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Supplement 1 

Supplement 1 includes the description of the NHM (the Japan Meteorological Agency’s Non-Hydrostatic Model)-

Chem model. Originally, the previous version of current manuscript was published in Geoscientific Model Development 

Discussion as a model description paper (Kajino et al., 2018; https://doi.org/10.5194/gmd-2018-128), but the revision was 

not accepted. The current version is a resubmission of Kajino et al. (2018), but as a model evaluation paper this time, based 

on the referees’ comments. Thus, the model description part is separately written in this section.  

Table S1-1 summarizes the schemes of the chemical transport model (CTM) and database available for NHM-Chem. 

The advection algorithm (Walcek and Aleksic, 1998) was used to determine advection by mean wind. The turbulent 

diffusion calculation utilized the forward-time central-space method using turbulent diffusivities predicted by meteorological 

models or calculated as a function of predicted turbulent kinetic energy (TKE) and mixing length, depending on the selection 

of the turbulence scheme of the meteorological models. The SAPRC99 gas-phase chemistry mechanism (Carter, 2000) was 

used with the photolysis rates predicted by Madronich (1987). The three heterogeneous chemical reactions of N2O5, HO2, 

and NO2 from Jacob (2000) were included in SAPRC99. The heterogeneous reaction rates were formulated as a function of 

aerosol surface area and independent of their substrates; same rates used for different aerosol surfaces composed of 

ammonium sulfate, organics, or mineral dust. The secondary organic aerosol (SOA) chemistry was predicted by Edney et al. 

(2007), and the liquid phase chemistry was predicted by Walcek and Taylor (1986) for inorganics and Carlton et al. (2007) 

for organics. 

For the aerosol microphysics calculations, the triple-moment modal method (Kajino, 2011) was used. A log-normal 

size distribution was assumed for the aerosol populations. There are three parameters used to identify the log-normal 

function, namely, the number concentration, geometric mean diameter Dg, and geometric standard deviation σg. The three 

moments of the number, surface area, and mass concentrations of aerosols are selected to fix the log-normal parameters and 

are transported in the simulation. The variations in these three moments represent how the log-normal parameters of aerosol 

populations are changed in a physically consistent manner throughout the simulation. Although Kajino (2011) accounted for 

the fractal shapes of particles (as implemented by Kajino and Kondo, 2011 in the 3-D CTM framework), currently, all 

particles are assumed to be spherical for aerosol microphysics. A spherical shape is also assumed for the calculations of the 

optical and radiation properties of the aerosols. The aerosol microphysics calculation algorithm to calculate condensation, 

evaporation, and Brownian coagulation was described in detail by Kajino et al. (2012). Kuang et al. (2008) was used to 

calculate the new particle formation as a function of sulfuric acid vapor. ISORROPIA2 (Fountoukis and Nenes, 2007) and 

Edney et al. (2007) were used to calculate the surface equilibrium vapor pressures of inorganic and organic compounds, 

respectively. The dry deposition velocities of gases were calculated by Zhang et al. (2003), and those of aerosols were 

calculated by a scheme developed based on Zhang et al. (2001) with modifications by Katata et al. (2008, 2011a) and Kajino 

et al. (2012). The in-cloud scavenging process is composed of several elementary processes, namely, cloud condensation 
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nuclei (CCN) activation (Abdul-Razzak and Ghan, 2000), ice nuclei (IN) activation (Lohmann and Diehl, 2006), and 

subsequent cloud microphysical processes (Lin et al., 1983). The subgrid-scale convection and scavenging were calculated 

by Pleim and Chang (1992). 

 

Table S1-1: List of models, schemes, and databases available for NHM-Chem 

Scheme/data Name/reference 

Meteorological modela Nonhydrostatic model (NHM; Saito et al., 2006, 2007, Saito 2012) 
Mascon modelb 

Boundary concentrations 
MCWCM (Ishikawa, 1994) 
Climatological value or 3-hourly field obtained from MRI-CCM2 (Deushi and 
Shibata, 2011) and MASINGAR mk-2 (Tanaka et al., 2003, Tanaka and Ogi 
2017, Yumimoto et al., 2017) 

Emission Anthropogenic (REASv2, Kurokawa et al., 2013; EAGrid, Kannari et al., 2007, 
Fukui et al., 2014), Biomass burning (GFED3, Giglio et al., 2010), Biogenic 
(MEGAN2, Guenther et al., 2006), Asian dust (Han et al., 2004), Sea-salt 
(Clarke et al., 2006) 

Advection MPMAA (Walcek and Aleksic, 1998) 
Photolysis rate Madronich (1987) with TOMS O3 column data 
Gas chemistry SAPRC99 (Carter, 2000) (72 species and 214 reactions) + Jacob (2000) 

heterogeneous reactions (3 reactions) 
SOA chemistry Edney et al. (2007) 
Liquid chemistry Walcek and Taylor (1986), Carlton et al. (2007) 
New particle formationc Kuang et al. (2008) 
Aerosol microphysicsc  Kajino (2011), Kajino et al. (2012) 
Aerosol representations 5-category nonequilibrium method, 3-category nonequilibrium method, bulk 

equilibrium method (This study) 
Surface gas-aerosol equilibrium of 
inorganic compounds 

ISORROPIA2 (Fountoukis and Nenes, 2007) 

Dry deposition Zhang et al. (2001, 2003), Katata et al. (2008, 2011a), and Kajino et al. (2012) 
Fog deposition Katata et al. (2015) 
In-cloud scavenging CCN activation (Abdul-Razzak and Ghan, 2000), IN activation (Lohmann and 

Diehl, 2006), and subsequent cloud microphysical processes (i.e., 
autoconversion and accretion; Lin et al., 1983) 

Below-cloud scavenging Kajino and Kondo (2011), Slinn (1984), Murakami (1985), Andronache et al. 
(2006) 

Subgrid-scale convection and wet 
deposition 

ACM (Pleim and Chang, 1992) 

aOther models such as the Weather Research and Forecasting model (WRF; Skamarock et al., 2008), Asuca is a System 
based on a Unified Concept for Atmosphere (ASUCA; JMA, 2014; Aranami et al., 2015), and Scalable Computing for 
Advanced Library and Environment (SCALE; Nishizawa et al., 2015, Sato et al., 2015) can also be used for the offline 
coupled version. bThe mascon model is needed only for the offline coupled version after the vertical interpolation is made 
because the vertical coordinates of the NHM and CTM are different, so that the number of vertical levels or model top height 
can be reduced in the CTM. The mascon model is not needed for the online coupled version, as the vertical coordinates of 
the meteorological and chemical variables are the same. The model top height can also be reduced for the online version. 
cNot used in the bulk method. Used in the 5-category and 3-category methods. 
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Most of the above processes are similar to those used by Kajino et al. (2012), whereas the fog deposition 

parameterization of Katata et al. (2015) and a detailed below-cloud scavenging scheme are also incorporated in this study, as 

described below. 

Katata et al. (2015) developed a parameterization to calculate the fog deposition velocity as a function of the land 

use category (LUC), leaf area index (LAI), atmospheric stability, and 10-m wind speed. Fog deposition is calculated only in 

the bottom layer of the model when the cloud water content is greater than 10-5 kg kg-1 (Kajino et al., 2019). In island 

countries, such as Japan in the western Pacific, ground surfaces are often covered with humid mountain forests, and the 

contribution of fog deposition is ubiquitous. 

The large discrepancy between the theoretical and experimental rates of below-cloud scavenging has been a critical 

issue and has not yet been resolved (Wang et al., 2010; Zhang et al., 2013). The theoretical rates are sometimes one to two 

orders of magnitude smaller than the empirical rates, especially for aerosols that are in the diameter ranges of approximately 

1 μm, where Brownian motion and an inertial force are both small. In the current implementation, we proposed two options 

for below-cloud scavenging, namely, the conventional modal method developed by Kajino and Kondo (2011) and a newly 

implemented method using detailed size-resolved parameterizations. The latter size-resolved option requires a longer 

computational time, but the Gauss-Hermite quadrature method is used to minimize the computational time (however, it is 

still computationally expensive). Slinn’s (1984) parameterization, which considers thermophoresis, diffusiophoresis, and 

electrostatic forces (Andronache et al., 2006), is used for the derivation of the collection efficiencies of aerosols by rain 

droplets. There are two options to calculate the efficiencies collected by snow and graupel particles, i.e., those of Slinn 

(1984) and Murakami (1985). In this study, we used the approach presented by Kajino and Kondo (2011) because of its 

computational efficiency. 

Many of the schemes are similar or almost equivalent to those implemented in widely used regional community 

models, such as CMAQ (Byun and Schere, 2006; Wong et al., 2012) and WRF-Chem (Grell et al., 2005; Chapman et al., 

2009), as seen from the result of a multi-CTM intercomparison study (Li et al., 2019; Chen et al., 2019; Itahashi et al., 2020; 

Kong et al., 2020; Tan et al., 2020; Ge et al., 2020): NHM-Chem behaved similarly to the other models, including CMAQ 

and WRF-Chem. The advantage of the current model is not considerable, except for the detailed fog deposition and below-

cloud scavenging parameterizations. In fact, the fog deposition scheme for liquid water is already implemented in WRF 

(Katata et al., 2011b) but not in WRF-Chem to simulate the fog deposition of various chemical compositions. The resulting 

disadvantage is the underestimation of SOA formation in the current model. Although their formation mechanisms are still 

unknown, a volatility-based set SOA formation model (Donahue et al., 2006) was developed to improve the significant 

underestimation of conventional models already implemented in CMAQ and WRF-Chem, but not in NHM-Chem. 
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The source code structure of NHM-Chem was designed for the seamless development of online and offline 

coupling, as presented in Fig. S1-1. The codes are written in Fortran 90. The offline and online NHM-Chem share common 

subroutines (or physical/chemical schemes). The chemistry-to-meteorology feedback process has not been included and will 

be implemented in the near future. The online version of NHM-Chem is currently a so-called 1-way (meteorology to 

chemistry) online coupled model.  

 

 

Figure S1-1. Online/offline coupling framework of NHM-Chem v1.0. 

 

Online and offline coupling have different advantages and disadvantages. In online coupling, changes in 

meteorological fields affect chemical fields at small time steps (a few seconds) (e.g., Grell et al., 2005), whereas in offline 

coupling, changes in meteorological fields are interpolated between crude input/output time steps (an hour to a few minutes) 

(e.g., Byun and Schere, 2006). Certainly, chemistry-to-meteorology feedback processes cannot be readily implemented in the 

offline coupled framework but has been implemented in many of the online models (so-called 2-way (meteorology to 

chemistry/chemistry to meteorology) online coupled models, e.g., Chapman et al., 2009; Vogel et al., 2009; Wong et al., 
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2012). Online coupling is slightly more time consuming if sensitivity tests in chemical fields are conducted: meteorology 

simulations are conducted for every sensitivity simulation in online coupling, whereas meteorological simulations are needed 

only once for offline coupling. 

In the offline-coupling framework, a multimeteorological model intercomparison can be readily performed: we only 

need an interface to convert a meteorological model output to a chemical model input. Currently, interfaces with WRF, 

ASUCA, and SCALE are available in NHM-Chem. Kajino et al. (2019) evaluated the impact of the uncertainty in 

meteorological simulations on the modeling of chemical transport and deposition by using NHM, NHM-LETKF (Local 

Ensemble Transform Kalman Filter data assimilation method coupled with NHM; Kunii, 2014; Sekiyama et al., 2015), and 

WRF with several combinations of turbulence and cloud microphysics modules. For the offline coupled NHM-Chem, the 

horizontal grid of the CTM is identical to that of meteorological models, but the vertical coordinate is different; thus, users 

can reduce the number of vertical layers or the model top height for the computational efficiency, or they can use different 

meteorological models that use different vertical coordinates. To reduce the mass divergence due to vertical interpolation to 

approximately 10-5 to 10-6 (s-1), the mass continuity model (Ishikawa, 1994) is incorporated into the meteorology-chemistry 

model interface of the offline coupled NHM-Chem, as shown in Table S1-1. For the online coupled NHM-Chem, the mass 

continuity model is not needed because the vertical coordinates of the CTM and NHM are common, but the model top layers 

of the CTM can be reduced for computational efficiency. 
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Supplement 2 

Supplement 2 includes the locations of the six major SO2-emitting volcanoes and the time series of the temporally 

smoothed and raw SO2 emission flux and smoke height data measured by the JMA and used in the NHM-Chem model. The 

locations and periods of the volcanic data are summarized in Table S2-1. 

 

Table S2-1: Availability of volcanic emission data in Japan and time-averaged continuous SO2 emissions from the 1970s to 
1997, with the maximum values of the emissions since the 2000s provided in brackets. 

Volcano Longitude 
(E) 

Latitude 
(N) 

Height 
(m MSL) 

SO2 
emission 
(ton d-1)a 

Period  
(SO2 emission,  
smoke height) 

Miyakejima  
(Mt. Oyama) 

139°31′ 34°05′ 775b 270 
(82,200) 

August 26, 2000 –August 16, 2018 
January 1, 2008 – February 29, 2016 

Mt. Asama 138°31′ 36°24′ 2,568 370 
(8,700) 

July 4, 2002 – August 20, 2018 
January 1, 2008 – February 29, 2016 

Mt. Aso 131°06′ 32°53′ 1,592 27 
(15,000)d 

March 22, 2007 – August 16, 2018 
January 1, 2008 – February 29, 2016 

Mt. Kirishima 
(Shinmoedake) 

130°52′ 31°56′ 1,420 -e 

(34,100)f 
January 27, 2011 – June 1, 2018 
January 1, 2008 – February 29, 2016 

Mt. Sakurajima 130°39′ 31°35′ 1,117 1,900e 

(7,400) 
May 23, 2007 – July 26, 2018 
January 1, 2008 – February 29, 2016 

Kuchinoerabujima 130°11′ 30°28′ 649 570 
(3,100) 

October 4, 2008 – July 13, 2018 
January 1, 2008 – February 29, 2016 

aTime-averaged SO2 emissions from 1970s to 1997 (Andres and Kasgnoc, 1998) and maximum values since the 2000s (this 
study).  
bPreviously 814 m, before a large eruption occurred in 2000. 
cAndres and Kasgnoc (1998) also provide the sporadic emission amount for Mt. Aso. 
dThe maximum value is not shown in Fig. S2-2 but it was observed on October 7, 2016. 
eAndres and Kasgnoc (1998) does not separate emissions from the two volcanoes, but the emission amount is supposed to be 
associated with Mt. Sakurajima.  
fThe maximum value is not shown in Fig. S2-2 but was observed on March 7, 2018. 

 

The locations of the volcanoes are depicted in Fig. S2-1. The time series of the smoothed volcanic SO2 emissions 

and smoke height data, together with the raw data, are illustrated in Figs. S2-2 and S2-3, respectively. The spline 

interpolation failed for the Kirishima volcano case, as its emissions were considerable but sporadic. The linear interpolation 

or periodical average should be used for the case. The volcanic emissions from other volcanoes worldwide are taken from 

Andres and Kasgnoc (1998). The volcanic emissions were uniformly allocated from the bottom layer to the smoke height or 

to 1,000 m AGL when smoke height information was not available.  

 

 



7 
 

 

Figure S2-1: Locations of the six SO2-emitting volcanoes in Japan monitored by the JMA. 
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Figure S2-2: The time series of temporally smoothed data (solid line), with the raw data (gray dots) and estimations of 
Andres and Kasgnoc (1998) (dotted line), of the SO2 emission flux, measured by the JMA and used in the NHM-Chem 
model. The red dot in Fig. S2-2e is the sum of Mt. Kirishima and Mt. Sakurajima because Andreas and Kasgnoc (1998) do 
not differentiate emissions from the two volcanoes (associated with the eruption of Mt. Sakurajima). The smoothed 
interpolation for Mt. Kirishima is not shown in Fig. S2-2e because the time variation is sporadic; thus, spline smoothing 
failed and linear interpolation was used. 
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Figure S2-3: The time series of temporally smoothed data (solid line), with the raw data (gray dots) of the observed smoke 
height measured by the JMA and used in the NHM-Chem model. 
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Supplement 3 

Supplement 3 summarizes comparisons between the simulated and observed variables used for the discussion in Sect. 6, 

together with the relevant variables, such as O3 and its precursor gas NOx, dust extinction coefficient (Ext_D) and PM10 

during the dust events of April 2006 (as defined in Sect. 6.2), PM2.5, wet deposition amounts of SO4
2-, NO3

-, and NH4
+, AOT, 

SSA, total (dust and spherical) extinction coefficient (Ext_T), NC0.3, and PM10 during the period when the OPC data were 

available. Statistical measures for the comparisons are listed in Table 4. 

 
 

Figure S3-1. (left) Scatter diagrams and (right) time series of the simulated (red: bulk method, blue: 3-category method, 
green: 5-category method) and observed (black) daily mean surface concentrations of (top) O3 and (bottom) NOx at all 
Japanese EANET stations for the scatter diagrams and (above) Oki and (below) Hedo for the time series data in 2006. 
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Figure S3-2. Time series of the simulated (red: bulk, blue: 3-category, green: 5-category) and observed (black) daily mean 
surface (top) dust extinction coefficient at the AD-Net stations and (bottom) PM10 at the EANET stations, (left) Matsue and 
Oki, (right) Hedo in 2006. Note that the observed dust extinction coefficient is the median value below 300 m above ground 
level (AGL). 



12 
 

 

 

Figure S3-3. (left) Scatter diagrams and (right) time series of the simulated (red: bulk method, blue: 3-category method, 
green: 5-category method) and observed (black) daily mean surface concentrations of (top) PM2.5 and (bottom) PM2.5 (pile-
up) at the EANET stations, (above) Rishiri and (below) Oki in 2006. The scatter diagrams include Oki and Rishiri data 
because PM2.5 data are available at only these two stations in 2006. 
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Figure S3-4. The simulated (red: bulk method, blue: 3-category method, green: 5-category method) and observed (black) 
half-monthly mean (top to bottom) wet deposition amounts of nss-SO4

2-, NH4
+, and NO3

- and precipitation at (left) Oki and 
(right) Hedo in 2006. 
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Figure S3-5. The simulated (red: bulk method, blue: 3-category method, green: 5-category method) and observed (black) 
daily mean (left to right) AOT and SSA of SKYNET and Ext_T of AD-Net at (top) Chiba and Tsukuba, (middle) Kasuga 
and Matsue, and (bottom) Hedo in 2006. Note that the observed Ext_T is the median value below 300 m AGL, while that 
simulated is the surface value. 
 

 

 
Figure S3-6. The simulated (red: bulk method, blue: 3-category method, green: 5-category method) and observed (black) 
hourly (top) NC0.3 and (bottom) PM10 at Hedo, when the OPC data are available, namely, (left) March 14 to 27 and (right) 
November 27 to December 31 of 2006. A 5-hour running mean is used to draw the lines of the observed PM10, as the raw 
data fluctuate. Hourly values are used for the statistical comparison in Table 4. 
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Supplement 4 

Supplement 4 shows the seasonal mean surface air concentration of PM2.5 (pile-up) predicted by the 5-category, 3-category, 

and bulk methods. 

 

 

Figure S4-1. Same as Fig. 5 but for PM2.5 (pile-up). 
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