dada et al., 2020). PyCHAM is not in-

tended to interpret and examine chamber experiments designed to resolve the mechanisms involved in molecular clustering,
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Figure 10. Effect of varying the nucleation parameters on simulated particle number concentration when considering only nucleation

nucleation and early growth in particle formation and there are tools much better suited to these processes. However, the use of

PyCHAM in simulating chamber processes in the presence of new particle formation necessitates a phenomenological accom-540

modation of the process. Users are therefore able to provide parameters to a Gompertz function for cumulative new particle

number, allowing them to fit to observed number size distributions without inferring mechanistic insight:

P1(t) = nucv1 (exp(nucv2 (exp(−t/nucv3)))) (17)

where P1 (# cm−3) is the number concentration of new particles after time t that enter the smallest size bin, and nucvn are

the user-defined parameters. As demonstrated in Fig. 10, the resulting function forms an asymmetric sigmoidal curve with time,545

whilst the parameters allow the amplitude (nucv1), onset (nucv2), and duration (nucv3) of the curve to be adjusted. Fig. 10 is a

general example, not related to a specific chemical system as Eq. 17 is independent of chemistry. It is left to the user to vary the

nucleation parameters to fit their observations. As Fig. 10 shows, the Gompertz function provides a sigmoidal form beginning

with a relatively fast increase in new particle formation before formation rate peaks followed by a relatively slow levelling off.

This characteristic is consistent with observations of new particle formation, including Fig. 2B of Riccobono et al. (2014), and550

other simulations of nucleation, such as Fig. 2B of Dada et al. (2020).

For the moving-centre size structure in PyCHAM, newly nucleated particles determined by Eq. 17 enter the smallest size

bin. In contrast, for full-moving, the approach of Roldin et al. (2015) is used where a new, smallest, size bin is formed on every

step involving nucleation whilst removing the largest size bin (merging any particles and components present in this bin with

those in the second largest size bin).555

As with gas-wall partitioning parameters, nucleation parameters should be fitted to measurements by minimising model-

observation residuals. For this process the total particle number concentration may be used, however, the greater amount of
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data in number size distributions introduces stronger constraint, making it the preferred observation for fitting. In Fig. 11 we

demonstrate PyCHAM simulations fitted to observations of a nucleation event from the Manchester aerosol chamber, which

had initial concentrations of: NO2 (40 ppb), O3 (60 ppb) and limonene (215 ppb). The experiment was dark at a constant tem-560

perature of 298.15 K and relative humidity 50 %. For Eq. 16, parameters were set to:Dp,flec =1x10−6 m, βflec =6x10−6 s−1,

∇pre =1 s−1 and ∇pro =1 s−1, which gave reasonable agreement with observed particle number decay. Here the same chem-

ical scheme as Fig. 1 was used, namely the MCM limonene scheme with appended PRAM scheme.

The smallest size bin for which observations were obtained had a central diameter of 44 nm. Consequently, fitting was

performed against measurements for particle sizes greater than those of newly formed particles. The implication for the derived565

nucleation parameters of Eq. 17 is that if any inaccuracy in non-nucleation processes (gas-particle partitioning, coagulation,

particle loss to wall, gas-wall partitioning, gas-phase reaction affecting condensable vapour concentration) is present, these

parameters will try to compensate when fitting to observations through minimising observation-simulation residuals. Ideally,

therefore, measurements would be available for the concentration of only newly nucleated particles, which would allow the

fitted nucleation parameters to be independent of any convoluting process.570

To minimise any possible effects from coagulation and particle loss to wall on fitting nucleation parameters, only the first

hour of the experiment is considered when estimating residuals. Where necessary, simulation output was linearly interpolated

to observation time and particle size points. Observation-simulation residuals (σ) for the number size distribution (nsb) were

estimated using:

σnsb =

∑Z
ti=1

∑Y
k=1 |(nlr,ti,k − n̄ti,k)|∑Z

ti=1

∑Y
k=1(nlr,ti,k + n̄ti,k)

100, (18)575

where Z is the number of time steps, Y is the number of size bins, ti is the time step index, k is the size bin index and nlr is

the particle number concentration from the simulation whilst n̄ is that from observations. The denominator is the sum of total

particle number concentration from both the simulation and observations. Where number size distributions are in complete

disagreement (with results having number concentrations in entirely different size bins), this denominator limits deviation to a

helpful (for interpretation) maximum of 100 %. Exact agreement is represented by a σnsb of 0 %.580

For a range of Eq. 17 nucleation parameters, Table 1 presents the observation-simulation residuals according to Eq. 18.

The temporal profiles of the number size distributions for the entire experiment are shown in Fig. 11, with the model result

here from the simulation with minimal residual. In Fig. 11 simulation results are represented by the filled contours, whilst

observations are given by the contour lines.

With the shape, size, composition and growth mechanism of the clusters that act as the nucleus of particles subject to585

ongoing research, in PyCHAM default properties are currently assigned, with a view to advance representation as understanding

develops and an appreciation of their physical limitation. An arbitrary involatile component is assumed to form spherical

nucleating clusters with a radius of 2 nm. Growth of clusters is assumed to follow gas-particle partitioning (as for particulates

of all sizes in PyCHAM). At the current stage of development, this representation of new particle formation in PyCHAM aims

to enable simulations of coupled photochemistry and aerosol microphysics in seeded and unseeded experiments. However, a590

25



Table 1. Observation-model residuals as defined by Eq. 18 for a dark limonene oxidation experiment without seed particles, with experiment

setup described in the main text. Residuals are given for a variety of nucleation parameters, with the minimum residual representing the best

fit of simulation to observations.

nucv1, nucv2, nucv3 full-moving σnsb (%) moving-centre σnsb (%) notes

2x104, −4, 5x102 74 74
nucleation duration too

long→ reduce nucv3

2x104, −4x102, 1x102 63 59
nucleation commences

too late→ reduce nucv2

2x104, −4, 1x102 53 48

too few particles newly

nucleated → increase

nucv1

3x104, −4, 1x102 40 34 best fit

Figure 11. Comparing number size distributions from best fit (defined in Table. 1) PyCHAM simulations using the full-moving (a) and

moving-centre (b) size structures against observations from a dark limonene oxidation chamber experiment with nucleation. Experiment

conditions and simulation setup are given in the main text. Observations are presented as contour lines, whilst model results are filled

contours, with both using the colour axis given at the top of the plot. The degree of agreement here is indicated by the difference in these

contours at any one point.

more rigorous mechanistic representation of nucleation and early growth should be readily accommodated and will be required

before PyCHAM is suitable for investigating new particle formation.
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11 Sensitivity to temporal resolution and size bin number

In PyCHAM, temporal resolution is set by the user, as represented by the time interval for updating ODE constants, and size bin

number is also set by the user (Section 3). Whilst decreasing both resolutions can decrease processing time, inaccuracies may be595

introduced because PyCHAM processes are sensitive to changes to number size distributions (updated after each time interval)

and particle size. Although it is beyond the scope of this paper to assess resolution sensitivity across all possible PyCHAM

parameter space, in this section we compare the divergence of outputs from simulations with decreasing temporal resolution

and size bin number against a high resolution reference for extremes of the relevant parameter space: seeded experiments

with no gas-particle partitioning and both seeded and nucleation experiments with relatively large condensational growth600

of particles. As in Section 7, two-methylglyceric acid is used in the simulations with partitioning as its vapour pressure at

simulation temperature (298 K) makes it semi-volatile. Results here determine the recommended temporal resolution and size

bin number, provide a useful illustration of sensitivity and may help users perform sensitivity tests for their individual model

inputs.

For the simulations without partitioning, the effect of resolution on particle number size distribution and total number605

concentration is considered, whilst for the partitioning simulations, concentration of secondary material is also relevant. To

allow comparison of low resolution simulations with the high resolution reference, linear interpolation is used to estimate output

from the former at the resolution of the latter. Divergence between a low resolution simulation (lr) and the high resolution

reference is represented by a single absolute percentage deviation (σ). For number size distribution, deviation (σnsb) is found

by Eq. 18, with n̄ representing the high resolution result.610

For total number concentration and total secondary particulate matter concentration, deviation (σlr) is calculated as the

percentage deviation:

σlr =

∑Z
ti=1 |(Hlr,ti − H̄ti)|∑Z
ti=1∨(Hlr,ti , H̄ti)

100, (19)

where Z is the total number of time steps and H represents either total number concentration or total secondary particulate

matter concentration. The use of ∨(Hlr,ti , H̄ti) (the maximum of either the low resolution or high resolution result for a given615

time step is used for the summation) for the denominator means that when one result is zero and the other is above zero

(maximum possible disagreement) a helpful (for interpretation) σlr of 100 % is produced, whilst complete agreement gives a

σlr of 0 %.

For simulations assessing sensitivity to temporal resolution, 128 logarithmically spaced size bins are used, for which Fig. 8

indicates no limitation to accuracy due to size bin number. For seeded simulations, we use the same initial number size distribu-620

tion as in Fig. 8, as this gives a relatively broad range of particle sizes, which is necessary to fully appreciate the size-dependent

effects of coagulation, particle loss to wall and nucleation. All simulations were run for 24 hours and the reference simulation

had an update time interval of 6 s.
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Results for each scenario (seeded with no partitioning; seeded with partitioning; nucleation with partitioning) are provided

in Tables 2-4. The first, given in Table 2 represents the no partitioning case, with sensitivity assessed for two setups: only625

coagulation, and both coagulation and wall loss turned on. Coagulation proceeds as described in Section 8, whilst wall loss is

described in Section 9, with the following inputs to recreate a size-dependent wall loss profile similar to n=3 in Fig. 9: Dp,flec

= 1.0 µm, βflec = 1.0x10−4 s−1,∇pre =∇pro = 1.5. Consequently, the particle loss to wall is relatively large and the sensitivity

results are conservative. Table 2 indicates that under this scenario, particle loss to walls considerably increases sensitivity to

temporal resolution compared to the only coagulation case, with much finer resolutions required to achieve average deviations630

of 10 % or less.

For Table 3, two-methylglyceric acid is introduced at a rate of 1.0x10−2 ppb s−1. Comparing the NSD columns in Tables 2

and Table 3, including gas-particle partitioning acts to increase sensitivity to temporal resolution. However, there is less change

overall for sensitivity of N and [SPM]. A resolution of around 180 s is required to attain deviations around 10 % or less for

total number concentration and secondary material, whilst for number size distribution, not even the lowest temporal resolution635

of 20 s can agree within 10 % of the reference case of 6 s. This reflects the steep gradients of particle number with particle size

that are generated during intense condensational growth periods (e.g. Fig. 6). This effect is also evident when an extremely low

volatility organic component is injected at the simulation start at 1 ppb to act as a nucleating agent in an unseeded simulation,

with results given in Table 4. We use the nucleation parameters for Eq. 17 of: nucv1 = 1x104, nucv2 = −1x101 and nucv3 =

1x102, for a relatively rapid nucleation period (lasting only ten minutes) and therefore conservative assessment of sensitivity.640

Table 4 shows that, the total number and secondary material concentrations deviate from the reference case by around 10 % for

an update time interval of between 20 and 180 s. Given the conservative nature of these simulations we therefore recommend a

maximum update time interval of 60 s. However, with the coagulation case effectively representing zero wall loss and showing

considerably less deviation across all scenarios, if users can demonstrate relatively low particle wall loss, a coarser resolution

could be applied.645

In the bottom section of Tables 2-4 are presented the sensitivities to size bin number using the same simulation scenarios

as applied to temporal resolution sensitivity. Using a fixed temporal resolution of 60 s, results show the divergence of 8, 32

and 64 size bins compared against results for 128 size bins (all logarithmically spaced). In Table 2, when coagulation alone is

effective, reasonable agreement is seen for both factors (NSD and N ) across all numbers of size bins, with a slight increase in

sensitivity when wall loss is also considered. Results for the partitioning cases in Tables 3-4 show that both with and without650

wall loss, total number concentration and secondary particulate matter concentration give reasonable agreement of around 10

% or less when 8 size bins are used. The exception nucleation with wall loss considered where the large deviation seen for 8

size bins is due to a relatively rapid loss of particles in the 8 size bin run. Deviation of NSD is relatively high for the partitioning

cases, even with 64 size bins, therefore 128 size bins must be used when number size distribution is important. In other cases,

whilst recognising substantial differences between scenarios and user requirements, we recommend a size bin number of 32655

when substantial deviation in the number size distribution is acceptable.

Whilst the resolution sensitivity tests above used a 1 reaction chemical scheme (ensuring that two-methylglyceric acid is

recognised), Table 5 demonstrates processing times using the α−pinene ozonolysis scheme of the MCM, which comprises
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Table 2. % deviation from the high resolution reference case for the seed without partitioning (non-volatile particles in the absence of

vapours) scenario for number size distribution (NSD) (Eq. 18) and total particle number concentration (N ) (Eq. 19). In the top section of

the table is sensitivity to temporal resolution (update time interval) using 128 size bins, whilst the bottom section is sensitivity to size bin

number (# size bins) using a 60 s update time interval. Columns headed coag. are for simulations where coagulation acts alone whilst columns

headed coag. & wall are from simulations with both coagulation and particle loss to walls. To aid interpretation deviations less than 10 % are

coloured yellow.

update time interval (s) NSD, coag. N , coag. NSD, coag. & wall N , coag. & wall

20 0 0 1 1

180 0 0 21 28

1800 2 2 83 49

43200 29 31 99 64

# size bins NSD, coag. N , coag. NSD, coag. & wall N , coag. & wall

8 14 3 25 13

32 6 0 8 4

64 5 5 5 2

Table 3. % deviation from the high resolution reference case for the seed with partitioning scenario. Condensation occurs due to the contin-

uous injection of two-methylglyceric acid vapour at a rate of 1.0x10−2 ppb s−1. In addition to the particle properties described in Table 2,

the concentration of secondary particulate matter ([SPM]) is also evaluated here using Eq. 19. To aid interpretation deviations less than 10 %

are coloured yellow.

update time interval (s) NSD, coag. N , coag. [SPM], coag. NSD, coag. & wall N , coag. & wall [SPM], coag. & wall

20 32 3 2 21 1 4

180 29 0 2 29 12 8

1800 33 1 2 80 51 43

43200 77 10 30 99 50 50

# size bins NSD, coag. N , coag. [SPM], coag. NSD, coag. & wall N , coag. & wall [SPM], coag. & wall

8 72 11 0 68 12 5

32 53 3 0 49 2 1

64 48 9 0 43 2 1

approximately 1x103 reactions. Relevant combinations of temporal resolution and size bin number are provided for a 6 hour

unseeded experiment with α−pinene and ozone introduced at the start to generate a nucleation episode. A 2.5 GHz Intel Core660
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Table 4. % deviation from the high resolution reference case for the nucleation with partitioning scenario. The particle properties given

in column headings are defined in Table 3. An extremely low volatility organic component was present at simulation start at 1 ppb, and

set as the nucleating component in the absence of seed particles. In addition, two-methylglyceric acid vapour was injected at a rate of

1.0x10−2 ppb s−1 to grow particles through condensation. To aid interpretation deviations less than 10 % are coloured yellow.

update time interval (s) NSD, coag. N , coag. [SPM], coag. NSD, coag. & wall N , coag. & wall [SPM], coag. & wall

20 18 1 3 36 8 4

180 57 8 15 74 15 17

1800 88 21 29 99 50 65

43200 100 100 100 100 100 100

# size bins NSD, coag. N , coag. [SPM], coag. NSD, coag. & wall N , coag. & wall [SPM], coag. & wall

8 84 9 0 100 96 100

32 65 0 0 70 7 2

64 52 0 0 54 2 1

Table 5. Processing times (hours, to the nearest tenth) for a 6 hour experiment of α−pinene ozonolysis including nucleation. Size bin

numbers are in columns and temporal resolutions are in rows.

Update time interval (s)/# size bins 2 8 32

6x101 0.7 2.8 44.0

6x102 0.1 0.6 13.9

6x103 0.0 0.1 1.8

i5 processor was used. It is appreciated that the relatively large processing times in the final column of Table 5 are prohibitively

high and could reduce the utility of PyCHAM. This is an important result because it indicates the current limits of employing

an interpreted (rather than compiled, e.g. Fortran) programming language. To emphasise this point the processing time for

AtChem2, which is a Fortran programme, to produce Fig. 3, namely a gas phase only simulation for 12 hours of α−pinene

ozonolysis, is 19 s, whereas PyCHAM takes 348 s - a factor of 18 longer. This is with the same tolerances provided to the ODE665

solver of each model and a 60 s update time interval used for each.

Whilst a compiled language would reduce processing time it would inhibit portability, which we have not compromised

with PyCHAM. The slowest section of PyCHAM to process is solution of the ODEs; here the code is already vectorised to

optimise speed. A just in time compiler, offers a portable solution to python acceleration, and the core development team are

investigating the feasibility of incorporating this for future versions.670
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12 Conclusions

The PyCHAM (CHemistry with Aerosol Microphysics in Python) software for aerosol chambers has been described. Its open

source repository is given in Section 2. PyCHAM has been designed for optimal ease of use (from online access to output)

whilst being broadly able to address scientific problems of current relevance across a range of aerosol chamber and experimental

configurations (Section 2). We have provided a model output for the dark oxidation of limonene to illustrate the coupling of675

modelled processes: gas-phase chemistry, gas-particle partitioning, gas-wall partitioning, redistribution of particles following

change in size, particle loss to wall, coagulation and nucleation (Sections 2 and 3).

The steps to run a simulation using the software’s GUI were described in Section 3 and the methods for estimating or setting

component properties explained in Section 4. The setting up and solution of gas-phase photochemical reactions is detailed in

Section 5, including comparison against the AtChem2 model (Sommariva et al., 2018) for verification and illustration of the680

effect of varying temporal resolution on model output for a system subject to varying natural light intensity.

In Section 6, gas-particle partitioning along with the moving-centre and full-moving size structures for dealing with changing

number size distributios was introduced and assessed against benchmark simulations. For gas-wall partitioning this paper

details (Section 7) a parameterisation that aims to satisfy the breadth of chamber characteristics and recommends a method for

tuning to observations.685

Coagulation was detailed in Section 8 and shown to introduce negligible loss of mass for a relatively complex initial num-

ber size distribution after 6 hours despite using a non-mass conserving equation. However, the development team intend to

provide an option for a mass conserving treatment in future PyCHAM versions. With Section 9, the three options for treating

particle losses to walls were detailed and the resulting deposition rates as a function of particle diameter were exemplified,

including assessment against the benchmark of McMurry and Rader (1985). Similar to gas-wall partitioning, nucleation in Py-690

CHAM is treated with a parameterisation that aims to optimise model versatility, with examples of parameter effects provided

(Section 10).

In Section 11 the sensitivity of key outputs to temporal resolution and size bin number were illustrated and informed our

recommendations of a minimum update time interval of 60 s and a minimum of 32 size bins. We also show a high sensitivity

of model accuracy to the rate of particle wall loss and note that users could use lower resolutions if wall loss is lower than used695

in our tests. This section illustrates that at high resolutions processing time with PyCHAM can decrease its utility, therefore we

suggest future work to investigate the use of just in time compilers.

Papers in preparation demonstrate further the utility of PyCHAM and its evaluation when assessed against observations.

These papers include both phenomenological and mechanistic approaches to coupled photochemistry and aerosol micro-

physics, both of which the model readily accommodates.700

Code availability. The PyCHAM software, figures in this manuscript and code to plot figures is available at: https://github.com/simonom/PyCHAM.
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Appendix A: Model variable inputs

Below is the table of model variables required for input to PyCHAM accompanied by a description.

Input Name Description

res_file_name Name of folder to save results to

total_model_time Total experiment time to be simulated (s)

update_step Time interval (s) for updating ordinary differential equation constants. Default is 60 s. Can be

set to more than the total_model_time variable above to allow uninterrupted integration.

recording_time_step Time interval (s) for recording results. Default is 60 s.

size_structure Determines whether to use the moving-centre (0) or full-moving size structure (1), defaults to

moving-centre.

number_size_bins Number of size bins (excluding wall); to turn off particle considerations set to 0 (which is also

the default), likewise set pconc and seed_name variables below off. Must be integer (e.g. 1) not

float (e.g. 1.0).

lower_part_size Radius of smallest size bin boundary (um)

upper_part_size Radius of largest size bin boundary (um)

space_mode Set to lin for linear spacing of size bins in radius space, or to log for logarithmic spacing of size

bins in radius space, if empty defaults to linear spacing

wall_on Determines whether gas-wall partitioning and particle deposition on (1) or off (0), defaults to

on.

mass_trans_coeff Mass transfer coefficient of vapour-wall partitioning (/s), if left empty defaults to zero

eff_abs_wall_massC Effective absorbing wall mass concentration (g/m3 (air)), if left empty defaults to zero

temperature Air temperature inside the chamber (K). At least one value must be given for the experiment

start (times corresponding to temperatures given in tempt variable below). If multiple values,

representing temperatures at different times, then separate with a comma. For example, if the

temperature at experiment start is 290.0 K and this increases to 300.0 K after 3600.0 s of the

experiment, input is 290.0, 300.0.

tempt Times since start of experiment (s) at which the temperature(s) set by the temperature variable

above, are reached. Defaults to 0.0 if left empty as at least the temperature at experiment start

needs to be known. If multiple values, representing temperatures at different times, then sep-

arate with a comma. For example, if the temperature at experiment start is 290.0 K and this

increases to 300.0 K after 3600.0 s of the experiment, input is 0.0, 3600.0.

continued on next page
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Input Name Description

p_init Pressure of air inside the chamber (Pa)

rh Relative Humidity (fraction, 0-1)

lat Latitude (degrees) for natural light intensity (if applicable, leave empty if not (if experiment is

dark set light_status below to 0 for all times))

lon Longitude (degrees) for natural light intensity (if applicable, leave empty if not (if experiment

is dark set light_status below to 0 for all times))

DayOfYear Day of the year for natural light intensity (if applicable, leave empty if not (if experiment is

dark set light_status below to 0 for all times)), must be integer between 1 and 365

daytime_start Time of the day (s since midnight) for natural light intensity (if applicable, leave empty if not

(if experiment is dark set light_status below to 0 for all times))

act_flux_file Name of csv file stored in PyCHAM/photofiles containing actinic flux values; use only

if artificial lights inside chamber are used during experiment. The file should have a line

for each wavelength, with the first number in each line representing the wavelength in

nm, and the second number separated from the first by a comma stating the flux (Pho-

tons/cm2/nm/s) at that wavelength. No headers should be present in this file. Example of file

given by /PyCHAM/photofiles/Example_act_flux and example of the act_flux_path variable is:

act_flux_path = Example_act_flux.csv. Note, please include the .csv in the variable name if this

is part of the file name. Defaults to empty.

photo_par_file Name of txt file stored in PyCHAM/photofiles containing the wavelength-dependent absorp-

tion cross-sections and quantum yields for photochemistry. If left empty defaults to MCMv3.2,

and is only used if act_flux_path variable above is stated. File must be of .txt format with the

formatting:

J_n_axs

wv_m, axs_m

J_n_qy

wv_M, qy_m

J_end

where n is the photochemical reaction number, axs represents the absorption cross-section

(cm2/molecule), wv is wavelength (nm), _m is the wavelength number, and qy represents quan-

tum yield (fraction). J_end marks the end of the photolysis file. An example is provided in

PyCHAM/photofiles/example_inputs.txt. Note, please include the .txt in the file name.

continued on next page
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Input Name Description

ChamSA Chamber surface area (m2), used if the Rader and McMurry wall loss of particles option

(Rader_flag) is set to 1 below

coag_on Set to 1 (the default if left empty) for coagulation to be modelled, or set to zero to omit coagu-

lation

nucv1 Nucleation parameterisation value 1

nucv2 Nucleation parameterisation value 2

nucv3 Nucleation parameterisation value 3

nuc_comp Name of component contributing to nucleation (only one allowed), must correspond to a name

in the chemical scheme file. Defaults to empty. If empty, the nucleation module (nuc.py) will

not be called.

new_partr Radius of newly nucleated particles (cm), if empty defaults to 2.0e-7 cm.

inflectDp The particle diameter (m) at the inflection point of the size-dependent wall deposition rate.

Grad_pre_inflect Negative log10 of the gradient of particle wall deposition rate against the log10 of particle

diameter before inflection (/s). For example, for the rate to decrease by an order of magnitude

every order of magnitude increase in particle diameter, set to 1.

Grad_post_inflect Log10 of the gradient of particle wall deposition rate against the log10 of particle diameter after

inflection (/s). For example, for the rate to increase by an order of magnitude for every order of

magnitude increase in particle diameter, set to 1.

Rate_at_inflect Particle deposition rate to wall at the inflection point for size-dependent particle loss to walls

(/s)

part_charge_num Average number of charges per particle, only required if the McMurry and Rader (1985) model

for particle deposition to walls is selected

elec_field Average electric field inside the chamber (g.m/A.s3), only required if the McMurry and Rader

(1985) model for particle deposition to walls is selected

McMurry_flag Set to 0 to use the particle wall loss parameter values given above or 1 to use the McMurry

and Rader (1985, doi: 10.1080/02786828508959054) method for particle wall loss, which uses

the chamber surface area given by ChamSA above, average number of charges per particle

(part_charge_num above) and average electric field inside chamber (elec_field above), defaults

to no particle wall loss if empty, similarly -1 turns off particle wall loss

continued on next page
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Input Name Description

C0 Initial concentrations of any trace gases input at the experiment start (ppb), must correspond to

component names in Comp0 variable below. Separate concentrations of multiple components

with a comma.

Comp0 Names of trace gases present at experiment start (in the order corresponding to their concen-

trations in C0). Note, this is case sensitive, with the case matching that in the chemical scheme

file. Separate multiple component names with a comma.

Ct Concentrations of component achieved when injected at some time after experiment start (ppb),

if multiple values (representing injection at multiple times), please separate with commas. If

multiple components are injected after the start time, then this input should comprise the in-

jected concentrations of components with times separated by commas and components sep-

arated by semicolons. E.g., if k ppb of component A injected after m seconds and j ppb of

component B injected after n (n>m) seconds, then Ct should be k,0;0,j. The value here is the

increase in concentration from the moment before the injection to the moment after (ppb)

Compt Name of component injected at some time after experiment start. Note, this is case sensitive,

with the case matching that in the chemical scheme file. If more than one component, separate

with a comma.

injectt Time(s) at which injections occur (seconds), which corresponds to the concentrations in Ct,

if multiple values (representing injection at multiple times), please separate with commas. If

multiple components are injected after the start time, then this input should still consist of just

one series of times as these will apply to all components. E.g., if k ppb of component A injected

after m seconds and j ppb of component B injected after n (n>m) seconds, then this input should

be m, n.

const_comp Name of component with continuous gas-phase concentration inside chamber. Note, this is case

sensitive, with the case matching that in the chemical scheme file. Defaults to nothing if left

empty. To specifically account for constant influx, see const_infl variable below.

const_infl Name of component(s) with continuous gas-phase influx to chamber. Note, this is case sensi-

tive, with the case matching that in the chemical scheme file. Defaults to nothing if left empty.

For constant gas-phase concentration see const_comp variable above. Should be one dimen-

sional array covering all components. For example, if component A has constant influx of K

ppb/s from 0 s to 10 s and component B has constant influx of J ppb/s from 5 s to 20 s, the input

is: const_infl = A, B.

continued on next page
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Input Name Description

const_infl_t Times during which constant influx of each component given in the const_infl variable occurs,

with the rate of their influx given in the Cinfl variable. Should be one dimensional array cover-

ing all components. For example, if component A has constant influx of K ppb/s from 0 s to 10

s and component B has constant influx of J ppb/s from 5 s to 20 s, the input is: const_infl_t =

0, 5, 10, 20.

Cinfl Rate of gas-phase influx of components with constant influx (stated in the const_infl variable

above). In units of ppb/s. Defaults to zero if left empty. If multiple components affected, their

influx rate should be separated by a semicolon, with a rate given for all times presented in

const_infl_t (even if this is constant from the previous time step for a given component). For

example, if component A has constant influx of K ppb/s from 0 s to 10 s and component B has

constant influx of J ppb/s from 5 s to 20 s, the input is: Cinfl = K, K, 0, 0; 0, J, J, 0.

dens_Comp Chemical scheme names of components with a specified density. Separate names with a

comma. Default is no components specified here.

dens Specified densities of components (g/cc). Separate densities with a comma. Default is to esti-

mate density based on the Girolami method contained in UManSysProp.

vol_Comp Names of components with vapour pressures to be manually assigned in the volP variable

below, names must correspond to those in the chemical scheme file and if more than one,

separated by commas. Can be left empty, which is the default.

volP Vapour pressures (Pa) of components with names given in vol_Comp variable above, where one

vapour pressure must be stated for each component named in vol_Comp and multiple values

should be separated by a comma. Acceptable for inputs to use e for standard notation, such as

1.0e-2 for 0.01 Pa

act_comp Names of components (corresponding to those the chemical scheme file) with activity coeffi-

cients stated in act_user variable below (if multiple names, separate with a comma). Must have

same length as act_user.

act_user Activity coefficients of components with names given in act_comp variable above, if multiple

values then separate with a comma. Must have same length as act_comp.

accom_coeff_comp Names of components (corresponding to names in chemical scheme file) with accommodation

coefficients set by the user in the accom_coeff_user variable below, therefore length must equal

that of accom_coeff_user. Multiple names must be separated by a comma. For any components

not mentioned in accom_coeff_comp, accommodation coefficient defaults to 1.0
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accom_coeff_user Accommodation coefficients (dimensionless) of the components with names given in the ac-

com_coeff_comp variable above, therefore number of accommodation coefficients must equal

number of names, with multiple coefficients separated by a comma. Can be a function of radius

(m), in which case use the variable name radius, e.g: for NO2 and N2O5 with accommoda-

tion coefficients set to 1.0 and 6.09e-08/Rp, respectively, where Rp is radius of particle at a

given time (m), the inputs are: accom_coeff_comp = NO2, N2O5 accom_coeff_user = 1.0,

6.09e-08/radius. For any components not mentioned in accom_coeff_comp, accommodation

coefficient defaults to 1.0.

partit_cutoff The product of saturation vapour pressure (Pa) and activity coefficient above which gas-particle

partitioning assumed zero. Defaults to empty list so that all components allowed to partition.

pconct Times (seconds) at which seed particles of number concentration given in pconc variable below

are introduced to the chamber. If introduced at multiple times, separate times by a semicolon.

For example, for a two size bin simulation with 10 and 5 particles/cc in the first and second size

bin respectively introduced at time 0 s, and later at time 120 s seed particles of concentration 6

and 0 particles/cc in the first and second size bin respectively are introduced, input is: pconct

= 0; 120 (and the number_size_bins variable above = 2).

pconc Either total particle concentration, in which case should be a scalar, or particle concentration

per size bin, in which case length should equal number of particle size bins (# particles/cc

(air)). If an array of numbers, then separate numbers by a comma. If a scalar, the particles will

be spread across size bins based on the values in the std and mean_rad variables below. To turn

off particle considerations leave empty. If seed aerosol introduced at multiple times during the

simulation, separate times using a semicolon. For example, for a two size bin simulation with

10 and 5 particles/cc in the first and second size bin respectively introduced at time 0 s, and

later at time 120 s seed particles of concentration 6 and 0 particles/cc in the first and second

size bin respectively are introduced, the input is: pconc = 10, 5; 6, 0 (and the number_size_bins

variable above = 2).
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seed_name Name of component comprising the seed particles, can either be core for a component not

present in the chemical scheme file, a name from this file, or H2O for water, note no quotation

marks needed

seed_mw Molecular weight of seed component (g/mol), if empty defaults to that of ammonium sulphate

- 132.14 g/mol

seed_dens Density of seed material (g/cc), defaults to 1.0 g/cc if left empty

seedVr Volume ratio of component(s) in seed particles, must match length of seed_name, with the

ratio of different components separated by a comma. The same ratio is applied to all size bins

for all seed injections. Defaults to equal volume contributions from each component given in

seed_name. E.g. for two components with ratio 1:4, input would be 1,4 (or equivalent (e.g. 25,

100)).

mean_rad Mean radius of particles (um), defaults to a flag that tells software to estimate mean radius

from the particle size bin radius bounds given by lower_part_size and upper_part_size variables

above. If more than one size bin the default is the mid-point of each. If the lognormal size

distribution is being found (using the std input below), mean_rad should be a scalar representing

the mean radius of the lognormal size distribution. If seed particles are introduced at more

than one time, then mean_rad for the different times should be separated by a semicolon. For

example, if seed particle with a mean_rad of 1.0e-2 um introduced at start and with mean_rad

of 1.0e-1 um introduced after 120 s, the input is: mean_rad = 1.0e-2; 1.0e-1 and the pconct

input is pconct = 0; 120.

std Geometric mean standard deviation of seed particle number concen-

tration (dimensionless) when scalar provided in pconc variable above,

role explained online in scipy.stats.lognorm page, under pdf method:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html. If left empty

defaults to 1.1. If seed particles introduced after the experiment start, then separate std for

different times using a semicolon. For example, if seed particle with a standard deviation of

1.2 introduced at start and with standard deviation of 1.3 introduced after 120 s, the std input

is: std = 1.2; 1.3 and the pconct input is: pconct = 0; 120
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seed_diss Dissociation constant for seed component (dimensionless); defaults to 1.0.

light_time Times (s) for lighting condition, corresponding to the elements of the light_status variable be-

low, if empty defaults to lights off for whole experiment. Use this variable regardless of whether

light is natural or artificial (chamber lamps). For example, for a 4 hour experiment, with lights

on for first half and lights off for second, use: light_time = 0.0, 7200.0. If light_time doesn’t

include the experiment start (0.0 s), default is lights off at experiment start.

light_status Set to 1 for lights on and 0 for lights off, with times given in the light_time variable above, if

empty defaults to lights off for whole experiment. Setting to off (0) means that even if variables

above that define light intensity are submitted the simulation will be dark. Use this variable for

both natural and artificial (chamber lamps) light. The lighting condition for a particular time is

recognised when the simulated time meets the time given in light_time. For example, for a 4

hour experiment, with lights on for first half and lights off for second, use: light_status = 1, 0.

If status not given for the experiment start (0.0 s), default is lights off at experiment start.

tracked_comp Name of component(s) to track rate of concentration change (molecules/cc.s); must match

name given in chemical scheme, and if multiple components given they must be separated

by a comma. Can be left empty and then defaults to tracking no components.

umansysprop_update Flag to update the UManSysProp module via internet connection: set to 1 to update and 0 to

not update. If empty defaults to no update. In the case of no update, the module PyCHAM

checks whether an existing UManSysProp module is available and if not tries to update via the

internet. If update requested and either no internet or UManSysProp repository page is down,

code stops with an error.

chem_scheme_markers Markers denoting various sections of the user’s chemical scheme. If left empty defaults to Ki-

netic PreProcessor (KPP) formatting. If filled, must have following elements separated with

commas: marker for punctuation at start of reaction lines (just the first element), marker for

peroxy radical list starting, punctuation between peroxy radical names, prefix to peroxy radi-

cal name, string after peroxy radical name, number of lines taken by peroxy radical list (in-

cluding the line containing the marker for peroxy radical list starting), punctuation at the

end of lines for generic rate coefficients. For example, for the MCM FACSIMILE format:

chem_scheme_markers = %, RO2, +, , , 20, ; would be used.
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int_tol Integration tolerances, with absolute tolerance first followed by relative tolerance, if left empty

defaults to the maximum required during testing for stable solution: 1.0e-3 for absolute and

1.0e-4 for relative

dil_fac Volume fraction per second chamber is diluted by, should be just a single number. Defaults to

zero if left empty.

Table A1 containing the PyCHAM variable inputs and their associated descriptions.
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