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Abstract. WaterGAP is a global hydrological model that quantifies human use of groundwater and surface water as well as

water flows and water storage and thus water resources on all land areas of the Earth. Since 1996, it has served to assess

water resources and water stress both historically and in the future, in particular under climate change. It has improved our

understanding of continental water storage variations, with a focus on overexploitation and depletion of water resources. In

this paper, we describe the most recent model version WaterGAP 2.2d, including the water use models, the linking model5

that computes net abstractions from groundwater and surface water and the WaterGAP Global Hydrology Model WGHM.

Standard model output variables that are freely available at a data repository are explained. In addition, the most requested

model outputs, total water storage anomalies, streamflow and water use, are evaluated against observation data. Finally, we

show examples of assessments of the global freshwater system that can be achieved with WaterGAP2.2d model output.

1 Introduction10

A globalized world is characterized by large flows of virtual water among river basins (Hoff et al., 2014) and by international

responsibilities for the sustainable development of the Earth System and its inhabitants. The foundation of a sustainable man-

agement of water, and more broadly the Earth system, are quantitative estimates of water flows and storages as well as of

water demand by humans and freshwater biota on all continents of the Earth (Vörösmarty et al., 2015). During the last three

decades, global hydrological models (GHMs) have been developed and continually improved to provide this information. They15

enable the determination of the spatial distribution and temporal development of water resources and water stress for both hu-

mans and other biota under the impact of global change (including climate change). In addition, global-scale knowledge about
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water flows and storages on land is necessary to understand the Earth System, including interactions with the ocean and the

atmosphere as well as gravity distribution and crustal deformation (affecting GPS).

Such models are frequently used in large scale assessments, such as the assessment of virtual water flows for products (Hoff20

et al., 2014) within the framework of the Intergovernmental Panel of Climate Change and the assessment of impacts based on

scenarios for a sustainable future (as e.g., the Sustainable Development Goals). Furthermore, global-scale modelling of water

use and water availability is frequently used to evaluate large scale water issues, for example water scarcity and droughts (Meza

et al., 2020; Döll et al., 2018; Veldkamp et al., 2017).

Some of these models are contributing to the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) (Frieler et al.,25

2017) where the focus is on both, the model evaluation / improvement and the impact assessment of anthropogenic changes

such as human water use or climate change. A series of evaluation exercises (Veldkamp et al., 2018; Zaherpour et al., 2018;

Wartenburger et al., 2018) shows that high performing simulation is challenging due to uncertain process representation at the

given resolution, input data uncertainty and unequal data availability in terms of spatial and temporal distribution, e.g. river

discharge observations (Coxon et al., 2015; Wada et al., 2017; Döll et al., 2016). In this context, a proper model description is30

of great value for a better understanding of the process representation and parameterization of such models, and a related work

is in progress (Telteu et al., 2020).

A continuous improvement of process representations in GHMs is required to reduce uncertainty in assessments of water

resources over historical periods (Schewe et al., 2019) and thus increase confidende in future projection assessments. In the

recent past, some of the GHM approaches consider new processes as e.g. the CO2 fertilization effect (Schaphoff et al., 2018a,35

b) or gradient-based groundwater models (de Graaf et al., 2017; Reinecke et al., 2019). Improved methods for the estima-

tions of agricultural and other water use (Flörke et al., 2013; Siebert et al., 2015) have been developed and total water storage

data from satellite observations are being increasingly employed either for evaluation (Scanlon et al., 2018, 2019) or calibra-

tion/assimilation of models (Eicker et al., 2014; Döll et al., 2014; Schumacher et al., 2018). Ultimately, there are attempts

to achieve a finer spatial resolution than the typically used 0.5◦ × 0.5◦ grid cell (Wood et al., 2011; Bierkens et al., 2015;40

Sutanudjaja et al., 2018; Eisner, 2015).

Water - Global Assessment and Prognosis (WaterGAP), which has been developed since 1996, is one of the pioneers in this

field. WaterGAP as described here operates with a spatial resolution of 0.5◦ × 0.5◦ and is called the model family WaterGAP 2.

Key model versions are WaterGAP 2.1d (Alcamo et al., 2003; Döll et al., 2003; Kaspar, 2004), 2.1e (Schulze and Döll, 2004),

2.1f (Hunger and Döll, 2008; Döll and Fiedler, 2008), 2.1g (Döll et al., 2009), 2.1h (Döll et al., 2012), 2.2 (Müller Schmied45

et al., 2014), 2.2a (Döll et al., 2014), 2.2(ISIMIP2a) (Müller Schmied et al., 2016a), 2.2b (Müller Schmied, 2017; Döll et al.,

2020), 2.2c (description submitted to this journal) and 2.2d (this manuscript). In addition, a model family with 5′ × 5′ is named

WaterGAP 3 (Eisner, 2015). While the model family 3 has similar algorithms than the model family 2, this paper only refers

to the recent model version WaterGAP 2.2d.

The major model purpose was to quantify global scale water resources with specific focus on anthropogenic inventions50

due to human water use and man-made reservoirs, to assess water stress. Furthermore, a lot of effort have been assigned to
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specific water storages like groundwater, lakes and wetlands. In the previously mentioned evaluation studies, WaterGAP has

been qualified as a robust and qualitatively good-performing model in those key issues and for most climate zones worldwide.

Since the last complete model description of WaterGAP 2.2 (Müller Schmied et al., 2014), a number of modifications and

improvements have been achieved. To be able to follow these changes and to transparently understand the process representa-55

tion, a new model description can guide model output data users, especially in case of discrepant model outputs from a GHM

ensemble approach, and the GHM developing community in general. Hence, the aim of this paper is to provide an overview of

the newest model version WaterGAP 2.2d by

1. comprehensively describing the full model including all developments since WaterGAP 2.2 (Müller Schmied et al.,

2014),60

2. showing and discussing standard model output,

3. providing insights into model evaluation and

4. giving guidance for the users of model output.

The framework of WaterGAP 2.2d is presented in Sect. 2, followed by the in-depth description of the water use models (Sect.

3) and the global hydrological model (Sect. 4). The description of standard model outputs is given in Sect. 5 including caveats65

of using the model outputs. In Sect. 6, model output is compared against multiple observation-based data sets, followed by

typical model applications in Sect. 7 and the conclusions and outlook (Sect. 8). The supplementary materials contain a table of

symbols used in the equations (Table S1), abbreviations, highlights the current fields of scientific use of WaterGAP and shows

additional figures (Fig. S1-S12).

2 WaterGAP 2 framework70

WaterGAP 2 consists of three major components, the global water use models, the linking model Groundwater-Surface Water

Use (GWSWUSE) and the WaterGAP Global Hydrology Model (WGHM) (Fig. 1). Five global water use models for the sectors

irrigation (Döll and Siebert, 2002; Portmann, 2017), livestock, domestic, manufacturing and cooling of thermal power plants

(Flörke et al., 2013) compute consumptive water use and, in the case of the latter three sectors, also withdrawal water uses.

Consumptive water use refers to the part of the withdrawn (=abstracted) water that evapotranspirates during use. Whereas the75

output of the Global Irrigation Model (GIM) is available at monthly resolution, annual time series are calculated by all non-

irrigation water use models (Sects. 3.1, 3.2). The linking model GWSWUSE serves to distinguish water use from groundwater

and from surface water bodies (Sect. 3.3). It computes withdrawal water uses from and return flows to the two alternative water

sources to generate monthly time series of net abstractions from surface water (NApot,s) and from groundwater (NApot,g)

(Döll et al., 2012, 2014). These time series are input to the WGHM, affecting the daily water flows and storages computed by80

it (Sect. 4).
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Figure 1. The WaterGAP 2.2d framework with its water use models and the linking module GWSWUSE that provides potential net wa-

ter abstraction from groundwater and surface water as input to the WaterGAP Global Hydrology Model (WGHM). Figure adapted from

Müller Schmied et al. (2014).

2.1 Spatial coverage and climate forcings

The WaterGAP 2 framework operates on the so-called CRU land-sea mask (Mitchell and Jones, 2005), which covers the global

continental area (including small islands and Greenland but excluding Antarctica) with in total 67420 grid cells, each 0.5◦ ×
0.5◦ in size which represents approx. 55 km× 55 km at the equator. WaterGAP uses the continental area of the grid cell, which85

is defined as the cell area (calculated with equal area cylindrical projection) minus the ocean area with the borders according to

the ESRI worldmask shapefile (ArcGIS, 2018). The continental area comprises land area and surface water body area (lakes,

reservoirs and wetlands only; river area is not considered). Since WaterGAP 2.2a, surface water body areas, and consequently

land area, are dynamic and are updated in each time step.

Both GIM and WGHM use meteorological input data that consist of air temperature, precipitation, downward shortwave90

radiation and downward longwave radiation, all with daily temporal resolution. Various global meteorological data sets (here-

after referred to as climate forcings) were developed by the meteorological community at the 0.5◦ × 0.5◦ spatial resolution,

such as WFD (Weedon et al., 2011), WFDEI (Weedon et al., 2014), GSWP3 (Kim, 2014), the Princeton meteorological forc-

ing (Sheffield et al., 2006) and recently ERA5 (Hersbach et al., 2020) and WFDE5 (Cucchi et al., 2020). Alternative climate

forcings may lead to significantly different WaterGAP outputs (Müller Schmied et al., 2016a).95
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2.2 Modifications of WaterGAP since version 2.2

The general framework of WaterGAP 2.2d does not differ from model version 2.2 described in Müller Schmied et al. (2014).

Improvements of water use modelling since WaterGAP 2.2 include, among others, deficit irrigation in regions with groundwater

depletion (Sect. 3.3) as well as integration of the Historical Irrigation Data set (HID), which provides the historical cell-specific

development of area equipped for irrigation (Siebert et al., 2015). Major improvements in WGHM include 1) a consistent100

river-storage-based method to compute river flow velocity, 2) simulation of land area dynamics in response to varying areas

of lakes, reservoirs and wetlands, 3) groundwater recharge from these surface water bodies in (semi)arid grid cells, 4) if daily

precipitation is below a threshold value, the potential groundwater recharge remains in the soil and does not (as in WaterGAP

2.2) become surface runoff, 5) return flows to groundwater from surface water use are corrected (by adjusting NAg) by the

amount of NApot,s that cannot be satisfied and 6) the integration of reservoirs by taking into account their commissioning year105

(and not assuming anymore that they have existed during the whole study period). Other changes concern model calibration or

consist in inclusion of new data sets and software improvements. A complete list of modifications of WaterGAP 2.2d compared

to WaterGAP 2.2 is provided in Appendix A.

3 WaterGAP water use models

3.1 Global Irrigation Model110

Irrigation accounts for 60-70% of global withdrawal water uses and 80-90% of global consumptive water uses, and for even

larger shares in almost all regions with severe water stress and groundwater depletion (Döll et al., 2012, 2014). Therefore, a

reliable simulation of irrigation water use is decisive for the quality of WaterGAP simulations of streamflow and water storage

in groundwater and surface water bodies as well as for the reliability of computed water stress indicators. Based on information

on irrigated area and climate for each grid cell, GIM computes first cell-specific cropping patterns and growing periods and115

then irrigation consumptive water use (ICU), distinguishing only rice and non-rice crops (Döll and Siebert, 2002). ICU can be

regarded as the net irrigation requirement that would lead to optimal crop growth.

3.1.1 Computation of cropping patterns and growing periods of rice and non-rice crops

The cropping pattern for each cell with irrigated cropland describes if only rice, non-rice crops or both are irrigated during

either one or two growing seasons. The growing period for both crop types is assumed to be 150 days. Seventeen cropping120

patterns are possible including simple variants (e.g., one cropping season with non-rice on the total irrigated area) and complex

variants (non-rice after rice on one part of the total irrigated area and non-rice after non-rice on the other). The following data

are used to model the cropping pattern: total irrigated area, long-term average temperature and soil suitability for paddy rice

in each cell, harvested area of irrigated rice in each country, and cropping intensity in each of 19 world regions. In a second

step, the optimal start date of each growing season is computed for each crop. To this end, each 150-day period within a year125
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is ranked based on criteria on long-term average temperature, precipitation and potential evapotranspiration provided in Döll

and Siebert (2002). The most highly ranked 150-day period(s) is/are defined as growing season(s).

3.1.2 Computation of consumptive water use due to irrigation

GIM implements the Food and Agriculture Organization of the United Nations (FAO) CROPWAT approach of Smith (1992) to

compute crop-specific ICU per unit irrigated area (mmd−1) during the growing season as the difference between crop-specific130

optimal evapotranspiration Epotc and effective precipitation Pirri,eff if the latter is smaller than the former, with

ICU =

Epotc −Pirri,eff Epotc > Pirri,eff

0 otherwise
(1)

where Epotc is the product of potential evapotranspiration Epot and the dimensionless crop coefficient kc which depends

on the crop and the crop development stage (Döll and Siebert, 2002). As a standard, Epot is calculated according to Eq. (7).

Pirri,eff is the fraction of the total precipitation P (including rainfall and snowmelt) that is available to plants and is computed135

as a simple empirical function of precipitation. Equation (1) is implemented with a daily time step, but to take into account the

storage capacity of the soil and to remain consistent with the CROPWAT approach, daily precipitation values are averaged over

10 days, except for rice-growing areas in Asia, where the averaging period is only 3 days to represent the limited soil water

storage capacity in case of paddy rice (Döll and Siebert, 2002).

3.1.3 Irrigated area140

In the standard version of WaterGAP 2.2d, irrigated area per grid cell used in GIM is based on the Historical Irrigation Data

set (HID) (Siebert et al., 2015), which provides area equipped for irrigation (AEI) in 5 arc-min grid cells for 14 time slices

between 1900 and 2005. HID data are aggregated to 0.5◦ × 0.5◦ and temporally interpolated to obtain an annual time series of

AEI. Cropping patterns and growing periods are generated for every year, with an individual combination of year-specific AEI

and harvested area of rice and the respective 30-year climate averages, which are then used to calculate ICU for every day of145

the same year (Sect. 3.1.1). Harvested area of rice per country from the MIRCA2000 data set, representative for the year 2000

(Portmann et al., 2010), is scaled according to annual AEI country totals, ensuring consistency to AEI.

To take into account that not the whole AEI is actually used for irrigation in any year, country-specific values of the ratio

of area actually irrigated (AAI) to AEI are used to estimate AAI in each grid cell. AAI is then applied for calculating the

consumptive irrigation water use in volume per time. AAI/AEI ratios were derived from the Global Map of Irrigation Area150

(GMIA) for 2005 (Siebert et al., 2013). In addition, to estimate AAI from 2006 to 2016, we used country-specific AAI for

2006-2010 from the AQUASTAT database of the FAO, other international organizations and national statistical services (e.g.,

EUROSTAT and USDA). For the other countries, AAI of 2005 was assumed for 2006-2016. For all 2011-2016, AAI was

assumed to remain at the 2010 value everywhere.
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Alternatively, as in previous WaterGAP versions, GIM in WaterGAP 2.2d can be executed based on a temporally constant155

dataset of AEI per grid cell, e.g. the Global Map of Irrigation Area GMIA for 2005 (Siebert et al., 2013). Cropping patterns and

growing periods are then computed for AEI and harvested area of rice in a reference year and the pertaining 30-year average

climate. For more details and application examples, we refer to Portmann (2017) and Döll and Siebert (2002).

3.2 Non-irrigation water uses

Although irrigation water use is the dominant water use sector globally, non-irrigation water uses, particularly in terms of160

withdrawal water uses, play a major role in Europe and America (FAO, 2016). Competition between agricultural and non-

agricultural water uses are not uncommon (Flörke et al., 2018) and the estimation of water demands become even more crucial

when water resources are scarce. Statistical information on withdrawal water uses and consumptive water uses for domestic,

industrial and livestock purposes are difficult to obtain on a country basis since no comprehensive global database does exist.

However, the FAO collects relevant water-related data from national statistics and reports to provide a comprehensive view on165

the state of sectoral water uses. Unfortunately, the database lacks data in space and time and hence modelling is of importance

to fill these gaps (Flörke et al., 2013).

3.2.1 Livestock

Withdrawal water uses for livestock are computed annually by multiplying the number of animals per grid cell by the livestock-

specific water use intensity (Alcamo et al., 2003). The number of livestock are taken from FAOSTAT (2014). It is assumed that170

the withdrawal water uses for livestock are equal to their consumptive water use.

3.2.2 Domestic

Domestic water use comprises withdrawal water uses and consumptive water uses of households and small businesses and

is estimated on a national level. The main concept is to first compute the domestic water use intensity (m3 cap−1 yr−1) and

then to multiply this by the population of water users in a country. The domestic water use intensity is expressed by a sigmoid175

curve which indicates how water use intensity (per capita water use) changes with income (gross domestic product per cap)

and is derived from historical data on a national or regional level (Flörke et al., 2013). Besides changes driven by income and

population, technological changes are considered to reflect improvement in water-use efficiency. Continuous improvements in

technology make appliances more water efficient and hence, contribute to reductions in water use. Detailed data on domestic

consumptive water uses do not exist from statistics but a simple balancing equation is used in WaterGAP since the year 2000 to180

simulate consumptive water uses as the difference between withdrawal water use and wastewater volume (i.e., return flow) as

the latter information is available from statistics. The calculation of consumptive water use before the year 2000 is based on the

application of consumptive water use coefficients (Shiklomanov, 2000) that accounts for the proportion of the withdrawal water

use that is consumed. In order to allow for a spatially explicit analysis country values of domestic water uses are allocated to

grid cells (0.5◦ × 0.5◦) within the country based on the geo-referenced historical population density maps from HYDE version185
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3.1 (Goldewijk et al., 2010). Additionally, population numbers beyond 2005 as well as information on the ratio of rural to

urban population of each grid cell come from UNEP (2015).

3.2.3 Manufacturing

The manufacturing sector is rather diverse in terms of water use and varies between countries and sub-sectors, for example

highly water-intensive production processes in the chemical industry compared to the less water-using processes in the glass190

industry. In WaterGAP, the manufacturing water use model simulates the annual withdrawal water use and consumptive water

use of water that is used for production and cooling processes, whereas the water used for power generation is modelled

separately. A manufacturing structural water intensity that describes the ratio of water abstracted over the manufacturing

gross value added (GVA) is derived per country for the base year 2005 (in m3 USD (constant for the year 2000)−1) based

on national statistics (Flörke et al., 2013). GVA is found to be positively correlated with the sector’s withdrawal water uses195

(Dziegielewski et al., 2002) and is used as the driving force to reflect the time variant system. In addition, technological

improvements are considered through a technological change factor.

The consumptive water use for this sector is obtained by using the same approach as described for the domestic sector, i.e.

the calculation of the difference between the withdrawal water use and the return flows (starting in the year 2000) and the

application of a consumption factor before the year 2000. Contrary to the domestic sector, return flows from the manufacturing200

sector are further subdivided into cooling water and wastewater. For countries where no data are available, the fraction of con-

sumptive water use is derived from neighbouring or economically comparable countries. Less information is available on the

location of manufacturing industries, therefore country-level manufacturing water use is downscaled to grid cells proportional

to its urban population (Flörke et al., 2013).

3.2.4 Thermal power205

Water is abstracted and consumed for the production of thermal electricity, particularly for cooling purposes where water is

used to condense steam from the turbine exhaust. The volume of cooling withdrawal water use and consumptive water use is

modelled on a grid-cell level based on input data on the location, type and size of power stations from the World Electric Power

Plants Data Set (UDI, 2004). Here, the annual cooling water requirements in each grid cell are calculated by multiplying the

annual thermal electricity production with the respective water-use intensity of each power station (Flörke et al., 2013). Key210

driver is the annual thermal electricity production (MWhyr−1) on a country basis which is downscaled to the level of thermal

power plants according to their capacities. Time series on thermal electricity production per country until 2010 are available

online from the Energy Information Administration (EIA, 2012). Cooling water intensities in terms of withdrawal water use

and consumptive water use vary between plant types and cooling systems. Therefore, the model distinguishes between four

plant types (biomass and waste, nuclear, natural gas and oil, coal and petroleum) and three cooling systems (tower cooling,215

once-through cooling, ponds) (Flörke et al., 2012). The approach is complemented by considering technological change leading

to reduced intensities.
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In general, water abstractions of once-through flow systems are considerably higher compared to the withdrawal intensities

of pond cooling or tower cooling systems. In contrast, consumptive water use of tower cooling systems is much higher than

water consumed by once-through cooling systems. In ordering plant-type specific water intensities, i.e. water abstraction per220

unit electricity production, it becomes obvious that intensities are highest for nuclear power plants, followed by fossil, biomass,

and waste-fuelled steam plants, while natural gas and oil combined-cycle plants have the lowest intensities, respectively. The

model has been validated for the year 2005 by comparing modelled values with published thermoelectric withdrawal water

uses (Flörke et al., 2013).

3.3 GWSWUSE225

The linking model Groundwater-Surface Water Use (GWSWUSE) computes the fractions of all five sectoral water abstractions,

or withdrawal water use, WU and consumptive water use CU in each grid cell that stem from either groundwater or surface

water bodies (lakes, reservoirs and river). Time series for WU and CU from the sectoral water use models are an input to

GWSWUSE except for WU for irrigation. The latter is computed within GWSWUSE as water use efficiencies CU/WU for

irrigation are assumed to vary between surface water and groundwater. Country-specific efficiency values are used for surface230

water irrigation, while in case of groundwater irrigation, water use efficiency is set to a relatively high value of 0.7 worldwide

(Döll et al., 2014). In GWSWUSE, CU due to irrigation is decreased to 70% of optimal CU in groundwater depletion areas;

these areas were defined as grid cells with a groundwater depletion rate for 1980-2009 of more than 5 mm/yr and a ratio of

WU for irrigation over WU for all sectors of more than 5% as computed for optimal irrigation in Döll et al. (2014).

Sectoral groundwater fractions were derived individually for each grid cell in case of irrigation (Siebert et al., 2010) and for235

each country in case of the other four water use sectors (Döll et al., 2012). They are assumed to be temporally constant. Water

for livestock and the cooling of thermal power plants is assumed to be extracted exclusively from surface water bodies.

Finally, GWSWUSE computes monthly time series of net abstraction from surface water NApot,s and from groundwater

NApot,g which are used as input to WGHM. Net abstraction is the difference between total water abstraction from one of the

two sources and the return flow to the respective source according to Eqs. 1, 3 and 4 in Döll et al. (2012). In all sectors except240

irrigation, return flows are only directed to surface water bodies. The fraction of return flow to groundwater in case of irrigation

water use is estimated as a function of degree of artificial drainage in the grid cell (Sect. 2.1.3 in Döll et al. (2014)). Positive net

abstraction values refer to the situation where storage is reduced due to human water use, negative values indicate an increase

in storage. In case of groundwater, the latter only occurs if there is irrigation with surface water in the grid cell. The approach

of direct net abstractions implicitly assumes instantaneous return flows. The sum of NApot,g and NApot,s is equivalent to245

(potential) consumptive water use. NApot,s and NApot,g as computed by GWSWUSE are potential net abstractions that may

be adjusted depending on the availability of surface water (Sect. 4.8).
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4 WaterGAP Global Hydrology Model WGHM

The WaterGAP Global Hydrology Model (WGHM) simulates daily water flows and water storage in ten compartments (Fig.

2). The vertical water balance (dashed box in Fig. 2) encompasses the canopy (Sect. 4.2), snow (Sect. 4.3) and soil (Sect. 4.4)250

components. Water storage in glaciers is not simulated by WaterGAP2.2d. The lateral water balance includes groundwater

(Sect. 4.5), lakes, man-made reservoirs, wetlands (Sect. 4.6), and rivers (Sect. 4.7). Different to the vertical water balances,

where the water balance is calculated based on water height units (mm), the lateral water balance is calculated in volumetric

units (m3). Water height units are converted to volumetric units by considering the land area (for flows) or continental area

(for storages) of the grid cell, respectively. Local surface water bodies are defined to be recharged only by runoff generated in255

the cell itself, while global ones additionally receive streamflow from upstream cells (Fig. 2). Upstream-downstream relations

among the grid cells are defined by the drainage direction map DDM30 (Döll and Lehner, 2002). Each cell can drain only into

one of the eight neighboring cells as streamflow. There is no groundwater flow between grid cells.

The amount of water reaching the soil is regulated by the canopy and snow water balance. Total runoff from the land fraction

of the cell Rl is calculated from the soil water balance. Rl is then partitioned into fast surface and subsurface runoff Rs260

and diffuse groundwater recharge Rg . Lateral routing of water through the storage compartments is based on the so-called

fractional routing scheme (Döll et al., 2014) and differs between (semi)arid and humid grid cells (red and green arrows in Fig.

2). The definition of (semi)arid and humid cells is given in Appendix B. To avoid that the whole runoff generated in the grid

cell is added to local lake or wetland storage, only the fraction fswb timesRs flows into surface water bodies and the remainder

discharges into the river. The factor fswb is calculated as the relative area of wetlands and local lakes in a grid cell multiplied by265

20 (representing the drainage area of surface water bodies), with its maximum value limited to the cell fraction of continental

area. In humid cells, groundwater discharge Qg is partitioned using fswb into discharge to surface water bodies and discharge

to the river segment. In (semi)arid cells, surface water bodies (excluding rivers) are assumed to recharge the groundwater to

mimic point recharge. To avoid a short circuit between groundwater and surface water bodies, the whole amount of Qg flows

into the river. Loosing conditions, where river water recharges the groundwater are not modelled in WGHM.270

In WaterGAP, human water use is assumed to affect only the water storages in the lateral water balance. Increases in soil wa-

ter storage in irrigated areas are not taken into account as the WaterGAP approach of direct net abstractions implicitly assumes

instantaneous return flows. To consider anthropogenic consumptive water use in the output variable of actual evapotranspira-

tion Ea (Table 2), we sum up all evapo(transpi)ration components and actual consumptive water use WCa (see note 5 in Table

2). NAs is abstracted from the different surface water bodies except wetlands with the priorities shown as numbers in Fig. 2.275

Outflow from the final water storage compartment in each cell, the river compartment, is streamflow (Qr,out), which becomes

inflow into the next downstream cell.

The ordinary differential equations describing the water balances of the ten storage compartment simulated in WGHM

are solved sequentially for each daily timestep in the following order: canopy, snow, soil, groundwater, local lakes, local

wetlands, global lakes, global reservoirs/regulated lakes, river (Fig. 2). An explicit Euler method is used to numerically solve280

all differential equations except those for global lakes and rivers, where an analytical solution is applied to compute storage
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change during one daily time step, which allows daily time steps instead of smaller time steps that would have been required

in case of explicit Euler method. As the water balances of global lakes, global reservoirs/regulated lakes and river of a grid cell

are not independent from those of the upstream grid cells, the sequence of grid cell computations starts at the most upstream

grid cells and continues downstream according to the drainage direction map DDM30 (Döll and Lehner, 2002).285
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upstream cells Qr,in
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Figure 2. Schematic of WGHM in WaterGAP2.2d. Boxes represent water storage compartments, arrows represent water flows. Green (red)

colour indicates processes that occur only in grid cells with humid ((semi)arid) climate. For details the reader is referred to the sections 4.2

to 4.8, in which the water balance equations of all ten water storage compartments are presented.

4.1 General model variants of human water use and reservoirs

The standard model setup of WGHM in WaterGAP 2.2d simulates the effects of both human water use and man-made reservoirs

(including their commissioning years) on flows and storages and is referred to as "ant" simulation (anthropogenic). These

stressors can be turned off in alternative model setups to simulate a world without these two types of human activities and to

quantify the direct impact of human water use and reservoirs.290

• "Nat" simulations compute naturalized flows and storages that would occur if there where neither human water use nor

global man-made reservoirs/regulated lakes.

• "Use only" simulations include human water use but exclude global man-made reservoirs/regulated lakes.
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• "Reservoirs only" simulations exclude human water use but include global man-made reservoirs/regulated lakes.

The following sections generally refer to "ant" simulations.295

4.2 Canopy

Canopy refers to the leaves and branches of terrestrial vegetation that intercept precipitation. Modeling of the canopy processes

does not differentiate between rain and snow.

4.2.1 Water balance

The canopy storage Sc (mm) is calculated as300

dSc
dt

= P −Pt−Ec (2)

where P is precipitation (mmd−1) , Pt is throughfall, the fraction of P that reaches the soil (mmd−1) andEc is evaporation

from the canopy (mmd−1).

4.2.2 Inflows

Daily precipitation P is read in from the selected climate forcing (see Sect. 7.1).305

4.2.3 Outflows

Throughfall Pt is calculated as

Pt =

0 P < (Sc,max−Sc)

P − (Sc,max−Sc) otherwise
(3)

where Sc,max is maximum canopy storage calculated as

Sc,max =mc ∗L (4)310

where mc is 0.3 mm (Deardorff, 1978) and L (−) is one-side leaf area index. L is a function of daily temperature and P

and limited to minimum or maximum values. Maximum L values per land cover class (Table C1) are based on Schulze et al.

(1994) and Scurlock et al. (2001), whereas minimum L values are calculated as

Lmin = 0.1fd,lc+(1− fd,lc)ce,lcLmax (5)

where fd,lc is the fraction of deciduous plants and ce,lc is the reduction factor for evergreen plants per land cover type (Table315

C1).
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The growing season starts when daily temperature is above 8◦C for a land cover specific number of days (Table C1) and

cumulative precipitation from the day where growing season starts reaches at least 40 mm. In the beginning of the growing

season, L increases linearly for 30 days until it reaches Lmax. For (semi)arid cells, at least 0.5 mm of daily P is required to

keep the growing season on-going. When growing season conditions are not fulfilled anymore, a senescence phase is initiated320

and L linearly decreases to Lmin within the next 30 days (Kaspar, 2004). It is noteworthy that in WaterGAP L only affects the

calculation of the canopy water balance. L is not taken into account in computing consumptive water use for irrigated crops

(Sect. 3.1) and evapotranspiration from land (Sect. 4.4

Following Deardorff (1978), Ec is calculated as

Ec = Epot

(
Sc

Sc,max

) 2
3

(6)325

where Epot is the potential evapotranspiration (mmd−1) calculated with the Priestley-Taylor equation according to Shuttle-

worth (1993) as

Epot = α

(
sa R

sa+ g

)
(7)

where, following Shuttleworth (1993), α is set to 1.26 in humid and to 1.74 in (semi)arid cells (Fig. B). R is net radi-

ation (mmd−1) that depends on land cover (Table C2) (for details in calculation of net radiation, the reader is referred to330

Müller Schmied et al. (2016b)) and sa is the slope of the saturation vapour pressure-temperature relationship (kPa °C−1)

defined as

sa =
4098(0.6108e

17.27T
T+237.3 )

(T +237.3)2
(8)

where T (◦C) is the daily air temperature and g is the psychrometric constant (kPa °C−1). The latter is defined as

g =
0.0016286pa

lh
(9)335

where pa is atmospheric pressure of the standard atmosphere (101.3 kPa) and lh is latent heat (MJkg−1). Latent heat is

calculated as

lh =

2.501− 0.002361T if T > 0

2.501+0.334 otherwise
(10)

.

4.3 Snow340

To simulate snow dynamics, each 0.5◦ × 0.5◦ grid cell is spatially disaggregated into 100 non-localized subcells that are

assigned different land surface elevations according to GTOPO30 (U.S. Geological Survey, 1996). Daily temperature at each

subcell is calculated from daily temperature at the 0.5◦ × 0.5◦ cell by applying an adiabatic lapse rate of 0.6◦C per 100 m
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(Schulze and Döll, 2004). The daily snow water balance is computed for each of the subcells such that within a 0.5◦ × 0.5◦

cell there may be subcells with and without snow cover or snowfall. For model output, subcell values are aggregated to 0.5◦ ×345

0.5◦ cell values.

4.3.1 Water balance

Snow storage accumulates below snow freeze temperature and decreases by snow melt and sublimation. Snow storage Ssn

(mm) is calculated as

dSsn
dt

= Psn−M −Esn (11)350

where Psn is the part of Pt that falls as snow (mmd−1), M is snowmelt (mmd−1) and Esn is sublimation (mmd−1).

4.3.2 Inflows

Snowfall Psn (mmd−1) is calculated as

Psn =

Pt T < Tf

0 otherwise
(12)

where T is daily air temperature (◦C) and Tf snow freeze temperature, set to 0 ◦C. In order to prevent excessive snow accu-355

mulation, when snow storage Ssn reaches 1000 mm in a subcell, the temperature in this subcell is increased to the temperature

in the highest subcell with a temperature above Tf (Schulze and Döll, 2004).

4.3.3 Outflows

Snow melt M is calculated with a land-cover specific degree-day factor DF (mmd−1 ◦C) (Table C2) when the temperature

T in a subgrid surpasses melting temperature Tm (◦C), set to 0 ◦C, as360

M =

DF (T −Tm) T > Tm, Ssn > 0

0 otherwise
(13)

Sublimation Esn is calculated as the fraction of Epot that remains available after Ec. For calculating Epot according to Eq.

(7), land-cover specific albedo values are used if Ssn surpasses 3 mm in the 0.5◦ × 0.5◦ cell (Table C2).

Esn =

Epot−Ec Epot−Ec >Esn

Ssn otherwise
(14)

4.4 Soil365

WaterGAP represents soil as a a one-layer soil water storage compartment characterized by a land-cover and soil-specific

maximum storage capacity as well as soil texture. The simulated water storage represents soil moisture in the effective root

zone.
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4.4.1 Water balance

The change of soil water storage Ss (mm) over time (d) is calculated as370

dSs
dt

= Peff −Rl−Es (15)

where Peff is effective precipitation (mmd−1), Rl is runoff from land (mmd−1) and Es is actual evapotranspiration from the

soil (mmd−1). Once the water balance is computed,Rl is partitioned into 1) fast surface and subsurface runoffRs, representing

direct surface runoff and interflow, and 2) groundwater recharge Rg (Fig. 2) according to a heuristic scheme (Döll and Fiedler,

2008).375

4.4.2 Inflows

Peff is computed as

Peff = Pt−Psn+M (16)

where Pt is throughfall (mmd−1, see Eq. 3), Psn is snowfall (mmd−1, see Eq. 12) and M is snowmelt (mmd−1, see Eq. 13).

4.4.3 Outflows380

Es is calculated as

Es =min

(
(Epot−Ec),(Epot,max−Ec)

Ss
Ss,max

)
(17)

where Epot is potential evapotranspiration (mmd−1), Ec is canopy evaporation (mmd−1, Eq. 6) and Ss,max is the maximum

soil water content (mm) derived as product of total available water capacity in the upper meter of the soil (Batjes, 2012)

and land-cover-specific rooting depth (Table C2) (Müller Schmied, 2017). Epot,max is set to 15 mmd−1 globally. Following385

Bergström (1995), runoff from land Rl is calculated as

Rl = Peff

(
Ss

Ss,max

)γ
(18)

where γ is the runoff coefficient (−). This parameter, which varies between 0.1 and 5.0, is used for calibration (Sect. 4.9).

Together with soil saturation, it determines the fraction of Peff that becomes Rl (Fig. 3). If the sum of Peff and Ss of the

previous day exceed Ss,max, the exceeding fraction of Peff is added to Rl. In urban areas (defined from MODIS data, Sect.390

C), 50% of Peff is directly turned into Rl.

Rl is partitioned into fast surface and subsurface runoff Rs and diffuse groundwater recharge Rg calculated as

Rg =min(Rgmax
,fgRl) (19)

where Rgmax is soil-texture specific maximum groundwater recharge with values of 7/4.5/2.5 mmd−1 for sandy/loamy/clayey

soils and fg the groundwater recharge factor ranging between 0 and 1. fg is determined based on relief, soil texture, aquifer395
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Figure 3. Relation between runoff from land Rl as a fraction of effective precipitation Peff and soil saturation Ss/Ss,max for different

values of the runoff coefficient γ in WaterGAP.

type and the existence of permafrost or glaciers (Döll and Fiedler, 2008). If a grid cell is defined as (semi)arid and has coarse

(sandy) soil, groundwater recharge will only occur if precipitation exceeds a critical value of 12.5 mmd−1, otherwise the

water remains in the soil. The fraction of Rl that does not recharge the groundwater becomes Rs, which recharges surface

water bodies and the river compartment.

4.5 Groundwater400

As there is no knowledge about the depth below the land surface where groundwater no longer occurs due to lack of pore

space, groundwater storage can only be computed in relative terms but is assumed to be unlimited. The groundwater storage

Sg is always positive unless net abstractions from groundwater NAg are high and groundwater depletion occurs. Groundwater

discharge is assumed to be proportional to (positive) Sg and to stop in case of negative Sg .

4.5.1 Water balance405

The temporal development of groundwater storage Sg (m3) is calculated as

dSg
dt

=Rg +Rgl,res,w −Qg −NAg (20)

whereRg is diffuse groundwater recharge from soil (m3 d−1, Eq. 19),Rgl,res,w point groundwater recharge from surface water

bodies (lakes, reservoirs and wetlands) in (semi)arid areas (m3 d−1, Eq. 26), Qg groundwater discharge (m3 d−1) and NAg

net abstraction from groundwater (m3 d−1).410
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4.5.2 Inflows

Rg is the main inflow in most grid cells, except in (semi)arid grid cells with significant surface water bodies where Rgl,res,w
may be dominant. Rgl,res,w varies temporally with the area of the surface water body, which depends on the respective water

storage (Sect. 4.6). In many cells with significant irrigation with surface water, NAg is negative, and irrigation causes a net

inflow into the groundwater due to high return flows (Sect. 3.3).415

4.5.3 Outflows

Qg quantifies the discharge from groundwater storage to surface water storage, with

Qg = kgSg (21)

where kg = 0.01 d−1 is the globally constant groundwater discharge coefficient (Döll et al., 2014). The second outflow com-

ponent NAg is described in Sect. 3.3.420

4.6 Lakes, man-made reservoirs and wetlands

Where lakes, man-made reservoirs and wetlands (LResW) of significant size exist, their water balances strongly affect the

overall water balance of the grid cell due to their high evaporation and water retention capacity (Döll et al., 2003). WGHM

uses the Global Lakes and Wetland Database (GLWD) (Lehner and Döll, 2004) and a preliminary but updated version of the

Global Reservoir and Dam (GRanD) database (Döll et al., 2009; Lehner et al., 2011) to define location, area and other attributes425

of LResW. It is assumed that surface areas given in the databases represent the maximum extent. Appendix D describes how

the information from these databases is integrated into WGHM. Two categories of LResW are defined for WGHM, so-called

"local" water bodies that receive inflow only from the runoff generated within the grid cell and so-called "global" water bodies

that additionally receive the streamflow from the upstream grid cells (Fig. 2). Six different LResW types are distinguished in

WaterGAP.430

• Local wetlands (wl) and global wetlands (wg) cover a maximum area of 3.743 million km2 and 3.752 million km2,

respectively, an area that is at least at its maximum three times larger than the combined maximum area of lakes and

reservoirs (Appendix D). However, 0.3 million km2 of floodplains along large rivers are included as global wetlands,

and their dynamics are not simulated suitably by WGHM. They are assumed to receive the total streamflow as inflow

while in reality only the part of the streamflow that does not fit in the river channel flows into the floodplain (Döll et al.,435

2020). All local (global) wetlands within a 0.5◦ × 0.5◦ grid cell are simulated as one local (global) wetland that covers

a specified fraction of the cell.

• Local lakes (ll) include about 250,000 small lakes and more than 5000 man-made reservoirs and are defined to have a

surface area of less than 100 km2 or a maximum storage capacity of less than 0.5 km3. Like wetlands, all local lakes

in a grid cell are aggregated and simulated as one storage compartment taking up a fraction of the grid cell area. Small440

17



reservoirs are simulated like lakes as 1) the required lumping of all local reservoirs within a grid cell into one local

reservoir per cell necessarily leads to a “blurring” of the specific reservoir characteristics, and 2) small reservoirs are

likely not on the main river simulated in the grid cell but on a tributary. Therefore, a reservoir algorithm is not expected

to simulate water storage and flows better than the lake algorithm.

• 1355 global lakes (lg), i.e. lakes with an area of more than 100 km2, are simulated in WaterGAP. Since a global lake445

may spread over more than one grid cell, the water balance of the whole lake is computed at the outflow cell (Döll et al.,

2009) (for consequences, see Sect. 5.2). Only the maximum area of natural lakes is known, not the maximum water

storage capacity.

• Global man-made reservoirs (res) have a maximum storage capacity of at least 0.5 km3 and global regulated lakes

(lakes where outflow is controlled by a dam or weir) have a maximum storage capacity of at least 0.5 km3 or an450

area of more than 100 km2. Both are simulated by the same water balance equation. There can be only one global

reservoir/regulated lake compartment per grid cell. Outflow from reservoirs/regulated lakes is simulated by a modified

version of the Hanasaki et al. (2006) algorithm, distinguishing reservoirs/regulated lakes with the main purpose of ir-

rigation from others (Döll et al., 2009). Like in the case of global lakes, water balance of global reservoirs/regulated

lakes is computed at the outflow cell (for consequences, see Sect. 5.2). Different from lakes, information on maximum455

water storage capacity is available from the GRanD database, in addition to the main use and the commissioning year.

In WGHM, reservoirs start filling at the beginning of the commissioning year, and regulated lakes then turn from global

lakes into global regulated lakes (Appendix D). 1082 global reservoirs and 85 regulated lakes are taken into account, but

as those that have the same outflow cell are aggregated to one water storage compartment by adding maximum storages

and areas, only 1109 global reservoirs/regulated lakes compartments are simulated in WGHM (Appendix D). Under460

naturalized conditions (Sect. 4.1), there are no global man-made reservoirs and regulated lakes are simulated as global

lakes; however, local reservoirs remain in the model.

In each grid cell, there can be a maximum of one local wetland storage compartment, one global wetland compartment, one

local lake compartment, one global lake compartment and one global reservoir/regulated lake compartment. The lateral water

flow within the cell follows the sequence shown in Fig. 2. For example, if there is a local lake compartment in a grid cell, it is465

this compartment that receives, under humid climate, a fraction of the outflow from the groundwater compartment and of the

fast surface and subsurface outflow, and the outflow from the local lake becomes inflow to the local wetland if existing (Fig.

2). If there is no local wetland but a global lake, the outflow from the local lake becomes part of the inflow of the global lake.

In case of having a global lake and a global reservoir/regulated lake in one cell, water is routed first through the global lake.

4.6.1 Water balance470

The water balance for the five types of LResW compartments is calculated as

dSl,res,w
dt

=Qin+A(P −Epot)−Rgl,res,w −NAl,res−Qout (22)
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where Sl,res,w is volume of water stored in the water body (m3), Qin is inflow into water body from upstream (m3 d−1),

A is global (or local) water body surface area (m2) in the grid cell at time t, P is precipitation (m3 d−1), Epot is potential

evapotranspiration (m3 d−1, Eq. 7), Rgl,res,w is groundwater recharge from the water body (only in arid/semi-arid regions)475

(m3 d−1, Eq. 26), NAl,res is the net abstraction from the lakes and reservoirs (m3 d−1) (Fig. 2 and Sect. 4.8), Qout is outflow

from the water body to other surface water bodies including river storage (m3 d−1) (Fig. 2).

The temporally varying surface area A of the water body is computed in each daily time step using the following equation:

A= r ∗Amax (23)

where r is reduction factor (−), Amax is maximum extent of the water body (m2) from GRanD or GLWD databases. In case480

of local and global lakes

r = 1−
(
|Sl−Sl,max|

2Sl,max

)p
, 0≤ r ≤ 1 (24)

where Sl is the volume of the water (m3) stored in the lake at time t (d), Sl,max is the maximum storage of the lake (m3). Sl,max

is computed based on Amax and a maximum storage depth of 5 m, p is the reduction exponent (−), set to 3.32. According to

the above equation, the area is reduced by 1% if Sl = 50% of Sl,max, by 10% if Sl = 0 and by 100% if Sl = -Sl,max (Hunger485

and Döll, 2008). In case of global reservoirs/regulated lakes and local and global wetlands

r = 1−
(
|Sres,w −Sres,w,max|

Sres,w,max

)p
, 0≤ r ≤ 1 (25)

where Sres,w is the volume of the water (m3) stored in the reservoir/regulated lake or wetland, p is 2.814 and 3.32 for reser-

voirs/regulated lakes and wetlands, respectively. In case of wetlands, Sres,w,max (m3) is computed based on Amax and a

maximum storage depth of 2 m. Wetland area is reduced by 10% if Sw = 50% of Sres,w,max and by 70% if Sw is only 10%490

of Sres,w,max. In case of reservoirs/regulated lakes, storage capacity Sres,w,max is taken from the database. Reservoir area

is reduced by 15% if Sres is 50% of Sres,w,max and by 75% if Sres is only 10% of Sres,w,max. For regulated lakes without

available maximum storage capacity, Sres,w,max is computed as in case of global lakes.

While storage in reservoirs/regulated lakes and wetlands cannot drop below zero due to high outflows, high evaporation or

NAs, storage in lakes can become negative. This represents the situation where there is no more outflow from the lake to a495

downstream water body (Qout = 0). There, like groundwater storage, storage of local and global lakes is a relative and not an

absolute water storage. Reservoir/regulated lakes storage is not allowed to fall below 10% of storage capacity.

With changing A of the surface water compartments local wetland, global wetlands and local lakes, the land area fraction

is adjusted accordingly. However, in case of global lakes and reservoirs/regulated lakes, which may cover more than one 0.5◦

× 0.5◦ cell, such an adjustment is not made as it is not known, in which grid cells the area reduction occurs. Therefore, land500

area fraction is not adjusted with changing r and precipitation is assumed to fall on a surface water body with an area of Amax

instead of A.
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4.6.2 Inflows

Calculation of Qin differs between local and global water bodies. In case of local lakes and local wetlands, they are recharged

only by local runoff generated within the same grid cell. A fraction fswb of the fast surface and subsurface runoff generated505

within the grid cell Rs (m3 d−1) and, only in case of humid grid cells, a fraction fswb of the base flow from groundwater Qg

(m3 d−1) become inflow to local water bodies (Fig. 2, Sect. 4.4.3, 4.5.2). In case where one grid cell contains both local lake

and wetland, then the outflow of the local lake will be the inflow to the local wetland according to Fig. 2. Global lakes, global

wetlands, and global reservoirs/regulated lakes receive, in addition to local runoff, inflow from streamflow of the upstream grid

cells as river inflow (Fig. 2). In many cells with significant groundwater abstraction, NAs is negative, and return flow leads to510

a net inflow into surface water bodies (Sect. 3.3).

4.6.3 Outflows

LResW lose water by evaporation Epot, which is assumed to be equal to the potential evapotranspiration computed using the

Priestley-Taylor equation with an albedo of 0.08 according Eq. (7). In semi-arid and arid grid cells (Appendix B), LResW are

assumed to recharge the groundwater with a focused groundwater recharge, Rgl,res,w with515

Rgl,res,w =Kgwl,res,w
∗ r ∗Amax (26)

where Kgwl,res,w
is the groundwater recharge constant below LResW (= 0.01 md−1). This process is applied only in the arid

and semi-arid grid cells, as in humid areas groundwater mostly recharges the surface water bodies as explained in the Sect.

4.6.2 (Döll et al., 2014).

It is assumed that water can be abstracted from lakes and reservoirs but not from wetlands. An amount of NAl,res (m3 d−1)520

is the net abstractions from lakes and reservoirs, depends on the total unsatisfied water use Remuse and the water storage in

the surface water compartment. In case of a global lake and a reservoir within the same cell, NAl,res is distributed equally.

In a reservoir, abstraction is only allowed until water storage reaches 10% of storage capacity (after fulfilling E and Rgl,res
). Outflow from LResW to downstream water bodies including river storage (Fig. 2) is calculated as a function of LResW

water storage. The principal effect of a lake or wetland is to reduce the variability of streamflow, which can be simulated by525

computing outflow Qout as

Qout = k ∗Sll,wl ∗ (
Sll,wl

Sll,wl,max
)a (27)

where Sll,wl is the local lake or local wetland storage (m3) and k is the surface water outflow coefficient (= 0.01 d−1).

Sll,wl,max (m3) is computed based on Amax and a maximum storage depth of 2 m for local lakes and 5 m for local wetlands.

The exponent a is set to 1.5 in case of local lakes, based on the theoretical value of outflow over a rectangular weir, while the530

exponent of 2.5 used for local wetlands leads to a slower outflow (Döll et al., 2003). The outflow of global lakes and global

wetlands is computed as

Qout = k ∗Slg,wg (28)
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Different from the commissioning year of a reservoir, which is the year the dam was finalized (Appendix D), the operational

year of each reservoir is the 12-month period for which reservoir management is defined. It starts with the first month with a535

naturalized mean monthly streamflow that is lower than the annual mean. To compute daily outflow, e.g., release, from global

reservoirs/regulated lakes, the total annual outflow during the reservoir-specific operational year is determined first as a function

of reservoir storage at the beginning of the operational year. Total annual outflow during the operational year is assumed to be

equal to the product of mean annual outflow and a reservoir release factor krele that is computed each year on the first day of

the operational year as540

krele =
Sres

Sres,max ∗ 0.85
(29)

where Sres is the reservoir/regulated lake storage (m3) and Sres,max is the storage capacity (m3). Thus, total release in an

operational year with low reservoir storage at the beginning of the operational year will be smaller than in a year with high

reservoir storage.

During the first filling phase of a reservoir after dam construction, krele = 0.1 until Sres exceeds 10% of Sres,max. If the545

storage capacity to mean total annual outflow ratio is larger than 0.5, then the outflow from the reservoir is independent of the

actual inflow, and temporally constant in case of a non-irrigation reservoir. In case of an irrigation reservoir, outflow is driven

by monthly NAs in the next five downstream cells or down to the next reservoir (Döll et al., 2009; Hanasaki et al., 2006).

For reservoirs with a smaller ratio, the release additionally depends on daily inflow and is higher on days with high inflow

(Hanasaki et al., 2006). If reservoir storage drops below 10% of Sres,max, release is reduced to 10% of the normal release to550

satisfy a minimum environmental flow requirement for ecosystems. Daily outflow may also include overflow, which occurs if

reservoir storage capacity is exceeded due to high inflow into the reservoir.

4.7 Rivers

The water balance of the river compartment is computed to quantify streamflow, one of the most important output variables of

hydrological models.555

4.7.1 Water balance

The dynamic water balance of the river water storage in a cell is computed as

dSr
dt

=Qr,in−Qr,out−NAs,r (30)

where Sr is the volume of water stored in the river (m3), Qr,in is inflow into the river compartment (m3 d−1), Qr,out is the

streamflow (m3 d−1) and NAs,r is the net abstraction of surface water from the river (m3 d−1).560

4.7.2 Inflows

If there are no surface water bodies in a grid cell, Qr,in is the sum of Rs, Qg and streamflow from existing upstream cell(s).

Otherwiese, part of Rs, and in the case of humid cells also part of Qg , is routed through the surface water bodies (Fig. 2). The
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outflow from the surface water body preceding the river compartment then becomes part of Qr,in. In addition, negative NAs

values due to high return flows from irrigation with groundwater lead to a net increase in storage. Thus, if no surface water565

bodies exist in the cell, negative NAs is added to Qr,in (Sect. 3.3 and Fig. 2).

4.7.3 Outflows

Qr,out is defined as the streamflow that leaves the cell and is transferred to the downstream cell.

It is calculated as

Qr,out =
v

l
∗Sr (31)570

where v (md−1) is river flow velocity and l is the river length (m). l is calculated as the product of the cell’s river segment

length, derived from the HydroSHEDS drainage direction map (Lehner et al., 2008), and a meandering ratio specific to that

cell (method described in Verzano et al. (2012)). v is calculated according to the Manning-Strickler equation as

v = n−1 ∗R
2
3

h ∗ s
1
2 (32)

where n is river bed roughness (−), Rh is the hydraulic radius of the river channel (m) and s is river bed slope (mm−1). Cal-575

culation of s is based on high resolution elevation data (SRTM30), the HydroSHEDS drainage direction map and an individual

meandering ratio. The pre-defined minimum s is 0.0001 mm−1.

To compute the daily varyingRh, a trapezoidal river cross section with a slope of 0.5 is assumed such that it can be calculated

as a function of daily varying river depth Dr and temporally constant bottom width Wr,bottom (Verzano et al., 2012). Allen

et al. (1994) empirically derived equations relating river depth, river top width and streamflow for bankfull conditions. In580

former model versions, these equation were also applied at each time step, even if streamflow was not bankfull, to determine

river width and depth required to compute Rh and thus v. As usage of these functions for any streamflow below bankfull is not

backed by the data and method of Allen et al. (1994), WaterGAP2.2d implements a consistent method for determining daily

width and depth as a function of river water storage.

As bankfull conditions are assumed to occur at the initial time step, the initial volume of water stored in the river is computed585

as

Sr,max =
1

2
∗ l ∗Dr,bf ∗ (Wr,bottom+Wr,bf ) (33)

where Sr,max is the maximum volume of water that can be stored in the river at bankfull depth (m3), Dr,bf (m) and Wr,bf (m)

are river depth and top width at bankfull conditions, respectively, and Wr,bottom is river bottom width (m). River water depth

Dr (m) is simulated to change at each time step with actual Sr as590

Dr =−
Wr,bottom

4
+

√
Wr,bottom ∗

Wr,bottom

16
+0.5 ∗ Sr

l
(34)

Using the equation for a trapezoid with a slope of 0.5, Rh is then calculated from Wr,bottom and Dr. Bankfull flow is assumed

to correspond to the maximum annual daily flow with a return period of 1.5 years (Schneider et al., 2011) and is derived from

daily streamflow time series.
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The roughness coefficient n of each grid cell is calculated according to Verzano et al. (2012), who modeled n as a function595

of various spatial characteristics (e.g., urban or rural area, vegetation in river bed, obstructions) and a river sinuosity factor to

achieve an optimal fit to streamflow observations. Because of the implementation of a new algorithm to calculateDr, we had to

adjust their gridded n-values to avoid excessively high river velocities (Schulze et al., 2005). By trial-and-error, we determined

optimal n-multipliers at the scale of thirteen large river basins that lead to a good fit to monthly streamflow time series at the

most downstream stations and basin-average total water storage anomalies from GRACE. We found that in nine out of thirteen600

basins, multiplying n by 3 resulted in the best fit between observed and modeled data. We therefore set the multiplier to 3

globally, except for the remaining four basins, where other values proved to be more adequate; this concerns the Lena basin,

where n is multiplied by 2, the Amazon basin, where n is multiplied by 10 and the Huang He and Yangtze basin, where n are

kept at their original value (Fig. S1).

Net cell runoff Rnc (mmd−1), the part of the cell precipitation that has neither been evapotranspirated or stored with a time605

step, is calculated as

Rnc =
(Qr,out−Qr,in)

Acont
× 109 (35)

where Acont is continental area (0.5◦ × 0.5◦ grid cell area minus ocean area) of the grid cell (m2). Renewable water resources

are calculated as long-term mean annual Rnc computed under naturalized conditions (Sect. 4.1). Renewable water resources

can be negative if evapotranspiration in a grid cell is higher than precipitation due to evapotranspiration from global lakes,610

reservoirs or wetlands that receive water from upstream cells.

4.8 Abstraction of human water use in WaterGAP Global Hydrological Model

The global water use models (Sect. 3) together with GWSWUSE (Sect. 3.3) calculate potential NApot,g and NApot,s, which

are independent of actual water availability. Potential NApot,g is always satisfied in WGHM due to the assumed unlimited

groundwater storage that can be depleted (with the exception described in last paragraph of this section).615

Satisfaction of potential NApot,s depends on the availability of water in surface water bodies including the river compart-

ment, considering the abstraction priorities shown in Fig. 2. If the surface water in a grid cell cannot satisfy potential NApot,s

of the grid cell on a certain day, two processes are used to distribute the unsatisfied water use spatially and temporally and thus

to potentially increase the amount of satisfied NAs:

1. Unsatisfied water use of a cell is allocated to the neighboring cell with the largest river and lake storage ("second" cell),620

and water required in the cell is abstracted in this neighboring cell.

2. Unsatisfied water use is added to NAs of the next day until the end of the calendar year.

In addition, potential NApot,s of riparian cells of global lakes and reservoirs (where the water balance is calculated in the

outflow cell), identified based on the lake/reservoir polygons, can be satisfied by global lake or reservoir storage. If NApot,s

can still not be fulfilled, actual NAs becomes smaller than potential NAs. Delayed satisfaction aims at compensating that625

WaterGAP likely underestimate storage of water e.g. by small tanks and dams, and because of the generic reservoir operation
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scheme. Without delayed satisfaction, less than 50% of potential NApot,s could be satisfied in many semi-arid regions (Fig.

S2). The delayed satisfaction scheme may overestimate satisfaction of surface water demand in particular in highly seasonal

flow regimes. However, this effect is hardly visible in the hydrograph of the monsoonal Yangtze river (Fig. S3) but more visible

in semi-arid regions (Figs. S4, S5). With delayed satisfaction of potential NAs, 92.5% of global potential NAs during 1981-630

2010 is satisfied, but only 82.2% in case of the alternative option that surface water demand needs to be satisfied by available

surface water on the same day.

In case of irrigation by surface water, it is assumed the any decrease of NAs is due to a decrease of withdrawal water uses

for irrigation. This also reduces return flow to groundwater. Therefore, in WaterGAP 2.2d, NAg is increased in each time step

in the water demand cell in accordance with the unfulfilled potential NApot,s in the cell (after steps 1 and 2).635

4.9 Calibration and regionalization

4.9.1 Calibration approach

The main purpose of WaterGAP is to quantify water resources and water stress for both historical time periods and scenarios of

the future. Not only due to very uncertain global climate input data, uncalibrated global hydrological models may compute very

biased runoff and streamflow values (e.g. Haddeland et al. (2011)). To reduce the bias and simulate at least mean streamflow640

and thus renewable water resources with a reasonable reliability, WGHM has been calibrated to match observed long-term

average annual streamflow at gauging stations on all continents (Döll et al., 2003; Kaspar, 2004). Calibration is required due to

uncertain model parameters, input data (e.g., deviations of precipitation from meterological forcings to observation networks

(Wang et al., 2018)) and model structure including the spatial resolution. The rationale behind the approach can be summed up

by the phrase "If the model is not able to properly capture the average observed hydrological conditions, how well founded are645

future projections?" (see also the discussion in Krysanova et al. (2018, 2020)). In order to minimize the problem of equifinality,

WGHM is calibrated in a very simple basin-specific manner to match long-term mean annual observed streamflow (Qobs) at

the outlet of 1319 drainage basins that cover ~54% of the global drainage area (except Antarctica and Greenland) (Fig. 4).

The runoff coefficient γ (Eq. 18) and up to two additional correction factors (the areal correction factor CFA and the station

correction factor CFS (for brief description the reader is referred to the calibration status CS3 and CS4 below or to Hunger and650

Döll (2008))), if needed, are adjusted homogeneously for all grid cells within the drainage basin. Calibration starts in upstream

basins and proceeds to downstream basins, the streamflow from the already calibrated upstream basin as inflow.

While the calibration approach in WaterGAP2.2d is generally the same as in previous model versions (Döll et al., 2003;

Hunger and Döll, 2008; Müller Schmied et al., 2014), it was modified (Müller Schmied, 2017, Appendix A3) to allow for a ±
10% gauging station observation uncertainty (following Coxon et al., 2015; Pascolini-Campbell et al., 2020) instead of ± 1%655

in previous model versions. It is noteworthy that the discharge uncertainty (approximated here with ± 10%) is unlikely to be

stationary in space and time (Coxon et al., 2015) but there are no further data available to better constrain the specific uncertainty

of each gauging station. The source of streamflow data and selection criteria for stations are the same as in Müller Schmied
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et al. (2014) (their Appendix B2) but the 30-year period was shifted (if available) from 1971-2000 to 1980-2009 to capture a

more recent time period.660

Calibration follows a four-step scheme with specific calibration status (CS):

1. CS1: adjust the basin-wide uniform parameter γ (Eq. 18) in the range of [0.1-5.0] to match Qobs within ± 1%.

2. CS2: adjust γ as for CS1, but within 10% uncertainty range (90-110% of observations).

3. CS3: as CS2 but apply the areal correction factor CFA (adjusts runoff and, to conserve the mass balance, actual evapo-

transpiration as counterpart of each grid cell within the range of [0.5-1.5]) to match Qobs with 10% uncertainty.665

4. CS4: as CS3 but apply the station correction factor CFS (multiplies streamflow in the cell where the gauging station is

located by an unconstrained factor) to match Qobs with 10% uncertainty to avoid error propagation to the downstream

basin. Note that with CFS, actual evapotranspiration of this grid cell is not adapted accordingly to avoid unphysical

values. Hence, mass is not conserved in case of CS4 for the grid cell where CFS is applied in the upstream basin. For

global water balance assessment, the mass balance is kept by adjusting the actual evapotranspiration component by the670

amount CFS modified streamflow.

For each basin, calibration steps 2-4 are only performed if the previous step was not successful.

4.9.2 Regionalization approach

The calibrated γ values are regionalized to river basins without sufficient streamflow observations using a multiple linear

regression approach that relates the natural logarithm of γ to basin descriptors (mean annual temperature, mean available soil675

water capacity, fraction of local and global lakes and wetlands, mean basin land surface slope, fraction of permanent snow and

ice, aquifer-related groundwater recharge factor). Just like the calibrated γ-values, the regionalized values are limited between

0.1 and 5.0; CFA and CFS are set to 1.0 in uncalibrated basins. A manual modification of the regionalized γ value to 0.1

was done (from values of 3-5) for basins covering the North China Plain in northeastern China as groundwater depletion was

overestimated by a factor of 4 in this region (Döll et al., 2014); a lower γ allows higher runoff generation that translates into680

higher groundwater recharge and thus a weaker overestimation.

4.9.3 Calibration and regionalization results

Calibration of WaterGAP 2.2d driven by the standard climate forcing (Sect. 7.1) results in 485 basins with calibration status

CS1, 185 basins with calibration status CS2, 277 basins with calibration status CS3 and 372 basins with calibration status

CS4. This means that in 72% of the calibration basins, the usage of the station correction factor CFS is not required to match685

the simulated long-term annual streamflow to observations. The spatial distribution of the calibration parameters and status is

shown in Fig. 4.
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Figure 4. Results of the calibration of WaterGAP 2.2d to the standard climate forcing with a) the calibration status (see Sect. 4.9.1) of each

calibration basin b) calibration parameter γ, c) areal correction factor CFA, and d) station correction factor CFS. Grey areas in d) indicate

regions with regionalized calibration parameter γ and for a-d) dark green outlines indicate the boundaries of the calibration basins.

5 Standard model output

5.1 Data provided at PANGAEA repository

A set of standard model outputs is provided via the data publisher and repository PANGAEA hosted by Alfred Wegener690

Institute, Helmholtz Center for Polar and Marine Research (AWI), Center for Marine Environmental Sciences and University

of Bremen (MARUM), under the Creative Commons Attribution Non Commercial 4.0 International license (CC-BY-NC-4.0).

The data are stored using the network Common Data Form (netCDF) format developed by UCAR/Unidata (Unidata, 2019) and

are available at https://doi.pangaea.de/10.1594/PANGAEA.918447.

The available storages and flows are listed in Table 1 and Table 2, respectively. To convert between equivalent water heights695

(e.w.h.) and volumetric units, the cell-specific continental area used in WaterGAP 2.2d is also provided. The assumed water

density is 1 g cm−3. The following additional static data used to produce the storages and flows are available: flow direction

(Döll and Lehner, 2002), land cover (Appendix C), location of outflow cells of global lakes and reservoirs/regulated lakes

(Sect. 4.6), rooting depth (Sect. 4.4.3), maximum soil water storage (Ss,max) and reservoir commissioning year (Sect. 4.6.3).

Additionally, the calibration factors γ, CFA, CFS and the calibration status CS (Sect. 4.9.1) are provided The netCDF files700
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Table 1. Standard WaterGAP output variables: 1) Water storages. Units are kgm−2 (mme.w.h.). Temporal resolution is monthly.

Storage type PANGEA file Symbol

Total water storage1,2 tws Stws

Canopy water storage canopystor Sc

Snow water storage swe Ssn

Soil water storage soilmoist Ss

Groundwater storage2 groundwstor Sg

Local lake storage2 loclakestor Sll

Global lake storage2 glolakestor Slg

Local wetland storage locwetlandstor Swl

Global wetland storage glowetlandstor Swg

Reservoir storage reservoirstor Sres

River storage riverstor Sr

1Sum of all compartments below

2relative water storages, only anomalies with respect to a reference

period can be evaluated

contain metadata with detailed information regarding characteristics of the data (e.g., whether a storage type contains anomaly

or absolute values) and a legend where applicable.

5.2 Caveats in usage of WaterGAP model output

Based on feedback from data users and own experience, here we describe caveats regarding analysis of specific WaterGAP2.2d

model output with the aim of guiding output users.705

• WaterGAP does not consider leap years. This implies that model output (typically provided in netCDF file format)

corresponding to leap years contains the "fill value" instead of a data value at the position of February 29th.

• The water balance of large lakes and reservoirs is calculated in the outflow cell only. Hence, large numerical values can

occur for storages and flows, especially in case of very large water bodies.

• In case the station correction factor CFS (Sect. 4.9.1) is applied in the grid cell corresponding to the calibration station,710

multiplication of streamflow by CFS destroys the water balance for this particular grid cell. Hence, the calculation of

water balance at various spatial units requires that the amount of reduced/increased streamflow is taken into account

in order to close the water balance. A direct inclusion of modified streamflow in e.g., evapotranspiration is not done to

avoid physically implausible values for this variable. Water balance is preserved in case CFA is used.

• Gridded model output always relates to the continental area (grid cell area minus ocean area within cell). If flows like715

runoff from land or diffuse groundwater recharge are simulated to occur only on the land area, i.e. the fraction of the
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Table 2. Standard WaterGAP output variables: 2) Flows. Units are kgm−2 s−1 (mme.w.h. s−1), except m3 s−1 for Qr,out and Qr,out,nat.

Temporal resolution is monthly.

Flow type PANGEA file Symbol

Monthly precipitation precmon P

Fast surface and fast subsurface runoff1 qs Rs

Diffuse groundwater recharge qrdif Rg

Groundwater recharge from surface water bodies qrswb Rgl,res,w

Total groundwater recharge2 qr Rgtot

Runoff from land3 ql Rl

Groundwater discharge4 qg Qg

Actual evapotranspiration 5 evap Ea

Potential evapotranspiration potevap Ep

Net cell runoff ncrun Rnc

Naturalized net cell runoff6 natncrun Rnc,nat

Streamflow7 dis Qr,out

Naturalized streamflow7 natdis Qr,out,nat

Actual net abstraction from surface water anas NAs

Actual net abstraction from groundwater anag NAg

Actual consumptive water use 8 atotuse WCa

1fraction of total runoff from land that does not recharge the groundwater; 2sum of qrdif and qrswb; 3sum

of qs and qrdif; 4groundwater runoff; 5sum of soil evapotranspirationEs, sublimationEsn, evaporation

from canopyEc, evaporation from water bodies and actual consumptive water useWCa; 6equals

renewable water resources if averaged over e.g., 30yr time period;7river discharge;8sum of anas and anag

continental area that is not covered by surface water bodies, these flow variables can be small in cells with large water

bodies, e.g. groundwater recharge along the Amazon river with riparian wetlands (Fig. 11c).

• Groundwater recharge below surface water bodies (Eq. 26) can lead to very high values in case of large surface water

bodies and especially in inland sinks that contain large lakes. Temporal changes of this variable can be implausibly high720

(> 103 mmyr−1).

• Renewable water resources (Fig. 11a) are defined as the amount of precipitation that is not evapotranspired on the long

term (30 years) under naturalized conditions (no water use, no reservoirs). Data users should keep in mind that this

variable can only be calculated from naturalized runs and the long-term average of the variable "net cell runoff" Rnc,nat

(Table 2). A calculation of renewable water resources using other model setups is not meaningful.725
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6 Model evaluation

This section comprises an evaluation of WaterGAP 2.2d using independent data of withdrawal water uses, streamflow and total

water storage anomalies TWSA as well as a comparison to the previous model version 2.2 (Müller Schmied et al., 2014).

6.1 Model set-up and simulation experiments

In order to compare WaterGAP 2.2d with model version 2.2 (Sect. 6.5), both versions were calibrated and run with the same730

climate forcing. However, version 2.2 was calibrated using the calibration routine of Müller Schmied et al. (2014). The differ-

ences between model versions 2.2 and 2.2d are listed in Appendix A.

A homogenized combination of WATCH Forcing Data based on ERA40 (Weedon et al., 2011) (for 1901-1978) and WATCH

Forcing Data methodology applied to ERA-Interim reanalysis (Weedon et al., 2014) (for 1979-2016), with precipitation ad-

justed to monthly precipitation sums from GPCC (Schneider et al., 2015) was used. The homogenization method is described735

in Müller Schmied et al. (2016a). The calibrated models have been run for the time period 1901-2016, with a spin up of 5 years

in which the model input for 1901 was used.

6.2 Evaluation data sets

6.2.1 AQUASTAT withdrawal water use data

AQUASTAT is the Food and Agricultures Organization of the United Nations Global Information System on Water and Agri-740

culture (FAO, 2019). It contains information on country-level withdrawal water uses for different sectors. These data represent

estimates mainly provided by the individual countries. In particular irrigation withdrawal water uses are, for most countries, not

based on observations. Six different withdrawal water use variables (Table 3) were available for comparison to WaterGAP2.2d.

For the evaluation, all database entries available on FAO (2019) were used, hence it contains yearly values per country as data

unit. The evaluation metrics (Sect. 6.3.1) are calculated using each single data point of AQUASTAT without any temporal745

aggregation by country.

6.2.2 GRDC streamflow data

Monthly streamflow time series from 1319 calibration stations from the Global Runoff Data Centre (GRDC) were used for

evaluating performance of WaterGAP 2.2d and 2.2. As the GRDC archive has certain gaps in some regions and times and the

calibration objective is to benefit from a maximum of observation data, the typical split-sampling calibration/validation is not750

appropriate. Even though the same observation data are used for calibration and validation, the validation against monthly time

series is meaningful as only long-term mean annual streamflow values have been used for calibration.
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Table 3. AQUASTAT variables used for evaluating WaterGAP 2.2d potential withdrawal water use WU, including variable ID reference of

AQUASTAT.

No. WU variable Description AQUASTAT equivalent (variable ID)

1 Total WU Total WU from all sectors Total freshwater withdrawal water use (4263)

2 Groundwater WU As 1 but from groundwater resources only Fresh groundwater withdrawal water use (4262)

3 Surface water WU As 1 but from all surface water resources only Fresh surface withdrawal water use (4261)

4 Irrigation WU WU for irrigation Irrigation withdrawal water use (4475)

5 Industrial WU WU for manufacturing and cooling of thermal power plants Industrial withdrawal water use (4252)

6 Domestic WU WU for domestic sector Municipal withdrawal water use (4251)

6.2.3 GRACE total water storage anomalies

Three mascon solutions of monthly time series of total water storage anomalies TWSA from the Gravity Recovery And Climate

Experiment (GRACE) satellite mission are considered. The Jet Propulsion Laboratory (JPL) mascon dataset (Watkins et al.,755

2015; Wiese et al., 2018, 2016) from the GRACE Tellus Website (JPL, 2020) is based on the Level-1 product processed at

JPL. A geocenter correction is applied to the degree-1 coefficients following the method from Swenson et al. (2008), the

c20 coefficient is replaced with the solutions from Satellite Laser Ranging (SLR; Cheng et al. (2011)) and a glacial isostatic

adjustment (GIA) correction is applied based on the ICE6G-D model published in Richard Peltier et al. (2018). The Center of

Space Research (CSR) RL05 GRACE mascon solution (Save et al., 2016) from the University of Texas website (CSR, 2019)760

performs the same degree-1 and c20 replacements (but following Cheng et al. (2013)) and removes the GIA signal based on

the model from Geruo et al. (2012). Last, the Goddard Space Flight Center (GSFC) GRACE mascon solutions Luthcke et al.

(2013) from the Geodesy and Geophysics Science Research Portal (NASA, 2020) applies trend corrections for the c21 and s21

coefficients following Wahr et al. (2015) in addition to the degree-1, c20 and GIA corrections described for CSR.

Monthly TWSA values are provided on 0.5◦ × 0.5◦ grid cells for JPL and CSR, while GSFC provides equal area grids with765

a spatial resolution of around 1◦×1◦ at the equator. In this study, the grid values are spatially averaged over 143 river basins

with a total area of more than 200,000 km2 each, out of the 1319 basins used for calibration. The considered time span for this

study is 2003-2015 full years of data, limited by available monthly solutions from GSFC between January 2003 and July 2016.
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6.3 Evaluation metrics

6.3.1 Nash-Sutcliffe Efficiency770

The Nash-Sutcliffe efficiency metric NSE (−) (Nash and Sutcliffe, 1970) is a traditional metric in hydrological modelling. It

provides an integrated measure of modelling performance with respect to mean values and variability and is calculated as:

NSE = 1−
∑n
i=1(Oi−Si)2∑n
i=1(Oi−O)2

(36)

where Oi is observed value (e.g., monthly streamflow), Si is simulated value and O is mean observed value. The optimal value

of NSE is 1. Values below 0 indicate that the mean value of observations is better than the simulation (Nash and Sutcliffe,775

1970). For assessing the performance of low values of water abstraction (Sect. 6.4.1), a logarithmic NSE was calculated in

addition by applying logarithmic transformation before calculation of the performance indicator.

6.3.2 Kling-Gupta Efficiency

The Kling-Gupta efficiency metric KGE (Kling et al., 2012; Gupta et al., 2009) transparently combines the evaluation of bias,

variability and timing and is calculated (in its 2012 version) as:780

KGE = 1−
√
(KGEr − 1)2 +(KGEb− 1)2 +(KGEg − 1)2 (37)

where KGEr is the correlation coefficient between simulated and observed values (−), an indicator for the timing, KGEb is

the ratio of mean values (Eq. (38)) (−), an indicator of biases regarding mean values and KGEg is the ratio of variability (Eq.

(39)) (−), an indicator for the variability of simulated (S) and observed (O) values.

KGEb =
µS
µO

(38)785

KGEg =
CVS
CVO

=
σS/µS
σO/µO

(39)

where µ is mean value, σ is standard deviation and CV is coefficient of variation. The optimal value of KGE is 1.

6.3.3 TWSA-related metrics

For the evaluation of total water storage anomaly performance, the following metrics were used: R2 (coefficient of determina-790

tion) as strength of linear relationship between simulated and observed variables, the amplitude ratio as indicator for variability

and trend of both GRACE and WaterGAP data. Amplitude and trends were determined by a linear regression for estimating

the most dominant temporal components of the GRACE time series. The time series of monthly TWSA was approximated by

a constant a, a linear trend b, an annual and a semi-annual sinusoidal curve as follows

y(t) = a+ b ∗ t+ c ∗ sin(2 ∗π ∗ t)+ d ∗ cos(2 ∗π ∗ t)+ e ∗ sin(4 ∗π ∗ t)+ f ∗ cos(4 ∗π ∗ t)+ r (40)795
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where r denotes the residuals. The parameters a to f were estimated via least-squares adjustment. The annual amplitude can

be computed by A= sqrt(c2 + d2), and thus, the annual ratio was calculated by AWGHM/AGRACE .

6.4 Evaluation results

6.4.1 Water withdrawals

The performance of WaterGAP potential withdrawal water uses is generally of reasonable quality (Fig. 5, for a non-logarithmic800

graph see Fig. S6). Highest agreement in terms of performance indicator is shown for the total withdrawal water uses with both

efficiency metrics close to the optimum value. Slightly less agreement is visible for the separation into groundwater with-

drawals (underestimation by WaterGAP) and surface water withdrawals (overestimation by WaterGAP). The domestic sectoral

withdrawal water uses are best simulated with WaterGAP, followed by the industrial sector. Here, large differences between

NSE and logarithmic NSE are visible, indicating that WaterGAP has specific problems in representing the small values and805

tending to a general overestimation of industrial withdrawal water uses. When comparing simulated industrial water uses from

WaterGAP with data of the FAO AQUASTAT database reveals inconsistencies due to overestimation (i.e., for values >200

km3 yr−1) as well as underestimation (i.e., for small values) (Fig. 5 and Fig. S6). In terms of overestimated values, values for

India and Germany dominate the differences in the time intervals 2008-2012 and 2013-2016, respectively. Water withdrawals

of 56 km3 yr−1 for the industry sector (including thermoelectric) was assessed by India’s National Commission on Integrated810

Water Resources Development for 2010 (Bhat, 2014). Here AQUASTAT reports 17 km3 yr−1 and WaterGAP simulates 72

km3 yr−1. In case of Germany, AQUASTATs reports only the water use of manufacturing sector but omits the water abstrac-

tions of cooling water for thermal electricity production that is included in the WaterGAP results. The underestimation of

industrial water uses >200 km3 yr−1 (Fig. S6) is particularly biased by the reported numbers from the US statistics. While

AQUASTAT data includes both freshwater and saline water abstractions from manufacturing, thermoelectric and mining, Wa-815

terGAP only accounts for the freshwater part of the manufacturing and thermoelectric abstractions.

WaterGAP performs reasonably well in the irrigation sector with slightly better logarithmic NSE metric but with overall

lowest sectoral performance in terms of NSE (no visible direction in under- or overestimation).

6.4.2 Streamflow

The performance of WaterGAP 2.2d in terms of monthly streamflow time series at 1319 gauging stations (Fig. 6) reaches820

a median NSE (KGE) of 0.52 (0.61). However, NSE values below 0 for 259 stations show that WaterGAP2.2d cannot

reproduce monthly and annual streamflow dynamics in one fifth of the evaluated basins, although the simulated mean annual

streamflow fits to the observations due to the calibration. The median for KGEr of 0.79 indicates a relatively satisfactory

simulation of the timing of monthly streamflows both seasonally and interannually. As the model is calibrated to match long-

term annual river discharge (Sect. 4.9), the median of bias measure KGEb is, with a value of 1.01, close to the optimum value.825

In rare cases, values outside the range of 0.9-1.1 occur as for calibration the individual basins were run for the calibration time

period (plus 5 initialization years) while the evaluation run was a global run from 1901 to 2016. In the normal global runs,
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Figure 5. Comparison of potential withdrawal water uses from WaterGAP 2.2d with AQUASTAT (FAO, 2019). Each data point represents

one yearly value (if present in the database) per country for the time span 1962-2016.

water demand can be fulfilled from neighbouring grid cells while this is not possible in the calibration runs. This partially

explains the larger biases also seen in Fig. 8. Streamflow variability is mostly underestimated by WaterGAP2.2d, and median

KGEg is 0.85 (Fig. 6).830

When analyzing the spatial distribution of streamflow performance indicators, note that a highly seasonal streamflow regime

tends to lead to high NSE and KGEg not due to the quality of the evaluated hydrological model but the highly seasonal

precipitation input. The global distribution of NSE classes shows a diverse pattern (Fig. 7). Whereas large parts of central

Europe, Asia and southern America are simulated reasonably well, the performance in northern America and large parts of

Africa is in many cases below a value of 0.5. Based on NSE alone it remains unclear, why WaterGAP consistently fails835

to satisfactorily simulate large parts of the well observed northern America. Further insights can be gained by assessing the

spatial distribution of KGE and its components (Fig. 8). The broad picture of overall KGE (Fig. 8a) is similar to the NSE
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Figure 6. Efficiency metrics for monthly streamflow of WaterGAP 2.2d at the 1319 GRDC stations with NSE, KGE and its components.

Outliers (outside 1.5x inter-quartile range) are excluded but number of stations that are defined as outliers are indicated after the metric.

spatial distribution (Fig. 7). In a large fraction of river basins with low NSE and KGE, the timing is off, with KGEr <0.5.

One reason could be the inappropriate modelling of the dynamics of lakes and wetland (mainly in Canada) and of reservoir

regulations. As most snow-dominated basins in Alaska, Euroe and Asia show a reasonably high KGEr of >0.8, it is not likely840

that snow dynamics are the dominant cause for low correlations between observed and simulated streamflow. For many other

regions (e.g., central Asia and Nile basin), streamflow regulations due to reservoir as well as the timing of water abstractions are

most likely to cause low performance in timing. The indicator of variability KGEg shows a medium to strong underestimation

of streamflow variability in most of the northern snow-dominated basins. Underestimation in the Amazon basin is caused by

the inability of WaterGAP to simulate wetland dynamics there. There are also many gauging stations for which WaterGAP845

overestimates seasonality, even by more than 50%. Further research and development is needed for improving the GHMs in

this respect (Veldkamp et al., 2018).

6.4.3 TWSA

WaterGAP 2.2d underestimates the mean annual TWSA amplitude in 54% of the 143 investigated river basins by more than

10% (Fig. 9). Most of these basins are located in Africa, in the northern and monsoon regions of Asia, in Brazil and in western850

North America. In contrast, the mean annual amplitude is overestimated in western Russia as well as in eastern and central

North America. The correlation coefficient exceeds 0.7 in almost 75% of the river basins and 0.9 in 22%. Only 8% of the basins

show a correlation coefficient below 0.5.

The comparison of the TWSA trends shows that GRACE and WaterGAP 2.2d agree in the sign of the trend for 63% of

the 143 basins, for example most European basins, nearly the entire South American continent, and several basins in North855

America, Asia and Australia, but trends are often underestimated, e.g. in the Amazon and western Russia. Basins with different

signs of the trend are scattered around the globe. GRACE suggests strong decreases of water storage in Alaskan basins, which
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Figure 7. Classified NSE efficiency metric for the 1319 river basins in WaterGAP 2.2d.

Figure 8. Classified KGE efficiency metric and its components for the 1319 river basins in WaterGAP 2.2d.

is likely due to glacier mass loss, while WaterGAP determines small mass increase, likely because WaterGAP does not simulate

glaciers. Comparing the spatial pattern of Figs. 9 and 8, no obvious interrelation can be derived between the performances of

streamflow and TWSA.860
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Figure 9. Comparison of basin-average TWSA of WaterGAP 2.2d and the average values of three GRACE mascon products for 143 basins

larger than 200,000 km2, with a) ratio of amplitude (reddish colours indicate underestimated amplitude of WaterGAP, vice versa for bluish),

b) correlation coefficient, c) trend of GRACE and d) trend of WaterGAP 2.2d. All values based on the time series 01/2003 - 12/2015.

6.5 Performance comparison between WaterGAP2.2d and WaterGAP 2.2

Performance differences are expected due to modifications in model algorithms and the calibration routine (for details on

modifications see Appendix A). When comparing the NSE of monthly streamflow (Figs. 7 and S7), the broad picture is

similar. WaterGAP 2.2d shows some improvements in northern South America (esp. Amazon) but in the same time gets worse

in southern South America. Slight decreases in performance for WaterGAP 2.2d are observed in southern Africa. No major865

changes are visible in North America, Europe and Asia, with small bidirectional changes. KGE patterns are also relatively

similar for both versions (Figs. 8 and S8) and follow generally the differences in NSE. However, there are more regions in

Europe and Asia where WaterGAP 2.2d performs better in overall KGE, resulting mainly from an improvement of KGEr.

This is also visible in the number of basins per Koeppen climate zone, where especially in the tropical A and dry B climates

WaterGAP 2.2d has higher performance in KGEr (Table 4). The differences of KGEb are negligible.870

KGEg shows significant differences between both model versions, in both directions, but performance of WaterGAP2.2d

is significantly better. Summarizing the basin statistics per Koeppen climate zone, 272 instead of only 241 basins are within

±10% of observed variability in WaterGAP 2.2d in all climate zones except E (Table 5). Less river basins (56% compared to

61% in 2.2) are subject to an underestimation of streamflow variability. However, the number of basins with overestimation

increases slightly from 21% for WaterGAP2.2 to 23% for WaterGAP 2.2d.875
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Table 4. Model performance with respect to streamflow timing: Number of calibration basins per KGEr category and Köppen–Geiger

climate zone.

Model Class KGEr A B C D E Sum

2.2d

1 >0.8 159 35 173 251 16 634

2 0.5-0.8 109 47 77 200 17 450

3 <0.5 17 45 18 146 9 235

2.2

1 >0.8 160 28 169 250 16 623

2 0.5-0.8 104 46 80 202 18 450

3 <0.5 21 53 19 145 8 246

Table 5. Model performance with respect to streamflow variability: Number of calibration basins per KGEg category and Köppen–Geiger

climate zone.

Model Class KGEg A B C D E Sum

2.2d

1 >1.5 37 15 22 29 4 107

2 1.1-1.5 46 22 71 58 5 202

3 0.9-1.1 59 26 78 99 10 272

4 0.5-0.9 124 51 88 281 10 554

5 <0.5 19 13 9 130 13 184

2.2

1 >1.5 29 16 19 27 3 94

2 1.1-1.5 46 18 57 54 6 181

3 0.9-1.1 48 21 74 88 10 241

4 0.5-0.9 141 49 109 277 10 586

5 <0.5 21 20 12 151 13 217

The performance of streamflow of the 1319 basins (Fig. S9) is similar for most indicators. The higher variation in KGEb

stems from modifications in the calibration routine, where up to a ± 10% uncertainty of observed streamflow is allowed.

Similarly, the performance statistics of both, streamflow and TWSA (for the 143 basins > 200,000 km2) are very similar for

both model versions (Fig. S10).

A comparison of simulated seasonality of streamflow and TWSA in 12 selected large river basins across climate zones880

shows that performance with respect to both variables are improved in WaterGAP 2.2d for the Lena, Amazon and Yangtze

basins (Fig. 10). Simulations for the Congo, Mekong, Mackenzie and Murray basins do not differ. In some basins (Orange,

Volga) the simulation of streamflow is improved in WaterGAP 2.2d whereas TWSA seasonality remains similar. In other basins
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Figure 10. Seasonality of streamflow and TWSA of selected large river basins: Model results of WaterGAP2.2d and WaterGAP2.2 as well

as streamflow and TWSA observations.

(Rio Parana) seasonality agreement of TWSA remains the same for WaterGAP 2.2d but streamflow seasonality agreement

decreases.885
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7 Examples of model application

This section provides some examples of the WaterGAP 2.2d model applications for characterizing historical freshwater condi-

tions at the global scale.

7.1 Model setup

The model setup is similar to those for the evaluation (Sect. 6.1). For the purpose of model examples, the model was run in890

both the naturalized (nat) and the anthropogenic (ant) variant (Sect. 4.1).

7.2 Spatial patterns of the global freshwater system

7.2.1 Renewable water resources

The quantification of (total) renewable water resources is one of the key elements of WaterGAP model application. They are

defined as the long-term annual difference between precipitation and actual evapotranspiration of a spatial unit, or long-term895

annual net cell runoff. As runoff and evapotranspiration are influenced by human interference, renewable water resources are

calculated based on the naturalized model variant, by averaging Rnc (Sect. 4.7.3) over e.g., a 30-yr time period, resulting in

Rnc,lta,nat. On around 42.6% of the global land area (excluding Greenland and Antarctica), total water resources are calculated

to be <100 mm yr−1 during the period 1981-2010, whereas on 19.8% values are >500 mm yr−1(Fig. 11a). Globally averaged

renewable water resources are computed to be 307 mmyr−1 or 40678 km3 yr−1. The global map of inter-annual variability of900

runoff production (Fig. 11b), here defined as the ratio of runoff in a 1-in-10 dry year to total renewable water resources, shows

regions with relatively constant and relatively variable annual runoff generation, in bluish and reddish colours, respectively.

High variability is linked with low renewable water resources.

Total renewable water resources include renewable groundwater resources which are the sum of long-term average diffuse

groundwater rechargeRg , (Fig. 11c) and long-term average point (or focused) groundwater recharge from surface water bodies905

Rgl,res,w (Fig. 11d). While focused recharge is the major type of groundwater recharge in some (semi)arid grid cells, its

quantification is highly uncertain, and diffuse groundwater recharge dominates in most cells. For 1981-2010, global mean

diffuse groundwater recharge is calculated as 111.0 mmyr−1, and global mean focused recharge as 12.8 mmyr−1. Note that

as Rg is calculated on (time-variable) land area (continental area minus fraction of lakes, reservoirs, wetlands) but is related to

continental area in the standard output (Sect. 5.2), grid cells with large gaining surface water bodies, e.g. wetlands along the910

Amazon river, show significant lower Rg values than surrounding grid cells.

The sum of diffuse and focused renewable groundwater resources amounts to 40% of total renewable water resources,

highlighting the important contribution of groundwater resources. There have been a number of studies on the potential impact

of climate change on renewable groundwater resources (either including or excluding focused recharge), in which WaterGAP

was applied as impact model (Portmann et al., 2013; Döll, 2009; Döll et al., 2018; Herbert and Döll, 2019).915
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Figure 11. Water resources assessment 1981-2010 using WaterGAP 2.2d, with a) total renewable water resources defined as long-term annual

net cell runoff Rnc,lta,nat [mmyr−1], b) 1-in-10 dry year runoff generation in percent of total renewable water resources [%], c) long-term

annual diffuse groundwater recharge Rg [mmyr−1], d) long-term annual focused groundwater recharge Rgl,res,w [mmyr−1]. Results are

based on naturalized model runs. In a) note that negative values for total water resources are possible (Sect. 4.7.3). In b) areas where the

denominator is < 10−5 are labelled as not defined.

7.2.2 Streamflow

Streamflow (or river discharge) Qr,out is the model output that integrates all model components and human intervention,

routing runoff along the river network. The global map of long-term average annual streamflow under anthropogenic conditions

distinctly shows the very high spatial variability of streamflow and very distinctly the large river systems of the Earth (Fig. 12a).

Temporal variability of monthly streamflow is much higher in the (semi)arid areas than in humid area, increasing the spatial920

discrepancy of streamflow; this can be seen in Fig. 12c, which presents the ratio of the statistical low flow Q90 (the streamflow

that is exceeded in 9 out of 10 months) to long-term average annual streamflow. The regions with a ratio of less than 5% of low

flow contribution on average streamflow (the hydrological highly variable regions) follow in general the definition of (semi)arid

grid cells (Fig. B1) with some exceptions as for northern Asia. Different from the spatial pattern of interannual variability of

long-term average net cell runoff (Fig. 11b), the spatial pattern of streamflow is characterized by low temporal variability in925

cells with large rivers, due to the integration of runoff from diverse grid cells as well as large water storage capacities in lakes,

reservoirs or wetlands.
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The impact of human interventions (human water use and man-made reservoirs) on streamflow is assessed in Fig. 12b for

long-term average and Fig. 12d for statistical low flow indicator Q90 (please note the different legend for both subfigures). In

general, human interventions reduce long-term average streamflow by at least 10% (50%) in 11.3% (1.8%) of the global land930

area, mainly due to reduced groundwater discharge to lakes, reservoirs, wetlands and rivers as a consequence of groundwater

abstractions, in particular groundwater depletion (compare the red pattern with net abstraction from groundwater in Fig. 15a).

There is only a minor share (0.7%) of global land area, where long-term annual streamflow has been increased by more than

10% due to human interventions (mainly return flow from groundwater abstractions). The impact of human interventions on

Q90 is more pronounced (Fig. 12d). Large reddish patterns (consistent to net abstraction from groundwater in Fig. 15a) indicate935

the reduction of low flows by at least 10% (90%) on 29.7% (14.4%) of the global land area. However, there are also bluish

river systems visible which represents a global land area of 5.3% with increase of low flows of more then 10%. Those areas

are located downstream of large reservoirs that due to their storage capacity attenuate the flow regime towards a temporally

less variable streamflow. As WaterGAP 2.2d considers only the largest reservoirs with reservoir management algorithm and

handles the remaining ~6000 reservoirs of GRanD as unmanaged water bodies, the impact of streamflow regulation is most940

likely underestimated.

7.2.3 Water stress

A major motivation for the initial WaterGAP development was to consistently assess water stress on all land areas of the globe

(Döll et al., 2003; Alcamo et al., 1998). A common water stress indicator (WSI) is calculated as the ratio of long-term average

annual withdrawal water uses (or water abstractions of withdrawal water use) (Sect. 3) and total renewable water resources945

for different spatial units (e.g., river basins). Renewable water resources in a basin are equal to long-term average naturalized

annual streamflow at the outlet of the basin. WSI of 0.2 - 0.4 is generally assumed to indicate mild water stress and WSI>0.4

severe water stress (e.g., Greve et al., 2018), while WSI>1.0 represents a situation, where withdrawal water uses are larger

than renewable water resources, indicating extreme water scarcity (e.g., Veldkamp et al., 2017). For this example, zero-order

river basins (basins that drain to the oceans or inland sinks) were chosen as spatial units (Fig. 13). River basins covering 73.6%950

of global land area have a WSI<0.2 and thus are calculated to have none to only minor water stress. Mild (severe, but below

extreme) water stress is represented in river basins that cover 9.7% (6.9%) of global land area. Extreme water stress (WSI>1.0)

is simulated in river basins that cover 9.9% of global land area (red colours in Fig. 13). The spatial pattern of river basins with

water stress is similar to the pattern of modification of statistically low flow alteration due to human interventions (Fig. 12d).

Output of global models is usually shown in the form of two-dimensional planar global maps, which are necessarily distorted.955

While the Robinson projection that we normally use when presenting WaterGAP results is pleasing to the eye, it does not

preserve the actual area of the land surface, and areas closer to equator are shown relatively smaller than the areas closer to the

poles. Using an equal-area projection as in Fig. 14b, Africa is shown larger than in the traditional Robinson maps. For Africa,

large blue areas indicate high per-capita total renewable water resources. However, very few people live in these large areas.

For representing water resources for people instead of on areas, cartograms with population numbers as distorter can be used960

(Fig. 14 b). In cartograms, map polygons representing spatial units on the Earth’s surface are distorted in a way that the units’
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Figure 12. Streamflow indicators of WaterGAP 2.2d for 1981-2010 with a) long-term average annual streamflow Qr,out,lta, (km3 yr−1), b)

indication of streamflow alteration due to human water use and man-made reservoirs, reddish indicates less streamflow for ant conditions,

blue the opposite, c) statistical monthly low flow Qr,out,90 in percent of Qr,out,lta, d) differences of long term average statistical monthly

low flows as indication of low flow alteration due to human water use and man-made reservoirs. Not defined are areas where the denominator

is smaller than 10−5 km3 yr−1.

polygon areas on the map are proportional to a quantitative attribute of the spatial unit (Döll, 2017), here the population in 0.5◦

× 0.5◦ grid cells in 2010. The latter was derived by aggregating 2010 GPWv3 gridded population estimate for the year 2010

CIESIN (2016) from its original resolution of 2.5 arc-minutes. Clearly, with a higher share of red areas, the cartogram indicates

a world with less water availability than the "normal" map and it leads the eye to regions where humans are affected by water965

scarcity.

7.2.4 Water abstractions

With human water use being essential for the estimation of water stress, quantification of sectoral water uses was a focus

already in the initial stages of WaterGAP development (Alcamo et al., 1998). However, a distinction of the sources of water

abstractions and the sinks of return flows (groundwater or surface water) was only implemented later, such that potential net970

abstractions from groundwater and from surface water could be computed (Döll et al., 2012, 2014). Model refinements (see

Appendix A2) have lead to a more consistent computation of actual net abstractions from both sources. The general patterns
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Figure 13. Water stress in zero-order river basins for 1981-2010, computed as the ratio of the basin sum of long-term average annual potential

total withdrawal water uses (Sect. 3) to long-term average annual streamflow Qr,out,lta,nat of the basin (i.e. at its outflow cell to the ocean

or at its inland sink).

Figure 14. Water availability indicator per capita renewable water resources Qr,out,lta,nat (m3 cap−1 yr−1) for 1981-2010 visualized in a)

an equal area projection and b) as a cartogram with population in 2010 as distorter. In the cartogram each half degree grid cell is distorted

such that its area is proportional to the population of the grid cell.

of potential net abstractions (Fig. 15a and b) are consistent with the earlier assessment of Döll et al. (2012). Positive values of

NAs and NAg indicate that human water use results in a net subtraction of water from surface water bodies and groundwater

while negative values indicate a man-made addition of water to these water storage compartments. As noted in Sect. 4.8, the975

actual net abstractions can differ from its potential values. The ratio of actual to potential net surface water abstractions NAs

(Fig. 15c) shows a heterogeneous pattern, with adjacent grid cells with values below 0.9 and above 1.1. This is explained by the

option to satisfy water demand from a neighboring grid cell. In case of negative NAs, potential and actual values are always
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Figure 15. Long term (1981-2010) annual net abstractions: potential net water abstractions from surface water bodies a), potential net water

abstractions from groundwater b), ratio of actual net water abstractions from surface water bodies to its potential value c) and ratio of actual

net water abstractions from ground water to its potential value. In a) and b) negative values indicate a net recharge of surface water and

groundwater, respectively, due to return flows caused by human water use, while positive values indicate a net removal of water from the

sources. In c) and d), cells with potential net water abstractions smaller than |1| mmyr−1 are greyed out. Furthermore, grid cells where the

sign of water abstractions changes between potential and actual net abstractions are displayed in red.

the same as it is assumed in the model that NAg can always be fulfilled so that return flows to surface water are not changed.

There are only a few longer river stretches where actual NAs is smaller than the potential value.980

Actual NAg is equal to potential NApot,g except in a few grid cells where potential NApot,s cannot be fulfilled and there is

irrigation with surface water (Fig. 15d). In these cells, return flows to groundwater decrease and actual values of NAg increase

compared to their potential values. For example, in case of a positive (negative) potential NAg , a ratio of 1.1 (0.9) means that

the difference between actual and potentialNAg is 10% of the absolute value of potentialNAg . In most grid cells, actualNAg

is equal to the potential value.985
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7.3 Globally aggregated components of the land water balance components

7.3.1 Major water balance components

Estimation of globally aggregated components of the land water balance components is an intrinsic application field of GHMs.

Independent of the time span assessed in Table 6, streamflow into oceans and inland sinks, equivalent to global renewable water

resources, amounts to around 40000 km3 yr−1 (with a range of around 1000 km3 yr−1). Actual evapotranspiration is estimated990

to be around 71000 km3 yr−1 (with a range of 1200 km3 yr−1). Renewable water resources estimates are in the range of the

estimates of previous WaterGAP model versions and of other global assessments (compare Müller Schmied et al. (2014), their

Table 3). Temporal trends of precipitation, actual evapotranspiration and streamflow may not be reliable due to uncertainty of

the climate forcing and WaterGAP2.2d. With less than 10−1 km3 yr−1,the water balance error is negligible (Table 6), which is

an improvement compared to earlier model versions (see Müller Schmied et al. (2014), their Table 2).995

7.3.2 Water storage components

Total actual consumptive water use has increased over time and reaches the maximum in the most recent time period 2001-2016.

The negative value of actual net abstraction from groundwater in Table 6 indicates that globally aggregated, the groundwater

compartment is recharged by return flows from irrigation with surface water (addition of the positive and negative values

of NAg in Fig. 15b). A globally averaged anthropogenic increase in groundwater recharge is consistent with a decrease of1000

groundwater storage that is mainly caused by the net groundwater abstractions. The global groundwater storage, however, has

decreased (Table 7) mainly due to groundwater depletion in those grid cells where (positive) NAg is higher than groundwater

recharge (Döll et al., 2014). The anthropogenic net recharge of groundwater in the grid cells with negative NAg in Fig. 15b

does not lead to a substantial increase in groundwater storage but mainly increases groundwater discharge to surface water

bodies. The decreasing trend of total water storage is dominated by increasing water storage losses that were balanced in1005

earlier periods by increased water storage in newly constructed reservoirs while dam construction became less during the last

three decades (Table 7, Cáceres et al. (2020)). However, WaterGAP2.2d underestimates water storage increases because only

the largest reservoirs are simulated as reservoirs including their commissioning year and because the GRanD v1.1 database

used in WaterGAP2.2d does not include some of the major reservoirs that were put into operation after 2000 (Cáceres et al.,

2020). Soil water storage also contributes significantly to total water storage changes, showing increases since 1981. Different1010

from what may be expected due to global warming, simulated global snow storage does not decrease over time (Table 7).

7.3.3 Water use components

For the time period 1991-2016, Table 8 presents global sums of annual sectoral potential withdrawal water uses and consump-

tive water uses as well as the respective fractions that are taken from groundwater (Sect. 3.3). Potential net abstractions from

surface water (groundwater) are calculated by GWSWUSE to be 1406 (-153) km3 yr−1 (Sect. 3.3). Actual net abstractions1015

from surface water (groundwater) are computed by WGHM to be 1304 (-66) km3 yr−1 due to restricted surface water avail-
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Table 6. Global-scale (excluding Antarctica and Greenland) water balance components for different time spans as simulated with Water-

GAP 2.2d. All units in km3 yr−1. Long-term average volume balance error is calculated as the difference of component 1 and the sum of

components 2,3 and 7.

No. Component 1961-1990 1971-2000 1981-2010 1991-2016 2001-2016

1 Precipitation 111388 111582 111616 112052 112559

2 Actual evapotranspiration1 70734 71604 71979 72225 72328

3 Streamflow into oceans and inland sinks 40659 40009 39678 39930 40357

4 Actual consumptive water use2 906 1023 1146 1238 1302

5 Actual net abstraction from surface water 1002 1108 1220 1304 1353

6 Actual net abstraction from groundwater -96 -85 -74 -66 -50

7 Change of total water storage -6 -31 -40 -104 -125

8 Long-term average volume balance error 0.34 0.23 0.11 0.03 0.01

1 including actual consumptive water use

2 sum of rows 5 and 6

Table 7. Globally aggregated (excluding Antarctica and Greenland) water storage component changes during different time periods as

simulated by WaterGAP 2.2d. All units in km3 yr−1.

No. Component 1961-1990 1971-2000 1981-2010 1991-2016 2001-2016

1 Canopy 0.0 0.0 0.1 0.0 0.0

2 Snow 16.6 -6.3 3.7 -12.6 5.0

3 Soil -9.4 -2.2 16 14.5 17.3

4 Groundwater -62.9 -62.7 -90.8 -108.8 -138.2

5 Local lakes -1.1 -0.8 2.8 -0.3 -1.9

6 Local wetlands -1.4 -3.0 3.5 0.0 4.0

7 Global lakes -4.3 -5.2 -0.4 4.0 9.9

8 Global wetlands -5.8 2.4 0.2 0.1 -10.3

9 Reservoirs and regulated lakes 68.2 43.6 28.1 5.7 -3.6

10 River -5.6 3.3 -3.2 -6.4 -7.7

11 Total water storage -5.8 -31.0 -40.0 -103.9 -125.3

ability and consequently less return flows to groundwater from irrigation with surface water. It is thus estimated that 98.8% of

potential consumptive water use of 1253 km3 yr−1 could be fulfilled during 1991-2016, albeit causing groundwater depletion.
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Table 8. Globally aggregated (excluding Antarctica and Greenland) sectoral potential withdrawal water use WU and consumptive water use

CU (km3 yr−1) as well as use fractions from groundwater (%) as simulated by GWSWUSE of WaterGAP 2.2d for the time period 1991-

2016. These values represent demands for water that cannot be completely satisfied in WGHM due to lack of surface water resources (row 5

in Table 6)

Water use sector WU Percent of WU from groundwater CU Percent of CU from groundwater

Irrigation 2363 25 1100 37

Thermal power plants 599 0 16 0

Domestic 348 36 56 35

Manufacturing 272 27 53 26

Livestock 29 0 29 0

Total 3610 22 1253 36

8 Conclusions and outlook

A globally consistent quantification of water flows and storages as well as of human water use is needed but challenging, not1020

only due to a lack of observation data but also the difficulty of appropriate process representation in necessarily coarse grid

cells (Döll et al., 2016). This study fully describes the state-of-the-art GHM WaterGAP in its newest version 2.2d. Evaluation of

model performance using independent data or observations of the key output variables, namely withdrawal water uses, stream-

flow and total water storage indicates a reasonable model performance and points to potential areas of model improvement.

Model output has been widely used for studying diverse research problems but also for informing the public about the state of1025

the global freshwater system (see Supplement). The description of model algorithms, model outputs and related caveats will

allow for better usage of model outputs by other researchers, who can now access these data from the PANGAEA repository.

Ongoing WaterGAP development aims to fully integrate a gradient-based groundwater model (Reinecke et al., 2019), im-

prove the floodplain dynamics of large river basins (e.g. the Amazon) as proposed by Adam (2017) and to integrate glacier

mass data (Cáceres et al., 2020). In addition, an update of the data basis for water use computations is planned. To enhance1030

cross-sectoral integration in the framework of ISIMIP, modelling of river water temperature according to Van Beek et al. (2012)

and Wanders et al. (2019) will be implemented.

Code and data availability. WaterGAP 2.2d is on the way to open source but still in the process of clarifying licensing and copyright issues.

Hence, source code cannot be made publicly available but has been available for referees and editors. The model output data availability is

described in Sect. 5. For latest papers published based on WaterGAP 2, we refer to http://www.watergap.de, last access: 25 March 2020.1035
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Appendix A: Description of changes between the model versions 2.2 and 2.2d1050

A1 Modifications of water use models compared to WaterGAP2.2

• Deficit irrigation with 70% of optimal (standard) consumptive irrigation water use was applied in grid cells, which were

selected based on Döll et al. (2014) and have 1) groundwater depletion of > 5 mmyr−1 over 1989–2009 and 2) a >5%

fraction of mean annual irrigation withdrawal water uses in total withdrawal water uses over 1989–2009 (Sect. 3.3).

In WaterGAP 2.2, optimal irrigation allowing the plants to evapotranspirate at 100% of PET was assumed to be done1055

everywhere.

• Integration of time series of Historical Irrigation Dataset HID for 1900 to 2005 (Siebert et al., 2015) into the global

irrigation model GIM (Sect. 3.1) (Portmann, 2017). In WaterGAP 2.2, irrigated areas of the static Global Map of Irri-

gation Areas GMIA (Siebert et al., 2005) were scaled by time series of irrigated area per country. In addition to that

the newly available country-specific Area Actually Irrigated (AAI) which is available for 47 countries were used to up-1060

date computed ICU until 2010. Version 2.2d enables to consider cells-specific AAI/AEI-ratio (for details see Portmann

(2017)).

• Non-irrigation water uses (domestic, manufacturing) were corrected to plausible values for coastal cells with small

continental areas to avoid unrealistically high total water storage values in those cells.
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A2 Modifications of WGHM compared to WaterGAP 2.21065

General

• With the introduction of dynamic extents of surface water bodies, land area fractions became variable in time as well

(Sect. 2.2).

• Modified routing approach where water is routed through the storages depends upon the fraction of surface water bodies;

otherwise water is routed directly into the river (Sect. 4) (Döll et al., 2014) .1070

• Since WaterGAP 2.2b, net cell runoff Rnc is the difference between the outflow of a cell and inflow from upstream cells

at the end of a time step (Sect. 4.7.3). In the versions before, cell runoff was defined as outflow minus inflow into the

river storage.

• Modified calibration routine: an uncertainty of 10% of long-term average river discharge is allowed (following Coxon

et al. (2015)), meaning that calibration runs in four steps as described in Sect. 4.9.1.1075

• Since WaterGAP 2.2b, all model parameters which are potentially used for the calibration/data assimilation integration

(including also parameter multiplicators) are read from a text file in Javascript Object Notation (JSON) format.

• The differentiation into semi-arid/humid grid cells are defined with a new standard methodology (Appendix B).

• For WaterGAP 2.2d, the return flows from surface water resources are scaled according to actual NAs (see results in

Sect. 7 and Fig. 15). Return flows induced by irrigation from surface water resources were calculated in WaterGAP1080

2.2 under the assumption that NAs can be fully satisfied. However, this can lead to implausible negative total actual

consumptive water use, if surface water availability leads to smaller actual NAs than the return flows.

• Implementation of a new storage-based river velocity algorithm (Sect. 4.7.1).

• The realisation of naturalized runs was improved. In WaterGAP2.2, reservoirs were treated like global lakes in natu-

ralized runs, while now, global reservoirs are completely removed (but local reservoirs are still handled as local lakes)1085

(Sect. 4.1). Please note that in the studies of (Döll et al., 2009; Döll and Zhang, 2010) performed with even older model

version, all reservoirs were removed in naturalized runs.

Soil

• The total water capacity input was newly derived and is now based on Batjes (2012) (Müller Schmied, 2017) (Sect.

4.4.3) whereas in WaterGAP 2.2 it was based on Batjes (1996).1090

Groundwater

• Groundwater recharge below surface water bodies (LResW) is implemented in semi-arid and arid regions of Döll et al.

(2014) in WaterGAP 2.2d.
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• Regional changes since WaterGAP 2.2b based on Döll et al. (2014): 1) for Mississippi Embayment Regional Aquifer,

groundwater recharge was overestimated, and thus the fraction of runoff from land recharging groundwater was reduced1095

from 80–90% to 10% in these cells by adapting the groundwater factor fg (Fig. S11); 2) groundwater depletion in the

North China Plain was overestimated by a factor of 4, and thus runoff coefficient γ was reduced from 3–5 to 0.1 in this

area (Fig. S12); 3) all wetlands in Bangladesh were removed since diffuse groundwater recharge was unrealistically low.

• In WaterGAP 2.2d and for semi-arid/arid grid cells: In case of less precipitation than 12.5 mmday−1, groundwater

recharge remains in the soil column, and not handled as runoff anymore as in the versions before (Sect. 4.4.3).1100

LResW

• Precipitation on surface water bodies is now also multiplied with the evaporation reduction factor (like evaporation) to

keep water balance consistent (Sect. 4.6.3).

• Update of reservoir information, including year when reservoir began operation (commissioning year, Sect. 4.6.3)

(Müller Schmied et al., 2016a; Müller Schmied, 2017).1105

• Implementing reservoir commissioning years to reservoir algorithm (Sect. 4.6.3) (Müller Schmied et al., 2016a; Müller Schmied,

2017); before this year, the reservoir is not present and in case of a regulated lake it is simulated as global lake. In the

versions before 2.2d, reservoirs and regulated lakes are simulated to be always present.

• For global lakes and reservoirs (where the water balance is calculated in the outflow cell), water demand of all riparian

cells is included in the water balance of the outflow cell and thus can be satisfied by global lake or reservoir storage1110

(Sect. 4.6.3).

• All water storage equations in horizontal water balance are solved analytically in WaterGAP 2.2d (except for local

lakes). Those equations now include net abstractions from surface water or groundwater. As a consequence, sequence of

net abstractions has been changed to 1) global lakes, regulated lakes or reservoirs, 2) rivers, 3) local lakes (Sect. 4.6.3).

• Areal correction factor (CFA) is included in water balance of lakes and wetlands in WaterGAP 2.2d (Sect. 4.6.3).1115

• In WaterGAP 2.2d (as in versions before WaterGAP 2.2), local and global lake storage can drop to -Smax as described

in Hunger and Döll (2008). The area reduction factor (corresponding to the evaporation reduction factor in Hunger and

Döll (2008) (their eq. 1) has been changed accordingly (denominator: 2 x Smax). If lake storage S equals Smax, the

reduction factor is 1; if S equals -Smax, the reduction factor is 0 (Sect. 4.6.3)

• Active reservoir storage is not anymore assumed to be 85% but 100% of reported storage (based on comparisons with1120

literature) (Sect. 4.6.3)
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Appendix B: Definition of arid and humid grid cells

The definition of semi-arid and arid grid cells is the basis for e.g., fractional routing (Sect. 4.5.3), groundwater recharge scheme

(Sect. 4.4.3, 4.6.3) and for PET equation (Sect. 4.2.3). In the model versions before WaterGAP 2.2c as used in Müller Schmied

et al. (2016a), we defined the input file for semi-arid/arid or humid grid cells according to the climate forcing used. However,1125

it turned out that this leads to problems when comparing model outputs from different model versions and climate forcings.

For example, if well-known non-humid regions (e.g., the High Plains Aquifer and the North China Plain) are classified as

humid to a large extent due to uncertain climate forcing (and the approach used), this is not representing reality and can lead

to implausible calculation of hydrological processes in those regions. Therefore, a static definition of semi-arid/arid and humid

grid cells was developed (Fig. B1).1130

Following Shuttleworth (1993), the Priestley-Taylor α is set to a value of 1.26 for humid regions and of 1.74 for semi-

arid/arid regions. WaterGAP 2.2c was run with EWEMBI (Lange, 2019) for 1981-2010 with all grid cells defined as humid

to avoid pre-definition of areas with high or low PET due to initial setup of the α. Following Middleton and Thomas (1997),

drylands were defined based on aridity index (AI = P/PET ) with (AI < 0.65) and non-drylands with AI ≥ 0.65. Due to

the definition of α to a humid value globally, PET might be too low, especially for transitional zones between drylands and1135

non-drylands. Therefore, and based on visual inspection, we defined all grid cells with (AI < 0.75) as semi-arid/arid grid cells.

Furthermore, we defined all grid cells north of 55◦N as humid grid cells.

Figure B1. Static definition of humid and semi-arid/arid grid cells.
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Appendix C: Land cover input

WGHM is using a static land cover input map (Fig C1) which is derived from Moderate Resolution Imaging Spectroradiometer

(MODIS (2020), Friedl et al. (2010)) data for the year 2004 (Dörr, 2015). The primary land cover attribute at the original1140

resolution of 500 m is used as basis. In case a 500 m MODIS primary land cover is defined as "urban area", "permanent

wetland" or "water body", the secondary land cover was used instead as those land cover types are included as separate input

(for lakes/wetlands the GLWD dataset, Sect. 4.6, urban areas are implemented as impervious areas, Sect. 4.4.3). Finally, the

dominant IGBP land cover type (primary land cover) was selected for each 0.5◦ × 0.5◦ grid cell.

Figure C1. Land cover classification of WaterGAP 2.2d.

Appendix D: Integration of GLWD and GRanD data of lakes, reservoirs and wetlands (LResW) into WGHM1145

WGHM uses the Global Lakes and Wetland Database (GLWD) (Lehner and Döll, 2004) and a preliminary but updated version

of the Global Reservoir and Dam (GRanD) database (Lehner et al., 2011) to define location, area and other attributes of

LResW. The GLWD database consists of three data sets. GLWD-1 contains shoreline polygons of 3067 large lakes (area is >=

50 km2) and 645 large reservoirs (capacity >= 0.5 km3), GLWD-2 contains shoreline polygons of approximately 2,500,000

smaller lakes, reservoirs, and rivers and GLWD-3 is a 30 arc-sec raster data set with lakes, reservoirs, rivers and wetland types,1150

including both GLWD-1 and GLWD-2 water bodies. The GRanD v1.1 database includes 6,824 reservoir polygons (Lehner

et al., 2011). Information from these databases was translated to the six categories of LResW implemented in WaterGAP and

assigned to the 0.5◦ × 0.5◦ grid cells (see Table. D1). Fig. D1 shows the spatial distribution of the maximum extent of all

LResW (all six categories) in terms of fractional coverage.

• Implementation of wetlands1155
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Table C1. Parameters of the leaf area index model from Müller Schmied et al. (2014).

No Land cover type Lmax
Fraction of deciduous

plants fd

L reduction factor for

evergreen plants Ce

Initial days to start/end

with growing season (d)

1
Evergreen needleleaf

forest
4.02a 0 1 1

2
Evergreen broadleaf for-

est
4.78b 0 0.8 1

3
Deciduous needleleaf

forest
4.63 1 0.8 10

4
Deciduous broadleaf for-

est
4.49c 1 0.8 10

5 Mixed forest 4.34d 0.25 0.8 10

6 Closed shrubland 2.08 0.5 0.8 10

7 Open shrubland 1.88 0.5 0.8 10

8 Woody savanna 2.08 0.5 0.3 10

9 Savanna 1.71 0.5 0.5 10

10 Grassland 1.71 0 0.5 10

11 Cropland 3.62 0 0.1 10

12
Cropland/natural vegeta-

tion mosaic
3.62 0.5 0.5 10

13 Snow and ice 0 0 0 0

14 Bare ground 1.31 0 1 10

a Lmax is assumed to be the mean value of TeENL and BoENL land cover classes of Scurlock et al. (2001), ; b only value for TrEBL and not TeEBL from Scurlock et al.

(2001) as in WaterGAP this class is mainly in the tropics; c mean value from TeDBL and TrDBL from Scurlock et al. (2001); d mean value of all forest classes. Fraction

of deciduous plants and L reduction factor for evergreen plants based on IMAGE (Alcamo et al. (1998)) initial days to start/end with growing season are estimated.

GLWD-3 provides approximately the temporal maximum of wetland extent as wetland outlines were mainly derived

from maps and are used to determine Amax. In case of various input data sets, a wetland was assumed to be present if

at least one of the data sets showed one. The wetland types “coastal wetland” (covering 660,000 km2) and “intermittent

wetland/lake” (690,000 km2) which are in GLWD-3 are not included in WGHM. Inclusion of coastal wetlands would

require the simulation of ocean-land interaction, while intermittent wetlands/lakes of GLWD-3 cover very large parts of1160

the deserts (comp. Fig. 5 in Lehner and Döll (2004)) that cannot be assumed to be covered totally by water at any time

but rather represent areas where very rarely and at different points in time some parts may be flooded. Rivers shown in

GLWD-3 are considered to be (lotic) wetlands and included as wetlands in WGHM. It is assumed that only a river with

adjacent wetlands (floodplain) is wide enough to appear as a polygon on the coarse-scale source maps (Lehner and Döll,

2004). For the fractional wetland type “50-100% wetland”, an arbitrary value of 75% grid cell coverage with wetland1165
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Table C2. Attributes for IGBP land cover classes used in WaterGAP2.2d from Müller Schmied et al. (2014). Water has an albedo of 0.08,

snow 0.6.

No Land cover type
Rooting deptha

(m)
Albedoa (-) Snow albedo (-) Emissivityb (-)

Degree-day

factor DF
c

(mmd−1 °C−1)

1
Evergreen needleleaf

forest
2 0.11 0.278 0.9956 1.5

2
Evergreen broadleaf for-

est
4 0.07 0.3 0.9956 3

3
Deciduous needleleaf

forest
2 0.13 0.406 0.99 1.5

4
Deciduous broadleaf for-

est
2 0.13 0.558 0.99 3

5 Mixed forest 2 0.12 0.406 0.9928 2

6 Closed shrubland 1 0.13 0.7 0.9837 3

7 Open shrubland 0.5 0.2 0.7 0.9541 4

8 Woody savanna 1.5 0.2 0.558 0.9932 4

9 Savanna 1.5 0.3 0.7 0.9932 4

10 Grassland 1 0.25 0.7 0.9932 5

11 Cropland 1 0.23 0.376 0.9813 4

12
Cropland/natural vegeta-

tion mosaic
1 0.18 0.3 0.983 4

13 Snow and ice 1 0.6 0.7 0.9999 6

14 Bare ground 0.1 0.35 0.7 0.9412 6

a Adapted from the IMAGE model (Alcamo et al., 1998); b Wilber et al. (1999); c Maniak (1997), WMO (2009).

is assumed, for “25-50% wetland” a value of 35% and for “wetland complex” a value of 15%. The large floodplain

wetland of the lower Ganges-Brahmaputra in GLWD-3, covering almost all of Bangladesh, is not simulated as a wetland

in WGHM, as during most of the time, only a small part of Bangladesh is inundated.

All wetlands subsumed in fractional classes are assumed to be local, i.e. locally-fed. In case of all other wetland types,

global wetlands fed by the whole catchment were identified as follows. All wetland polygons with a direct connection1170

to a major river (as defined by the big_river.shp file available from ESRI) are assumed to receive inflow from a large

upstream area and are therefore categorized as global. However, if rivers in this file are categorized as intermittent, the

adjacent wetlands are categorized as local in WGHM. All other wetlands are first buffered (to the inside, using a GIS)
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Table D1. LResW representation in WGHM. The total continental area represented in WaterGAP is 136.782 million km2 (Antarctica is

not included in WaterGAP) and 134.396 million km2 without Greenland. The minimum land area (without Greenland), i.e. continental area

minus maximum LResW area, is 124.449 million km2

No
Surface water

body type
Data source

Area de-

scription

Maximum

global area

[million

km2]

Definition

1 Local wetland GLWD-3
% of cell

area
3.743

Wetland types 10, 11, 12, part of wetland types 4, 5, 7,

and 8 of GLWD-3 (see description in D)*.

2 Global wetland GLWD-3
% of cell

area
3.752 Part of wetland types 4, 5, 7 and 8*.

3 Local lake
GLWD-1,

GLWD-2

% of cell

area
0.850

Lakes with area < 100 km2 and reservoirs where a max-

imum storage capacity < 0.5 km3.

4 Global lake GLWD 1

% of cell

area, total

area of

water body

1.010 Lakes with area >= 100 km2

5 Global reservoir GRanD

% of cell

area, total

area of

water body

0.404
Man-made reservoirs with a maximum storage capacity

>= 0.5 km3.

6
Global regulated

lake
GRanD

% of cell

area, total

area of

water body

0.188

Global lakes that are regulated and simulated like

global reservoirs. Maximum storage capacity provided

by GRanD is only the additional storage due to dam

construction.

[*] wetland categories of GLWD-3: 4-freshwater marsh, floodplain, 5- swamp forest, flooded forest, 7- pan, brackish/saline wetland, 8- bog,

fen, mire, 10- 50-100% wetland (using 75% of area as local wetland), 11- 25-50% wetland (using 35% of area as local wetland), 12-

wetland complex (0-25% wetland) (using 15% of area as local wetland)

by a 10 km wide ring such that the outer 10 km of a wetland are considered to be local and the core wetland area inside

this buffer ring is considered to be global.1175

• Implementation of lakes, man-made reservoirs and regulated lakes

The 0.5◦ × 0.5◦ outflow cell of each global lake is determined based on the GLWD lake polygon and the DDM30

drainage direction map. If more than one global lake has the same outflow cell, the lakes are treated as one lake by

adding the lake areas. The same procedure is done in case of reservoirs/regulated lakes. There are 43 grid cells with 2
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reservoirs, 6 grid cells with 3 reservoirs, 2 grid cells with 1 regulated lake and 1 reservoir, 1 grid cell with 2 regulated lakes1180

and 1 grid cell with 1 global lake and 1 regulated lake. Each cell can be the outflow cell of both a global lake and a global

reservoir/regulated lake but if there is a regulated lake and a reservoir in one outflow cell, then they are aggregated.

The commissioning year and main purpose of the larger reservoir/regulated lake is used. The commissioning year of

the resulting 1109 reservoirs/regulated lakes that are simulated as individual reservoirs/regulated lakes was obtained

mainly from the GRanD database but also other sources. In the commissioning year, the reservoir area is increases to1185

its full extent (thus land area fraction is adjusted), the reservoir starts filling and reservoir algorithm is enabled. The

storage capacity of the reservoirs which are in operation in the model initialization year is set to the maximum value

(Müller Schmied, 2017).
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Figure D1. Fraction of local lakes (a), local wetlands (b), global lakes (c), global wetlands (d), global reservoirs (e), regulated lakes (f), grid

cell area covered by LResW (represents the maximum extent of LResW) and and land fraction (represents minimum extent of LResW).
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